上海教育版数学八上16.2《二次根式的运算》(第2课时)word教案
人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案
最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
沪教版数学八年级上册16.2《二次根式的运算》(第1课时)教学设计
沪教版数学八年级上册16.2《二次根式的运算》(第1课时)教学设计一. 教材分析沪教版数学八年级上册16.2《二次根式的运算》主要介绍了二次根式的性质和运算方法。
本节课的内容是在学生已经掌握了实数、有理数、无理数的概念和性质的基础上进行学习的,是进一步学习函数、方程等数学知识的基础。
教材通过具体的例题和练习题,使学生掌握二次根式的加减乘除运算方法,并能灵活运用。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、有理数、无理数的概念和性质有所了解。
但学生在学习二次根式的运算时,可能会对二次根式的化简、合并同类项等运算方法产生困惑。
因此,在教学过程中,需要引导学生通过具体例题,总结出二次根式的运算规律,提高学生的运算能力。
三. 教学目标1.理解二次根式的性质,掌握二次根式的加减乘除运算方法。
2.能够运用二次根式的运算方法解决实际问题。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.二次根式的性质和运算方法。
2.如何引导学生通过具体例题,总结出二次根式的运算规律。
五. 教学方法采用启发式教学法、实例教学法和小组合作学习法。
通过具体的例题,引导学生总结出二次根式的运算规律,培养学生的运算能力。
同时,学生进行小组讨论,提高学生的合作意识和团队精神。
六. 教学准备1.教材、教案、PPT。
2.练习题。
3.教学工具:黑板、粉笔、投影仪。
七. 教学过程1.导入(5分钟)教师通过复习实数、有理数、无理数的概念和性质,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示二次根式的加减乘除运算实例,引导学生观察、分析,总结出二次根式的运算规律。
3.操练(10分钟)教师学生进行小组讨论,让学生运用刚刚学到的知识,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对二次根式运算方法的掌握程度。
5.拓展(5分钟)教师出示一些综合性的题目,让学生进行思考和讨论,提高学生的数学思维能力。
初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思
数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。
八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。
大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。
二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。
第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。
第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。
语言文明,思想健康,积极、认真、扎实。
但有的学生对自己的学习没信心,在自动放弃学习。
三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。
2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
沪科版数学八年级下册16.2《二次根式的运算》教学设计2
沪科版数学八年级下册16.2《二次根式的运算》教学设计2一. 教材分析《二次根式的运算》是沪科版数学八年级下册第16.2节的内容,本节内容是在学生已经掌握了二次根式的性质和二次根式的乘法、除法运算的基础上进行讲解的。
本节内容主要介绍了二次根式的加减运算、乘除运算以及混合运算。
通过本节内容的学习,使学生能够熟练掌握二次根式的运算方法,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和二次根式的乘法、除法运算。
但是,对于二次根式的加减运算以及混合运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要针对学生的实际情况,进行耐心细致的讲解,引导学生理解和掌握二次根式的运算方法。
三. 教学目标1.使学生掌握二次根式的加减运算、乘除运算以及混合运算的方法。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的加减运算。
2.二次根式的混合运算。
五. 教学方法1.采用讲解法,教师对二次根式的运算方法进行详细讲解。
2.采用示范法,教师进行典型例题的演示。
3.采用练习法,学生进行课堂练习和课后作业。
4.采用提问法,教师引导学生进行思考和讨论。
六. 教学准备1.教师准备PPT,包括教材内容、例题、练习题等。
2.教师准备课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二次根式的性质和乘除运算,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT呈现教材内容,对二次根式的加减运算、乘除运算以及混合运算进行讲解和示范。
3.操练(20分钟)教师给出典型例题,引导学生进行模仿练习。
学生在课堂上完成练习题,教师进行个别指导和讲解。
4.巩固(10分钟)教师针对学生练习中出现的问题,进行讲解和总结,帮助学生巩固二次根式的运算方法。
5.拓展(10分钟)教师给出一些拓展题目,引导学生进行思考和讨论,提高学生的逻辑思维能力。
沪科版八年级下册16.2《二次根式的运算》同步练习(含答案解析)
沪科版八年级下学期16.2《二次根式的运算》同步练习一.选择题(共9小题)1.下列二次根式中,能与2合并的是()A.B.C.D.﹣2.与根式不是同类二次根式的是()A.B.C.D.﹣3.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=﹣24.下列各式中,计算正确的是()A.5=B.﹣=C.=D.+=(+)5.下列运算:(1),(2),(3),(4),(5),其中正确的一共有()A.2个B.3个C.4个D.以上都不对6.若,的值为()A.B.C.D.77.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2B.C.2+﹣2﹣3D.2+2﹣5 8.计算﹣的结果是()A.25B.2C.D.59.下列计算结果正确的是()A.B.C.D.二.填空题(共15小题)10.计算(﹣)2的结果等于.11.若最简二次根式与是同类二次根式,则a+b=.12.计算:5+﹣=.13.计算:3﹣9+3=14.化简,=15.已知:x=,y=.那么+=.16.计算:×=.17.=.18.=.19.计算:=.20.计算:=.21.=.22.化简(1)=;(2)=.23.计算:(×)×=.24.计算÷的结果是.三.解答题(共6小题)25.计算:3×÷2.26.计算:27.计算:6a2÷15.28.计算:4÷3•2a.29.(b<0).30.计算:(1)÷(2)÷3×参考答案与试题解析一.选择题(共9小题)1.