线性代数每章习题

合集下载

线性代数-章节知识点及习题

线性代数-章节知识点及习题

第一章 行列式一、教学要求1、了解行列式定义;2、掌握行列式的性质和展开法则;3、会利用化三角法和行列式展开法则计算低阶行列式以及简单n 阶行列式;4、了解克莱姆法则;重点、难点:熟练运用行列式性质,掌握行列式计算方法二、主要知识点及练习 1、 行列式性111213111112132122232121222331323331313233223=1223=223a a a a a a a a a a a a a a a a a a a a a ,则。

练习:若行列式---311234=1303=101313a b c a b c ,则。

练习:若行列式+++2、 代数余子式13122,112D x x D=则中的系数为。

练习:设行列式11111111x x 是关于的一次多项式,该式中的一次项系数是。

练习:--- 3、 行列式计算1) 对角线法------计算二阶、三阶行列式212103214111213212223313233--、a a a a a a a a a 练习:计算三阶行列式2) 利用行列式性质计算行列式------将行列式化为上三角、下三角、对角行列式222222222(1)(2)(1)(2)(2)(1)(2)11231123(3)(4)11131121(1)ab b b x x x ba b b y y y bb a b z z z b b b ax ab ac aex bd cdde x bf cfefx 练习:计算下列行列、式、、的值+++++++-+-+-+3) 利用行列式展开法计算行列式------将行列式降阶0110100111011110练习:四阶行列式。

=11121314313233441111123456224816123434D A A A A A A A A 练习:已知行列式,则,。

==+++=++--+=123,1,3D A A 练习:设三阶行列式的第二行元素分别为,,第一行元素的代数余子式的值分别为,,则。

线性代数复习第1-6章典型例题

线性代数复习第1-6章典型例题

按最后一列展开再提取每列的公因子
-8-
Dn = ( −1) n+1 (a1 − a n )(a 2 − a n )⋯(a n−1 − a n ) ×
1 a1
2 a1
1 a2
2 a2

1
1 a n −1
2 a n −1
⋯ a n− 2
2 ⋯ a n− 2

n a1 − 2



n− 2 a n −1 ( n −1 )
n
x2 ⋯ xn a2 ⋱ an
xk yk ) = a 2 a 3 ⋯ a n (a1 − ∑ k = 2 ak
-6-
n
例9
范德蒙德(Vandermonde)行列式 行列式 范德蒙德
1 a1 Dn =
2 a1
1 a2
2 a2

1
2 a n −1
1 an
2 an
− an − an
⋯ a n −1 ⋯ ⋮
n n− 2 a 2 − 2 ⋯ a n− 2
Dn = ( a n − a1 )(a n − a 2 )⋯(a n − a n−1 ) Dn −1
Dn − 1 = (a n − 1 − a1 )(a n − 1 − a 2 ) ⋯ (a n − 1 − a n − 2 ) Dn − 2
⋯⋯
D3 = (a 3 − a1 )(a 3 − a 2 ) D2 D2 = (a 2 − a1 ) D1 = a 2 − a1
-17-
例8
设 n 阶方阵 A 满足 A2 = E ,
证明 r ( E + A) + r ( E − A) = n

A 2 = E ⇒ ( A + E )( A − E ) = O

线性代数练习册-答案

线性代数练习册-答案

第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b1221122112211221a a a b b a b b (4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a 1122332332a a a a a(3)a c bba cc b a3333a b c abc3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t 112217t(3)()()()12322524212n n n n ---当n 为偶数时,2nk ,排列为143425212221223412k k k k k kk k --+++-1122(1)(1)t k k k (1)(2)21k k 22(1)1313142n kkkkk kn其中11(1)(1)k k 为1434252122k k k k --+的逆序数;k 为21k与它前面数构成的逆序数;(1)(2)21k k为23,25,,2(21)k k kk 与它们前面数构成的逆序数的和;113131k k k k 为2k ,22,24,,2k k与它们前面数构成的逆序数的和. 当n 为奇数时,21nk ,排列为142345212223225412k k k k k kk k ++++++1122t k k(1)21k k 2213323432n kkkkk kn其中1122k k 为1423452122k k k k +++的逆序数;(1)21k k 为23,25,,2(21)k kkk 与它们前面数构成的逆序数的和;3323k k k k 为2,22,,2k k与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5ij,()()23162431655t i j t ==为奇排列.5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424(2)00000000000a c db (1342)(1)abcd abcd7. 求1230312()123122x x f x x xx-=的展开式中4x 和3x 的系数.4x 的系数为6;含3x 的项只有(4231)(1)(3)3t x x x ,所以3x 的系数为(4231)(1)3(3)119t行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a 各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a 123(1)a a a(3)41232013201116011601110111031023500r r D213314116116(1)111027350818r r r 20(4)21120111011161126111211221110100c c D3141101100(1)26126116221223c c .(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ 32212D D D D D 4322342.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c Dabcd c d a b c d dabcda 1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy ++++++=++++. 证明:左式12axayazbybzbxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz=+++++++=+++++++311r br xy zx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bbb a bb b b a ...........................; 各行加到第一行后提取公因式有:111...1...(1).....................nba b bD an b b b a bb b b a211111 (10)0 0(1)00...0 000...n r br r br a b an b ab a b1(1)n a n b ab(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000nn nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==--1112221211n n n n i i a na ia a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax abcx bx bc abc cx ax ;解:002350ba D cb abc ca,212023500ab a D bc c ba bc a22200350b ab D bc b ab c c a ,220250ba ab Dc bc abc c123,,x a x b x c(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D,(1)1且3时0D ,该齐次线性方程组只有零解。

