2013高考数学专题复习--三角函数-

合集下载

2013年高考数学试题精编:43三角函数的图像和性质

2013年高考数学试题精编:43三角函数的图像和性质
再把所得各点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图像的函数解析式是
y = sin(1 x − π ) 2 10 .
答案:C
12.





8

右图是函数y
=
A
sin(ω
x+ϕ)(x

R)在区间
⎡⎢⎣-
π 6
,5π 6
⎤ ⎥⎦
上的图象,






函数的图象,只要将 y = sin x(x ∈ R)的图象上所有的点
y = sin(2x − π )
(A)
10
y = sin(2x − π )
(B)
5
y = sin(1 x − π )
(C)
2 10
y = sin(1 x − π )
(D)
2 20
π 解析:将函数 y = sin x 的图像上所有的点向右平行移动 10 个单位长度,所得函数图象的解
π 析式为 y=sin(x- 10 )
【解析】
6=
12 ,
3=
6 ,所以将
y = sin(2x + π )
π
y = sin(2x − π )
6 的图像向右平移 4 个长度单位得到
3 的图像,故选 B.
9.(陕西卷理 3)对于函数 f ( x ) = 2 s i n x c o s x ,下列选项中正确的是 ( )
ππ (A) f (x) f(x)在( 4 , 2 )上是递增的
选 B。 【命题意图】本题考查三角函数的周期、图象变换等基础知识。
3 sin( x − π ), x ∈ R

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市高考真题——三角函数(带答案)

2013年全国各省市文科数学—三角函数1、2013大纲文T2.已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213-(B )513- (C )513 (D )12132、2013大纲文T9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )23、2013新课标文T9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )4、2013新课标文T10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )55、2013新课标Ⅱ文T4.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )2 (B 1 (C )2 (D 16、2013新课标Ⅱ文T6.已知2sin 23α=,则2cos ()4πα+=( ) (A )16 (B )13 (C )12 (D )237、2013辽宁文T6.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3πC .23πD .56π8、2013山东文T7.ABC ∆的内角A B C 、、的对边分别是a b c 、、, 若2B A =,1a =,b =,则c =(A)(D)19、2013山东文T9.函数x x x y sin cos +=的图象大致为10、2013北京文T5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( ) A .15 B .59CD .111、2013四川文T6.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π12、2013天津文T6. 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1- (B) (D) 0 13、2013浙江文T6.函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 A 、π,1 B 、π,2 C 、2π,1 D 、2π,2 14、2013福建文T9.将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( ) A .35π B .65π C .2π D .6π 15、2013广东文T4.已知51sin()25πα+=,那么cos α= A .25-B .15-C .15D .2516、2013安徽文T9. 设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =(A)3π (B) 23π (C) 34π (D) 56π 17、2013陕西文T9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形(B) 锐角三角形(C) 钝角三角形(D) 不确定18、2013湖南文T5.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于A.3π B.4π C.6πD.12π19、2013湖北文T6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12 B .π6C .π3D .5π620、2013江西文T3. sincos 2αα==若 ( ) A. 23-B. 13-C. 13D.2321、2013新课标文T16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.22、2013新课标Ⅱ文T16.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。

2013年数学高考题分类三角函数资料

2013年数学高考题分类三角函数资料

任意角和弧度制及任意角的三角函数、三角函数的诱导公式一、选择题1. (2013·浙江高考理科·T6)已知R α∈,sin 2cos αα+=则t a n 2α=( ) A.43 B. 34 C. 34- D. 43- 【解题指南】由已知条件和22sin cos 1αα+=联立方程组可求得sin α与cos α的值,从而求得tan α,再利用倍角公式求tan 2α.【解析】选C.由22sin 2cos sin cos 1αααα⎧+=⎪⎨⎪+=⎩,解得sin cos αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos αα⎧=⎪⎪⎨⎪=⎪⎩所以1tan 3α=-或tan 3α=,当1tan 3α=-时,2222tan 33tan 21tan 4113ααα-===--⎛⎫-- ⎪⎝⎭当tan 3α=时,222tan 63tan 21tan 134ααα===---,故选C.2. (2013·广东高考文科·T4)已知51sin()25πα+=,那么cos α=( )A .25- B .15- C .15D .25【解题指南】本题考查三角函数诱导公式,可以直接利用公式计算. 【解析】选C. 51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭.3.(2013·大纲版全国卷高考文科·T2)已知α是第二象限角,5sin ,cos 13αα==则( ) A.1213- B.513- C.513 D.1213【解题指南】由1cos sin 22=+αα及αsin 求出αcos 的值,并利用a 所在象限判断αcos 的符号.【解析】选 A.因为1cos sin 22=+αα,所以169144sin 1cos 22=-=αα,则1312cos ±=α,又a 是第二象限角,所以1312cos -=α 二、填空题4.(2013·大纲版全国卷高考理科·T13)已知1sin ,cot 3是第三象限角,则=-=ααα .【解析】98sin 1cos 22=-=αα,而α为第三象限角,所以0cos <α,解得322cos -=α,又223322sin cos cot =--==ααα. 【答案】22三角函数的图象与性质一、选择题1.(2013·湖北高考文科·T6)与(2013·湖北高考理科·T4)相同将函数y=3cosx+sinx (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.12π B. 6π C. 3π D 65π【解题指南】先化简,再平移,余弦函数关于y 轴对称。

2013年高考数学(理)真题分类解析汇编3.三角函数

2013年高考数学(理)真题分类解析汇编3.三角函数

2013年高考数学(理)真题分类解析汇编3:三角函数一、选择题1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-【答案】C 【天利解析】因为,又sin 2α+cos 2α=1,联立解得,或故tan α==,或tan α=3,代入可得tan2α===﹣,或tan2α===故选C2 .(2013年高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定【答案】B【天利解析】因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+ 又A C B B C C B sin )sin(cos sin cos sin =+=+。

联立两式得A A A sin sin sin =。

所以2,1sin π==A A 。

选B3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠ =【答案】C4 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π(C)0 (D) 4π-,k k Z π∈,即,4k k Z ϕπ=+∈,所以选B.5 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A.6π B.3πC.23πD.56π【答案】A【天利解析】根据正弦定理得,1sin sin cos sin sin cos sin 2A B C C B A B +=,即1sin cos sin cos 2A C C A +=,所以1sin()2A C +=,即1sin 2B =,因为a b >,所以6B π=。

2013高考数学(文)真题解析分类汇编-三角函数汇总

2013高考数学(文)真题解析分类汇编-三角函数汇总

2013年高考数学(文)解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷(文2))已知a 是第二象限角,5sin ,cos 13a a ==则 ( )A .1213-B .513- C .513D .1213【答案】A 【解析】因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考课标Ⅰ卷(文9))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C ;【解析】函数()(1cos )sin f x x x =-为奇函数,所以图象关于原点对称,所以排除B.02x π<<时,()0f x >,排除A.()(1cos )sin 1222f πππ=-=,排除D,选C.3 .(2013年高考四川卷(文6))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π【答案】A 【解析】43129312543ππππ==+=T ,所以π=T ,所以πωπ=2,2=ω,)42sin(2)(+=x x f ,所以πϕπk =+-⨯)3(2,所以32ππϕ+=k ,又22πϕπ<<-,所以3πϕ-=,选A.4 .(2013年高考湖南(文5))在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .3π B .4π C .6π D .12π【答案】A【解析】本题考查正弦定理的应用。

由正弦定理得得2sin sin A B B =,即sin A =,以为三角形为锐角ABC ∆,所以3A π=,选A.5 .(2013年高考福建卷(文))将函数)22)(2sin()(πθπθ<<-+=x x f 的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f 的图象都经过点)23,0(P ,则ϕ的值可以是( )A .35π B .65π C .2π D .6π【答案】B【解析】本题考查的三角函数的图像的平移.把)23,0(P 代入)22)(2sin()(πθπθ<<-+=x x f ,解得3πθ=,所以)232sin()(ϕπ-+=x x g ,把)23,0(P 代入得,πϕk =或6ππϕ-=k ,观察选项,故选B6 .(2013年高考陕西卷(文9))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A【解析】因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+又A C B B C C B sin )sin(cos sin cos sin =+=+。

(2021年整理)2013年高考数学知识点总结:三角函数公式

(2021年整理)2013年高考数学知识点总结:三角函数公式

(完整)2013年高考数学知识点总结:三角函数公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2013年高考数学知识点总结:三角函数公式)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2013年高考数学知识点总结:三角函数公式的全部内容。

三角函数公式1.同角三角函数基本关系式sin2α+cos2α=1错误!=tanαtanαcotα=12.诱导公式 (奇变偶不变,符号看象限)(一)sin(π-α)=___________ sin(π+α)= ___________ cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(错误!-α)=____________ sin(错误!+α)=____________cos(π2-α)=____________ cos(错误!+α)=_____________tan(错误!-α)=____________ tan(错误!+α)=_____________ sin(错误!-α)=____________ sin(错误!+α)=____________ cos(错误!-α)=____________ cos(错误!+α)=____________tan(3π2-α)=____________ tan(错误!+α)=____________sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________cos(11π-α)=__________ sin(错误!+α)=____________3.两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin (α+β)=sinαcosβ+cosαsinβsin (α-β)=sinαcosβ-cosαsinβtan(α+β)=tanα+tanβ1-tanαtanβtan(α-β)= 错误!4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2αtan2α=错误!5.公式的变形(1)升幂公式:1+cos2α=2cos2α 1-cos2α=2sin2α(2)降幂公式:cos2α=错误! sin2α=错误!(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)万能公式(用tanα表示其他三角函数值)sin2α=错误! cos2α=错误! tan2α=错误!6.插入辅助角公式asinx+bcosx=a2+b2 sin(x+φ) (tanφ= ba )特殊地:sinx±cosx=错误!sin(x±错误!)7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx错误!错误!若A、B是锐角,A+B=错误!,则(1+tanA)(1+tanB)=2cosαcos2αcos22α…cos2 nα= 错误!8.在三角形中的结论(如何证明)若:A+B+C=π错误!=错误!tanA+tanB+tanC=tanAtanBtanCtan错误!tan错误!+tan错误!tan错误!+tan错误!tan错误!=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(错误!-α)=错误!,sin(错误!+β)=错误!,又错误!<α〈错误!,0〈β<错误!,求sin(α+β)。

2013年数学高考题分类三角函数-推荐下载

2013年数学高考题分类三角函数-推荐下载

首先判断函数的奇偶性进行排除,然后再根据函数的图象特征取最佳值进行验证排除.,即x x x f sin )cos 1()(--=-)(f x f -=-关于原点对称,所以函数为奇函数,排除B.又当)(x f ,排除A. 当时012sin >=π43π=x 123+π等问题,合理利用管线敷设技术。

线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。

调试工作并且进行过关运行高中资料试卷技术指导。

对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

护装置调试技术,要求电力保护装置做到准确灵活。

对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

A. B.54【解题指南】观察图象可知,【解析】选B.由图像可知,2.(2013·山东高考理科π移个单位后,得到一个偶函数的图象,则C.D.4,6π-4,对函数,ωϕ()2sin(f x ω=.,根据图象可知359()412312T πππ=--==B.2,-D.4,3π式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。

线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。

2013届高考数学三角函数的性质

2013届高考数学三角函数的性质

三角函数的性质一.1.基础知识精讲:y=sinx y=cosx y=tanx (x y cot =)定义域: R R ⎭⎬⎫⎩⎨⎧+≠∈2,|ππk x R x x{}πk x R x x ≠∈,|值域: [-1,1] [-1,1] R R周期: 2π 2π π π奇偶性: 奇函数 偶函数 奇函数 奇函数 单调区间:增区间;⎥⎦⎤⎢⎣⎡++-ππππk k 22,22; []πππk k 2,2+-; ⎥⎦⎤⎢⎣⎡++-ππππk k 2,2 减区间⎥⎦⎤⎢⎣⎡++ππππk k 223,22; []πππk k 2,2+ 无 对称轴:2ππ+=k xπk x = 无对称中心: ()0,πk ⎪⎭⎫ ⎝⎛+0,2ππk ⎪⎭⎫⎝⎛0,2πk (以上均Z k ∈)2.重点: 三角函数的值域(最值)、周期、单调区间的求法及未经给出的三角函数的特征研究. 二.问题讨论 例1[P60]: (1)cos cos()3yx x π=++的最大值是?(2)2sin(3)4yx π=-的图象的两条相邻对称轴之间的距离是.例2.P[60](1)已知f(x)的定义域为[0,1],求f(cosx)的定义域; (2).求函数y=lgsin(cosx)的定义域[思维点拔] 例3:[P61]求函数y=sin 6x+cos 6x 的最小正周期,并求出X 为何值时Y 有最大值.例4求下列函数的值域:(1)3cos 2sin 22-+=x x y (2)10cos 23sin 3+-=x x y解(1)2121cos 21cos 2cos 222-⎪⎭⎫ ⎝⎛--=-+-=x x x y215,4921cos 41,2121cos 23,1cos 1-≤≤-∴≤⎪⎭⎫ ⎝⎛-≤∴≤-≤-∴≤≤-y x x x 即原函数的值域为⎥⎦⎤⎢⎣⎡-21,5(2)010cos 2≠+x310cos 2sin 3+=-∴y x y x()310sin 492+=-+∴y x y ϕ,其中32tan y =ϕ,由()249310sin yy x ++=-ϕ和()1sin ≤-ϕx得()22249310.149310y y y y +≤+∴≤++,整理得0582≤+y y ,所以085≤≤-y即原函数的值域为⎥⎦⎤⎢⎣⎡-0,85[思维点拔] 前面学过的求函数的值域的方法也适用于三角函数,但应注意三角函数的有界性 .例5:求下列函数的定义域:1)x y x tan log 221++= (2)x x y cos 21)2sin 2lg(---= 解(1)x 应满足()⎪⎪⎪⎩⎪⎪⎪⎨⎧∈+≠>≥≥+z k k x x x x200tan 0log 221ππ,即为()⎪⎩⎪⎨⎧∈+<≤≤<z k k x k x 240πππ所以所求定义域为[]4,2,0ππ⋃⎪⎭⎫⎝⎛(2)x 应满足⎩⎨⎧≥->-0c o s2102s i n 2x x ,利用单位圆中的三角函数线可得ππππk x k 24323+≤≤+ [思维点拔]先转化为三角不等式,可利用单位圆或三角函数的图象进行求解所以所求定义域为()z k k k ∈⎥⎦⎤⎢⎣⎡++432,32ππππ(备用):已知:函数()()x x x f cos sin log 21-= (1)求它的定义域和值域.(2)判定它的奇偶性. (3)求它的单调区间 (4)判定它的周期性,若是周期函数,求它的最小正周期.解:(1).由0cos sin >-x x 04sin 2>⎪⎭⎫⎝⎛-⇒πx ππππ+<-<∴k x k 242 Zk ∈∴定义域为()Z k k k ∈⎪⎭⎫ ⎝⎛++,452,42ππππ,(]2,04sin 2∈⎪⎭⎫ ⎝⎛-πx ∴值域为.,21⎪⎭⎫⎢⎣⎡+∞-(2). 定义域不关于原点对称,∴函数为非奇非偶函数 (4).()()()[]πππ2cos 2sin log 221+-==+x x x f (),cos sin log 21x x -=()∴=x f 最小正周期T π2=.[思维点拔] 计算要正确.备用:已知函数()()()θθ+++=x x x f cos 3sin 的一条对称轴为Y 轴,且()πθ,0∈.求θ的值.解:法一()⎪⎭⎫⎝⎛++=3sin 2πθx x f ,令u x =++3πθ,则()u x f sin 2=,其对称轴为()Z k k x u ∈+=++=,23πππθ,由题意,0=x ,23πππθ+=+k ,即,6ππθ+=k ()πθ,0∈∴令0=k ,得6πθ=[思维点拔]合一法是个好办法.法二.由()()x f x f =- 得:()()θθ+-++-x x cos 3sin()(),cos 3sin θθ+++=x x θθθθsin sin 3cos cos 3sin cos cos sin x x x x +++-⇒θθθθsin sin 3cos cos 3sin cos cos sin x x x x -++=即:()6,,0,33tan cos sin sin sin 3πθπθθθθ=∴∈=⇒= x x [思维点拔]显然知道三角函数的对称轴,对解题有好处. 三.课堂小结 :1.熟记三角函数的图象与各性质很重要.2.设参φω+=x u 可以帮助理解,熟练了以后可以省却这个过程.3.要善于运用图象解题四.作业布置(略) 五.课后体会。