下列二次根式中,能与2合并的是()A.B.C.D.﹣【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断.【解答】解:A、=3,不能与2合并;B、=,不能与2合并;C、=3,不能与2合并;D、=3,能与2合并;故选:D.2.与根式不是同类二次根式的是()A.B.C.D.﹣【分析】先把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,与是同类二次根式;B、=2,与是同类二次根式;C、=,与不是同类二次根式;D、﹣=﹣ab,与是同类二次根式;故选:C.3.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=﹣2【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:根据题意,得x+4=3x,解得x=2.故选:C.4.下列各式中,计算正确的是()A.5=B.﹣=C.=D.+=(+)【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:A、5=5×=,故此选项不合题意;B、﹣,无法计算,故此选项不合题意;C、=,故此选项符合题意;D、+=+,故此选项不合题意;故选:C.5.下列运算:(1),(2),(3),(4),(5),其中正确的一共有()A.2个B.3个C.4个D.以上都不对【分析】根据同类二次根式能合并,不是同类二次根式不能合并即可作出判断.【解答】解:(1)+≠,故错误;(2)+=2,故正确;(3)3+≠3,故错误;(4),故正确;(5)≠3a+5b,故错误;综上可得(2)(4)正确.故选:A.6.若,的值为()A.B.C.D.7【分析】根据完全平方公式得到(a﹣)2=(a+)2﹣4=7,然后根据平方根的定义求解.【解答】解:∵(a﹣)2=(a+)2﹣4=11﹣4=7,∴a﹣=±.故选:C.7.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2B.C.2+﹣2﹣3D.2+2﹣5【分析】先表示出三个正方形的面积,然后用一个长为(+),宽为2的矩形的面积减去两个正方形的面积可得到图中阴影部分的面积.【解答】解:三个正方形的边长分别为,,2,图中阴影部分的面积=(+)×2﹣2﹣3=2+2﹣5.故选:D.8.计算﹣的结果是()A.25B.2C.D.5【分析】首先化简二次根式,然后再合并同类二次根式即可.【解答】解:﹣=3﹣2=,故选:C.9.下列计算结果正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.二.填空题(共15小题)10.计算(﹣)2的结果等于8﹣2.【分析】利用完全平方公式计算.【解答】解:原式=5﹣2+3=8﹣2.故答案为8﹣2.11.若最简二次根式与是同类二次根式,则a+b=2.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:∵最简二次根式与是同类二次根式,∴,解得:,则a+b=2,故答案为:2.12.计算:5+﹣=﹣.【分析】先化成最简根式,再根据二次根式的加减法则求出即可.【解答】解:原式=+﹣3=﹣,故答案为:﹣.13.计算:3﹣9+3=15【分析】先化简二次根式,再合并即可得.【解答】解:原式=12﹣3+6=15,故答案为:15.14.化简,=0或【分析】分b>0和b<0两种情况分别计算可得.【解答】解:当b>0时,原式=a+a﹣a﹣a=0;当b<0时,原式=a+a+a﹣a=2a;故答案为:0或2a.15.已知:x=,y=.那么+=98.【分析】把x与y分母有理化得到结果,原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:∵x==5﹣2,y==5+2,∴原式===98,故答案为:9816.计算:×=7.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=××=7,故答案为:7.17.=10.【分析】方法一:先计算25×4=100,再算100的算术平方根;方法二:把原式展开成与的乘积形式,再计算.【解答】解:方法一:=10.方法二:=5×2=10.故答案为10.18.=6.【分析】利用二次根式乘除法法则,进行计算即可.【解答】解:===6,故答案为6.19.计算:=.【分析】分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.【解答】解:===,故答案为:.20.计算:=.【分析】根据二次根式的乘法法则求出即可.【解答】解:2(﹣)=﹣2=﹣6,故答案为:﹣6.21.=2.【分析】利用二次根式的乘法法则求解可得.【解答】解:2×=2=2,故答案为:2.22.化简(1)=2;(2)=.【分析】(1)化成最简二次根式即可;(2)把分子分母都乘以,然后化简即可.【解答】解:(1)=2;(2)===.故答案为:(1)2;(2).23.计算:(×)×=2.【分析】根据二次根式的乘法法则求出即可.【解答】解:(×)×==2,故答案为:2.24.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3三.解答题(共6小题)25.计算:3×÷2.【分析】根据二次根式的乘法法则:•=(a≥0,b≥0)二次根式的除法法则:=(a≥0,b>0)进行计算即可.【解答】解:原式=(3×÷2),=,=.26.计算:【分析】根据二次根式的性质解答.【解答】解:原式=5××3=5.27.计算:6a2÷15.【分析】直接化简二次根式进而结合二次根式的乘除运算法则计算得出答案.【解答】解:由题意可得:a,b同号,原式=6a2•|a|•5×××=2a2|a|,当a>0时,原式=2a3;当a<0时,原式=﹣2a3,综上所述:原式=±2a3.28.计算:4÷3•2a.【分析】依据二次根式的乘除混合运算进行计算,即可得出结论.【解答】解:4÷3•2a=4÷3×2a=a==×=.29.(b<0).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=•(﹣b)•(a)÷3=﹣3a2b÷3=ab.30.计算:(1)÷(2)÷3×【分析】(1)根据二次根式的性质把除式变形,根据二次根式的乘法法则计算;(2)根据二次根式的乘除法法则计算即可.【解答】解:(1)÷=×==;(2)÷3×=××==.。
初中数学《二次根式的乘除(第1课时)》教学设计案例
《16.2 二次根式的乘除(第1课时)》教学设计案例一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.三、教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.四、教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
16.2二次根式的运算(第3课时)教案沪科版初中数学八年级(下)
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 软硬件资源:多媒体投影仪、白板、教学黑板、计算器、教科书、练习册。
2. 课程平台:学校提供的教学管理系统,如Moodle或B息化资源:教学软件和应用程序,如GeoGebra、Desmos,用于动态展示二次根式运算过程。
- 设计预习问题:围绕“16.2二次根式的运算(第3课时)”课题,设计一系列具有启发性和探究性的问题,引导学生自主思考。