线性代数习题集[带答案解析]教学提纲

线性代数习题集[带答案解析]教学提纲

线性代数习题集[带答案解析]仅供学习与交流,如有侵权请联系网站删除 谢谢1第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 2仅供学习与交流,如有侵权请联系网站删除 谢谢27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题仅供学习与交流,如有侵权请联系网站删除 谢谢31. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.仅供学习与交流,如有侵权请联系网站删除 谢谢410.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .仅供学习与交流,如有侵权请联系网站删除 谢谢516.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;仅供学习与交流,如有侵权请联系网站删除 谢谢65. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.仅供学习与交流,如有侵权请联系网站删除 谢谢7四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .仅供学习与交流,如有侵权请联系网站删除 谢谢8参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. ∏-=-11)(n k k a x5. )111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)仅供学习与交流,如有侵权请联系网站删除 谢谢9第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

新版线性代数1-2章练习和参考答案

新版线性代数1-2章练习和参考答案

1 四、设 a, b, c 是互异的实数,证明: a a3
1 b b3
1 c = 0 的充要条件是 a + b + c = 0 。 c3
8
院(系) , 一、填空: 1.方程组 ⎨
班, 姓名 练习 2.4 行列式的应用
学号
⎧7 x + 8 y = 6 的解 x = ⎩3x − 5 y = 11
, y=
解或有无穷解.
3
院(系) ,
班, 练习 1.4
姓名
学号
矩阵的标准形
一、填空: 1.设一个 m × n 线性方程组的系数矩阵为 A ,它等价于 ⎜
⎛ Er ⎝0
0⎞ ⎟ ;其增广矩阵为 0 ⎠ m×n
⎛E B ,它等价于 ⎜ k ⎝ 0

0⎞ . 那么方程组有解的充分必要条件可以用 r 和 k 描述 ⎟ 0 ⎠m×( n +1)


当 n = 2 时, D =
;当 n ≥ 3 时, D =
1 −2 5. 4 −8 0 1 6.设有 x 1 1 1 7. 1 0 1 1 0 1
1 1 1 1 1 0 1 x 1 0 1 1
1 1 2 3 = 4 9 8 27 x 1 0 1 0 1 = 1 1

1 x = 0 ,则 x = 1 0
三、不计算行列式的值,证明行列式
能被 18 整除.
6
院(系) , 一、填空:
班, 姓名 练习 2.3 行列式的计算
学号
2 0 0 0 1 −1 1. 0 −4 0 5 2 −3
4 2 = 0 8
−1 1 1 x −1 −1 x +1 −1 1 ;2. = −1 1 x −1 1 −1 1 x +1 −1 1 0 中,元素 x 的代数余子式是 0 1

线性代数习题

线性代数习题

线性代数习题景德镇陶瓷学院信息工程学院第一章 行列式习题1、若排列x 1 x 2……x n-1 x n 的逆序数为I ,问排列x n x n-1……x 2 x 1的逆序数是多少?2、选择i 与k ,使(1)1274i56k9成偶排列 (2) 1i25k4897成奇排列3、计算排列2K ,1,2K-1,2,2K-2,3……K+1,K 的逆序数,并讨论它的奇偶性。

4、在六阶行列式中,项:a 23a 31a 42a 56a 14a 65,a 32a 43a 14a 51a 66a 25各应带什么符号5、根据行列式定义,计算:()x x x x x x f 111123111212-=中X 4与X 3的系数。

6、计算行列式D=2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a7、计算行列式D=nx x x nx x x nx x x n n n +++++++++ 212121222111注:n 阶行列式计算的常用方法有:(1)按定义展开:直接用定义展开计算;(2)三角化:即利用行列式的基本性质,使行列式主对角线一侧的元素都变为零(如第9题);(3)拆子列:利用行列式的性质50,将行列式化为两个较简单的行列式来计算。

(如第7、8、10题);(4)递推法:设法找出n 阶行列式D n 与低阶行列式的关系(往往要用归纳法验证),再递推求出D n 的值。

(如第8题);(5)降阶法:利用行列式按行(列)展开定理,将行列式降阶后求解; (6)应用范德蒙行列式:将行列式变形,化成范德蒙行列式。

具体计算n 阶行列式时应根据行列式特点单独或综合运用上述方法。

8、证明:6 D n =βαβααββααββα++++10000010001000 =βαβα--++11n n9、计算nD (333)...............3 (33)33...3233 (331)=10、计算行列式yy x x -+-+111111111111111111、求一个二次多项式f(x),使f(1)=0,f(2)=3,f(-3)=28。

线性代数作业习题

线性代数作业习题

第一章:行列式1、计算下列行列式1 2 2 … 2 22 2 2 … 2 22 23 … 2 2:::::2 2 2 … n-1 22 2 2 … 2 n解:首先利用每一行元素分别减去第二行元素得到:-1 0 0 02 2 2 00 0 1 00 0 0 2 00 0 0.......n-2可利用代数余子式求出:(-1)*2*(n-2)!2、计算下列行列式:|x y x+y||y x+y y||x+y y xl解:|x y x+y||y x+y y||x+y y x|=x|x+y y|+y(-1)| y y|+(x+y)| y x+y|| y x| |x+y x| |x+y y |=x(x²+xy-y²)-y(xy-xy-y²)+(x+y)(y²-x²-2xy-y²)=x(x²+xy-y²)-y(-y²)+(x+y)(-x²-2xy)=x³+x²y-xy²+y³-x³-x²y-2x²y-2xy²=y³-2x²y-3xy²=y(y²-2x²-3xy)3、计算下列行列式:1 2 -5 1-3 1 0 -62 0 -1 24 1 -7 6解:根据行(列)与行(列)之间互换,行列式值改变符号。