2013年高考试题分类汇编(三角函数)

2013年高考试题分类汇编(三角函数)

2013年高考试题分类汇编(三角函数)考点1 任意角的三角函数考法1 三角函数的定义1.(2013·全国大纲卷·理科)已知a 是第三象限角,1sin 3a =-,则cot a = .2.(2013·全国大纲卷·文科)已知a 是第二象限角,5sin 13a =,则cos a =A.1213-B.513- C.513 D.12133.(2013·全国卷Ⅱ·理科)设θ为第二象限角,若1tan()42πθ+=,则s i nc o s θθ+ =______.考法2 三角函数的图像1.(2013·全国卷Ⅱ·文科)函数cos(2) ()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,则ϕ=____.2.(2013·湖北卷·理科)将函数sin y x x =+(x R ∈)的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .12π B .6π C .3π D .5π 3.(2013·全国大纲卷·文科)若函数()(sin y x ωϕω=+的部分图像如图,则ω= A.5 B.4 C.3 D.24.(2013·福建卷·文科)将函数()sin(2)f x x θ=+(22ππθ-<<)的图像向右平移(1)ϕϕ>单位长度后得到函数()g x 的图像,若()(),f x g x 的图像都经过(02P ,,则ϕ的一个值可以是A .53π B .56π C .2π D .6π 5.(2013·安徽卷·文科)设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化的到.6.(2013·四川卷·理科)函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则ω,ϕ的值分别是A.2,3π-B.2,6π-C.4,6π-D.4,3π考法3 三角函数的性质1.(2013·天津卷·文科)函数()sin(2)4f x x π=-在区间[0,]2π上的最小值是A.1-B.D. 0 2.(2013·江苏卷)函数)2sin(3π+=x y 的最小正周期为 .4.(2013·江西卷·理科)定义域为R 的四个函数3y x =,2x y =,2+1y x =,2sin y x =中,奇函数的个数是A. 4B.3C. 2D.15.(2013·全国大纲卷·理科)已知函数()=cos sin 2f x x x ,下列结论错误的是 A.()f x 的图像关于点(),0π中心对称 B.()f x 的图像关于2x π=对称C.()f x 的最大值为()f x 既是奇函数又是周期函数 6.(2013·重庆卷·文科)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A.5-B.1-C.3D.47.(2013·浙江卷·理科)已知函数()cos()f x A x ωϕ=+(0A >,0ω>,R ϕ∈),则“()f x 是奇函数”是“2πϕ=”的A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件8.(2013·浙江卷·文科)若R α∈,则“0α=”是“sin cos αα<”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件9. (2013·北京卷·理科)“ϕπ=”是“曲线sin(2)y x ϕ=+过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件10.(2013·浙江卷·文科)函数()sin cos 2f x x x x =的最小正周期和振幅分别是A. 1π,B. 2π,C. 2 1π,D.2 2π,11.(2013·辽宁卷·理科)设向量,sin )a x x = ,(cos ,sin )b x x = ,[0,]2x π∈.(Ⅰ)若a b =r r,求x 的值;(Ⅱ)设函数()f x a b =⋅r r,求()f x 的最大值.12.(2013·湖南卷·理科)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =(Ⅰ)若α是第一象限角,且()f α=求()g α的值; (Ⅱ)求使()()f x g x ≥成立的x 的取值集合.13.(2013·广东卷·理科)已知函数())12f x x π=-,x R ∈.(Ⅰ)求() 6f π-的值;(Ⅱ)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.考点2 三角函数的恒等变换1.(2013·江西卷·文科)若sin2α=,则cos α= A. 23- B. 13- C. 13 D. 232.(2013·广东卷·文科)已知51sin()25πα+=,那么cos α=A. 25-B. 15-C. 15D. 253.(2013·江西卷·文科)设()sin 3cos 3f x x x =+,若对任意实数x 都有()f x a ≤,则实数a 的取值范围是 .4.(2013·全国卷Ⅰ·文理)设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=____ _.5.(2013·全国卷Ⅱ·文科)已知2sin 23α=,则2cos ()4πα+= A. 16 B. 13 C. 12 D. 236.(2013·浙江卷·理科)已知函数R α∈,sin 2cos 2αα+=,则tan 2α= A.43 B. 34 C. 34- D. 43- 7.(2013·四川卷·文科)设sin 2sin αα=-,(,)2παπ∈,则t an 2α的值是_____. 8.(2013·重庆卷·理科)4cos50tan 40-=1 9.(2013·浙江卷·理科)在ABC ∆中,90C ∠= ,M 是BC 的中点,若sin BAM ∠13=,则sin BAC ∠= . 10.(2013·湖南卷·文科)已知函数()cos cos()3f x x x π=-(Ⅰ)求2()3f π的值;(Ⅱ)求使 1()4f x <成立的x 的取值集合.11.(2013·山东卷·文科)设函数2()sin cos f x x x x ωωω=-,0ω>, 且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值.12.(2013·安徽卷·理科)已知函数()4cos sin()(0)4f x x x πωωω=⋅+>的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)讨论()f x 在区间[]0,2上的单调性.13.(2013·北京卷·文科)已知函数21()(2cos 1)sin2cos42f x x x x =-+ (Ⅰ)求()f x 的最小正周期及最大值;(Ⅱ)若(,)2παπ∈且()2f α=,求α的值.14.(2013·天津卷·理科)已知函数())6sin cos 4f x x x x π=++22cos x -1+,x R ∈.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[0,]2π上的最大值和最小值.15. (2013·陕西卷·理科)已知向量1(cos ,)2a x =- , ,cos2)b x x = ,x R ∈,设函数()f x a b =⋅.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在[0,]2π上的最大值和最小值.考点3 解三角形考法1 正弦定理1.(2013·北京卷·文科)在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =A. 15B.592.(2013·湖南卷·理科)在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin a B =,则A 等于 A .12π B .6π C .4π D .3π3.(2013·山东卷·文科)ABC ∆的内角,,A B C 的对边分别是,,a b c ,若2B A =,1a =,b =c =A.4.(2013·辽宁卷·理科)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .1sin cos sin cos 2a B C c B Ab +=,且a b >,则B ∠=A .6πB .3π C .23π D .56π5.(2013·陕西卷·理科)设ABC ∆的内角,,A B C 所对的边分别为,,a b c , 若cos cos sin b C c B a A +=, 则ABC ∆的形状为A. 锐角三角形B. 直角三角形C.钝角三角形D. 不确定考法2 余弦定理1.(2013·全国卷Ⅰ·文科)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =A.10B. 9C.8D.52.(2013·福建卷·理科)如图,在ABC ∆中,已知点D 在BC 边上,AC AD ⊥,sin 3BAC ∠=,AB =3AD =, 则BD 的长为. 3.(2013·江西卷·理科)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B +=. (Ⅰ)求角B 的大小;(Ⅱ)若1a c +=,求b 的取值范围.4.(2013·四川卷·文科)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A C ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.5.(2013·四川卷·理科)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22cos cos sin()sin 2A B B A B B ---3cos()5A C ++=-.(Ⅰ)求cos A 的值;ABCD(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.7.(2013·重庆卷·理科)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c ++=. (Ⅰ)求C ;(Ⅱ)设cos cos A B =,2cos()cos()cos A B ααα++=,求tan α的值. 8.(2013·全国大纲卷·理科)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=,(Ⅰ)求B ;(Ⅱ)若sin sin A C =,求C . 考法3 正弦定理、余弦定理、面积公式综合应用1.(2013·天津卷·文科)在ABC ∆中, 4ABC π∠=,AB =,3BC =,则sin BAC ∠=B.2.(2013·安徽卷·文科)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2b c a +=,3sin 5sin A B =,则角C =A.3π B. 23π C. 34π D. 56π3.(2013·安徽卷·理科)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2b c a +=,则3sin 5sin A B =,则角C =_____.4.(2013·全国卷Ⅱ·文科)ABC ∆的内角,,A B C 的对边分别是,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为A.2 1 C. 215.(2013·浙江卷·文科)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin a B =. (Ⅰ)求角A 的大小;(Ⅱ)若6a =,8b c +=,求ABC ∆的面积.6.(2013·江西卷·文科)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知sin sin sin sin cos 21A B B C B ++=.(Ⅰ)求证:,,a b c 成等差数列; (Ⅱ)若2C 3π=,求ab的值. 7.(2013·湖北卷·理科)在ABC ∆中,角,,A B C 对应的边分别是,,a b c . 已知cos 23cos()1A B C -+=.(Ⅰ)求角A 的大小;(Ⅱ)若ABC ∆的面积S =5b =,求sin sin B C 的值.8.(2013·北京卷·理科)在ABC ∆中,3a =, b =,2B A ∠=∠. (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.9.(2013·天津卷·文科)ABC ∆的内角,,A B C 的对边分别是,,a b c .已知sin 3sin b A c B =,3a =,2cos 3B =. (Ⅰ)求b 的值;(Ⅱ)求sin(2)3B π-的值.10.(2013·全国卷Ⅱ·理科)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC ∆面积的最大值.11.(2013·山东卷·理科)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.。

2013高考数学专题复习--三角函数

2013高考数学专题复习--三角函数

2013高考数学——三角函数专题复习(文科)★ 知 识 梳理 ★1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - cos 2A B +=sin 2C 2.面积公式:1sin 2ABC S ab C ∆== 1sin 2bc A =1sin 2ca B 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R Cc B b A a 2sin sin sin === (解三角形的重要工具) 形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cos C =ab c b a 2222-+ 1 在△ABC 中,,则等于( ) ABCD2 在△ABC 中,若cos A cos B =b a ,则△ABC 的形状是.( )A.等腰直角三角形B.直角三角形C.等腰或直角三角形D.等边三角形3 在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A 1B 1-C 32D 32-4.【台州市·理】6.在ABC ∆中,若a =1,C=︒60, c =3则A 的值为A .︒30B .︒60C .30150︒︒或D .60120︒︒或 5 在△ABC 中,若B a b sin 2=,则A 等于( )A 006030或B 006045或C 0060120或D 0015030或6.在△ABC 中,若3a =2b sin A ,则B 为( )A .3πB .6πC .3π或32πD .6π或65π7.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是( )A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形8在△ABC 中,A =60°,B =75°,a =10,则c 等于_________.9在△ABC 中,a =3,b =1,c =2,则A 等于________.10在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.11.(本小题满分12分) 函数()()()πϕωϕω≤>>+=,0,0sin A x A x f 在一个周期内,当6x π=时,y 取最小值3-;当23x π=时,y 最大值3. (I)求()f x 的解析式; (II)求()f x 在区间⎥⎦⎤⎢⎣⎡ππ,2上的最值.12.在△ABC 中,设内角A 、B 、C 的对边分别为a 、b 、c ,22)4cos()4cos(=-++ππC C (Ⅰ)求角C 的大小;(Ⅱ)若32=c 且B A sin 2sin =,求ABC ∆的面积.13,(陕西)(本小题满分12分) 函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (Ⅰ)求函数()f x 的解析式; (Ⅱ)设(0,)2πα∈,则()22f α=,求α的值。