- 监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解二次根式运算的相关知识点。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
学生学习效果
1. 知识与技能:
- 学生能够理解二次根式的加减法运算和乘除法运算的基本规则。
- 学生能够在实际问题中正确运用二次根式的运算规则,建立数学模型并进行运算。
- 学生能够熟练运用二次根式的运算规则进行混合运算,包括加减乘除以及括号的情况。
2. 过程与方法:
- 学生能够在小组讨论中积极发表自己的观点,并与同伴进行合作和沟通。
核心素养目标
本节课的核心素养目标包括:
1. 逻辑推理:学生能够通过已有的二次根式知识,推理出二次根式加减法和乘除法的运算规则,提高学生的逻辑推理能力。
2. 数学建模:学生在解决实际问题时,能够运用二次根式的运算规则,建立数学模型,提高学生的数学建模能力。
3. 直观想象:通过示例和练习,学生能够直观地理解二次根式运算的过程,提高学生的直观想象能力。
沪教版数学八年级上册16.2《二次根式的运算》(第2课时)教学设计
沪教版数学八年级上册16.2《二次根式的运算》(第2课时)教学设计一. 教材分析《二次根式的运算》是沪教版数学八年级上册第16章第2节的内容。
这一节主要介绍了二次根式的加减乘除运算方法,以及运用二次根式的性质进行化简。
教材通过实例引导学生掌握二次根式的运算规律,培养学生运用数学知识解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了实数、有理数、无理数的基本概念,对数学运算有了一定的认识。
但在实际操作中,部分学生可能对二次根式的运算规律把握不准,尤其是对含有字母的二次根式运算。
因此,在教学过程中,需要关注学生的学习需求,引导他们积极参与课堂讨论,提高运算能力。
三. 教学目标1.知识与技能:使学生掌握二次根式的加减乘除运算方法,能熟练进行二次根式的运算。
2.过程与方法:通过实例分析,让学生体会数学知识在实际问题中的应用,提高解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:二次根式的加减乘除运算方法。
2.难点:含有字母的二次根式运算,以及运用二次根式的性质进行化简。
五. 教学方法1.引导法:通过实例引导学生发现二次根式的运算规律,培养学生独立思考的能力。
2.互动法:鼓励学生积极参与课堂讨论,提高学生的合作意识。
3.练习法:通过适量练习,使学生巩固所学知识,提高运算能力。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题及答案。
3.教学黑板、粉笔。
七. 教学过程1.导入(5分钟)利用实例引入二次根式的运算,激发学生的学习兴趣。
2.呈现(10分钟)讲解二次根式的加减乘除运算方法,引导学生发现运算规律。
3.操练(10分钟)让学生分组进行练习,教师巡回指导,纠正错误。
4.巩固(10分钟)针对学生练习中的共性问题进行讲解,巩固所学知识。
5.拓展(10分钟)运用二次根式的性质进行化简,引导学生解决实际问题。
6.小结(5分钟)总结本节课所学内容,强调二次根式运算的注意事项。
沪教版八年级数学上册教案:16-2二次根式的运算(1)
(2)已知 ,求 的值。
答案: ;15;
五、课堂总结
家庭作业
一、判断题
1、 =-2 。()
2、 -2的倒数是 +2。()
3、 = 。()
4、 、 、 是同类二次根式。()
5、 , , 都不是最简二次根式。()
二、填空 题
6、当x__________时,式子 有意义。
7、当 时,化简 。
8、已知 、 、 为正数, ,化简 。
9、若 ,则 。
10、 、 分别是 的整数部分和小数部分,则 。
三、选择题
11、已知 ,则()
、 、 、 、
12、若 ,则 ()
、 、 、 、
13、若 , ()
、 、 、 、
14、化简 ,得()
、 、 、 、
答案:×××√×; ;DCBB
能力提升题
1、已知 ,化简 。
课题
二次根式的加减
授课时间:
备 课时间:
教学目标
1、熟练掌握二次根式的性质,用于计算;
2、掌握二次根式的加减运算;
3、掌握二次根式的运算步骤;
重点、难点
重点:二次根式的性质及运算
难点:二次根式的运算
考点及考试要求
熟练掌握二次根式的性质并能灵活运算
教学内容
一、学前思考
1、最简二次根式:(1)___________________________________________ _____
答案: ,解得 ,原式=
10、若 满足 ,求 的最大值和最小值。
答案: ,由 得
(2)____________________________________ ____________
《二次根式》word教案 (公开课)2022年北师大版 (5)
2.7二次根式〔第3课时〕教学设计一、学生情况分析前面学习了实数,实数的运算法那么,最简二次根式及二次根式的化简,已能进行实数的四那么运算.但熟练程度不高,同时对根号内含字母的二次根式的化简比拟生疏..为今后的数学学习扫清了计算方面的障碍.二、教学任务分析二次根式〔第3课时〕是义务教育课程标准北师大版实验教科书八年级上册第二章?实数?第7节内容.本节内容分为3个课时,本课时是第3课时.继续稳固二次根式的概念,熟练二次根式的化简,进而完善实数的运算.二次根式化简掌握以后,初中阶段实数的运算根本完成,本节课就是进一步完善二次根式的运算。
假设能够在含字母的二次根式的化简方面再深化一下,那么在今后的学习中,实数的计算问题根本解决了.经历本节课的学习,学生对实数的运算,就有了较全面的了解。
因此本节课的目标定为:1.进一步理解二次根式的概念,进一步熟练二次根式的化简。
2. 了解根号内含有字母的二次根式的化简3.利用二次根式的化简解决简单的数学问题.通过独立思考,能选择合理的方法解决问题.4.在运算过程中稳固知识,通过与人交流总结方法.根号内含字母的二次根式的化简对学生来说是一个难点.三、教学过程设计本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识稳固;第三环节:问题解决;第四环节:知识提升;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入内容:〔1〕最简二次根式的概念;〔2〕二次根式化简过程中,你有哪些体会?〔3〕上节课课后作业:假设414.12≈,732.13≈,449.26≈,求23.你是怎样解决的? 意图:借助复习,在稳固旧知的同时,导入新课. 第二环节:知识稳固例4 计算:〔1〕3223-;〔2〕81818+-;〔3〕3)6124(÷-. 解:〔1〕3223-=33322223⨯⨯-⨯⨯=631621-=6)3121(-=661; 〔2〕81818+-=162222322+⨯-⨯=2412223+-=245; 〔3〕3) 6124(÷-= 361324÷-÷= 361324÷-÷ = 3618⨯-= 66224⨯-⨯= 26122-= 2611. 说明:可以放手让学生独立完成,然后通过交流,发现问题,给出一个统一的意见.收集第〔3〕小题有多少种解决方法.让学生说说想法.以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗?化简:〔1〕10152-;〔2〕31312+-;〔3〕8)2118(⨯-.第三环节:问题解决如以下图,图中小正方形的边长为1,试求图中梯形的面积,你有哪些方法,与同伴交流.让学生充分发表意见.〔1〕直接求法.过点D 作AB 边上的高DE ,可发现边AB ,DC 及DE都是某一个小直角三角形的斜边.