所以第一列与第二列互换,得出2 1 -5 11 -3 0 -60 2 -1 21 4 -7 6根据行列式倍加不变原理。

第四列乘以-2加上第一列,第四列乘以-1加上第二列,结果如下。

0 -7 9 -110 -7 7 -120 2 -1 21 4 -7 6根据行列式倍加不变原理。

第四列乘以-2加上第一列,第四列乘以-1加上第二列0 -7 9 -110 -7 7 -12- 0 2 -1 21 4 -7 6根据计算,得出= (-14)+49-62=-274、求二阶行列式1-x^2 2x----- -----1+X^2 1+X^2解:原式=([1-x²]²+4x²)/(1+x²)²=(1+x²)²/(1+x²)²=15、设A B为n阶方阵,满足ATA=AAT=E,BTB=BBT=E及|A|+|B|=0,求|A+B|解:原式=([1-x²]²+4x²)/(1+x²)²=(1+x²)²/(1+x²)²=1由已知, |A|^2=|B|^2 = 1所以|A|, |B| 等于1 或-1因为|A|+|B|=0所以|A||B|= -1所以有|A+B|= - |A||A+B||B|= - |A^T||A+B||B^T|= - |A^T AB^T+A^T BB^T|= - |B^T+A^T|= - |(A+B)^T|= - |A+B|.所以|A+B| = 0.第二章:矩阵1、已知矩阵A=[1 1 1][2 -1 0][1 0 1]B=[3 1 1][2 1 2][1 2 3 ] 求:AB解:AB=[1×3+1×2+1×1 1×1+1×1+1×2 1×1+1×2+1×32×3-1×2+0×1 2×1-1×1+0×2 2×1-1×2+0×31×3+0×2+1×1 1×1+0×2+1×2 1×1+0×2+1×3]=[6 4 6][ 4 3 4]2、设A=[2 2 3][1 -1 0][3 1 2] A*为A的伴随矩阵,求A(-1)A*解:AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4A^-1=-1/2 -1/4 3/4-1/2 -5/4 3/41 1 -1(A^-1)^2=9/8 19/16 -21/1613/8 39/16 -33/16-2 -5/2 5/2所以A^-1A* = |A| (A^-1)^2 =9/2 19/4 -21/413/2 39/4 -33/4-8 -10 103、判断关于逆矩阵(A+B)的逆等于不等于A的逆加B的逆解:一般不等于,反例:令A=B=E则(A+B)=2E,(A+B)逆=E/2而A逆+B逆=E+E=2E所以不等4、求矩阵的秩[1 3 2 a][2 -4 -1 b]其中a,b,c为任意实数解:r(A)=3因为[1 3 2][2-4-1][3-2 0]的行列式不为0,说明原矩阵有一个3阶子式不为0,秩至少是3;又因为原矩阵是3*4的矩阵,它的秩最多为3,所以答案就是35、一个方程组x+y+z=22x+y+3z=03y+4z=1求方程的解解:设A=[111213034]B=[21]A的逆阵为C=(1/7)*[5,1,-28,-4,1-6,3,1]x=C.B=1/7[817-11]第三章:向量空间1、已知α1=(1,1,2,-1)α2=(-2,1,0,0,)α3=(-1,2,0,1)又β满足3(α1-β)+2(α3+β)=5(α2+β)求β解:由题设,有3α1-3β+2α3+2β=5α2+5β3α1+2α3-5α2=6β(3,3,0,-3)+(-2,4,0,2)-(-10,5,0,0)=6β6β=(11,2,0,-1)β=(11/6,1/3,0,-1/6)2、设数域F上向量空间V的向量组{α1 , α2 , α3}线性无关,向量β1可由α1 , α2 , α3线性表示,而β2不能由α1 , α2 , α3线性表示。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数习题册(答案)

线性代数习题册(答案)

线性代数习题册答案第一章 行列式练习 一班级 学号 姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .3.在四阶行列式中,项12233441a a a a 的符号为 负 .4.00342215= -24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式: (1)111ab c a b c abc +++= 13233110110011,0110111111r r r r c c a b c bcabcabc-----+-==++++++(2) xy x y y x y x x yxy+++(3)130602121476----(4)1214012110130131-5.计算下列n 阶行列式:(1)n xa a a x a D aax=(每行都加到第一行,并提公因式。

)(2)131111n +(3) 123123123n n n a ba a a a ab a a a a a a b+++练习 三班级 学号 姓名 1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。

线性代数第一章到五章(答案)

线性代数第一章到五章(答案)

