外籍文献:温度控制简介和PID控制器

合集下载

PID调节和温度控制原理

PID调节和温度控制原理

P I D调节和温度控制原理字体大小:||2006-10-2123:17-阅读:209-:0当通过热电偶采集的被测温度偏离所希望的给定值时,PID控制可根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。

比例运算是指输出控制量与偏差的比例关系。

比例参数P设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如比例参数P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。

积分运算的目的是消除偏差。

只要偏差存在,积分作用将控制量向使偏差消除的方向移动。

积分时间是表示积分作用强度的单位。

设定的积分时间越短,积分作用越强。

例如积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。

比例作用和积分作用是对控制结果的修正动作,响应较慢。

微分作用是为了消除其缺点而补充的。

微分作用根据偏差产生的速度对输出量进行修正,使控制过程尽快恢复到原来的控制状态,微分时间是表示微分作用强度的单位,仪表设定的微分时间越长,则以微分作用进行的修正越强。

PID模块操作非常简捷只要设定4个参数就可以进行温度精确控制:1、温度设定2、P值3、I值4、D值PID模块的温度控制精度主要受P、I、D这三个参数影响。

其中P代表比例,I代表积分,D 代表微分。

比例运算(P)比例控制是建立与设定值(SV)相关的一种运算,并根据偏差在求得运算值(控制输出量)。

如果当前值(PV)小,运算值为100%。

如果当前值在比例带内,运算值根据偏差比例求得并逐渐减小直到SV和PV匹配(即,直到偏差为0),此时运算值回复到先前值(前馈运算)。

若出现静差(残余偏差),可用减小P方法减小残余偏差。

如果P太小,反而会出现振荡。

积分运算(I)将积分与比例运算相结合,随着调节时间延续可减小静差。

积分强度用积分时间表示,积分时间相当于积分运算值到比例运算值在阶跃偏差响应下达到的作用所需要的时间。

基于单片机的PID温度控制器研究【文献综述】

基于单片机的PID温度控制器研究【文献综述】

毕业设计文献综述电气工程与自动化基于单片机的PID温度控制器研究摘要:在现代工业生产的许多环节中,温度是非常重要的一个指标。

随着控制理论和电子技术的发展,温度控制器的适应能力增强和高智能化正逐步成为现实。

其中以单片机为核心的数字控制器以其体积小、成本低、功能强而得到广泛应用。

本文主要研究在过程控制中得到广泛应用的PID控制在单片机温度控制系统中的作用。

该温度控制系统是一个典型的闭环反馈调节系统,采用一种新型的数字温度传感器(DS18B20),不需复杂的信号处理电路和A/D转换电路就能直接与单片机完成数据采集和处理,并将所得的温度值与设定温度值相比较得到偏差。

通过对偏差信号的处理获得控制信号,采用PWM调节加热器的通断,从而实现对电热壶水温度的显示和控制。

本文主要介绍了电热壶水温控制系统的工作原理和设计方法,论文主要由三部分构成。

①系统整体方案设计。

②硬件设计,主要包括温度检测电路、显示电路、键盘输入电路和控制电路等。

③系统软件设计,软件的设计采用模块化设计,主要包括温度采集模块、显示模块、键盘模块、控制模块和报警模块。

关键词:单片机;温度传感器;PID控制1.课题研究的目的及意义在现代工业生产中,电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

温度作为一个基本物理量,与人们的生产生活密切相关。

在工业生产过程中,温度作为一种常用的被控参数,在许多生产过程中都需要我们对温度参数进行检测控制。

例如:在化工生产、电力工程、冶金工业、造纸行业、食品加工和机械制造等领域中,人们都需要对各类加热炉、反应炉、热处理炉和锅炉中的温度进行检测控制。

通常的温度控制都采用偏差控制法。

偏差控制的原理是求出实测值对所需值的偏差量,然后通过对偏差量处理获得控制信号去调节加热器的功率,以实现对温度的控制。

通常,对偏差进行比例、积分和微分控制称为PID控制,是一种应用较为广泛的控制形式。

本课题是结合生产实际的科研工作,以单片机为核心,运用PID算法对温度进行控制,以达到较好的控制效果。

外文翻译(中文)-- 基于LabVIEW的直流电机及温度控制PID控制器

外文翻译(中文)--  基于LabVIEW的直流电机及温度控制PID控制器

中文3517字International Journal of Advanced Research in Computer Science and Software EngineeringSalim Sunil Kumar Jyoti Ohri机电部机电部机电部(NIT Kurukshetra) (NIT Kurukshetra) (NIT Kurukshetra)印度印度印度基于LabVIEW的直流电机及温度控制PID控制器摘要虚拟仪器是一种图形化的编程软件。