根据勾股定理可求得AB =25, CD =2,DE =23,面积梯形AB CD 的面积是23)225(21⨯+=18. 〔2〕间接求法.将梯形ABCD 补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD 的面积是11212421552175⨯⨯-⨯⨯-⨯⨯-⨯=18. 第四环节:知识提升问题:2a 〔0>a 〕等于多少?根据算术平方根的定义,可知a a =2〔0>a 〕.例5 化简:〔1〕3325b a 〔0>a ,0>b 〕;〔2〕3)(y x +〔0≥+y x 〕;〔3〕a b b a 〔0>a ,0>b 〕. 解:〔1〕3325b a =ab b a ⋅2225=ab b a ⋅2225=ab ab 5;〔2〕3)(y x +=)()(2y x y x +⋅+=y x y x ++)(;〔3〕a b b a =2a ab b a =ab a b a 1⨯=ab b 1. 0>a ,0>b 时化简:〔1〕)(a b b a ab +;〔2〕324b a ;〔3〕ab b a⨯-)1(; 〔4〕b a a b ab a 155102÷⋅. 解:〔1〕)(a b b a ab +=a b ab b a ab ⨯+⨯=ab ab b a ab ⨯+⨯ =22b a +=b a +;〔2〕324b a =b b a ⋅2222=b b a ⋅2222=b ab 2;〔3〕ab b a⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a ⨯-⨯1=a b b ⨯-2 =a b b -;〔4〕b a a b ab a 155102÷⋅=ba ab ab a ÷⋅÷⨯)15510(2=a b a 32310⋅ =222310a ba b a ⋅⋅=222310a ba b a ⋅⋅=222310aab b a ⋅⋅=ab a b a ⋅⋅2310 =ab ab 310. 2. 求代数式ab b a ⨯-)1(的值,其中3=a ,2=b . 解:由题知0>a ,0>b .ab b a ⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a⨯-⨯1=2ab b - =a b b -.当3=a ,2=b 时,a b b -=322-.第五环节:课堂小结〔1〕二次根式的化简:二次根式的化简一定要化成最简二次根式.〔2〕利用式子a a =2〔0>a 〕可将根号内含字母的二次根式化简,结果也要化成最简二次根式.第六环节:课后作业习题 2.11 1, 3补充作业:化简:〔1〕)263)(232(+-; 〔2〕)483814122(23+-; 〔3〕)0,0()2(≥≥⋅+-y x xy yx x y xy ; 〔4〕)0,0()(33≥≥⋅-+b a ab ab ab b a ;〔5〕)0(4322763232≥+-a a ab a b ab a . 答案:〔1〕64216-;〔2〕6648-;〔3〕x y xy +-2;〔4〕ab ab ab b a -+22;〔5〕a ab 325. 五、教学反思[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
沪教版数学目录
沪版数学目录一年级上学期:一、10以内的数说一说分一分数一数几个与第几个比一比数射线二、10以内数的加减法分与合加法讲讲算算(一)减法讲讲算算(二)加与减看数射线做加、减法10的游戏连加、连减加减混合三、20以内的数及其加减法11—20的数十几就是十和几20以内数的排列加减法(一)加减法(二)讲讲算算(三)加进来,减出去数字的墙四、识别图形物体的形状五、整体与提高分彩色图形片推算比较加倍与一半大家来做加法大家来做减法组算式数学游乐场一年级下学期:一、复习与提高游数城玩数图比一比二、位置左与右在街上上、中、下,左、中、右路(前后,左右)三、100以内的数及其加减法十个十个地数百数图数的表示数射线上的数百数表数龙——百的数列两位数加减整十数两位数加减一位数(一)两位数加减一位数(二)两位数加两位数(不进位)两位数加两位数(进位)笔算加法(进位)两位数减两位数(不退位)笔算减法(退位)郊外活动连加、连减、混合加减四、应用长度比较度量线段长度计算人民币统计时间五、整理与提高两位数加法两位数减法交换滑雪天气统计各人眼中的20数学广场——掷数点块数学广场——七巧板我们的郊游二年级上学期:一、复习与提高游海岛——谁先上岸估算加与减“吃掉”的是几二、乘法、除法(一)乘法引入看图编乘法题游乐场统计图倍10的乘法5的乘法2的乘法4的乘法8的乘法2、4、8的乘法之间的关系分一分与除法用乘法口诀求商几倍盒子是空的——被除数为0三、乘法、除法(二)7的乘、除法3的乘、除法6的乘、除法9的乘、除法3、6、9的乘法之间的关系快乐的节日分拆为乘与加乘一乘,填一填“九九”——乘法口诀表有余数的除法做有余数的除法掷骰子,做除法几张长椅四、几何小实践角与直角正方体、长方体长方形、正方形五、整理与提高数学广场——点图与数乘法表乘法大游戏5个3加3个3等于8个35个3减3个3等于2个3乘与除数学广场——幻方数学广场——视图数学广场——折纸二年级下学期:一、复习与提高登险峰植树分拆成几个几加几个几正方体的展开图连乘、连除相差多少二、千以内数的认识与表达千以内数的认识与表达小探究数射线(千)位值图上的游戏三、三位数的加减法整百数、整十数的加减法三位数加减一位数三位数加法三位数减法估算与精确计算应用题四、应用轻与重直接比较间接比较称和它的使用方法克、千克与计算时间(时、分、秒)五、几何小实践东西南北轴对称角三角形与四边形锐角三角形、钝角三角形、直角三角形三、整理与提高万以内数的认识与表达大数的读与写游国家森林公园巧算数学广场——给小兔涂色数学广场——加或减三年级上学期:一、复习与提高登月减法塔正方形组成的图形——多连块二、乘与除乘整十数、整百数整十数、整百数的除法大卖场中的乘法用一位数乘用一位数除三、应用元、角、分——用小数表示千克、克——用小数表示千米、米——用小数表示米、厘米——用小数表示长度单位年、月、日四、几何小实践三角形面积长方形与正方形的面积平方米五、整理与提高乘乘除除灯市我们来认识图形它们有多大?数学广场——数苹果数学广场——放苹果数学广场——分段问题解决——喜迎新年三年级下学期:一、复习与提高乘除法计算括号先算树叶的面积面积单位面积计算二、乘与除谁跑得快用两位数乘用两位数除运动会上的小统计三、分数的初步认识整体与部分几分之一几分之几四、计算器从算筹到计算器算盘计算器使用计算器计算五、几何小实践周长长方形、正方形的周长六、整理与提高乘与除分数应用周长与面积数学广场——谁围出的面积最大数学广场——搭配四年级上学期:一、复习与提高加法与减法乘法与除法用计算器计算节约用水分数二、数与量大数的认识四舍五入法平方千米从平方厘米到平方千米从克到吨从毫升到升三、分数的初步认识(二)比一比分数的加减计算小探究——“分数墙”四、整数的四则运算工作效率树状算图与算法流程三步计算式题正推逆推文字计算题运算定律应用五、几何小实践圆的初步认识线段、射线、直线角角的度量角的计算六、整理与提高大数与凑整分数几何小练习数学广场——相等的角数学广场——通过网格来计算四年级下学期:一、复习与提高四则运算整数的运算性质看谁算的巧愉快的寒假二、小数的认识与加减法生活中的小数小数的意义你知道吗?小数的大小比较小数的性质小练习综合练习小数点移动小数加减法三、统计折线统计图的认识折线统计图的画法四、几何小实践垂直平行小练习你知道吗?