第一章 行列式一 填空题1. n 阶行列式ij a 的展开式中含有11a 的项数为 (n-1)!2.行列式12n λλλ=(1)212(1)n n n λλλ--3. 行列式1112131422232433344400a a a a a a a a a a 的值11223344a a a a4.在n 阶行列式A =|ij a |中,若j i <时, ij a =0(j i ,=1,2,…,n),则A =1122nna a a解: A 其实为下三角形行列式. 5. 排列134782695的逆序数为 10 . 解:0+0+0+0+0+4+2+0+4=106. 已知排列9561274j i 为偶排列,则=),(j i (8,3) . 解:127435689的逆序数为5,127485639的逆序数为107. 四阶行列式中带有负号且包含a 12和a 21的项为 -a 12a 21a 33a 44 . 解:四阶行列式中包含a 12和a 21的项只有-a 12a 21a 33a 44和a 12a 21a 43a 348.在函数xx xx x x f 21112)(---=中,3x 的系数为 -2 解: 行列式展开式中只有对角线展开项为3x 项.9. 行 列 式xx x x x 2213212113215 含 4x 的项410x解:含4x 的 项 应 为4443322111025x x x x x a a a a =⋅⋅⋅=.10. 若n 阶行列式ij a 每行元素之和均为零,则ij a = 0解:利用行列式性质:把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变11. =5678901201140010302001000 120 .解:将最后一行一次与其前一行互换的到三角行列式12.行列式ccb ba a ------1111111的值是 1 。

解ccb ba a------1111111=1011111a b b cc----=101111a b cc--=1010101abc =113. 行 列 式210000121000002100001200000121012-------- 的 值是 27 。

线性代数习题集-第一章

线性代数习题集-第一章

第一章:行列式I.单项选择题 1.排列1,3,,(2n 1),2,4,,(2n)-的逆序数为( )(1) n 1- (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 2.排列1,3,,(21),(2),(22),,2n n n --的逆序数为( )(1) n (2) (n 1)n - (3) (n 1)n + (4) (n 1)/2n - 3.四阶行列式中含有因子1123a a 的项是( )(1) 11233442a a a a (2) 11233344a a a a (3)11233342a a a a (4) 11233442a a a a -4.行列式abac aebdcd de bfcfef---的值是( ) (1) 2abcdef (2) 4abcdef (3) 6abcdef (4) 8abcdef 5. 设A 为n 阶方阵,λ为数,则A λ等于( ) (1) A λ (2) A λ (3) n A λ (4) 2A λ6.设ab cD de f g hi=,则元素h 的代数余子式为( ) (1)a c gi(2) a cdf -(3) a c g i - (4)a c df7.设行列式000000a bcD d e f g h i j=,则D 的值等于( ) (1) abdg - (2) abdg (3) abdg ceh fi j -+- (4) abdg ceh fi j ++- 8.设A 为n 阶矩阵,则( )(1) A A -= (2) A A -=- (3) (1)n A A -=- (4) 1A A --=9.设A 为n 阶矩阵,且A 的行列式0A a =≠,而A *是A 的伴随矩阵,则A *等于()(1) a (2) 1/a (3) n a (4) 1n a -10.若12312,,,,αααββ都是四维列向量,且1231m αααβ=,1223n ααβα=四阶行列式,则32112()αααββ+四阶行列式等于( ) (1) n m - (2) m n - (3) m n + (4) ()m n -+11.设44⨯ 矩阵[]234,,,A αγγγ= ,[]234,,,B βγγγ=,其中234,,,,αβγγγ均为4维列向量,且已知行列式1,1A B ==,则行列式A B +等于( ) (1)5 (2)10 (3)30 (4)4012.设设A 为m 阶方阵,设B 为n 阶方阵,且,A a B b ==,00AC B =,则C 等于( )(1) ab (2) ab - (3) (1)nm - (4) (1)nm ab -13.设行列式D aba b b a b a a b ab+=++,则D 的值为( )(1) 332()a b -+ (2) 332()a b + (3) 332()a b - (4) 33()a b -+ 14.元素是0和1的三阶行列式D 之值只能是( ) (1) 3 (2) 3- (3) 4 (4) 0,1,2±± II.填空题1.n 阶行列式的完全展开式,应由________项组成,每项位于行列式中________的n 个元素的乘机,而且项1212n j j nj a a a 的符号为_____.2. n 阶行列式1111nn nna a A a a =,则按第i 行的展开式为__________;按第j 行展开式为__________.3.当A 可逆是1A -=____________.4.设A 是一个n 阶方阵,k 是一个有理数,则kA =________,5.在行列式2121113211x x x x j j x-的展开式中,3x 的系数为________,4x 的系数为_________.6.三角行列式110nn nna a a =_________ 7.行列式2111131111411115A ==__________ 8.行列式11101210011000000111002A --==--__________ III.判断题1.交换行列式中任意两行的位置,行列式的值不变。