2013高考理科数学辅导:三角函数

2013高考理科数学辅导:三角函数

第五章三角函数高考导航知识网络5.1 任意角的三角函数的概念典例精析题型一 象限角与终边相同的角【例1】若α是第二象限角,试分别确定2α、2α的终边所在的象限.【解析】因为α是第二象限角,所以k ∙360°+90°<α<k ∙360°+180°(k ∈Z ).因为2k ∙360°+180°<2α<2k ∙360°+360°(k ∈Z ),故2α是第三或第四象限角,或角的终边在y 轴的负半轴上.因为k ∙180°+45°<α2<k ∙180°+90°(k ∈Z ),当k =2n (n ∈Z )时,n ∙360°+45°<α2<n ∙360°+90°,当k =2n +1(n ∈Z )时,n ∙360°+225°<α2<n ∙360°+270°.所以α2是第一或第三象限角.【点拨】已知角α所在象限,应熟练地确定α2所在象限.如果用α1、α2、α3、α4分别表示第一、二、三、四象限角,则α12、α22、α32、α42分布如图,即第一象限角的半角是第一或第三象限角(其余略),熟记右图,解有关问题就方便多了.【变式训练1】若角2α的终边在x 轴上方,那么角α是( )A.第一象限角B.第一或第二象限角C.第一或第三象限角D.第一或第四象限角【解析】由题意2k π<2α<2k π+π,k ∈Z , 得k π<α<k π+π2,k ∈Z .当k 是奇数时,α是第三象限角. 当k 是偶数时,α是第一象限角.故选C. 题型二 弧长公式,面积公式的应用【例2】已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形的面积有最大值?并求出这个最大值. 【解析】(1)设弧长为l ,弓形面积为S 弓,因为α=60°=π3,R =10 cm ,所以l =10π3 cm ,S 弓=S 扇-S Δ=12×10×10π3-12×102×sin 60°=50(π3-32) cm 2.(2)因为C =2R +l =2R +αR ,所以R =C2+α,S 扇=12αR 2=12α(C 2+α)2=C 22∙αα2+4α+4=C 22∙1α+4α+4≤C 216,当且仅当α=4α时,即α=2(α=-2舍去)时,扇形的面积有最大值为C 216.【点拨】用弧长公式l = |α| R 与扇形面积公式S =12lR =12R 2|α|时,α的单位必须是弧度.【变式训练2】已知一扇形的面积为定值S ,当圆心角α为多少弧度时,该扇形的周长C 有最小值?并求出最小值.【解析】因为S =12Rl ,所以Rl =2S ,所以周长C =l +2R ≥22Rl =24S =4S , 当且仅当l =2R 时,C =4S ,所以当α=lR=2时,周长C 有最小值4S .题型三 三角函数的定义,三角函数线的应用【例3】(1)已知角α的终边与函数y =2x 的图象重合,求sin α;(2)求满足sin x ≤32的角x 的集合. 【解析】(1)由⎩⎨⎧=+=1222y x x y ⇒交点为(-55,-255)或(55,255), 所以sin α=±255.(2)①找终边:在y 轴正半轴上找出点(0,32),过该点作平行于x 轴的平行线与单位圆分别交于P 1、P 2两点,连接OP 1、OP 2,则为角x 的终边,并写出对应的角.②画区域:画出角x 的终边所在位置的阴影部分.③写集合:所求角x 的集合是{x |2k π-4π3≤x ≤2k π+π3,k ∈Z }.【点拨】三角函数是用角α的终边与单位圆交点的坐标来定义的,因此,用定义求值,转化为求交点的问题.利用三角函数线证某些不等式或解某些三角不等式更简洁、直观.【变式训练3】函数y =lg sin x +cos x -12的定义域为 .【解析】⇒2k π<x ≤2k π+π3,k ∈Z .所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.总结提高1.确定一个角的象限位置,不仅要看角的三角函数值的符号,还要考虑它的函数值的大小.2.在同一个式子中所采用的量角制度必须相一致,防止出现诸如k ·360°+π3的错误书写.3.三角函数线具有较好的几何直观性,是研究和理解三角函数的一把钥匙.5.2 同角三角函数的关系、诱导公式典例精析题型一 三角函数式的化简问题【点拨】运用诱导公式的关键是符号,前提是将α视为锐角后,再判断所求角的象限.【变式训练1】已知f (x )=1-x ,θ∈(3π4,π),则f (sin 2θ)+f (-sin 2θ)= .【解析】f (sin 2θ)+f (-sin 2θ)=1-sin 2θ+1+sin 2θ=(sin θ-cos θ)2+(sin θ+cos θ)2=|sin θ-cos θ|+|sin θ+cos θ|.因为θ∈(3π4,π),所以sin θ-cos θ>0,sin θ+cos θ<0.所以|sin θ-cos θ|+|sin θ+cos θ|=sin θ-cos θ-sin θ-cos θ=-2cos θ. 题型二 三角函数式的求值问题【例2】已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a|=|b|,0<θ<π,求 θ的值.【解析】(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a|=|b|知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4.因此θ=π2或θ=3π4.【变式训练2】已知tan α=12,则2sin αcos α+cos 2α等于( )A.45B.85C.65D.2【解析】原式=2sin αcos α+cos 2αsin 2α+cos 2α=2tan α+11+tan 2α=85.故选B.题型三 三角函数式的简单应用问题【例3】已知-π2<x <0且sin x +cos x =15,求:(1)sin x -cos x 的值;(2)sin 3(π2-x )+cos 3(π2+x )的值.【解析】(1)由已知得2sin x cos x =-2425,且sin x <0<cos x ,所以sin x -cos x =-(sin x -cos x )2=-1-2sin x cos x =-1+2425=-75. (2)sin 3(π2-x )+cos 3(π2+x )=cos 3x -sin 3x =(cos x -sin x )(cos 2x +cos x sin x +sin 2x )=75×(1-1225)=91125. 【点拨】求形如sin x ±cos x 的值,一般先平方后利用基本关系式,再求sin x ±cos x 取值符号. 【变式训练3】化简1-cos 4α-sin 4α1-cos 6α-sin 6α.【解析】原式=1-[(cos 2α+sin 2α)2-2sin 2αcos 2α]1-[(cos 2α+sin 2α)(cos 4α+sin 4α-sin 2αcos 2α)]=2sin 2αcos 2α1-[(cos 2α+sin 2α)2-3sin 2αcos 2α]=23. 总结提高1.对于同角三角函数基本关系式中“同角”的含义,只要是“同一个角”,那么基本关系式就成立,如:sin 2(-2α)+cos 2(-2α)=1是恒成立的.2.诱导公式的重要作用在于:它揭示了终边在不同象限且具有一定对称关系的角的三角函数间的内在联系,从而可化负为正,化复杂为简单.5.3 两角和与差、二倍角的三角函数典例精析题型一 三角函数式的化简【例1】化简θθθθθ cos 22)2 cos 2 )(sin cos sin 1(+-++(0<θ<π). 【解析】因为0<θ<π,所以0<θ2<π2,所以原式=2cos 2)2 cos 2 )(sin 2 cos 22 cos 2 sin 2(22θθθθθθ-+ =2cos 2)2 cos 2 (sin 2 sin 222θθθθ-=-cos θ. 【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin 2θ2-cos 2θ2=-cos θ.【变式训练1】化简2cos 4x -2cos 2x +122tan(π4-x )sin 2(π4+x ).【解析】原式=12(2cos 2x -1)22tan(π4-x )cos 2(π4-x )=cos 22x 4cos(π4-x )sin(π4-x )=cos 22x 2sin(π2-2x )=12cos 2x .题型二 三角函数式的求值【例2】已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos 2x2cos(π4+x )sin x的值.【解析】(1)由sin x 2-2cos x 2=0⇒tan x 2=2,所以tan x =2tan 12tan 22x x =2×21-22=-43. (2)原式=cos 2x -sin 2x2(22cos x -22sin x )sin x=(cos x -sin x )(cos x +sin x )(cos x -sin x )sin x=cos x +sin x sin x =1tan x +1=(-34)+1=14.【变式训练2】2cos 5°-sin 25°sin 65°= .【解析】原式=2cos(30°-25°)-sin 25°cos 25°=3cos 25°cos 25°= 3.题型三 已知三角函数值求解 【例3】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.【解析】因为tan 2(α-β)=2tan(α-β)1-tan 2(α-β)=43, 所以tan(2α-β)=tan[2(α-β)+β]=tan2(α-β)+tan β1-tan 2(α-β)tan β=1,又tan α=tan[(α-β)+β]=tan(α-β)+tan β1-tan(α-β)tan β=13,因为α∈(0,π),所以0<α<π4,又π2<β<π,所以-π<2α-β<0,所以2α-β=-3π4. 【点拨】由三角函数值求角时,要注意角度范围,有时要根据三角函数值的符号和大小将角的范围适当缩小.【变式训练3】若α与β是两锐角,且sin(α+β)=2sin α,则α与β的大小关系是( ) A.α=β B.α<βC.α>βD.以上都有可能【解析】方法一:因为2sin α=sin(α+β)≤1,所以sin α≤12,又α是锐角,所以α≤30°.又当α=30°,β=60°时符合题意,故选B.方法二:因为2sin α=sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以sin α<sin β.又因为α、β是锐角,所以α<β,故选B.总结提高1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具. (1)它能够解答三类基本题型:求值题,化简题,证明题; (2)对公式会“正用”、“逆用”、“变形使用”; (3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.5.4 三角恒等变换典例精析题型一 三角函数的求值【例1】已知0<α<π4,0<β<π4,3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值.【解析】由4tan α2=1-tan 2α2,得tan α=2tan 12tan 22αα-=12. 由3sin β=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],所以3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, 即2sin(α+β)cos α=4cos(α+β)sin α,所以tan(α+β)=2tan α=1. 又因为α、β∈(0,π4),所以α+β=π4.【点拨】三角函数式的化简与求值的主要过程是三角变换,要善于抓住已知条件与目标之间的结构联系,找到解题的突破口与方向.【变式训练1】如果tan(α+β)=35,tan(β-π4)=14,那么tan(α+π4)等于( )A.1318B.1322C.723D.318【解析】因为α+π4=(α+β)-(β-π4),所以tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=723.故选C.题型二 等式的证明【例2】求证:sin βsin α=sin(2α+β)sin α-2co s(α+β).【证明】证法一:右边=sin [(α+β)+α]-2cos(α+β)sin αsin α=sin(α+β)cos α-cos(α+β)sin αsin α=sin [(α+β)-α]sin α=sin βsin α=左边.证法二:sin(2α+β)sin α-sin βsin α=sin(2α+β)-sin βsin α=2cos(α+β)sin αsin α=2cos(α+β),所以sin(2α+β)sin α-2cos(α+β)=sin βsin α.【点拨】证法一将2α+β写成(α+β)+α,使右端的角形式上一致,易于共同运算;证法二把握结构特征,用“变更问题法”证明,简捷而新颖.【变式训练2】已知5sin α=3sin(α-2β),求证:tan(α-β)+4tan β=0. 【证明】因为5sin α=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β], 所以5sin(α-β)cos β+5cos(α-β)sin β=3sin(α-β)cos β-3cos(α-β)sin β, 所以2sin(α-β)cos β+8cos(α-β)sin β=0. 即tan(α-β)+4tan β=0. 题型三 三角恒等变换的应用【例3】已知△ABC 是非直角三角形.(1)求证:tan A +tan B +tan C =tan A tan B tan C ;(2)若A >B 且tan A =-2tan B ,求证:tan C =sin 2B3-cos 2B ;(3)在(2)的条件下,求tan C 的最大值. 【解析】(1)因为C =π-(A +B ),所以tan C =-tan(A +B )=-(tan A +tan B )1-tan A tan B,所以tan C -tan A tan B tan C =-tan A -tan B , 即tan A +tan B +tan C =tan A tan B tan C .(2)由(1)知tan C =-(tan A +tan B )1-tan A tan B =tan B 1+2tan 2B =sin B cos Bcos 2B +2sin 2B =)2cos 2(22 sin B B-∙ =sin 2B 2(2-1+cos 2B 2)=sin 2B3-cos 2B .(3)由(2)知tan C =tan B1+2tan 2B=12tan B +1tan B≤122=24, 当且仅当2tan B =1tan B ,即tan B =22时,等号成立.所以tan C 的最大值为24. 【点拨】熟练掌握三角变换公式并灵活地运用来解决与三角形有关的问题,要有较明确的目标意识. 【变式训练3】在△ABC 中,tan B +tan C +3tan B tan C =3,3tan A +3tan B +1=tan A tan B ,试判断△ABC 的形状.【解析】由已知得tan B +tan C =3(1-tan B tan C ), 3(tan A +tan B )=-(1-tan A tan B ),即tan B +tan C 1-tan B tan C =3,tan A +tan B 1-tan A tan B=-33.所以tan(B +C )=3,tan(A +B )=-33. 因为0<B +C <π,0<A +B <π,所以B +C =π3,A +B =5π6.又A +B +C =π,故A =2π3,B =C =π6.所以△ABC 是顶角为2π3的等腰三角形.总结提高三角恒等式的证明,一般考虑三个“统一”:①统一角度,即化为同一个角的三角函数;②统一名称,即化为同一种三角函数;③统一结构形式.5.5 三角函数的图象和性质典例精析题型一 三角函数的周期性与奇偶性【例1】已知函数f (x )=2sin x 4cos x 4+3cos x2.(1)求函数f (x )的最小正周期;(2)令g (x )=f (x +π3),判断g (x )的奇偶性.【解析】(1)f (x )=2sin x 4cos x 4+3cos x 2=sin x 2+3cos x 2=2sin(x 2+π3),所以f (x )的最小正周期T =2π12=4π.(2)g (x )=f (x +π3)=2sin[12(x +π3)+π3]=2sin(x 2+π2)=2cos x2.所以g (x )为偶函数.【点拨】解决三角函数的有关性质问题,常常要化简三角函数.【变式训练1】函数y =sin 2x +sin x cos x 的最小正周期T 等于( )A.2πB.πC.π2D.π3【解析】y =1-cos 2x 2+12sin 2x =22(22sin 2x -22cos 2x )+12=22sin(2x -π4)+12,所以T =2π2=π.故选B. 题型二 求函数的值域 【例2】求下列函数的值域: (1)f (x )=sin 2x sin x1-cos x ;(2)f (x )=2cos(π3+x )+2cos x .【解析】(1)f (x )=2sin x cos x sin x 1-cos x =2cos x (1-cos 2x )1-cos x=2cos 2x +2cos x=2(cos x +12)2-12,当cos x =1时,f (x )max =4,但cos x ≠1,所以f (x )<4,当cos x =-12时,f (x )min =-12,所以函数的值域为[-12,4).(2)f (x )=2(cos π3cos x -sin π3sin x )+2cos x=3cos x -3sin x =23cos(x +π6),所以函数的值域为[-23,23].【点拨】求函数的值域是一个难点,分析函数式的特点,具体问题具体分析,是突破这一难点的关键. 【变式训练2】求y =sin x +cos x +sin x cos x 的值域.【解析】令t =sin x +cos x ,则有t 2=1+2sin x cos x ,即sin x cos x =t 2-12.所以y =f (t )=t +t 2-12=12(t +1)2-1.又t =sin x +cos x =2sin(x +π4),所以-2≤t ≤ 2.故y =f (t )=12(t +1)2-1(-2≤t ≤2),从而f (-1)≤y ≤f (2),即-1≤y ≤2+12.所以函数的值域为[-1,2+12].题型三 三角函数的单调性【例3】已知函数f (x )=sin(ωx +φ)(φ>0,|φ|<π)的部分图象如图所示.(1)求ω,φ的值;(2)设g (x )=f (x )f (x -π4),求函数g (x )的单调递增区间.【解析】(1)由图可知,T =4(π2-π4)=π,ω=2πT=2.又由f (π2)=1知,sin(π+φ)=1,又f (0)=-1,所以sin φ=-1.因为|φ|<π,所以φ=-π2.(2)f (x )=sin(2x -π2)=-cos 2x .所以g (x )=(-cos 2x )[-cos(2x -π2)]=cos 2x sin 2x =12sin 4x .所以当2k π-π2≤4x ≤2k π+π2,即k π2-π8≤x ≤k π2+π8(k ∈Z )时g (x )单调递增.故函数g (x )的单调增区间为[k π2-π8,k π2+π8](k ∈Z ).【点拨】观察图象,获得T 的值,然后再确定φ的值,体现了数形结合的思想与方法. 【变式训练3】使函数y =sin(π6-2x )(x ∈[0,π])为增函数的区间是( )A.[0,π3]B.[π12,7π12]C.[π3,5π6]D.[5π6,π]【解析】利用复合函数单调性“同增异减”的原则判定,选C.总结提高1.求三角函数的定义域和值域应注意利用三角函数图象.2.三角函数的最值都是在给定区间上得到的,因而特别要注意题设中所给的区间.3.求三角函数的最小正周期时,要尽可能地化为三角函数的一般形式,要注意绝对值、定义域对周期的影响.4.判断三角函数的奇偶性,应先判定函数定义域的对称性.5.6 函数y =A sin (ωx + )的图象和性质典例精析题型一 “五点法”作函数图象【例1】设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象; (3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换得到.【解析】(1)f (x )=sin ωx +3cos ωx =2(12sin ωx +32cos ωx )=2sin(ωx +π3),又因为T =π,所以2πω=π,即ω=2,所以f (x )=2sin(2x +π3),所以函数f (x )=sin ωx +3cos ωx (ω>0)的振幅为2,初相为π3.(2)列出下表,并描点画出图象如图所示.(3)把y =sin x 图象上的所有点向左平移π3个单位,得到y =sin(x +π3)的图象,再把y =sin(x +π3)的图象上的所有点的横坐标缩短到原来的12(纵坐标不变),得到y =sin(2x +π3)的图象,然后把y=sin(2x +π3)的图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin(2x +π3)的图象.【点拨】用“五点法”作图,先将原函数化为y =A sin(ωx +φ)(A >0,ω>0)形式,再令ωx +φ=0,π2,π,3π2,2π求出相应的x 值及相应的y 值,就可以得到函数图象上一个周期内的五个点,用平滑的曲线连接五个点,再向两端延伸即可得到函数在整个定义域上的图象.【变式训练1】函数的图象如图所示,则( )A.k =12,ω=12,φ=π6B.k =12,ω=12,φ=π3C.k =12,ω=2,φ=π6D.k =-2,ω=12,φ=π3【解析】本题的函数是一个分段函数,其中一个是一次函数,其图象是一条直线,由图象可判断该直线的斜率k =12.另一个函数是三角函数,三角函数解析式中的参数ω由三角函数的周期决定,由图象可知函数的周期为T =4×(8π3-5π3)=4π,故ω=12.将点(5π3,0)代入解析式y =2sin(12x +φ),得12×5π3+φ=k π,k ∈Z ,所以φ=k π-5π6,k ∈Z .结合各选项可知,选项A 正确.题型二 三角函数的单调性与值域【例2】已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)+2cos 2ωx ,x ∈R (ω>0)在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω的值;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.【解析】(1)f (x )=32sin 2ωx +12cos 2ωx +32=sin(2ωx +π6)+32. 令2ωx +π6=π2,将x =π6代入可得ω=1.(2)由(1)得f (x )=sin(2x +π6)+32,经过题设的变化得到函数g (x )=sin(12x -π6)+32,当x =4k π+43π,k ∈Z 时,函数g (x )取得最大值52.令2k π+π2≤12x -π6≤2k π+32π,即[4k π+4π3,4k π+103π](k ∈Z )为函数的单调递减区间.【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.【变式训练2】若将函数y =2sin(3x +φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是( )A.π4B.π3C.π2D.3π4【解析】将函数y =2sin(3x +φ)的图象向右平移π4个单位后得到y =2sin[3(x -π4)+φ]=2sin(3x -3π4+φ)的图象.因为该函数的图象关于点(π3,0)对称,所以2sin(3×π3-3π4+φ)=2sin(π4+φ)=0,故有π4+φ=k π(k ∈Z ),解得φ=k π-π4(k ∈Z ).当k =0时,|φ|取得最小值π4,故选A.题型三 三角函数的综合应用【例3】已知函数y =f (x )=A sin 2(ωx +φ)(A >0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ的值;(2)求f (1)+f (2)+…+f (2 008).【解析】(1)y =A sin 2(ωx +φ)=A 2-A2cos(2ωx +2φ),因为y =f (x )的最大值为2,又A >0, 所以A 2+A2=2,所以A =2,又因为其图象相邻两对称轴间的距离为2,ω>0, 所以12×2π2ω=2,所以ω=π4.所以f (x )=22-22cos(π2x +2φ)=1-cos(π2x +2φ),因为y =f (x )过点(1,2),所以cos(π2+2φ)=-1.所以π2+2φ=2k π+π(k ∈Z ),解得φ=k π+π4(k ∈Z ),又因为0<φ<π2,所以φ=π4.(2)方法一:因为φ=π4,所以y =1-cos(π2x +π2)=1+sin π2x ,所以f (1)+f (2)+f (3)+f (4)=2+1+0+1=4, 又因为y =f (x )的周期为4,2 008=4×502. 所以f (1)+f (2)+…+f (2 008)=4×502=2 008. 方法二:因为f (x )=2sin 2(π4x +φ),所以f (1)+f (3)=2sin 2(π4+φ)+2sin 2(3π4+φ)=2,f (2)+f (4)=2sin 2(π2+φ)+2sin 2(π+φ)=2,所以f (1)+f (2)+f (3)+f (4)=4,又因为y =f (x )的周期为4,2 008=4×502. 所以f (1)+f (2)+…+f (2 008)=4×502=2 008.【点拨】函数y =A cos(ωx +φ)的对称轴由ωx +φ=k π,可得x =k π-φω,两相邻对称轴间的距离为周期的一半,解决该类问题可画出相应的三角函数的图象,借助数形结合的思想解决.【变式训练3】已知函数f (x )=A cos 2ωx +2(A >0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f (2)+f (4)+f (6)+…+f (20)= .【解析】f (x )=A cos 2ωx +2=A ×1+cos 2ωx 2+2=A cos 2ωx 2+A 2+2,则由题意知A +2=6,2π2ω=8,所以A =4,ω=π8,所以f (x )=2cos π4x +4,所以f (2)=4,f (4)=2,f (6)=4,f (8)=6,f (10)=4,…观察周期性规律可知f (2)+f (4)+…+f (20)=2×(4+2+4+6)+4+2=38.总结提高1.用“五点法”作y =A sin(ωx +φ)的图象,关键是五个点的选取,一般令ωx +φ=0,π2,π,3π2,2π,即可得到作图所需的五个点的坐标,同时,若要求画出给定区间上的函数图象时,应适当调整ωx +φ的取值,以便列表时能使x 在给定的区间内取值.2.在图象变换时,要注意相位变换与周期变换的先后顺序改变后,图象平移的长度单位是不同的,这是因为变换总是对字母x 本身而言的,无论沿x 轴平移还是伸缩,变化的总是x .3.在解决y =A sin(ωx +φ)的有关性质时,应将ωx +φ视为一个整体x 后再与基本函数 y =sin x 的性质对应求解.5.7 正弦定理和余弦定理典例精析题型一 利用正、余弦定理解三角形【例1】在△ABC 中,AB =2,BC =1,cos C =34.(1)求sin A 的值;(2)求BC ∙CA 的值.【解析】(1)由cos C =34得sin C =74.所以sin A =BC sin C AB =1×742=148.(2)由(1)知,cos A =528.所以cos B =-cos(A +C )=-cos A cos C +sin A sin C=-15232+7232=-24.所以BC ·CA =BC ·(CB +)=BC ∙CB +BC ∙ =-1+1×2×cos B =-1-12=-32.【点拨】在解三角形时,要注意灵活应用三角函数公式及正弦定理、余弦定理等有关知识.【变式训练1】在△ABC 中,已知a 、b 、c 为它的三边,且三角形的面积为a 2+b 2-c 24,则∠C = .【解析】S =a 2+b 2-c 24=12ab sin C .所以sin C =a 2+b 2-c 22ab=cos C .所以tan C =1,又∠C ∈(0,π),所以∠C =π4.题型二 利用正、余弦定理解三角形中的三角函数问题【例2】设△ABC 是锐角三角形,a 、b 、c 分别是内角A 、B 、C 所对的边长,并且sin 2A =sin(π3+B )sin(π3-B )+sin 2B .(1)求角A 的值;(2)若AB ∙AC =12,a =27,求b ,c (其中b <c ). 【解析】(1)因为sin 2A =(32cos B +12sin B )(32cos B -12sin B )+sin 2B =34cos 2B -14sin 2B +sin 2B =34,所以sin A =±32.又A 为锐角,所以A =π3.(2)由∙=12可得cb cos A =12.① 由(1)知A =π3,所以cb =24.②由余弦定理知a 2=c 2+b 2-2cb cos A ,将a =27及①代入得c 2+b 2=52.③ ③+②×2,得(c +b )2=100,所以c +b =10.因此,c ,b 是一元二次方程t 2-10t +24=0的两个根. 又b <c ,所以b =4,c =6.【点拨】本小题考查两角和与差的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.【变式训练2】在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,且满足(2a -c )cos B = b cos C .(1)求角B 的大小;(2)若b =7,a +c =4,求△ABC 的面积. 【解析】(1)在△ABC 中,由正弦定理得 a =2R sin A ,b =2R sin B ,c =2R sin C , 代入(2a -c )cos B =b cos C ,整理得2sin A cos B =sin B cos C +sin C ∙cos B , 即2sin A cos B =sin(B +C )=sin A , 在△ABC 中,sin A >0,2cos B =1, 因为∠B 是三角形的内角,所以B =60°.(2)在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac ∙cos B =(a +c )2-2ac -2ac ∙cos B ,将b =7,a +c =4代入整理,得ac =3. 故S △ABC =12ac sin B =32sin 60°=334.题型三 正、余弦定理在实际问题中的应用【例3】(2010陕西)如图所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船到达D 点需要多长时间?【解析】由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得DB sin ∠DAB =ABsin ∠ADB,所以DB =ADBDAB AB ∠∠∙sin sin =︒︒+∙105 sin 45 sin )33(5=︒︒+︒︒︒+∙60 sin 45 cos 60 cos 45 sin 45 sin )33(5=53(3+1)3+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里, 在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ∙BC ∙cos ∠DBC =300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以,救援船到达D 点需要1小时.【点拨】应用解三角形知识解决实际问题的基本步骤是: (1)根据题意,抽象地构造出三角形;(2)确定实际问题所涉及的数据以及要求解的结论与所构造的三角形的边与角的对应关系; (3)选用正弦定理或余弦定理或者二者相结合求解; (4)给出结论.【变式训练3】如图,一船在海上由西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进m km 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件 时,该船没有触礁危险.【解析】由题可知,在△ABM 中,根据正弦定理得BMsin(90°-α)=msin(α-β),解得BM =m cos αsin(α-β),要使船没有触礁危险需要BM sin(90°-β)=m cos αcos βsin(α-β)>n .所以α与β的关系满足m cosαcos β>n sin(α-β)时,船没有触礁危险.总结提高1.正弦定理、余弦定理体现了三角形中角与边存在的一种内在联系,如证明两内角A>B与sin A >sin B 是一种等价关系.2.在判断三角形的形状时,一般将已知条件中的边角关系转化,统一转化为边的关系或统一转化为角的关系,再用恒等变形(如因式分解、配方)求解,注意等式两边的公因式不要随意约掉,否则会漏解.3.用正弦定理求角的大小一定要根据题中所给的条件判断角的范围,以免增解或漏解.5.8 三角函数的综合应用典例精析题型一 利用三角函数的性质解应用题【例1】如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是一半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在上,相邻两边CQ 、CR分别落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.【解析】如图,连接AP ,过P 作PM ⊥AB 于M .设∠P AM =α,0≤α≤π2,则PM =90sin α,AM =90cos α,所以PQ =100-90cos α,PR =100-90sin α, 于是S 四边形PQCR =PQ ·PR =(100-90cos α)(100-90sin α)=8 100sin αcos α-9 000(sin α+cos α)+10 000. 设t =sin α+cos α,则1≤t ≤2,sin αcos α=t 2-12.S 四边形PQCR =8 100·t 2-12-9 000t +10 000=4 050(t -109)2+950 (1≤t ≤2).当t =2时,(S 四边形PQCR )max =14 050-9 000 2 m 2; 当t =109时,(S 四边形PQCR )min =950 m 2.【点拨】同时含有sin θcos θ,sin θ±cos θ的函数求最值时,可设sin θ±cos θ=t ,把sin θcos θ用t 表示,从而把问题转化成关于t 的二次函数的最值问题.注意t 的取值范围.【变式训练1】若0<x <π2,则4x 与sin 3x 的大小关系是( )A.4x >sin 3xB.4x <sin 3xC.4x ≥sin 3xD.与x 的值有关【解析】令f (x )=4x -sin 3x ,则f ′(x )=4-3cos 3x .因为f ′(x )=4-3cos 3x >0,所以f (x )为增函数.又0<x <π2,所以f (x )>f (0)=0,即得4x -sin 3x >0.所以4x >sin 3x .故选A. 题型二 函数y =A sin(ωx +φ)模型的应用【例2】已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪花高度数据.经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b .(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放. 请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动?【解析】(1)由表中数据知,周期T =12,所以ω=2πT =2π12=π6.由t =0,y =1.5,得A +b =1.5,由t =3,y =1.0,得b =1.0, 所以A =0.5,b =1,所以振幅为12.所以y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, 所以12cos π6t +1>1,所以cos π6t >0,所以2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3.①因为0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24.故在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.【点拨】用y =A sin(ωx +φ)模型解实际问题,关键在于根据题目所给数据准确求出函数解析式. 【变式训练2】如图,一个半径为10 m 的水轮按逆时针方向每分钟转4圈,记水轮上的点P 到水面的距离为d m(P 在水面下则d 为负数),则d (m)与时间t (s)之间满足关系式:d =A sin(ωt +φ)+k (A >0,ω>0,-π2<φ<π2),且当点P 从水面上浮现时开始计算时间,有以下四个结论:①A =10;②ω=2π15;③φ=π6;④k =5.其中正确结论的序号是 .【解析】①②④.题型三 正、余弦定理的应用【例3】为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图所示),飞机能测量的数据有俯角和A 、B 之间的距离,请设计一个方案,包括:(1)指出需测量的数据(用字母表示,并在图中标示);(2)用文字和公式写出计算M 、N 间距离的步骤.【解析】(1)如图所示:①测AB 间的距离a ;②测俯角∠MAB =φ,∠NAB =θ,∠MBA =β,∠NBA =γ.(2)在△ABM 中 ,∠AMB =π-φ-β,由正弦定理得BM =AB sin φsin ∠AMB =a sin φsin(φ+β), 同理在△BAN 中,BN =AB sin θsin ∠ANB =a sin θsin(θ+γ), 所以在△BMN 中,由余弦定理得MN =MBN BN BM BN BM ∠-+∙cos 222 =a 2sin 2φsin 2(φ+β)+a 2sin 2θsin 2(θ+γ)-2a 2sin θsin φcos(γ-β)sin(φ+β)sin(θ+γ). 【变式训练3】一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是 海里/小时.【解析】本题考查实际模型中的解三角形问题.依题意作出简图,易知AB =10,∠OCB =60°,∠OCA =75°.我们只需计算出OC 的长,即可得出船速.在直角三角形OCA 和OCB 中,显然有OB OC=tan ∠OCB =tan 60°且OA OC =tan ∠OCA =tan 75°, 因此易得AB =OA -OB =OC (tan 75°-tan 60°),即有OC =AB tan 75°-tan 60°=10tan 75°-tan 60°=10tan(30°+45°)-tan 60° =10tan 30°+tan 45°1-tan 30°tan 45°-tan 60°=1013+11-13-3=5. 由此可得船的速度为5海里÷0.5小时=10海里/小时.总结提高1.解三角形的应用题时应注意:(1)生活中的常用名词,如仰角,俯角,方位角,坡比等;(2)将所有已知条件化入同一个三角形中求解;(3)方程思想在解题中的运用.2.解三角函数的综合题时应注意:(1)与已知基本函数对应求解,即将ωx +φ视为一个整体X ;(2)将已知三角函数化为同一个角的一种三角函数,如y =A sin(ωx +φ)+B 或y =a sin 2x +b sin x +c ;(3)换元方法在解题中的运用.。