五、整理与提高问题的解决小数加减法的应用小数与测量凑整垂直与平行数学广场——用多功能三角尺画垂线与平行线数学广场——五舍六入数学广场——计算比赛场次数学广场——位置的表示方法五年级上学期:一、复习与提高符号表示数小数二、小数乘除法小数乘整数小数乘小数连乘、乘加、乘减整数乘法运算定律推广到小数除数是整数的小数除法除数是小数的除法循环小数用计算器计算积、商的凑整三、统计平均数平均数的计算平均数的应用四、简易方程用字母表示数化简与求值方程找等量关系列方程,解应用题五、几何小实践平行四边形平行四边形的面积三角形的面积梯形梯形的面积六、整理与提高小数的四则混合运算水、电、天然气的费用——小数应用问题解决图形的面积数学广场——时间的计算数学广场——编码五年级下学期:一、复习与提高小数的四则混合运算方程面积的估测自然数二、正数和负数的初步认识正数和负数数轴三、简易方程(二)列方程解应用题小总结四、几何小实践体积立方厘米、立方分米、立方米长方体和正方体的体积组合体的体积正方体、长方体的表面积小练习体积与容积五、问题解决行程表面积的变化体积与重量可能性可能情况的个数可能性的大小六、总复习数与运算练习一方程与代数练习二图形与几何练习三统计初步练习四六年级第一册第一章数的整除第1节整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被2,5整除的数第2节分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数1.6 倍数与最小公倍数拓展求三个整数的最小公倍数第二章分数第1节分数的意义和性质2.1 分数与除法2.2 分数的基本性质2.3 分数的大小比较第2节分数的运算2.4 分数的加减法2.5 分数的乘法2.6 分数的除法2.7 分数与小数的互化拓展无限循环小数与分数的互化2.8 分数、小数的四则混合运算2.9 分数运算的应用第三章比和比例第1节比和比例3.1 比的意义3.2 比的基本性质3.3 比例第2节百分比3.1 百分比的意义3.2 百分比的应用3.3 等可能事件第四章圆和扇形第1节圆的周长和弧长4.1 圆的周长4.2 弧长第2节圆和扇形的面积4.3 圆的面积4.4 扇形的面积六年级第二册第五章有理数第1节有理数5.1 有理数的意义5.2 数轴5.3 绝对值第2节有理数的运算5.4 有理数的加法5.5 有理数的减法5.6 有理数的乘法5.7 有理数的除法5.8 有理数的乘方5.9 有理数的混合运算5.10 科学记数法第六章一次方程(组)和一次不等式(组)第1节方程与方程的解6.1 列方程6.2 方程的解第2节一元一次方程6.3 一元一次方程及其解法6.4 一元一次方程的应用第3节一元一次不等式(组)6.5 不等式及其性质6.6 一元一次不等式的解法6.7 一元一次不等式组第4节一次方程组6.8 二元一次方程6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法6.11 一次方程组的应用第七章线段与角的画法第1节线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍第2节角7.3 角的概念与表示7.4 角的大小比较、画相等的角7.5 画角的和、差、倍7.6 余角、补角第八章长方体的再认识第1节长方体的元素第2节长方体直观图的画法第3节长方体的棱与棱位置关系的认识第4节长方体中棱与平面位置关系的认识第5节长方体中平面与平面位置关系的认识七年级第一册第九章整式第1节整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第2节整式的加减9.5 合并同类项9.6 整式的加减第3节整式的乘法9.7 同底数幂的乘法9.8 幂的乘方9.9 积的乘方9.10 整式的乘法第4节乘法公式9.11 平方差公式9.12 完全平方公式第5节因式分解9.13 提取公因式发9.14 公式法9.15 十字相乘法9.16 分组分解法第6节整式的除法9.17 同底数幂的除法9.18 单项式处以单项式9.19 多项式除以单项式第十章分式第1节分式10.1 分式的意义10.2 分式的基本性质第2节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可化为一元一次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动第1节图形的运动11.1 图形的平移第2节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第3节图形的翻折11.5 翻折与轴对称图形11.6 轴对称七年级第二册第十二章实数第1节实数的概念12.1 实数的概念第2节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n次方根第3节实数的运算12.5 用数轴上的点表示实数12.6 实数的运算第4节分数指数幂12.7 分数指数幂第十三章相交线平行线第1节相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第2节平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形第1节三角形的有关概念与性质14.1 三角形的有关概念14.2 三角形的内角和第2节全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定第3节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系第1节平面直角坐标系15.1 平面直角坐标系第2节直角坐标平面内点的运动15.2 直角坐标平面内点的运动八年级第一册第十六章二次根式第1节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第2节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第1节一元二次方程的概念17.1 一元二次方程的概念第2节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式第3节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第1节正比例函数18.1 函数的概念18.2 正比例函数第2节反比例函数18.3 反比例函数第3节函数的表示法18.4 函数的表示法第十九章几何证明第1节几何证明19.1 命题和证明19.2 证明举例第2节线段的垂直平分与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第3节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级第二册第二十章一次函数第1节一次函数的概念20.1 一次函数的概念第2节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第3节一次函数的应用20.4 一次函数的应用第二十一章代数方程第1节整式方程21.1 一元整式方程21.2 特殊的高次方程的解法第2节分式方程21.3 可化为一元二次方程的分式方程第3节无理方程21.4 无理方程第4节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第5节列方程(组)解应用题21.7 列方程(组)解应用题第二十二章四边形第1节多边形22.1 多边形第2节平行四边形22.2 平行四边形22.3 