线性代数习题

线性代数习题

线性代数习题集皖西学院应用数学学院编制2012年9月第一章 行 列 式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( )2. 213210124121012342=-.( ) 3. 13434121.42042=-( )4. 123213123213123213.a a a b b b b b b a a a c c c c c c =( ) 5. 123123123123123123.a a a a a a b b b b b b c c c c c c ---------=---( ) 6. n 阶行列式n D 中元素ij a 的代数余子式ij A 为1n -阶行列式. ( )7. 312143245328836256=.( ) 8. 111213212223313233a a a a a a a a a 122r r + 111213211122122313313233222+++a a a a a a a a a a a a ( ) 9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. ( ) 二、选择题1.若12532453r s a a a a a 是5阶行列式中带正号的一项,则,r s 的值为( ). A.1,1r s == B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( )A. 4312B. 51432C. 45312D. 6543213.若行列式21120312x--=-, 则x =( ). A.–2 B. 2 C. -1 D. 14.行列式000000000ab cd e f的值等于( ).A. abcdefB. abdf -C. abdfD. cdf5.设abc ≠0,则三阶行列式00000d c b a的值是( ).A .aB .-bC .0D .abc 6.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( )..0,0Aa b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠8. 215152521112223030223-=---是按( )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212ni i in n n nna a a D a a a a a a = 则下式中( )是正确的. 1122.0i i i i in in A a A a A a A +++= 1122.0i j i j ni nj B a A a A a A +++= 1122.i i i i in ni C a A a A a A D +++= 1122.i j i j ni nj D D a A a A a A =+++10. 349571214的23a 的代数余子式23A 的值为( ). A. 3 B. -3 C. 5 D. -5 三、填空题1. 排列36715284的逆序数是________.2. 四阶行列式中的一项14322341a a a a 应取的符号是_______. 3.若,0211=k 则k=___________. 4.行列式1694432111中32a 元素的代数余子式A 32=____________.5.598413111=__________. 6.行列式0001001010000100=______.7.行列式0004003002001000=__________. 8.非零元素只有1n -行的n 阶行列式的值等于__________.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=__________. 10.n阶行列式nD 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =__________,n D 按第j 列展开的公式是n D =__________.四、计算题1.写出五阶行列式中含1325a a 并带有正号的所有项.2.计算四阶行列式1002210002100021的值.3.求4阶行列式1111112113114111的值.4.计算行列式D =1111123414916182764的值.5. 计算行列式122224242λλλ--+---+ 6.计算n 阶行列式0111101111011110. 7. 计算n 阶行列式 0 0n a D a⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 其中对角线上元素都是a , 未写出的元素都是0;8. 计算n 阶行列式 n xa a a x a D aax⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅9. 计算nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112五、证明题1.33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bxax byay bzzxy++++++=++++2.2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++=++++++六.用克拉默法则解方程1. 12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩; 2.121232343454556156056056051x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪+=⎩. 七. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( )2.若,AB O =且,A O ≠则.=B O ( )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( ) 4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( ) 6. 若,AB 为同阶可逆矩阵,则11()kA kA --=. ( )7. 42042069126232110110⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( ) 9.设,A B 为同阶方阵,则 A B A B +=+. ( )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有 222.(+)+2+B A B A AB B = .D AB A B =2.若,s n n l A B ⨯⨯,则下列运算有意义的是( )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( )..=A m t .=B m s .=C n s .=D n t4.矩阵1111A --⎛⎫= ⎪⎝⎭的伴随矩阵*=A ( )A .⎪⎪⎭⎫ ⎝⎛--1111B .⎪⎪⎭⎫ ⎝⎛--1111C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.设2阶矩阵a b A c d ⎛⎫=⎪⎝⎭,则*=A ( )A .⎪⎪⎭⎫⎝⎛--a c b d B .⎪⎪⎭⎫ ⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a c b d D .⎪⎪⎭⎫ ⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-013117. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( ).A .⎪⎭⎫ ⎝⎛--3172B .⎪⎭⎫ ⎝⎛3172C .⎪⎭⎫ ⎝⎛--3172D .⎪⎭⎫ ⎝⎛2173 8. n 阶矩阵A 行列式为,A 则kA 的行列式为( ). A. k A B. nkA C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有( )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题1.设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100021013B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则2+=A B _____________2.设A=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B=,010201⎢⎣⎡⎥⎦⎤则AB =___________. 3.设矩阵A=⎪⎪⎭⎫ ⎝⎛21,B=⎪⎪⎭⎫ ⎝⎛31,则A TB =____________. 4.⎪⎪⎪⎭⎫⎝⎛321(1,2,3)=__________. 5.n1111⎪⎪⎭⎫ ⎝⎛=__________. 6.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 7.设2阶矩阵A =⎪⎪⎭⎫⎝⎛3202,则A *A =_____________.8.设矩阵A=⎪⎭⎫ ⎝⎛4321,则行列式|A 2|=__________. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc ≠0,则A -1=__________ .10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭_______________.四、计算题1.已知110123011,124,111021A B ⎡⎤⎡⎤⎢⎥⎢⎥=----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求()TA B +.2.计算下列乘积1).431712325701⎛⎫⎛⎫⎪⎪- ⎪⎪ ⎪⎪⎝⎭⎝⎭;2).3(123)21⎛⎫⎪⎪ ⎪⎝⎭;3).)21(312-⎪⎪⎭⎫⎝⎛;4).13121400121134131402⎛⎫ ⎪-⎛⎫ ⎪ ⎪ ⎪--⎝⎭ ⎪-⎝⎭; 5).111213112312222321323333()a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭.3.求矩阵方程.1) 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2) 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;3) 142031121101X ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 4.设矩阵21=53A ⎛⎫⎪⎝⎭,13=20B ⎛⎫⎪⎝⎭,求矩阵方程=XA B 的解X .5.设321=111101A ⎡⎤⎢⎥⎢⎥⎢⎥⎦⎣,求-1A .6.设101=210,325A ⎛⎫ ⎪⎪ ⎪--⎝⎭ 求-1A 7.设101=210325A ⎛⎫ ⎪⎪ ⎪--⎝⎭,求-1A .8.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2500380000120025A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=2600140000540023B . 求:AB BA 和9. 设A 为3阶矩阵, , 求-1(2)-5A A *. 10.设(1,2,1),28,A diag A BA BA E *=-=- 求.B 11.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A |及4A五、证明题1. 设,A B 为n 阶矩阵,且A 为对称矩阵,证明TB AB 也是对称矩阵. 2.设,A B 为n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 3.设为n 阶矩阵A 满足235,A A E O --=试证A E +可逆,且()14A E A E -+=-.4. 设A 为n 阶矩阵,且2,A A =且A E ≠,证明A 是不可逆矩阵.第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( B )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是( D )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则(C )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是(D )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解 (D) 若AX b =有无穷多解 ,则0AX =有非零解 6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。