2013年高考数学试题分类汇编——三角函数 2

2013年高考数学试题分类汇编——三角函数 2

2013年全国各地高考试题汇编(湖南.文)已知函数()cos cos()3f x x x =⋅-(1)求2()3f π的值(2)求使1()4f x <成立的x 的取值集合 (2013陕西.理)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R ,设函数()·f x =a b . (1) 求()f x 的最小正周期. (2) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2013湖南.理)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =.(1)若α是第一象限角,且()5f α=,求()g α的值; (2)求使()()f x g x ≥成立的x 的取值集合.(2013湖北.文)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sinBC 的值.2013江西.理)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B += (1) 求角B 的大小;若1a c +=,求b 的取值范围 2013四川.理)在ABC ∆中,角,,A B C 的对边分别c b a 、、,且53)cos(sin )sin(cos 2cos 22-=++---C A B B A B B A (1)求A cos 的值;若5,24==b a ,求向量在方向上的投影。

(2013新课标Ⅱ.理)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求ABC ∆面积的最大值。

(1)求,a c 的值; (2)求sin()A B -的值.(2013全国卷.文)设ABC ∆的内角,,A B C 的对边分别为,,,()()a b c a b c a b c ac ++-+= (1)求角B (2)若413sin sin -=C A ,求角C (2013江苏卷)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0. (1)若2||=-b a ,求证:b a ⊥; (2)设)1,0(=c ,若c b a =+,求βα,的值. 2013上海.理)已知函数()2sin (0)f x x ωω=> (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像.区间[,](,,)a b a b R a b ∈<,满足: ()y g x =在[,]a b 上至少含有30个零点.在所有满足上述条件的[,]a b 中,求b a -的最小值.2010年高考三角函数汇编一、选择题(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC (A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.2010湖南文数)7.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,,则 A.a >b B.a <b C. a =b D.a 与b 的大小关系不能确定(2010浙江理数)(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4(2010浙江理数)(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位(B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 (2010陕西文数)3.函数f (x )=2sin x cos x 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 (2010辽宁理数)(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 (2010全国卷2文数)已知2sin 3α=,则cos(2)x α-=(A)B )19-(C )19(D(2010江西理数)7.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 34(2010重庆文数)(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+(B )cos(2)2y x π=+(C )sin()2y x π=+(D )cos()2y x π=+ (2010重庆理数)已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=(A )()f x (B)()f x - (C) ()g x (D)()g x - (2010四川理数)(6)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-15、(2010天津文数)(8)5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(2010天津理数)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A= (A )030 (B )060 (C )0120 (D )0150 (2010全国卷1理数)(2)记cos(80)k -︒=,那么tan100︒=(2010湖南理数)6、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,c =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定 (2010湖北理数)3.在ABC ∆中,a=15,b=10,A=60°,则cos B =A -3 B 3 C -3 D 3(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +则角A 的大小为 .(2010广东理数)11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . (2010福建理数)14.已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。

2013届高考数学知识点复习教案4《三角函数》(全国通用)

2013届高考数学知识点复习教案4《三角函数》(全国通用)

四、三角函数:一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},360|{Z k k ∈+=αββ与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:③④⑤⑥(4)正确理解角:要正确理解“o o 90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o 90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

(7)弧长公式: ;半径公式: ;扇形面积公式: ; 二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