特殊的平行四边形第3节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第4节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第1节事件及其发生的肯能性23.1 确定事件和随机事件23.2 事件发生的可能性第2节事件的概率23.3 事件的概率23.4 概率计算举例九年级第一册第二十四章相似三角形第1节相似形24.1 放缩与相似形第2节比例线段24.2 比例线段24.3 三角形一边的平行线第3节相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第4节平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章锐角的三角比第1节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第2节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用第二十六章二次函数第1节二次函数的概念26.1 二次函数的概念第2节二次函数的图像26.2 特殊二次函数的图像26.3 二次函数kmxay++=2)(的图像九年级第二册第二十七章圆与多边形第1节圆的基本性质27.1 圆的确定27.2 圆心角、弧、弦、弦心距之间的关系27.3 垂径定理第2节直线与圆、圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系第3节正多边形与圆27.6 正多边形与圆第二十八章统计初步第1节统计的意义28.1 数据整理与表示28.2 统计的意义第2节基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据分布的量28.6 统计实习九年级拓展第一章一元二次方程与二次函数第1节一元二次方程的根与系数关系1.1 一元二次方程的根与系数关系第2节二次函数的解析式1.2 二次函数与一元二次方程1.3 二次函数解析式的确定第二章直线与圆第1节圆的切线2.1 圆的切线第2节与圆有关的角及线段2.2 与圆有关的角2.3 与圆有关的线段第3节圆内接四边形2.4 圆内接四边形高一上第一章集合与命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的性质与图像*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数的概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的性质与图像六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章三角比一任意角的三角比5.1任意角及其度量5.2任意角的三角比二三角恒等式5.3同角三角比的关系和诱导公式5.4两角和与差的正弦、余弦和正切5.5二倍角与半角的正弦、余弦和正切三解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像及性质6.1正弦函数和余弦函数的图像与性质6.2正切函数的图像与性质6.3函数()siny A xωφ=+的图像与性质二反三角函数与最简三角方程6.4反三角函数6.5最简三角方程高二上第七章数列与数学归纳法一数列7.1数列7.2等差数列7.3等比数列二数学归纳法7.4数学归纳法7.5数学归纳法的应用7.6归纳—猜想—证明三数列的极限7.7数列的极限7.8无穷等比数列各项的和第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用第九章矩阵和行列式初步一矩阵9.1矩阵的概念9.2矩阵的运算二行列式9.3二阶行列式9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的性质第十三章复数13.1复试的概念13.2复数的坐标表示13.3复数的加法和减法13.4复数的乘法和除法13.5复数的平方根和立方根13.6实系数的一元二次方程高三上第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单集合体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理Ⅰ——乘法原理16.2排列16.3计数原理Ⅱ——加法原理16.4组合16.5二项式定理高三下第十七章概率论初步17.1古典概型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验。
《二次根式》word教案 (公开课)2022年北师大版 (6)
1.式子b a b a ⋅=⋅ (a ≥0,b ≥0),b a ba = (a ≥0,b >0)的运用;能利用化简对实数进行简单的四那么运算.(重点) 2.让学生能根据实际情况灵活地运用两个法那么进行有关实数的四那么运算.〔难点〕3.通过对法那么的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论确实定性.教法及学法指导:本节采用“导学-探究—反响〞教学模式,引导学生对设计的问题进行主动思考、小组讨论、主动探究,最后自己得到二次根式化简的方法,并能进行简单的四那么混合运算. “两个公式的逆运用〞是本节课的重点知识,“灵活地运用公式进行实数运算〞是本节课的难点知识.对以上两个知识,要通过大量练习,才能让学生熟练掌握.课前准备:制作课件,学生课前进行预习工作.教学过程:一、 导学1.让学生回忆算术平方根的概念,并提出问题:下面正方形的边长分别是多少?〔利用课间展示图片〕学生思考后踊跃答复,上述两个问题学生很容易完成.在这个环节为了方便表示,设大正方形的边长为a ,小正方形的边长为b .因此,学生得到:.2,822==b a 由算数平方根的定义很容易得到:.2,8==b a2.老师继续提出问题:这两个正方形的边长之间有什么关系?〔停留片刻,展示分割大正方形的图片〕借助图片,学生得出:,2b a =即:.228=3.你能借助什么运算法那么解释它吗?点明本节课研究任务——化简,导入新课.二、 探究1.利用课件出示上节课研究的两个运算法那么:b a b a ⋅=⋅〔a ≥0,b ≥0〕, ba b a=〔a ≥0,b >0〕.并明确指出逆用仍然是成立的,面积8 面积2即:b a b a ⋅=⋅,b a b a = 〔a ≥0,b >0〕. 2.老师提出问题:能否根据该公式将8化成22呢?在这个环节,由于学生课前已经自学完课本,有局部学生能够解决这个问题.学生答复:2242428=⨯=⨯=.〔强调:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面,并省略去乘号〕3.探究方法老师提出问题:以上化简过程有何规律呢?学生得出:被开方数被拆成两个因数乘积的形式,并且其中一个因数能够直接开平方,而且在这个变化过程当中逆用了我们上节课研究的乘法运算公式.老师明确:像这种运算我们称为化简,像8被开方数含有开得尽的因数,一般需要进行化简.4.典例解析:32如何化简?学生在这个环节进行小组探究,学生得出〔1〕:82848432=⨯=⨯=〔学生比拟热于利用乘法口诀〕; 学生得出〔2〕:2416216232=⨯=⨯=老师引导学生:两名同学化简的结果有什么区别?学生:82可以继续化简,即2442242282=⨯=⨯=.老师继续提出:哪种方法更好呢?我们以后应该采用哪种方法?学生一定选择第二种方法,第二种方法的优点是只需一次化简,而第一种方法需要两次化简.总结方法:对于32这种式子的化简,被开方数拆成两个因数乘积的形式,其中一个因数能够直接开方,而另一个不再含有开方开得尽的因数.5.