自考线性代数章节测试题及答案

自考线性代数章节测试题及答案

自考线性代数章节测试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 向量组 {v1, v2, v3} 线性无关的充分必要条件是:A. v1 ≠ 0B. v2 ≠ 0C. v1, v2 不共线D. v1, v2, v3 构成某向量空间的一个基答案:D3. 对于n维向量空间V,下列说法正确的是:A. V中任意两个向量都线性无关B. V中存在一组基,包含n个向量C. V中所有向量都可以用一组基表示D. 以上所有说法都正确答案:D4. 如果A和B是两个m×n矩阵,那么AB的行列式等于:A. |A| * |B|B. |B| * |A|C. |A| + |B|D. 不能直接计算答案:D5. 对于矩阵A,下列哪个矩阵是A的特征矩阵?A. A的转置矩阵B. A的伴随矩阵C. A的逆矩阵D. 存在非零向量v,使得Av=λv的λ构成的对角矩阵答案:D二、填空题(每题3分,共15分)6. 矩阵的秩是指________。

答案:矩阵中最大线性无关组所含向量个数7. 对于任意矩阵A,其迹数(Trace)定义为其主对角线上元素的________。

答案:和8. 线性变换T: R^n → R^m的表示矩阵是________。

答案:T作用在标准基向量上得到的向量构成的矩阵9. 二次型f(x) = x^TAx的规范型是________。

答案:f(y) = y1^2 + y2^2 + ... + yk^210. 线性方程组Ax = b有解的充分必要条件是________。

答案:R(A) = R([A; b])三、解答题(共75分)11. (15分)设A是一个3×3的实对称矩阵,证明A可以表示为A = QDQ^T,其中Q是正交矩阵,D是实对角矩阵。

答案:略(需要详细解答的请告知)12. (20分)给定两个向量v = [1, 2, 3]^T和u = [4, 5, 6]^T,求向量v在向量u上的投影。

线性代数习题集带答案教学教材

线性代数习题集带答案教学教材

线性代数习题集带答案收集于网络,如有侵权请联系管理员删除第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 2收集于网络,如有侵权请联系管理员删除7. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题收集于网络,如有侵权请联系管理员删除1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=0100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.收集于网络,如有侵权请联系管理员删除10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .收集于网络,如有侵权请联系管理员删除16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x x x ; 4.111111321321221221221----n n n n a a a a xa a a a xa a a a x a a a a x ;收集于网络,如有侵权请联系管理员删除5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 2100012000002100012101211.aa a a a a aa a D ---------=110001100011000110001.收集于网络,如有侵权请联系管理员删除四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .收集于网络,如有侵权请联系管理员删除参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-; 3.43312214a a a a ; 4.0; 5.0; 6.!)1(1n n --; 7.1)1(212)1()1(n n n n n a a a ---;8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-; 13.0; 14.0; 15.9,12-;16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. ∏-=-11)(n k k a x5. )111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)收集于网络,如有侵权请联系管理员删除第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

线性代数习题参考答案

线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i= ,j= 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

线性代数习题册(答案)

线性代数习题册(答案)

线性代数习题册答案第一章 行列式 练习 一 班级 学号1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ (3421)= 5 ; (2)τ (135642)= 6 ;(3)τ (13⋯ (2n-1)(2n ) ⋯42) = 2+4+6+ ⋯ +(2 n-2)= n (n-1). 2.由数字 1 到 9 组成的排列 1274i56j9 为偶排列,则 i= 8 、 j= 3 3.在四阶行列式中,项 a 12a 23a 34a 41 的符号为 负 .= - 3 + 3 +2= (2 )( 1)21 2 21) 2 1 2 = - 1+2 2 15.计算下列行列式:- 8)+(- 8 )-(- 4 )或 -(- 4)―(- 4) = - 511 2) 111 13+1+ 1-(- )-(- )―(- )00 4. 0 421练习班级学号31.已知 3阶行列式det(a ij ) =1,则行列式det( a ij )= -1 . ( 1)3 111 1 1 2.234 = 24 9 161 a b c(1) a 1 b c a b 1 cx y x y (2) y x y xx y x y 1 0 110 0r1 r,rr30 1 1c3 c1 0 1 1a b 1c a b 1c111 a b cb1c0 1 21 0 3,则A41 A421 1 02 5 4113.已知 D=1 1用 1, 1,1,1 替换第4 行4.计算下列行列2 1 5 1 13 0 60 2 1 21 4 7 61 2 1 40 1 2 11 0 1 3 0 1 3 15.计算下列n 阶行列式:每行都加到第一行,并提公因式。

)(2 ) 21M13MLLM11ML1 1 n1a1 b a2 a3 L a n(3 ) a1 a2 b a3 L a n M M M M Ma1 a2 a3 L a n b练习班级学号x3 1x1 x21.设线性方程组x1 x2 x3 1 有惟一解,则满足的条件是什么?x1 x2 x3 11, 0, 1x1 x2 x3 x4 5x1 2x2 x3 4x4 22. 求解线性方程组12x1 3x2 x3 5x4 23x1 x2 2x3 11x4 0x1 x2 x3 03.已知齐次线性方程组x1 x2 x30 有非零解,求的值。

《线性代数》单元自测题

《线性代数》单元自测题

《线性代数》基础习题第一章 行列式一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i = ,j = 。

2. 在四阶行列式中,带正号且同时包含因子23a 和31a 的项为__ ___。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取 。