(2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

2013高考数学(理)二轮备考--专题4:三角函数

2013高考数学(理)二轮备考--专题4:三角函数

2012届高考数学二轮复习专题四 三角函数【重点知识回顾】三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。

第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。

当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。

总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力 方法技巧:1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。

诱导公式用角度制和弧度制表示都成立,记忆方法可概括为“奇变偶不变,符号看象限”,变与不变是相对于对偶关系的函数而言的2.三角函数值的符号在求角的三角函数值和三角恒等变换中,显得十分重要,根据三角函数的,可简记为“一全正,二正弦,三两切,四余弦”,其含义是:在第一象限各三角函数值皆为正;在第二象限正弦值为正;在第三象限正余切值为正;在第四象限余弦值为正3.在利用同角三角函数的基本关系式化简、求值和证明恒等关系时,要注意用是否“同角”来区分和选用公式,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简、求值时,要注意正负号的选取4.求三角函数值域的常用方法:求三角函数值域除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下方法: (1)将所给三角函数转化为二次函数,通过配方法求值域; (2)利用sin ,cos x x 的有界性求值域;(3)换元法,利用换元法求三角函数的值域,要注意前后的等价性,不能只注意换元,不注意等价性 5. 三角函数的图象与性质(一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况;⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈注意加了绝对值后的情况变化. ⑷写单调区间注意0ω>.(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式. ⑴“五点法”作图的列表方式;⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. (三)正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩 si n y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 【典型例题】例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化例2.已知向量2(2cos sin )(sin cos )(3)a ααb ααx a t b =-=+- ,2,=,,,y ka b =-+,且0x y ⋅= ,(1)求函数()k f t =的表达式;(2)若[13]t ∈-,,求()f t 的最大值与最小值 解:(1)24a = ,21b = ,0a b ⋅= ,又0x y ⋅=,所以22222[(3)]()(3)[(3)]0x y a t b ka b ka t b t k t a b ⋅=+-⋅-+=-+-+--⋅=,所以31344k t t =-,即313()44k f t t t ==-; (2)由(1)可得,令()f t 导数233044t -=,解得1t =±,列表如下:而(1)(1)(3)222f f f -==-=,,,所以max min ()()22f t f t ==-, 说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。

2013年全国高考数学第二轮复习 专题三 三角函数及解三角形第1讲 三角函数的图象与性质 文

2013年全国高考数学第二轮复习 专题三 三角函数及解三角形第1讲 三角函数的图象与性质 文

专题三 三角函数及解三角形第1讲 三角函数的图象与性质真题试做1.(2012·大纲全国高考,文3)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ).A .π2B .2π3C .3π2D .5π32.(2012·某某高考,文8)函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( ).A .x =π4B .x =π2C .x =-π4D .x =-π23.(2012·某某高考,文7)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎫3π4,0,则ω的最小值是( ). A .13 B .1 C .53D .2 4.(2012·某某高考,文18)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间. 考向分析三角函数的图象与性质是高考考查的重点及热点内容,主要从以下三个方面进行考查: 1.三角函数的概念与诱导公式,主要以选择、填空题的形式为主.2.三角函数的图象,主要涉及图象变换问题以及由图象确定函数解析式问题,主要以选择、填空题的形式考查,有时也会出现大题.3.三角函数的性质,通常是给出函数解析式,先进行三角变换,将其转化为y =A sin(ωx +φ)的形式再研究其性质,或知道某三角函数的图象或性质求其解析式,再研究其他性质,既有直接考查的客观题,也有综合考查的主观题.热点例析热点一 三角函数的概念【例1】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ).A .-45B .-35C .35D .45规律方法 当已知角的终边所经过的点或角的终边所在的直线固定时,通常先根据任意角三角函数的定义求这个角的三角函数.特别提醒:(1)当角的终边经过的点不固定时,需要进行分类讨论,特别是当角的终边在过坐标原点的一条直线上时,根据定义求三角函数值时,要把这条直线看做两条射线,分别求解.(2)在利用诱导公式和同角三角函数关系式时,一定要特别注意符号.一定要理解“奇变偶不变,符号看象限”的意思;同角三角函数的平方关系中,开方后的符号要根据角所在的象限确定.变式训练1 (2012·某某某某高三质检,11)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边与单位圆交点的横坐标是-35,若α∈(0,π),则tan α=__________.热点二 三角函数图象及解析式【例2】如图,根据函数的图象,求函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的解析式.规律方法 由部分图象确定函数解析式问题解决的关键在于确定参数A ,ω,φ,其基本方法是在观察图象的基础上,利用待定系数法求解.若设所求解析式为y =A sin(ωx +φ),则在观察图象的基础上,可按以下规律来确定A ,ω,φ.(1)一般可由图象上的最大值、最小值来确定|A |,或代入点的坐标解关于A 的方程;(2)因为T =2π|ω|,所以往往通过求周期T 来确定ω.可通过已知曲线与x 轴的交点确定周期T ,或者相邻的两个最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T ;(3)从寻找五点法中的第一零点(也叫初始点)作为突破口,要从图象的升降情况找准第一零点的位置,或者在五点中找两个特殊点列方程组解出φ.(4)代入点的坐标,通过解三角方程,再结合图象确定ω,φ.特别提醒:求y =A sin(ωx +φ)的解析式,最难的是求φ,第一零点常常用来求φ,只要找准第一零点的横坐标,列方程就能求出φ.若对A ,ω的符号或对φ的X 围有要求,可用诱导公式变换,使其符合要求.变式训练2 (2012·某某某某质检,8)下图所示的是函数y =A sin(ωx +φ)(A >0,ω>0)图象的一部分,则其函数解析式是( ).A .y =sin ⎝ ⎛⎭⎪⎫x +π3B .y =sin ⎝ ⎛⎭⎪⎫x -π3C .y =sin ⎝ ⎛⎭⎪⎫2x +π6D .y =sin ⎝⎛⎭⎪⎫2x -π6 热点三 三角函数图象变换【例3】(2012·某某某某高三三诊,10)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2,x ∈R 在一个周期内的图象如图所示,则y =f (x )的图象可由函数y =cos x 的图象(纵坐标不变)( ).A .先把各点的横坐标缩短到原来的12倍,再向左平移π6个单位B .先把各点的横坐标缩短到原来的12倍,再向右平移π12个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位规律方法 图象变换理论: (1)平移变换①沿x 轴平移,按“左加右减”法则; ②沿y 轴平移,按“上加下减”法则; (2)伸缩变换①沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的1ω(纵坐标y 不变);②沿y 轴伸缩时,纵坐标y 伸长(A >1)或缩短(0<A <1)为原来的A 倍(横坐标x 不变). 特别提醒:对于图象的平移和伸缩变换都要注意对应解析式是在x 或在y 的基础上改变了多少,尤其当x 与y 前的系数不为1时一定要将系数提出来再判断.变式训练3 要得到y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将y =sin 2x 的图象( ). A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度热点四 三角函数图象与性质的综合应用【例4】(2012·某某浦东新区模拟,19)已知函数f (x )=2sin x cos x +2cos 2x . (1)求函数f (x )的单调递增区间;(2)将函数y =f (x )的图象向右平移π4个单位后,得到函数y =g (x )的图象,求方程g (x )=1的解.规律方法 求解三角函数的奇偶性、对称性、周期、最值、单调区间等问题时,通常要运用各种三角函数公式,通过恒等变换(降幂、辅助角公式应用)将其解析式化为y =A sin(ωx +φ),y =A cos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)的形式,再研究其各种性质.有关常用结论与技巧:(1)我们往往运用整体换元法来求解单调性与对称性,求y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0)的单调区间时一定要注意ω的取值情况,若ω<0,则最好用诱导公式转化为-ω>0后再去求解,否则极易出错.(2)①函数y =A sin(ωx +φ),x ∈R 是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z );②函数y =A cos(ωx +φ),x ∈R 是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );③函数y =A tan(ωx +φ),x ∈R 是奇函数⇔φ=k π(k ∈Z ).(3)对y =A sin(ωx +φ),y =A cos(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)结合函数图象可观察出如下几点:①函数图象的对称轴都经过函数的最值点,对称中心的横坐标都是函数的零点; ②相邻两对称轴(对称中心)间的距离都是半个周期;③图象上相邻两个最大(小)值点之间的距离恰好等于一个周期.变式训练 4 (2012·某某高三模拟,17)已知函数f (x )=4sin ωx sin 2⎝ ⎛⎭⎪⎫ωx 2+π4+cos 2ωx ,其中ω>0.(1)当ω=1时,求函数f (x )的最小正周期;(2)若函数f (x )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,求ω的取值X 围.思想渗透整体代换思想——三角函数性质问题(1)求函数的对称轴、对称中心; (2)求函数的单调区间. 求解时主要方法为:(1)关于函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的对称性,一般可利用正弦、余弦曲线的对称性,把ωx +φ看成x ,整体代换求得.(2)求函数y =A sin(ωx +φ)(A ,ω,φ是常数,且A >0,ω≠0)的单调区间的步骤如下:①若ω>0,把ωx +φ看成一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )解得x 的集合,所得区间即为增区间;由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )解得x 的集合,所得区间即为减区间.②若ω<0,可先用诱导公式变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间为原函数的增区间.已知函数f (x )=cos 2⎝ ⎛⎭⎪⎫x +π12,g (x )=1+12sin 2x .(1)设x =x 0是函数y =f (x )图象的一条对称轴,求g (x 0)的值; (2)求函数h (x )=f (x )+g (x )的单调递增区间.解:(1)由题设知f (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝⎛⎭⎪⎫2x +π6. 因为x =x 0是函数y =f (x )的图象的一条对称轴,所以2x 0+π6=k π(k ∈Z ),即2x 0=k π-π6(k ∈Z ).所以g (x 0)=1+12sin 2x 0=1+12sin ⎝⎛⎭⎪⎫k π-π6.当k 为偶数时,g (x 0)=1+12sin ⎝ ⎛⎭⎪⎫-π6=1-14=34;当k 为奇数时,g (x 0)=1+12sin π6=1+14=54.(2)h (x )=f (x )+g (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝⎛⎭⎪⎫2x +π6+1+12sin 2x =12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x +π6+sin 2x +32=12⎝ ⎛⎭⎪⎫32cos 2x +12sin 2x +32=12sin ⎝ ⎛⎭⎪⎫2x +π3+32.当2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),即k π-5π12≤x ≤k π+π12(k ∈Z )时,函数h (x )=12sin ⎝⎛⎭⎪⎫2x +π3+32是增函数. 故函数h (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).1.(2012·某某某某一模,8)将函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( ).A .x =π9B .x =π8C .x =π D.x =π22.(2012·某某某某二模,8)若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且OM ·ON =0,则A ·ω=( ).A .76π B.712π C.π6 D .73π 3.(2012·某某宝坻质检,4)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的最小正周期为π,且f (x )-f (-x )=0,则( ). A .f (x )在⎝⎛⎭⎪⎫0,π2上是增函数B .f (x )在⎝⎛⎭⎪⎫0,π2上是减函数C .f (x )在⎝ ⎛⎭⎪⎫-π4,π4上是增函数D .f (x )在⎝ ⎛⎭⎪⎫-π4,π4上是减函数 4.(2012·某某某某4月调研,7)已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=( ).A .-12B .-1C .-32D .- 3 5.已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m <0)是角α终边上一点,则2sin α+cos α=________.6.(原创题)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是__________.7.已知函数y =a -b cos 3x (b >0)的最大值为32,最小值为-12,求函数y =-4a sin 3bx的最大值和最小值.8.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 参考答案命题调研·明晰考向 真题试做1.C 解析:∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.∴sin φ3=±1.∴φ3=k π+π2(k ∈Z ). ∴φ=3k π+3π2(k ∈Z ).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.2.C 解析:函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的对称轴是x -π4=k π+π2,k ∈Z ,即x =k π+3π4,k ∈Z .当k =-1时,x =-π+3π4=-π4.故选C. 3.D 解析:f (x )=sin ωx 的图象向右平移π4个单位长度得:y =sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫x -π4.又所得图象过点⎝ ⎛⎭⎪⎫3π4,0,∴sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎪⎫3π4-π4=0.∴sin ωπ2=0.∴ωπ2=k π(k ∈Z ).∴ω=2k (k ∈Z ).∵ω>0,∴ω的最小值为2.4.解:(1)由题中图象知,周期T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,所以ω=2πT=2,因为点⎝⎛⎭⎪⎫5π12,0在函数图象上,所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0,即sin ⎝ ⎛⎭⎪⎫5π6+φ=0.又因为0<φ<π2,所以5π6<5π6+φ<4π3,从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6 =2sin 2x -2sin ⎝ ⎛⎭⎪⎫2x +π3 =2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=sin 2x -3cos 2x=2sin ⎝ ⎛⎭⎪⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 精要例析·聚焦热点 热点例析【例1】B 解析:(方法1)在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=|OP |2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos 2θ=2cos 2θ-1=25-1=-35.(方法2)由方法1知tan θ=2a a =2,cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. 【变式训练1】-43解析:由三角函数定义可知cos α=-35,又α∈(0,π),故sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.【例2】解:由图象可知A =23,T =2×[6-(-2)]=16,即2πω=16,∴ω=π8.∴y =23sin ⎝ ⎛⎭⎪⎫π8x +φ. 又∵点(2,-23)在曲线上,代入得23sin ⎝ ⎛⎭⎪⎫π8×2+φ=-23,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1. ∴π4+φ=2k π-π2,k ∈Z . ∴φ=2k π-3π4,k ∈Z .又∵|φ|<π,∴k =0时,φ=-3π4.∴函数解析式为y =23sin ⎝ ⎛⎭⎪⎫π8x -3π4.【变式训练2】A 解析:由图象可知A =1,T 4=π6-⎝ ⎛⎭⎪⎫-π3=π2,∴T =2π.∴ω=2πT=1.又⎝ ⎛⎭⎪⎫π6,1可看做“五点法”作图的第二个点,∴π6+φ=π2. ∴φ=π3.∴y =sin ⎝⎛⎭⎪⎫x +π3.【例3】B 解析:由题中图象可知A =1,T 4=π12-⎝ ⎛⎭⎪⎫-π6=π4,∴T =π.∴ω=2πT=2.又⎝ ⎛⎭⎪⎫π12,1可看做“五点法”作图的第二个点,∴π6+φ=π2.∴φ=π3. ∴y =sin ⎝⎛⎭⎪⎫2x +π3.由函数y =cos x 的图象(纵坐标不变)上各点的横坐标缩短到原来的12倍,可得y =cos 2x的图象,再向右平移π12个单位可得y =cos2⎝ ⎛⎭⎪⎫x -π12=cos ⎝ ⎛⎭⎪⎫2x -π6=cos ⎝ ⎛⎭⎪⎫π6-2x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-2x =sin ⎝ ⎛⎭⎪⎫2x +π3的图象. 【变式训练3】A 解析:y =cos ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝ ⎛⎭⎪⎫2x +π3+π2=sin2⎝⎛⎭⎪⎫x +5π12,故需将y =sin 2x 的图象向左平移5π12个单位长度.【例4】解:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+1, 由2k π-π2≤2x +π4≤2k π+π2(k ∈Z )得:f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ). (2)由已知,g (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1, 由g (x )=1,得2sin ⎝⎛⎭⎪⎫2x -π4=0, ∴x =k π2+π8(k ∈Z ).【变式训练4】解:(1)由题可知:f (x )=4sin ωx ·12⎣⎢⎡⎦⎥⎤1-cos ⎝⎛⎭⎪⎫ωx +π2+cos 2ωx =2sin ωx +1. 当ω=1时,f (x )=2sin x +1,则函数f (x )的最小正周期为2π.(2)由(1)知:f (x )=2sin ωx +1,欲使f (x )在⎣⎢⎡⎦⎥⎤-π2,2π3上单调递增,结合y =2sin ωx+1的图象,则有⎣⎢⎡⎦⎥⎤-π2,2π3⊆⎣⎢⎡⎦⎥⎤-2π4ω,2π4ω,于是ω∈⎝ ⎛⎦⎥⎤0,34.创新模拟·预测演练1.D 解析:函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y =cos ⎝ ⎛⎭⎪⎫12x -π3的图象,再向左平移π6个单位,得函数y =cos ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π6-π3=cos ⎝ ⎛⎭⎪⎫12x -π4的图象,令12x -π4=k π,即x =2k π+π2,k ∈Z .令k =0,则x =π2.2.A 解析:由图象可知T 4=π3-π12=π4,∴T =π.∴ω=2ππ=2.又M ⎝ ⎛⎭⎪⎫π12,A ,N ⎝ ⎛⎭⎪⎫7π12,-A ,OM ·ON =0, ∴π12×7π12-A 2=0.∴A =7π12.∴A ·ω=7π6. 3.B 解析:由f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin(ωx +φ+π4),又最小正周期为π,∴ω=2ππ=2.f (x )=2sin(2x +φ+π4).∵f (-x )=f (x ),∴φ+π4=k π+π2,k ∈Z ,φ=k π+π4,k ∈Z .由题意φ=π4.f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 当0<2x <π,即0<x <π2时,f (x )单调递减.当-π<2x <0,即-π2<x <0时,f (x )单调递增.4.B 解析:由图象可知A =2,图象过点⎝ ⎛⎭⎪⎫π3,2,可看做“五点法”作图的第二个点,故2×π3+φ=π2,φ=-π6,∴f (x )=2sin ⎝⎛⎭⎪⎫2x -π6. 故f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-1. 5.-25解析:∵P (-4m,3m )(m <0),∴r =(-4m )2+(3m )2=5|m |, 由m <0得r =-5m ,∴sin α=3m -5m =-35,cos α=-4m -5m =45.∴2sin α+cos α=-25.6.⎣⎢⎡⎦⎥⎤-1,22解析:当sin x ≥cos x 时,f (x )=cos x ,当sin x <cos x 时,f (x )=sin x .同时画出y =sin x 与y =cos x 在一个周期内的图象,函数f (x )的图象始终取y =sin x与y =cos x 两者下方的图象,结合图象可得f (x )∈⎣⎢⎡⎦⎥⎤-1,22.7.解:y =a -b cos 3x (b >0).当cos 3x =-1时,y max =a +b =32,①当cos 3x =1时,y min =a -b =-12,②由①②得⎩⎪⎨⎪⎧a =12,b =1,word- 11 - / 11 ∴y =-4×12·sin 3x =-2sin 3x . ∴当sin 3x =-1时,y max =2;当sin 3x =1时,y min =-2.8.解:(1)由图象知A =2,T 4=2⇒T =8=2πω, ∴ω=π4,得f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ. 由π4×1+φ=π2⇒φ=π4. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4. (2)y =2sin ⎝ ⎛⎭⎪⎫π4x +π4+2sin ⎣⎢⎡⎦⎥⎤π4(x +2)+π4 =2sin ⎝ ⎛⎭⎪⎫π4x +π4+2cos ⎝ ⎛⎭⎪⎫π4x +π4 =22sin ⎝ ⎛⎭⎪⎫π4x +π2=22cos π4x . ∵x ∈⎣⎢⎡⎦⎥⎤-6,-23, ∴π4x ∈⎣⎢⎡⎦⎥⎤-3π2,-π6. ∴当π4x =-π6,即x =-23时,y 取最大值6;当π4x =-π,即x =-4时,y 取最小值-2 2.。