反响练习:化简:〔1〕45;〔2〕27;〔3〕54;〔4〕98;〔5〕16125. 五名同学在黑板板书,其余同学独立完成.完成后同位交换批改,并订正答案.黑板上的让同学点评.6.拓展:事实上,对带有根号的数的化简,不仅仅限于以上提出的要求,它还有其他要求.类比〔4〕98 〔5〕16125的化简,让学生化简21.(小组合作探究) 学生会有两种做法: 方法一: 212121==.在此指出这种结果并非最简,还需进行分母有理化,但分母有理化不是我们现在的教学要求,以后我们习题课的时候有可能会涉及到.方法二: 22424221===.自学效果好的同学得到这种方法,这种方法是我们这节课要掌握的方法.那么这种方法的特点是什么呢?学生答复:被开方数的分母利用分数的根本性质扩大一定的正整数倍,配成能够直接开方的数.有些学生有这种想法: 2242216816821====.这种情况里面8还需要化简.因此分母扩大一定的正整数倍后,应该配成最小的能够直接开平方的数.老师总结:原来被开方数含有分母,化简后,被开方数不含分母了.7.反响练习:化简:(1)31 (2) 121 (两名同学黑板板书,其余同学独立完成,并同位间批改订正)8.小结归纳:带根号的数的化简要求:〔1〕使被开方数不含开得尽的数;〔2〕使被开方数不含分母.运用例1 化简:〔1〕50;〔2〕348-;〔3〕515-. 对于例题的处理:先让学生自学例题,注意解题格式和步骤,然后合上课本把例题再做一遍,并且找四名同学到黑板上板书,最后让学生点评例题.三、反响1.课本60页随堂练习1:〔三名同学到黑板板书,然后其余同学独立完成,同位间批改订正,黑板上同学的完成情况,让学生点评〕化简:〔1〕18;〔2〕7533-;〔3〕72.2.补充习题, 化简:〔1〕81;〔2〕278;〔3〕2.1;〔4〕1615 〔找同学板书〕 说明:(3)〔4〕大局部同学无从下手,老师给予适当点拨.〔3〕要先把小数化成分数,再考虑下一步的化简.〔4〕要把带分数化成假分数,再考虑下一步的化简.3.补充习题,化简:〔1〕128; 〔2〕900; 〔3〕48122+;〔4〕325092-+; 〔5〕5145203--; 〔找同学板书〕 课堂小结小组内交流讨论,总结本节课的收获.以小组为单位做出总结:〔1〕被开方数中含有分母或者含有能开得尽的因数的式子需要化简;〔2〕公式b a b a ⋅=⋅〔a ≥0,b ≥0〕,ba b a=〔a ≥0,b >0〕从左往右或从右往左在化简中会灵活运用.〔3〕能够进行含有根式的式子的四那么混合运算.限时作业课本62页 习题 2.10 知识技能 1.课本64页 复习题 8.化简 〔4〕〔5〕〔6〕板书设计:教学反思:1.这是一节实数的运算、化简课,只有在熟练掌握两个公式〔和这两个公式的逆运用〕的根底上,反复利用练习来稳固学生对知识理解和融汇.通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并体验实数的运算、化简;让学生根据实例进行探索,通过同学们互相交流合作,得出两个化简的公式〔实际上是两个运算公式的逆运用〕,培养他们的合作精神和探索能力.课本的知识量比拟少,我在新课引入和反响训练方面所花的时间相对多一些,这也是数§ 实数(三)1.法那么 2.例题讲解b a b a ⋅=⋅ (a ≥0,b ≥0);ba b a =(a ≥0,b >0) 练 习 区〔或式〕的运算的通用的做法,旨在通过练习、例题来稳固学生对所学知识的理解和掌握. [教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
八年级数学第一次月考卷(上海专用,八上第16章~17.2:二次根式+一元二次方程的概念与解法)考试版
2024-2025学年八年级数学上学期第一次月考卷(上海专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版第16章二次根式+第17章17.1一元二次方程的概念+17.2一元二次方程的解法。
5.难度系数:0.69。
第Ⅰ卷一、选择题:本大题共6小题,每小题2分,共12分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 )A B C D2n 的取值符合条件的是( )A .12n =B .15n =C .16n =D .18n =3.若方程()211350mm x x +-++=是一元二次方程,则m 的值等于( )A .±1B .1C .﹣1D .04 )A B .3-C .3D .95.下列运算中,正确的是( )A 2=B .21=C =-D =6.用配方法解方程2830x x +-=,方程变形为()2x p q +=,则p q +=( )A .25B .24C .23D .22第Ⅱ卷二、填空题:本大题共12小题,每小题3分,共36分。
7的倒数是 .89x 的取值范围是 .10.如果最简根式是同类二次根式,那么m=.11.计算:22-= .12.计算:212-æö=ç÷èø .1312x +>,原不等式的解集是 .14.x ,y 为实数,且3y <+,化简:3-= ;15.若关于x 的一元二次方程220230ax bx +-=有一个根为1,则a b += .16.方程x 2﹣1=3(x ﹣1)的根为 .17.在实数范围内分解因式:2225x x --= .18.已知)315++== .三、解答题:本大题共7小题,共52分。
分式乘除教学设计
分式乘除教学设计第1篇:分式乘除教学设计《16.2 二次根式的乘除》教学设计一.教材分析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、学情分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.三、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3)理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.2.观察思考,理解法则问题2 教材第8页“探究”栏目,计算结果如何?有何规律?师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:.问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?师生活动学生思考,回答。
16.2.1二次根式的乘法(同步课件)-八年级数学下册(人教版)
性质
1.计算 8 2 的结果是
( B)
A. 10
B.4
C. 6 D.2
2.下面计算结果正确的是
(D)
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
D. 5 3 4 2 20 6
3.计算: 6 15 10 __3_0_.
3
解:(1) 14 7= 14 7= 72 2=7 2;
(2)3 5 2 10=6 5 10=30 2;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
01
步骤01
1.把被开方数 分解因式(或 因数) ;
化简二次根式的步骤
03
步骤03
02
步骤02
2. 把 各 因 式 ( 或 因数)积的算术 平方根化为每 个因式(或因数) 的算术平方根 的积;
比较大小:3 5 与 4 3
解:方法一: 3 5= 32×5= 45,4 3= 42×3= 48.
∵ 45< 48, ∴3 5<4 3;
方法二:∵(3 5)2=45,(4 3)2=48,45<48,
∴3 5<4 3.
两种方法有何异同?