4.已知xx x x x x f 42124011123313)(--=,则)(x f 中4x 的系数为 。

5. 行列式=600300301395200199204100103__ __。

二、 计算下列各题:1.计算63123112115234231----=D 。

2.设4321630211118751=D ,求44434241A A A A +++的值。

3.计算ab b a b a b a D n 000000000000=4.计算nD n 222232222222221=5.计算ab b b b a b bb b a bb b b a D n = 6.计算4443332225432543254325432=D 7.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值。

第二章 矩阵一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则R(A)= 。

2.设A 是3阶方阵,且m A =,则1--mA = 。

3.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20092010100001010534432121001010100 。

4.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A 。

5.设A 为3阶方阵,1A =-,A 按列分块为()321A A A A =,()32122A A A B =,则*B = 。

线性代数1-2章精选练习题

线性代数1-2章精选练习题

第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C)k n 2! (D)k n n 2)1(3. n 阶行列式的展开式中含1122a a 的项共有( )项.(A) 0 (B)2 n (C) )!2( n (D) )!1( n4.001001001001000( ).(A) 0 (B)1 (C) 1 (D) 25. 0001100000100100( ).(A) 0 (B)1 (C) 1 (D) 26.在函数10323211112)(x x x xx f 中3x 项的系数是( ).(A) 0 (B)1 (C) 1 (D) 27. 若21333231232221131211a a a a a a a a a D ,则 323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若a a a a a 22211211,则21112212ka a ka a ( ).(A)ka (B)ka (C)a k 2 (D)a k 29. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为x ,1,5,2 , 则 x ( ).(A) 0 (B)3 (C) 3 (D) 210. 若5734111113263478D ,则D 中第一行元的代数余子式的和为( ).(A)1 (B)2 (C)3 (D)011. 若2235001011110403D ,则D 中第四行元的余子式的和为( ).(A)1 (B)2 (C)3 (D)012. k 等于下列选项中哪个值时,齐次线性方程组00321321321x x kx x kx x kx x x 有非零解.( )(A)1 (B)2 (C)3 (D)0二、填空题1. n 2阶排列)12(13)2(24 n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于.5. 行列式100111010100111.6.行列式100002000010nn .7.行列式01)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D 333231232221131211,则 323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式1111111111111111x x x x .11.n 阶行列式111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321D ,j A 4)4,3,2,1( j 为D 中第四行元的代数余子式,则44434241234A A A A .14.已知db c a cc a b b a b c a cb a D, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321D ,j A 4为)4,3,2,1(4 j a j 的代数余子式,则4241A A ,4443A A .16.已知行列式nn D10301002112531,D 中第一行元的代数余子式的和为.17.齐次线性方程组020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a33332222; 2.yxyx x y x y y x y x ;3.解方程0011011101110 x x xx ; 4.111111321321221221221 n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a111111111111210(n j a j ,,1,0,1 );6. bn b b )1(1111211111311117. n a b b b a a b b a a a b321222111111111; 8.xa a a a xa a a a x a a a a x n nn321212121;9.2212221212121111nn n nn x x x x x x x x x x x x x x x; 10.211200000210001210001211.aa a aa a a a aD 1101100011000110001.四、证明题1.设1 abcd ,证明:011111111111122222222dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a .3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a .4.nj i i jni in nn nn n n n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333 c b a c ba 的充要条件是0 cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“ ;3.43312214a a a a ;4.0;5.0;6.!)1(1n n ;7.1)1(212)1()1(n n n n n a a a ; 8.M 3 ; 9.160 ; 10.4x ; 11.1)( n n ;12.2 ; 13.0; 14.0; 15.9,12 ; 16.)11(!1 nk k n ; 17.3,2 k ;18.7 k 三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ; 2. )(233y x ; 3. 1,0,2 x ; 4. 11)(n k k a x5. )111()1(00nk knk k a a ; 6. ))2(()1)(2(b n b b ;7. nk k kna b1)()1(; 8. nk k n k k a x a x 11)()(;9. nk k x 11; 10. 1 n ;11. )1)(1(42a a a . 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数每章习题第一章 行列式一、判断题1、排列213是一个奇排列。

( )2、行列式主对角线上的元素全为零,则行列式的值必为零。

( )3、如果行列式中有两行(列)的对应元素成比例,那么这个行列式的值为零。

( )4、两个行列式相加,等于对应元素相加。

( )5、333231232221131211333231232221131211a a a a a a a a a a a a a a a a a a -=---------。

( )6、行列式等于任意行元素与其对应的余子式乘积的代数和。

( )7、把行列式的行和相应的列互换,则行列式的值变号。

( ) 二、填空题1、43_________75=。

2、135135___________263=。

3、行列式334513221--中元素2的代数余子式为___________。

三、计算(1)102125113(2)讨论当k 为何值时,11001100002002k D kk=≠。

第二章 矩阵一、判断题1、所有的矩阵都是可逆的。

( )2、设B A ,是n 阶可逆方阵,则111()AB A B ---=。

( )3、若矩阵A 的秩为r ,则矩阵A 的所有1r +阶子式均为零。

( )4、若矩阵A 的所有r 阶子式均为零,则矩阵A 的秩小于r 。

( )5、n 阶方阵A 可逆的充分必要条件是0A ≠。

( )二、填空题1、当a 满足 时,矩阵131A a ⎛⎫=⎪-⎝⎭可逆。

2、设A 是可逆矩阵,且2A AB E +=,则A -=1 。

3、112________35-⎛⎫= ⎪⎝⎭。

4、矩阵10114063030002000000⎛⎫⎪⎪⎪⎪⎝⎭的秩为________________。

5、若矩阵110A a ⎛⎫= ⎪⎝⎭的秩为1,则a 应满足的条件为 。

三、计算题1、计算矩阵的乘积111310012011131320--⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪--⎝⎭⎝⎭。