2013年高考数学分类汇编-----三角函数

2013年高考数学分类汇编-----三角函数

三角函数一、选择题 1、若,2παπ⎛⎫∈⎪⎝⎭,1tan ,sin ()47παα⎛⎫+== ⎪⎝⎭则 A .35 B .45 C .35- D .45-2、将函数()sin cos f x x x =的图像向左平移4π个长度单位,纵坐标不变再将横坐标压缩为原来的12,得到函数g(x)的图像,则g(x)的一个增区间可能是 ( )A .(,0)π-B. (0,)2π C. (,)2ππ D. (,)42ππ3、在ABC ∆是,,A B C 的对边分别为a,b,c ,若cos ,cos ,cos a C b B c A 或等差数列,则B =( ) A.6πB.4πC.3πD.32π4、 函数)sin()(ϕω+=x A x f (其是2,0πϕ〈〉A )的图象如图所示,为了得到()cos 2g x x =的图像,则只要将f(x)的图像( ) A.向右平移6π个单位长度 B.向右平移12π个单位长度 C.向左平移6π个单位长充 D.向左平移12π个单位长度5、若函数sin()y A x ωϕ=+(0A >,0ω>,||2πϕ<)在一个周期内的图象如图所示,,M N分别是这段图象的最高点和最低点,且0OM ON ⋅=(O 为坐标原点),则=A ( )A .6πB.12C.6D.36、将函数()y f x =的图象沿着直线y =的方向向右上方平移两个单位,得到sin 2y x =,则()f x 的解析式为( )A.sin(22)y x =+- B .sin(21)y x =+-C.sin(22)y x =-+D .sin(21)y x =-+7、已知△ABC 的三边长分别为a-2,a ,a+2,且它的最大角的正弦值为23,则这个三角形的面积是( ) A.415 B.4315 C.432 D.43358、在(OAB O ∆为原点中,(2cos ,2sin ),(5cos ,5sin )O A O B ααββ==,若5OA OB ⋅=- ,则O AB S ∆=( )AB2C .D 29、若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是( )A .(1,2)B .(2,3)C .(3,2)D .(1,2) 10、在△ABC 中,角A 、B、C 所对的边分别为a 、b 、c 若2ac osB=c ,则22cossin12A B +-的取值范围是( ) A.B .(-C .D .[1二、填空题1、如果21)4tan(,43)tan(=-=+παβα,那么)4tan(πβ+= .2、函数f(x)=2sin ωx(ω>0)在[0,]4π上单调递增,且在这个区间上的最大值是3,那么ω等于________.3、α的终边上一点的坐标为)65cos ,65(sinππ,则角α的最小正值为 . 4、一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转︒105,爬行10 cm 捕捉到另一只小虫,这时它向右转︒135爬行回它的出发点,那么x=_______. 5、下列命题中:①函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数;②函数3)32sin()(ππ=+=x x x f 的图象关于直线对称;③若函数)(6))(32sin()(Z k k R x x x f ∈+=∈++=ππϕϕπ为偶函数,则;④“a=b ”是“直线y=x+2与圆2)()(22=-+-b y a x 相切”的充分不必要条件; 正确命题的序号有 (把你认为正确的命题的序号都填上)6、在A B C ∆中,a ,b ,c 分别是角A ,B ,C的对边,若21,3b c C π==∠=,则ABC S ∆=三、解答题 1、已知21)4tan(-=+πα,παπ<<2. ①求αtan 的值; ②求)4sin(2cos 22sin 2πααα++的值.2、如图,角θ的始边OA 落在x 轴上,其始边、终边分别与单位圆交于点A 、C (02πθ<<),△AOB 为等边三角形.(1)若点C 的坐标为(43,55),求cos ∠B OC 的值;(2)设f 2()||BC θ=,求函数f (θ)的解析式和值域.3 、在锐角△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 2+b 2=6abcosC ,且sin 2C=2sinAsinB.(Ⅰ)求角C 的值;(Ⅱ)设函数()sin()cos (0)6f x x x πωωω=-->,且()f x 图象上相邻两最高点间的距离为π,求()f C 的值.4、已知函数()2cos 2sin 1,.f x x x x x R =+-∈(I )求函数()f x 的最小正周期和单调递增区间;(II )将函数()y f x =的图象上各点的纵坐标保持不变,横坐标缩短到原来的12,再把所得到的图象向左平移6π个单位长度,得到函数()y g x =的图象,求函数()y g x =在区间,612ππ⎡⎤-⎢⎥⎣⎦上的值域. 5、如图,a 是海面上一条南北方向的海防警戒线,在a 上一点A 处 有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20km 和54km 处。