(1)被开方数比较法,即先将根号外的非负因数移到根号内,当两个 二次根式都是正数时,被开方数大的二次根式大. (2)平方法,即把两个二次根式分别平方,当两个二次根式都是正数 时,平方大的二次根式大.
算术平方根的积等于各个被开方数积的算术平方根. 注意:a,b都必须是非负数.
计算: (1) 5 6; (2) 1 18 ; (3) 2 5 7. 6
解: (1) 5 6 30;
上海教育版数学八上16.3二次根式的运算word教案二
§(3)二次根式的乘法和除法教学目标:进一步把握二次根式的乘除法,明白得分母有理化的概念,初步把握分母有理化的方式,会解系数或常数项含二次根式的一元一次方程和一元一次不等式.教学重点和难点:把握分母有理化的方式,解系数或常数项含二次根式的一元一次方程(不等式)教学流程设计:复习引入:二次根式的乘除法引入分母有理化的概念例题讲解:通过例题6练习巩固分母有理化的法则例题讲解:通过例题7、8运用分母有理化的法则解决实际问题教学进程设计: 一、 温习引入:一、问题试探:两个根式相除,b a 32÷能够写为ba 32,而ba 32÷化简的结果是bab36.如何把分母中的b 3化为3b ? 二、 学习新课:一、新课引入: 把ba 32的分数上、下两式看做两个数相除,利用除法的性质和根式乘法法那么可得babb ab bb b a b a 36)3(63332322==••=. 把分母中的根号化去,叫做分母有理化.分母有理化的方式,一样是把分子和分母乘以同一个适当的代数式,使分母不含根号. 归纳:b b b 333=⋅,那个进程称为分母有理化b 3称为b 3的有理化因式试探:(1)若是二次根式是a 9,m 12,y x +,如何对他们进行分母有理化?试探:(2) 若是二次根式是b a +,y x 32-,…….,他们的有理化因式又是如何的?(留待课后或下节课试探)试探:(1)中的二次根式的异同点是什么?他们的有理化进程是如何的?在教师的指导下,学生完成试探:(1)中的问题 二、例题分析:例题6 计算:(集体练习,个别演示) (1)122⨯ (2)b a a +÷(3))0(22322>>+÷-b a b a b a说明:先确信合理的有理化因式再继续化简,如(3)中除数多一个系数3,分子分母没必要同时乘以b a 223+.例题7 如下图,在面积为2a 的正方形ABCD 中,截得直角三角形ABE 的面积为a 33,求BE 的长.例题8 解以下方程和不等式: (1)22623-=-x (2)x x 53365>+ (3)x x 3262>+(注意判定0)32(<-,不等号方向要变)三、课堂小结:一、分母有理化 .四、作业布置:练习册习题(3)A B C E。
2017秋上海教育版数学八上16.1《二次根式的概念及性质》(第2课时)word教案
答案: ;
2、化简下列二次根式:
(1) ;(2) ;(3)
答案:
3、化简下列二次根式:
(1) ;(2) ;(3)
答案:
四、课堂总结
化简二次 根式的步骤:
家庭作业
一、填空题
1、当 _________时, 是二次根式。
2、当 _________时, 没有意 义。
3、当 _________时, 。
性质3
性质4
问题1: 与 相 等吗?
答案:相等
一般来说,如果二次根式里的被开方数是几个因式的乘积,其中有的因式是完全平方式,那么这样的因式可用它的非负平方根 代替后移到根号外面.
即:一般地,设 ,那么:
【想一想】:如果 ,那么 是否成立?
答案:不成立,
问题2: 与 相等吗?为什么?
答案:相等
2、分母有理化:如果二次根式中被开方数是分式(分数),那么可以化去分母 。方法是:将分子和分母同乘一个不等于零的代数式,使分母变成一个完全平方式,再将分母用它的正平方根代替后移到根号外面作新的分母.
1、一个自然数的算术平方根为 ,则与这个自然数相邻的两个自然数的算术平方根为()
、 、 、 D、
2、若 ,则 等于()
、0 、 、 D、0或
3、若 ,则 化简得()
、 、 、 D、
4、若 ,则 的结果为() ,则 与 的大小关系是()
、 、 、 D、
6、已知下列命题:
课题
二次根式的概念及性质(2)
授课时间:
备课时间:
教学目标
1、了解二次根式的概念;
2、熟练记忆并应用二次根式的性质;
3、二次根式的综合运用.
重点、难点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题2探索:如果圆的面积与正方形的面积相等,那么圆的周长与正方形的周长之比的比值是多少?
答案:
两个二次根式相乘,被开方数相乘,根指数不变
两个二次根式相除,被开方数相除,根指数不变
1、二次根式乘法法则:______________________________________ ________
2、二次根式除法法则:____________ __________________________________
注意:① , ,_____________________________。
②二次根式相乘除 的结果必须化为最简二次根式。
二、例题讲解
例1、计算
(1) ;(2) ;(3) ;
答案:
例2、计算
(1) ;(2) ;(3) ;
(4) ; (5) ;
答案: ;
例3、在面积为 的正方形 中,截得直角三角形 的面积为 ,求 的长。
答案:
例4、解方程和不等式
(1) ;(2) ;(3) ;
答案:
例5、 计Hale Waihona Puke : ,并当 时它的值。答案:
三、课堂练习
1、计算:
(1) ;(2) ;(3) ;
(4) ;(5) ;(6 ) ;
课题
二次根式的乘除
授课时间:
备课时间:
教学目标
1、熟练掌握二次根式的性质,用于计算;
2、掌握二次根式的乘除运算;
3、掌握二次根式的运算步骤;
重点、难点
重点:二次根式的性质及运算
难点:二次根式的运算
考点及考试要求
熟练掌握二次根式的性质并能灵活运算
教学内容
一、知识总结
问题1将一个正方形分割 成面积分别为 (平方单位)和 (平方单位)的两个小正方形和两个长方形 ,求每个长方形的面积。
(7) (8)
答案: ;
2、设 、 为实数, ,求 的值。
答案: ,原式=
3、计算:
答案:
4、化简:
答案:
四、课堂总结
家庭作业
1、已知 :最简二次根式 与 的被开方数相同,则
2、已知 ,且 ,则满足上式的整数对 有
3、计算:
4、已知: ,求 的值。
答案: ;
3或 或 ; ; ; ; ;1;