2、求矩阵的逆矩阵100110111⎛⎫ ⎪⎪ ⎪⎝⎭。

3、求矩阵的秩110211101-⎛⎫ ⎪⎪ ⎪-⎝⎭。

第三章 向量空间一、判断题1、向量组中没有零向量,则该向量组必线性无关。

( )2、若向量组12,,,s ααα中每一个向量均不能由其余的向量线性表示,则向量组12,,,s ααα线性无关。

( )3、向量组()()12122,244TTαα==线性相关。

( )4、向量组的极大线性无关组是唯一的。

( )5、矩阵的秩大于矩阵的行秩。

( )6、若向量组123,,ααα线形相关,则向量组12,αα必线形相关。

( ) 二、计算题1、已知()1,2,2α=,()0,2,1β=,计算2αβ+。

2、下列向量组是否线性相关?为什么?(1)()11,0,0Tα=,()21,1,0T α=,()31,2,1Tα=。

(2)()11,2,3Tα=,()21,0,2Tα=,()30,1,1Tα=。

3、求向量组()11,4,3T α=,()21,0,1T α=-,()32,0,1Tα=的秩.第四章 线性方程组一、判断题1、设A 为m n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是系数矩阵A 的秩小于n ,即()r A m <。

( )2、设1ξ,2ξ均为齐次线性方程组0Ax =的解,则12ξξ-也是0Ax =的解。

( )3、设A 为m n ⨯矩阵,且()r A r =,则齐次线性方程组0Ax =的基础解系由n r -个向量构成。

( )4、非齐次线性方程组Ax b =有解的充分必要条件是系数矩阵的秩和增广矩阵的秩相等,即()(,)r A r A b =。

( )5、若12,ηη是方程组Ax b =的解,则12ηη+是导出组0Ax =的解。

( ) 二、计算题1、求解方程组123412341234031231x x x x x x x x x x x x --+=⎧⎪-+-=⎨⎪--+=⎩2、求齐次线性方程组1234123412340253207730x x x x x x x x x x x x +--=⎧⎪-++=⎨⎪-++=⎩的基础解系和通解。

每章习题答案第一章 行列式一、判断题1、√2、 ×3、√4、×5、√6、×7、× 二、填空题1、-12、03、3三、(1)2131233221021021021021250230110111113011023001r r r r r r r r D --↔-===-=-=- (2)2111001100110011000200200202r r k k D kk kk--==,按第一列展开得()()()211022114202k k D k k k k kk-==-=--,所以,当1k ≠且2k ≠±时,11001100002002k D kk=≠。

第二章 矩阵一、判断题1、×2、×3、√4、√5、√ 二、填空题1、3a ≠-2、()12E B + 3、5231-⎛⎫ ⎪-⎝⎭4、35、0a =三、计算题1、111310601012011631131320623--⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=--- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭2、100010111⎛⎫⎪⎪ ⎪--⎝⎭3、1101101102110310311010114003⎛⎫ ⎪---⎛⎫⎛⎫ ⎪⎪ ⎪→→ ⎪⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪⎝⎭,所以矩阵的秩为3。

第三章 向量空间一、判断题1、×2、√3、√4、×5、×6、× 二、计算题1、()()()()()221,2,20,2,12,4,40,2,12,6,5αβ+=+=+=2、(1)设1122330k k k ααα+++=,即12311100120,0010k k k ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭也即123233020.0k k k k k k ++=⎧⎪+=⎨⎪=⎩由于该方程组的系数行列式11101210001D ==≠,所以线性方程组只有零解,即1230k k k ===,所以向量组123,,ααα线性无关。

(2)设1122330k k k ααα+++=,即12311002010,3210k k k ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭也即1213123020320k k k k k k k +=⎧⎪+=⎨⎪++=⎩ 由于该方程组的系数行列式11020110321D ==-≠,所以线性方程组只有零解,即1230k k k ===,所以向量组123,,ααα线性无关。

3、对矩阵()123,,A ααα=进行初等行变,化为行阶梯形矩阵。

112112112400048048311045003A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭故()3r A =,从而向量组123,,ααα的秩为3。

第四章 线性方程组一、判断题1、×2、√3、√4、√5、× 二、计算题1、对增广矩阵进行初等行变换,()1111011110,11131002411123100121A b ----⎛⎫⎛⎫⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111101111000121001210024100003----⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭由于()(,)r A r A b ≠,所以线性方程组无解。

2、对系数矩阵作初等行变换,变为行最简矩阵,21313227211111111111125320754075477310141080000r r r r r r A ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭212(7)1111102/73/7015/74/7015/74/700000000r r r ÷------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,原方程组的同解方程组为134********54077x x x x x x ⎧--=⎪⎪⎨⎪--=⎪⎩, 即 13423423775477x x x x x x ⎧=+⎪⎪⎨⎪=+⎪⎩,由于()2r A =,所以基础解系由422n r -=-=个向量构成.取34,x x 为自由未知量.分别令3410x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,01⎛⎫ ⎪⎝⎭得122757x x ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,3747⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭所以,方程组得基础解系为12/75/710ξ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,23/74/701ξ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 通解为1122c c ξξ+(12,c c 为任意常数)。

相关文档
最新文档