黄冈2013高考数学【三角函数】复习讲义

黄冈2013高考数学【三角函数】复习讲义

三角函数【知识导读】【方法点拨】三角函数是一种重要的初等函数,它与数学的其它部分如解析几何、立体几何及向量等有着广泛的联系,同时它也提供了一种解决数学问题的重要方法——“三角法”.这一部分的内容,具有以下几个特点:1.公式繁杂.公式虽多,但公式间的联系非常密切,规律性强.弄清公式间的相互联系和推导体系,是记住这些公式的关键.2.思想丰富.化归、数形结合、分类讨论和函数与方程的思想贯穿于本单元的始终,类比的思维方法在本单元中也得到充分的应用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等.3.变换灵活.有角的变换、公式的变换、三角函数名称的变换、三角函数次数的变换、三角函数表达形式的变换及一些常量的变换等,并且有的变换技巧性较强.4.应用广泛.三角函数与数学中的其它知识的结合点非常多,它是解决立体几何、解析几何及向量问题的重要工具,并且这部分知识在今后的学习和研究中起着十分重要的作用,比如在物理学、天文学、测量学及其它各门科学技术都有广泛的应用.任意角 的概念角度制与 弧度制任意角的 三角函数弧长与扇形 面积公式 三角函数的 图象和性质 和 角 公 式 差 角 公 式几个三角 恒等式倍 角 公 式 同角三角函数关系 诱 导公 式 正弦定理与余弦定理 解斜三角形及其应用化简、计算、求值 与证明第1课 三角函数的概念【考点导读】1. 理解任意角和弧度的概念,能正确进行弧度与角度的换算.角的概念推广后,有正角、负角和零角;与α终边相同的角连同角α本身,可构成一个集合{}Z k k S ∈⋅+==,360αββ;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式r l α=及扇形的面积公式S =lr21(l 为弧长)解决问题.2. 理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立直角坐标系,在角的终边上任取一点(,)P x y (不同于坐标原点),设OP r =(220r x y =+>),则α的三个三角函数值定义为:sin ,cos ,tan y x yr r xααα===. 从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R ;正切函数的定义域为{|,,}2R k k Z παααπ∈≠+∈.3. 掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值.由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正).另外,熟记0、6π、4π、3π、2π的三角函数值,对快速、准确地运算很有好处.4. 掌握正弦线、余弦线、正切线的概念.在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题. 【基础练习】1. 885-化成2(02,)k k Z πααπ+≤≤∈的形式是 .2.已知α为第三象限角,则2α所在的象限是 . 3.已知角α的终边过点(5,12)P -,则cos α= , tan α= .4.tan(3)sin 5cos8-的符号为 .13612ππ-+第二或第四象限 513-125- 正5.已知角θ的终边上一点(,1)P a -(0≠a ),且a -=θtan ,求θsin ,θcos 的值.解:由三角函数定义知,1a =±,当1a =时,2sin 2θ=-,2cos 2θ=; 当1a =-时,2sin 2θ=-,2cos 2θ=-. 【范例解析】例1.(1)已知角α的终边经过一点(4,3)(0)P a a a -≠,求2sin cos αα+的值; (2)已知角α的终边在一条直线3y x =上,求sin α,tan α的值. 分析:利用三角函数定义求解.解:(1)由已知4x a =,5r a =.当0a >时,5r a =,3sin 5α=-,4cos 5α=,则22sin cos 5αα+=-;当0a <时,5r a =-,3sin 5α=,4cos 5α=-,则22sin cos 5αα+=. (2)设点(,3)(0)P a a a ≠是角α的终边3y x =上一点,则tan 3α=;当0a >时,角α是第一象限角,则3sin 2α=; 当0a <时,角α是第三象限角,则3sin 2α=-. 点评:要注意对参数进行分类讨论.例2.(1)若sin cos 0θθ⋅>,则θ在第_____________象限. (2)若角α是第二象限角,则sin 2α,cos 2α,sin 2α,cos 2α,tan 2α中能确定是正值的有____个.解:(1)由sin cos 0θθ⋅>,得sin θ,cos θ同号,故θ在第一,三象限. (2)由角α是第二象限角,即222k k ππαππ+<<+,得422k k παπππ+<<+,4224k k ππαππ+<<+,故仅有tan2α为正值.点评:准确表示角的范围,由此确定三角函数的符号.例3. 一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?分析:选取变量,建立目标函数求最值.解:设扇形的半径为x ㎝,则弧长为(202)l x =-㎝,故面积为21(202)(5)252y x x x =-=--+,当5x =时,面积最大,此时5x =,10l =,2lxα==, 所以当2α=弧度时,扇形面积最大252cm .点评:由于弧度制引入,三角函数就可以看成是以实数为自变量的函数.【反馈演练】1.若sin cos θθ>且sin cos 0θθ⋅<则θ在第_______象限. 2.已知6α=,则点(sin ,tan )A αα在第________象限. 3.已知角θ是第二象限,且(,5)P m 为其终边上一点,若2cos 4m θ=,则m 的值为_______.4.将时钟的分针拨快30min ,则时针转过的弧度为 .5.若46παπ<<,且α与23π-终边相同,则α= . 6.已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_______,这个圆心角所在的扇形的面积是___________.7.(1)已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.(2)若扇形的面积为82cm ,当扇形的中心角α(0)α>为多少弧度时,该扇形周长最小. 简解:(1)该扇形面积22cm ;(2)2182r l yrl +=⎧⎪⎨=⎪⎩,得16282y r r =+≥,当且仅当22r =时取等号.此时,42l =,2lrα==.二 三 3-12π-163π11sin211cos1-第2课同角三角函数关系及诱导公式【考点导读】1.理解同角三角函数的基本关系式;同角的三角函数关系反映了同一个角的不同三角函数间的联系.2.掌握正弦,余弦的诱导公式;诱导公式则揭示了不同象限角的三角函数间的内在规律,起着变名,变号,变角等作用.【基础练习】1. tan600°=______.2. 已知α是第四象限角,5tan12α=-,则sinα=______.3.已知3cos22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tanϕ=______.4.sin15°cos75°+cos15°sin105°=___1___.【范例解析】例1.已知8cos()17πα-=,求sin(5)απ-,tan(3)πα+的值.分析:利用诱导公式结合同角关系,求值.解:由8cos()17πα-=,得8cos017α=-<,α∴是第二,三象限角.3513--3若α是第二象限角,则15sin(5)sin 17απα-=-=-,15tan(3)tan 8παα+==-; 若α是第三象限角,则15sin(5)sin 17απα-=-=,15tan(3)tan 8παα+==.点评:若已知正弦,余弦,正切的某一三角函数值,但没有确定角所在的象限,可按角的象限进行分类,做到不漏不重复.例2.已知α是三角形的内角,若1sin cos 5αα+=,求tan α的值. 分析:先求出sin cos αα-的值,联立方程组求解. 解:由1sin cos 5αα+=两边平方,得112sin cos 25αα+⋅=,即242sin cos 025αα∴⋅=-<. 又α是三角形的内角,cos 0α∴<,2παπ∴<<.由249(sin cos )25αα-=,又sin cos 0αα->,得7sin cos 5αα-=. 联立方程组1sin cos 57sin cos 5αααα⎧+=⎪⎪⎨⎪-=⎪⎩,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩,得4tan 3α=-.点评:由于2(sin cos )12sin cos αααα±=±⋅,因此式子sin cos αα-,sin cos αα+,sin cos αα⋅三者之间有密切的联系,知其一,必能求其二.【反馈演练】1.已知5sin 5α=,则44sin cos αα-的值为_____.2.“21s i n =A ”是“A =30º”的必要而不充分条件. 3.设02x π≤≤,且1sin 2sin cos x x x -=-,则x 的取值范围是544x ππ≤≤4.已知1sin cos 5θθ+=,且324θππ≤≤,则cos 2θ的值是 .5.(1)已知1cos 3α=-,且02πα-<<,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值. (2)已知1sin()64x π+=,求25sin()sin ()63x x ππ-+-的值. 解:(1)由1cos 3α=-,得tan 22α=-. 53- 725-原式=2cos 3sin 23tan 4cos sin 4tan αααααα-+-+=--5222=-. (2)1sin()64x π+=,225sin()sin ()sin[()]sin [()]63626x x x x ππππππ∴-+-=-++-+ 219sin()cos ()6616x x ππ=+++=.6.已知4tan 3α=-,求(I )6sin cos 3sin 2cos αααα+-的值;(II )212sin cos cos ααα+的值.解:(I )∵ 4tan 3α=-;所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--.(II )由4tan 3α=-,于是212sin cos cos ααα+2222sin cos tan 152sin cos cos 2tan 13ααααααα++===-++.第3课 两角和与差及倍角公式(一)【考点导读】1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系;2.能运用上述公式进行简单的恒等变换;3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系;4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】1.sin163sin 223sin 253sin313+=___________.2. 化简2cos 6sin x x -=_____________. 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________. 12 3+cos2x 22cos()3x π+4.化简:sin sin 21cos cos 2αααα+=++___________ . 【范例解析】例 .化简:(1)42212cos 2cos 22tan()sin ()44x x x x ππ-+-+; (2)(1sin cos )(sin cos )22(0)22cos θθθθθπθ++-<<+. (1)分析一:降次,切化弦. 解法一:原式=2221(2cos 1)22sin()4cos ()4cos()4x x x x πππ----22(2cos 1)4sin()cos()44x x x ππ-=--2cos 22sin(2)2x x π=-1cos 22x =. 分析二:变“复角”为“单角”. 解法二:原式221(2cos 1)21tan 222(sin cos )1tan 22x x x x x -=-⋅++22c os 2c o ss 2(sic o ssx x x x x x x=-⋅++1c os2x =.(2)原式=22(2sin cos 2cos )(sin cos )222224cos 2θθθθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθθθθ--⋅==0θπ<< ,022θπ∴<<,cos 02θ>,∴原式=cos θ-.点评:化简本质就是化繁为简,一般从结构,名称,角等几个角度入手.如:切化弦,“复角”变“单角”,降次等等. 【反馈演练】1.化简22sin 2cos 1cos 2cos 2⋅=+ααααtan 2α. 2.若sin tan 0x x ⋅<,化简1cos2x +=_________. 3.若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则a 与b 的大小关系是_________.4.若sin cos tan (0)2παααα+=<<,则α的取值范围是___________. 5.已知α、β均为锐角,且cos()sin()αβαβ+=-,则tan α= 1 .)3,4(ππ2cos x - a b < tan α6.化简:222cos 12tan()sin ()44αππαα--⋅+.解:原式=222cos 12sin()4cos ()4cos()4απαπαπα--⋅--cos 22sin()cos()44αππαα=-⋅-cos 21cos 2αα==.7.求证:222sin 22cos cos 22cos x x x x +=.证明:左边=2224sin cos 2cos cos 2x x x x +22222cos (2sin 12cos )2cos x x x x =+-==右边.8.化简:22sin sin 2sin sin cos()αβαβαβ+++.解:原式=22sin sin 2sin sin (cos cos sin sin )αβαβαβαβ++-2222sin sin 2sin sin cos cos 2sin sin αβαβαβαβ=++- 2222sin (1sin )sin (1sin )2sin sin cos cos αββααβαβ=-+-+ 2222sin cos sin cos 2sin sin cos cos αββααβαβ=++ 2(sin cos sin cos )αββα=+ 2sin ()αβ=+.第4课 两角和与差及倍角公式(二)【考点导读】1.能熟练运用两角和与差公式,二倍角公式求三角函数值;2.三角函数求值类型:“给角求值”,“给值求值”,“给值求角” . 【基础练习】1.写出下列各式的值:(1)2sin15cos15︒︒=_________;(2)22cos 15sin 15︒-︒=_________; (3)22sin151︒-=_________;(4)22sin 15cos 15︒+︒=____1_____.12 2332-12.已知3(,),sin ,25παπα∈=则tan()4πα+=_________. 3.求值:(1)1tan151tan15-︒=+︒_______;(2)5cos cos 1212ππ=_________. 4.求值:tan10tan 203(tan10tan 20)︒⋅︒+︒+︒=____1____.5.已知tan 32α=,则cos α=________.6.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+=_________. 【范例解析】例1.求值:(1)sin 40(tan103)︒︒-;(2)2sin50sin80(13tan10)1cos10︒+︒+︒+︒.分析:切化弦,通分. 解:(1)原式=sin10sin 40(3)cos10︒︒-︒=sin103cos10sin 40cos10︒-︒︒⋅︒2sin(1060)sin 40cos10︒-︒=︒⋅︒2cos 40sin 40cos10︒=-︒⋅︒sin 801cos10-︒==-︒.(2)sin10cos103sin102sin 4013tan1013cos10cos10cos10︒︒+︒︒+︒=+==︒︒︒,又1c o s 102c o s 5+︒=︒.原式=2sin 402sin 50sin 802(sin 50sin 40)cos102cos52cos5︒︒+︒⋅︒+︒︒=︒︒22cos522cos5︒==︒.点评:给角求值,注意寻找所给角与特殊角的联系,如互余,互补等,利用诱导公式,和与差公式,二倍角公式进行转换. 例2.设4cos()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2παβπ+∈,求cos 2α,cos 2β.分析:2()()ααβαβ=-++, 2()()βαβαβ=+--.1433 -54 12解:由4cos()5αβ-=-,(,)2παβπ-∈,得3s i n ()5αβ-=,同理,可得5sin()13αβ+=- 33cos 2cos[()()]65ααβαβ∴=-++=-,同理,得63cos 265β=-.点评:寻求“已知角”与“未知角”之间的联系,如:2()()ααβαβ=-++,2()()βαβαβ=+--等.例3.若3cos()45x π+=,177124x ππ<<,求2sin 22sin 1tan x xx+-的值.分析一:()44x x ππ=+-.解法一:177124x ππ<< ,5234x πππ∴<+<, 又3cos()45x π+=,4sin()45x π∴+=-,4tan()43x π+=-.2cos cos[()]4410x x ππ=+-=-,72sin 10x ∴=-,tan 7x =. 所以,原式=2722722()()2()281010101775⨯-⨯-+⨯-=--.分析二:22()42x x ππ=+-.解法二:原式=sin 2sin 2tan 1tan x x x x +⋅-sin 2(1tan )sin 2tan()1tan 4x x x x x π+==⋅+- 又27sin 2sin[2()]cos 2()[2cos ()1]424425x x x x ππππ=+-=-+=--+-=, 所以,原式7428()25375=⋅-=-. 点评:观察“角”之间的联系以寻找解题思路.【反馈演练】1.设)2,0(πα∈,若3sin 5α=,则)4cos(2πα+=__________. 514- 1-2.已知tan 2α=2,则tanα的值为_______,tan ()4πα+的值为___________ . 3.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =___________. 4.若13cos(),cos()55αβαβ+=-=,则tan tan αβ= .5.求值:11sin 20tan 40-=︒︒_________. 6.已知232,534cos παππα<≤=⎪⎭⎫⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值 解:().2sin 2cos 224sin 2sin 4cos 2cos 42cos ααπαπαπα-=-=⎪⎭⎫⎝⎛+又3cos 0,224πππαα⎛⎫≤<+> ⎪⎝⎭且,47443ππαπ<+≤ 544cos 14sin 2-=⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+∴παπα从而25244cos 4sin 222sin 2cos -=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=παπαπαα, 2574cos 2122cos 2sin 2=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=παπαα 5023125725242242cos -=⎪⎭⎫ ⎝⎛--⨯=⎪⎭⎫ ⎝⎛+∴πα三角函数B第5课 三角函数的图像和性质(一)【考点导读】1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22ππ-上的性质; 2.了解函数sin()y A x ωϕ=+的实际意义,能画出sin()y A x ωϕ=+的图像;97- 12 33.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】1. 已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_____6____;初相ϕ=__________.2. 三角方程2sin(2π-x )=1的解集为_______________________. 3. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.4. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位. 【范例解析】例1.已知函数()2sin (sin cos )f x x x x =+.(Ⅰ)用五点法画出函数在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,长度为一个周期;(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 分析:化为sin()A x ωϕ+形式.解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42s i n (21)4s i n 2c o s 4c o s 2(s i n 21πππ-+=-⋅+=x x x .列表,取点,描图:x 83π-8π-8π 83π 85π y121- 121+16π {2,}3x x k k Z ππ=±∈ )48sin(4π+π-=x y第3题π6故函数)(x f y =在区间]2,2[ππ-上的图象是:(Ⅱ)解法一:把sin y x =图像上所有点向右平移4π个单位,得到sin()4y x π=-的图像,再把sin()4y x π=-的图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.解法二:把sin y x =图像上所有点的横坐标缩短为原来的12(纵坐标不变),得到sin 2y x=的图像,再把sin 2y x =图像上所有点向右平移8π个单位,得到sin(2)4y x π=-的图像,然后把sin(2)4y x π=-的图像上所有点纵坐标伸长到原来的2倍(横坐标不变),得到2sin(2)4y x π=-的图像,再将2sin(2)4y x π=-的图像上所有点向上平移1个单位,即得到12sin(2)4y x π=+-的图像.例2.已知正弦函数sin()y A x ωϕ=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.2x =8y分析:识别图像,抓住关键点. 解:(1)由图知,2A =,22(62)16πω=⨯+= ,8πω∴=,即2sin()8y x πϕ=+.将2x =,2y =代入,得2sin()24πϕ+=,解得4πϕ=,即1()2s i n ()84f x x ππ=+. (2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为(,)M x y ''',得8,2.x xy y '+⎧=⎪⎨⎪'=⎩解得16.x x y y '=-⎧⎨'=⎩代入1()2s i n ()84f x x ππ''=+中,得2()2s i n ()84f x x ππ=--. (3)12()()2sin()2sin()2cos 84848y f x f x x x x πππππ=+=+--=,简图如图所示.点评:由图像求解析式,A 比较容易求解,困难的是待定系数求ω和ϕ,通常利用周期确定ω,代入最高点或最低点求ϕ.【反馈演练】1.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变);④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变). 其中,正确的序号有_____③______.24xyO-4122.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.3.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则ω=__2____;ϕ=__________.4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有_____④_____.6.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (1)求这段时间的最大温差; (2)写出这段时间的函数解析式. 解:(1)由图示,这段时间的最大温差是201030=-℃(2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x ) 7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点, 当032y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 第6题 3π5,44ππ⎛⎫ ⎪⎝⎭第5题y x3O PA解:(1)将0x =,3y =代入函数2cos()y x ωθ=+得3cos 2θ=, 因为02θπ≤≤,所以6θπ=.又因为该函数的最小正周期为π,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,032y =, 所以点P 的坐标为0232x π⎛⎫-⎪⎝⎭,. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以053cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.第6课 三角函数的图像和性质(二)【考点导读】1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ωϕ=+的性质;2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】1.写出下列函数的定义域: (1)sin3x y =的定义域是______________________________; (2)sin 2cos x y x=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.3.函数 22sin sin 44f x x x ππ=+--()()()的最小正周期是_______. 4. 函数y =sin(2x +3π)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2π)内是减函数,则ω的取值范围是______________.【范例解析】例1.求下列函数的定义域: (1)sin 2sin 1tan xy x x =++;(2)122log tan y x x =++. 解:(1),2tan 0,2sin 10.x k x x ππ⎧≠+⎪⎪≠⎨⎪+≥⎪⎩即,2,722.66x k x k k x k πππππππ⎧≠+⎪⎪≠⎨⎪⎪-≤≤+⎩,故函数的定义域为7{2266x k x k ππππ-≤≤+且,x k π≠,}2x k k Z ππ≠+∈(2)122log 0,tan 0.x x +≥⎧⎪⎨⎪≥⎩即04,.2x k x k πππ<≤⎧⎪⎨≤<+⎪⎩{663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3π,0) 10ω-≤<故函数的定义域为(0,)[,4]2ππ⋃.点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.例2.求下列函数的单调减区间:(1)sin(2)3y x π=-; (2)2cos sin()42xy x π=-;解:(1)因为222232k x k πππππ-≤-≤+,故原函数的单调减区间为5[,]()1212k k k Z ππππ-+∈.(2)由sin()042x π-≠,得{2,}2x x k k Z ππ≠+∈, 又2cos 4sin()24sin()42x x y x ππ==+-,所以该函数递减区间为3222242x k k πππππ+<+<+,即5(4,4)()22k k k Z ππππ++∈. 点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期: (1)5tan(21)y x =+;(2)sin sin 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭. 解:(1)由函数5tan(21)y x =+的最小正周期为π2,得5tan(21)y x =+的周期2T π=. (2)sin()sin()(sin cos cos sin )cos 3233y x x x x x ππππ=++=+213131cos 2sin cos cos sin 222422xx x x x +=+=+⋅31sin(2)423x π=++ T π∴=. 点评:求三角函数的周期一般有两种:(1)化为sin()A x ωϕ+的形式特征,利用公式求解;(2)利用函数图像特征求解.【反馈演练】1.函数x x y 24cos sin +=的最小正周期为 _____________. 2.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x 在[0,2]π上的单调递减区间为___________________.3.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是________________.4.设函数()sin3|sin3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos 2x f x x =-在[0,]π上的单调递增区间是_______________. 6.已知函数π12cos 24()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得2234sin 1cos 155αα⎛⎫=-=-= ⎪⎝⎭.2π [,0]6π-32π[,]3ππ 2[,]63ππ,75[,]63ππ从而π12cos 24()πsin 2f ααα⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ ππ12cos 2cos sin 2sin 44cos ααα⎛⎫++ ⎪⎝⎭= 21cos 2sin 22cos 2sin cos cos cos ααααααα+++==142(cos sin )5αα=+=. 7. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ,.42k k Z ππϕπ∴+=+∈ .43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ 所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)由知)432sin(π-=x y x 08π 83π 85π 87π πy22--1 0 1 022- 故函数上图像是在区间],0[)(πx f y =-1-3232112-12π7π83π45π8π23π8π4π8oyx第7课 三角函数的值域与最值【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 . 2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 .3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________. 4.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为 4 .【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值. (2)求函数sin cos sin cos y x x x x =⋅++的最大值. 分析:可化为二次函数求最值问题.43(,1][1,)-∞-⋃+∞解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈- ,则2sin [,1]3x ∈-. 22111sin cos (sin )212y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当2sin 3x =-时,2sin cos y x -有最小值49.(2)设sin cos x x t +=(22)t -≤≤,则21sin cos 2t x x -⋅=,则21122y t t =+-,当2t =时,y 有最大值为122+.点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围. 例2.求函数2cos (0)sin xy x xπ-=<<的最小值.分析:利用函数的有界性求解.解法一:原式可化为s i n c o s 2(0y x xx π+=<<,得21s i n ()2y x ϕ++=,即22s i n ()1x yϕ+=+,故2211y≤+,解得3y ≥或3y ≤-(舍),所以y 的最小值为3. 解法二:2cos (0)sin xy x xπ-=<<表示的是点(0,2)A 与(sin ,cos )B x x -连线的斜率,其中点B 在左半圆221(0)a b a +=<上,由图像知,当AB 与半圆相切时,y 最小,此时3AB k =,所以y 的最小值为3.点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解. 例3.已知函数2π()2sin 3cos 24f x x x ⎛⎫=+-⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,.(I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.解:(Ⅰ)π()1cos 23cos 21sin 23cos 22f x x x x x ⎡⎤⎛⎫=-+-=+-⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.【反馈演练】 1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于____-1_______.2.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是______4 _______. 3.函数sin cos 2x y x =+的最大值为_______,最小值为________. 4.函数cos tan y x x =⋅的值域为 .5.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;323333- (1,1)-(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.解:(Ⅰ)π()2cos (sin cos )1sin 2cos 22sin 24f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭. 因此,函数()f x 的最小正周期为π.(Ⅱ)因为π()2sin 24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫=⎪⎝⎭,3π28f ⎛⎫= ⎪⎝⎭,3π3πππ2sin 2cos 14244f ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为2,最小值为1-.第8课 解三角形【考点导读】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化. 【基础练习】1.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =. 2.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是______________.3.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = . 【范例解析】例1. 在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. 46 3π 102(1)求ca的值;(2)求b 的值. 分析:利用2C A =转化为边的关系.解:(1)由sin sin 232cos sin sin 2c C A A a A A ====. (2)由20,3.2a c c a +=⎧⎪⎨=⎪⎩得8,12.a c =⎧⎨=⎩.由余弦定理2222cos a b c bc A =+-得: 218800b b -+=,解得:8b =或10b =, 若8b =,则A B =,得4A π=,即23cos 24A =≠矛盾,故10b =. 点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC 中,已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状.解法一:(边化角)由已知得:22[sin()sin()][sin()sin()]a A B A B b A B A B --+=---+, 化简得222cos sin 2cos sin a A B b B A =, 由正弦定理得:22sin cos sin sin cos sin A A B B B A=,即s i n s i n (s i A B A A B B-=,又,(0,)A B π∈,sin sin 0A B ∴⋅≠,sin 2sin 2A B ∴=.又2,2(0,2)A B π∈,22A B ∴=或22A B π=-,即该三角形为等腰三角形或直角三角形.解法二:(角化边)同解法一得:222cos sin 2cos sin a A B b B A =,由正余弦定理得:2222222222b c a a c b a b b a bc ac+-+-=,整理得:22222()()0a b c a b ---=,即a b =或222c a b =+,即该三角形为等腰三角形或直角三角形. 点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状.例3.如图,D 是直角△ABC 斜边BC 上一点,AB =AD ,记∠CAD =α,∠ABC =β.(1)证明:sin cos 20αβ+=;αA(2)若AC =3DC ,求β.分析:识别图中角之间的关系,从而建立等量关系. (1)证明:C βα=+ ,2C B π=-,22πβα∴=+,sin cos 20αβ∴+=(2)解: AC =3DC ,2sin 3sin 3cos223sin 3βαββ∴==-=-.(0,)2πβ∈ ,3sin 2β∴=,3πβ∴=.点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出β的值.【反馈演练】1.在ABC ∆中,,75,45,300===C A AB 则BC =_____________. 2.ABC ∆的内角∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且2c a =,则cos B =_____.3.在ABC ∆中,若2a b c =+,2sin sin sin A B C =,则ABC ∆的形状是____等边___三角形.4.若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += .5.在ABC ∆中,已知2AC =,3BC =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.解:(Ⅰ)在ABC ∆中,2243sin 1cos 155A A ⎛⎫=-=--= ⎪⎝⎭,由正弦定理,sin sin BC AC A B =.所以232sin sin 355AC B A BC ==⨯=. (Ⅱ)因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是22221cos 1sin 155B B ⎛⎫=-=-= ⎪⎝⎭,33- 34153222117cos 22cos 12()1525B B =-=⨯-=, 221421sin 22sin cos 25525B B B ==⨯⨯=. sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭4213171252252=⨯+⨯1271750+=. 6.在ABC ∆中,已知内角A π=3,边23BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 解:(1)ABC ∆的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知23sin sin 4sin sin sin BC AC B x x A ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 2303y x x x ππ⎛⎫⎛⎫=+-+<<⎪ ⎪3⎝⎭⎝⎭,(2)因为14sin cos sin 232y x x x ⎛⎫3=+++ ⎪ ⎪2⎝⎭543s i n 23x x ππππ⎛⎫⎛⎫=++<+< ⎪ ⎪6666⎝⎭⎝⎭,所以,当x ππ+=62,即x π=3时,y 取得最大值63.7.在ABC ∆中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若ABC ∆最大边的边长为17,求最小边的边长.解:(Ⅰ)π()C A B =-+ ,1345tan tan()113145C A B +∴=-+=-=--⨯.又0πC << ,3π4C ∴=.(Ⅱ)34C =π ,AB ∴边最大,即17AB =. 又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭,,,,∴角A 最小,BC 边为最小边.由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得17sin 17A =.由sin sin AB BC C A =得:sin 2sin A BC AB C == . 所以,最小边2BC =.第9课 解三角形的应用【考点导读】1.运用正余弦定理等知识与方法解决一些与测量和几何计算有关的实际问题.2.综合运用三角函数各种知识和方法解决有关问题,深化对三角公式和基础知识的理解,进一步提高三角变换的能力.【基础练习】1.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高为_________m .3400北 1B2B1A2A120105 乙甲例1(1)2.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为_______________ km . 3.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60 ,行驶4h后,船到达C 处,看到这个灯塔在北偏东15 ,这时船与灯塔的距离为 km .4.如图,我炮兵阵地位于A 处,两观察所分别设于B ,D ,已知ABD ∆为边长等于a 的正三角形,当目标出现于C 时,测得45BDC ∠=,75CBD ∠=,求炮击目标的距离AC 解:在BCD ∆中,由正弦定理得:sin 60sin 45a BC=︒︒∴63BC a =在ABC ∆中,由余弦定理得:2222cos AC AB BC AB BC ABC =+-⋅⋅∠∴5233AC a +=答:线段AC 的长为5233a +. 【范例解析】例 .如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?分析:读懂题意,正确构造三角形,结合正弦定理或余弦定理求解.解法一:如图(2),连结12A B ,由已知22102A B =,122030210260A A =⨯=,1222A A A B ∴=, 又12218012060A A B =-=∠,122A A B ∴△是等边三角形, 1212102A B A A ∴==,北1B2B1A2A120 105A BC D第4题23或3 302由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111211122cos45B B A B A B A B A B =+- 22220(102)2201022=+-⨯⨯⨯200=. 12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里. 解法二:如图(3),连结21A B , 由已知1120A B =,122030210260AA =⨯=,112105B A A = ∠, cos105cos(4560)=+ cos 45cos60sin 45sin 60=- 2(13)4-=,sin105sin(4560)=+ sin 45cos60cos 45sin 60=+ 2(13)4+=.在211A A B △中,由余弦定理,22221111211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯100(423)=+.2110(13)A B ∴=+.由正弦定理1112111221202(13)2sin sin 4210(13)A B A A B B A A A B +===+ ∠∠, 12145A A B ∴= ∠,即121604515B A B =-= ∠,2(13)cos15sin1054+==.在122B A B △中,由已知22102A B =,由余弦定理,22212212221222cos15B B A B A B A B A B =+-2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.北 1B2B1A2A120 105乙 甲例1(3)12102B B ∴=,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.点评:解法二也是构造三角形的一种方法,但计算量大,通过比较二种方法,学生要善于利用条件简化解题过程.【反馈演练】1.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45︒和30︒,而且两条船与炮台底部连线成30︒角,则两条船相距____________m . 2.有一长为1km 的斜坡,它的倾斜角为20︒,现要将倾斜角改为10︒,则坡底要伸长____1___km .3.某船上的人开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒方向航行45海里后,看见灯塔在正西方向,则此时船与灯塔的距离是__________海里. 4.把一根长为30cm 的木条锯成两段,分别作钝角三角形ABC 的两边AB 和BC ,且120ABC ∠=︒,则第三条边AC 的最小值是____________cm .5.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系: t 0 3 6 9 12 15 18 21 24 y 1215.112.19.111.914.911.98.912.1经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=103 153 153。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高考数学——三角函数专题复习(文科)★ 知 识 梳理 ★1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -cos2A B +=sin 2C2.面积公式:1sin 2ABC S ab C ∆== 1sin 2bc A =1sin 2ca B 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R CcB b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+-形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cos C =abc b a 2222-+类型一:化简(二倍角,两角和差......)13.(2013·北京高考文科·T15)已知函数f (x )=(2cos 2x-1)sin2x 12+cos4x.(1)求f (x )的最小正周期及最大值(2)若α∈(错误!未找到引用源。

2π,π)且f (α)=错误!未找到引用源。

,求α的值【解题指南】 (1)降幂转化为正弦型函数,再求最小正周期及最大值.(2)表示出()f α,再根据α的范围求出α的值。

【解析】111()cos 2sin 2cos 4sin 4cos 4222f x x x x x x=⋅+=+ 2222(sin 4cos 4)sin(4)22224x x x π=+=+ (1)最小正周期242T ππ==。

当4242x k πππ+=+,即216k x ππ=+,k Z ∈时,max 2()2f x =。

(2)22()sin(4)242f x πα=+=,sin(4)14x π+=所以, 4242x k πππ+=+所以,所以216k x ππ=+,k Z ∈。

又(,)2x ππ∈因为,916x π=所以。

14.(2013·天津高考理科·T15) 已知函数f(x)=2sin 24⎛⎫-+ ⎪⎝⎭x π+6sinxcosx-2cos 2x+1,x ∈R.(1)求f(x)的最小正周期.(2)求f(x)在区间错误!未找到引用源。

上的最大值和最小值. 【解题指南】(1)利用两角和的正弦公式及二倍角公式将f(x)化为Asin(ωx+φ)的形式求解. (2)根据正弦函数的单调性求解. 【解析】(1)f(x)=2sin 2cos22sin3sin 2cos244-⋅-⋅+-x cos x x x ππ=2sin 2x-2cos 2x=2sin 242⎛⎫- ⎪⎝⎭x π.所以f(x)的最小正周期2.2T ==ππ.(2)因为f(x)在区间错误!未找到引用源。

上是增函数,在区间错误!未找到引用源。

上是减函数,又f(0)=-2,3()228f =π,()22f =π,故函数f(x)在区间错误!未找到引用源。

上的最大值为22,最小值为-2.13. (2013·广东高考理科·T16)已知函数()2cos()12f x x π=-,x ∈R .(1) 求()6f π-的值;(2) 若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+. 【解题指南】本题考查利用三角函数诱导公式求值和三角恒等变换,特别要注意两角和公式cos()cos cos sin sin αβαβαβ+=-及二倍角公式的应用.【解析】(1)()2cos()2cos()2cos 1661244f πππππ-=--=-==;(2)(2)2cos(2)2cos(2)cos 2sin 233124f ππππθθθθθ+=+-=+=-,若33cos ,(,2)52πθθπ=∈, 则4sin 5θ=-,27cos 22cos 125θθ=-=-,24sin 22sin cos 25θθθ==-, 所以17(2)cos 2sin 2325f πθθθ+=-=.16. (2013·湖南高考理科·T17)已知函数2()sin()cos()()2sin 632=-+-=xf x x xg x ππ,.(1)若α是第一象限角,且33()5f α=.求()g α的值; (2)求使()()f x g x ≥成立的x 的取值集合.【解题指南】第(1)问是利用两角差的正余弦公式和降幂公式以及三角函数给值求值.第(2)问要结合已知关系,化简后解三角不等式. 【解析】x x x x x x x x f sin 3sin 23cos 21cos 21sin 23)3cos()6sin()(=++-=-+-=ππx xx g cos 12sin 2)(2-==. (1)由533)(=αf ,得53sin =α,由α是第一象限角,所以0cos >α,从而51541sin 11cos 1)(2=-=--=-=αααg . (2))()(x g x f ≥等价于x x cos 1sin 3-≥,即1cos sin 3≥+x x 于是21)6sin(≥+πx ,从而πππππ652662+≤+≤+k x k ,k ∈Z ,即22k x 2k k Z 3()π≤≤π+π∈,故使()()f x g x ≥成立的x 的取值集合为⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,3222|πππ. 17. (2013·湖南高考文科·T16) 已知函数)3cos(cos )(π-∙=x x x f 错误!未找到引用源。

(I )求2()3f π错误!未找到引用源。

的值; (II )求使错误!未找到引用源。

1()4f x <成立的x 的取值集合【解题指南】本题需要熟练掌握三角诱导公式,特殊角的三角函数值,三角恒等变换公式及三角函数性质 【解析】(I )413cos 3cos 3cos 32cos )32(-=-==πππππf (II )213()cos cos()cos (cos sin )3221313cos sin cos (1cos 2)sin 2224411cos(2)234f x x x x x x x x x x x x ππ=-=+=+=++=-+因为1()4f x <,所以4141)32cos(21<+-πx ,即0)32cos(<-πx于是,,2323222Z k k x k ∈+<-<+πππππ解得.,1211125Z k k x k ∈+<<+ππππ 故所求x 的取值集合是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,1211125|ππππ 18.(2013·安徽高考理科·T16)已知函数()4cos sin (0)4⎛⎫=⋅+> ⎪⎝⎭f x x x πωωω的最小正周期为π。

(1)求w 的值;(2)讨论()f x 在区间[]0,2上的单调性。

【解题指南】(1)将函数()y f x =化成y=Asin(ωx+φ)+b 的形式,利用最小正周期求出w 的值。

(2)根据三角函数的图像及性质解答。

【解析】(1) 2()4cos .sin()22sin .cos 22cos 4=+=+f x x x x x x πωωωωω=2sin 2+cos 22x x w w +()=2sin(2)+24+x πω,因为f(x)的最小正周期为π,且0w >,所以有π=π2ω,故=1w 。

(2)由(1)知()2s i n (2)+24=+f x x πω,若02≤≤x π,则52444≤+≤x πππ,当2442≤+≤x πππ,即08≤≤x π时,f(x)单调递增;当52244≤+≤x πππ,即82≤≤x ππ时,f(x)单调递减。

综上所述,f(x)在区间[0,]8π上单调递增,在区间[]82,ππ上单调递减。

19.(2013·安徽高考文科·T16)设函数f (x )=sinx+sin (x+3π)。

(Ⅰ)求f (x )的最小值,并求使f (x )取得最小值的x 的集合; (Ⅱ)不画图,说明函数y=f (x )的图像可由y=sinx 的图像经过怎样的变化的得到。

【解题指南】 将函数()y f x =化成一个角的三角函数的形式,根据三角函数的图像及性质与三角函数图像的变换解答。

【解析】(Ⅰ)因为1333()sin sin cos sin cos 2222f x x x x x x =++=+ =3sin 6x p+(),所以当=2,62x k p p p +-即2=2k z 3x k pp - ()时,f(x)取得最小值-3,此时x 的取值集合为2{|=2,k z}3x x k pp - 。

(Ⅱ)先将y=sinx 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得3sin y x =的图像;再将3sin y x =的图像上所有的点向左平移6p 个单位,得()y f x =的图像。

20. (2013·山东高考文科·T18)设函数23()3sin sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π, (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值. 【解题指南】(Ⅰ)先利用和差倍角公式,将已知式子化为()ϕω+=x A y sin 的形式,由()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,知周期为π,即可求出ω.(Ⅱ)可利用整体代入的思想求解()f x 在区间3[,]2ππ上的最大值和最小值. 【解析】(Ⅰ)()x x x x f ωωωcos sin sin 3232--=⎪⎭⎫ ⎝⎛--=-=--⋅-=32sin 2sin 212cos 232sin 2122cos 1323πωωωωωx x x x x因为图象的一个对称中心到最近的对称轴的距离为4π,又0>ω, 所以4422πωπ⨯=,因此1=ω. (Ⅱ)由(Ⅰ)知()⎪⎭⎫⎝⎛--=32sin πωx x f ,当23ππ≤≤x 时,383235πππ≤-≤x , 所以132sin 23≤⎪⎭⎫ ⎝⎛-≤-πωx , 因此()231≤≤-x f 故()x f 在区间⎥⎦⎤⎢⎣⎡23,ππ上的最大值和最小值分别为1,23-.类型二:与向量结合10. (2013·辽宁高考文科·T17)与(2013·辽宁高考理科·T17)相同设向量(3sin ,sin ),(cos ,sin ),0,.2a x x b x x x π⎡⎤==∈⎢⎥⎣⎦()I 若,a b =求x 的值;()II 设函数()f x a b =⋅,求()f x 的最大值。

相关文档
最新文档