虚拟仪器提供了集成数据和具有灵活性的采集软件/硬件与过程控制应用软件自动化测试和测量应用程序。

在本文中,使用LabVIEW软件作出直流电机的控制过程和计算出速度,设计出一个PID温度控制系统电磁炉。

通过虚拟仪器辅助PID控制器的参数调整来控制电动机转速和控制温度的电磁烤箱。

为了获得最佳的过程响应,设计的控制器采用多种方法分析控制参数和调优参数顺序。

关键词:虚拟仪器,电磁炉的温度控制,PID调节器,PID参数整定方法。

1 引言虚拟仪器是一种计算机仪器系统。

该系统是基于在计算机上的硬件设备及使用者的特定设计的虚拟面板和程序来实现检测和控制的目的。

近年来,虚拟仪器技术已被广泛应用于各个领域,如工业控制,通信,电力自动化,电子和工业生产。

直流电动机已经在工业控制领域流行很长一段时间,因为他们有很多很好的特性,例如:高启动转矩特性,高响应性能,更容易被控制,在线性控制等方面有不同的方法使电机有不同的性能。

直流电动机的基本特性是,速度可以调整,通过不同的端子电压。

PID参数的调整,通过改变不同的方法获得最佳的响应。

本文是PID控制器的设计,监督和控制直流电动机的速度响应,还介绍虚拟仪器图形监控软件LabVIEW 仿真,涉及监管控制系统的设计,建造和展示。

有很多算法/文学调谐的PID 控制器,如反应曲线,齐格勒尼科尔斯的方法,Tyreus Luyben 提出的方法。

PID控制在温度控制系统中的应用研究

PID控制在温度控制系统中的应用研究

PID 控制在温度控制系统中的应用研究摘要PID 控制是一种常用的控制方式,在温度控制系统中得到了广泛的应用。

本文介绍了PID 控制的原理和实现方法,分析了PID 控制的优势与不足,并探讨了PID 控制在温度控制系统中的应用。

实验结果表明,PID 控制可以在短时间内将温度稳定在设定值附近,具有较高的控制精度和响应速度。

关键词:PID 控制;温度控制系统;控制精度;响应速度1.引言在工业生产、科学实验和生活中,温度控制是一项非常重要的控制任务。

温度控制可以使工业产品、科学实验和生活用品保持稳定的温度,达到保质保量的目的。

温度控制系统根据温度的变化,通过控制加热或冷却设备,使温度保持在设定值附近。

PID 控制是温度控制系统中一种常用的控制方式,可以实现温度的精确控制,具有广泛的应用。

2.PID 控制原理PID 控制是传统控制中最常用的一种控制方式,它基于系统的误差、误差变化率和误差积分值进行控制。

PID 控制的基本原理可以表示为下式:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*de(t)/dt其中,u(t)表示控制器的输出值,Kp、Ki 和Kd 是分别控制误差、误差积分和误差变化率的控制系数,e(t)是误差信号,de(t)/dt 是误差信号的变化率。

具体来说,Kp 决定控制器对误差的纠正力度,Ki 决定控制器对误差积分的纠正力度,Kd 决定控制器对误差变化率的纠正力度。

PID 控制器使用误差的当前值、时间累积值和变化率的信息进行控制,可以实现快速响应和平稳控制。

3.PID 控制实现方法PID 控制器可以采用硬件和软件两种实现方法。

硬件方式的实现通常使用模拟电路或微控制器等控制芯片。

软件方式的实现通常使用计算机软件进行控制。

下面简要介绍两种实现方法的特点。

3.1硬件实现方法硬件方式的实现方法通常具有较高的实时性和可靠性,适用于对控制精度要求较高的场合。

硬件PID 控制器通常由比较器、积分器和微分器等基本运算电路组成。

温度控制与PID算法

温度控制与PID算法

ห้องสมุดไป่ตู้ 07
总结与展望
总结温度控制与PID算法的关系
PID算法在温度控制中的实 现方式和原理
PID算法在温度控制中的优 缺点和改进方向
PID算法在温度控制中的重 要性和作用
未来温度控制与PID算法的 发展趋势和展望
对未来温度控制与PID算法的研究方向进行展望
深度学习与神经 网络在温度控制 中的应用
强化学习与PID算 法的结合研究
物联网与温度控 制的远程控制技 术
人工智能在温度 控制中的优化算 法研究
感谢观看
汇报人:XX
实例二:空调的温度控制
空调温度控制系 统的组成
PID算法在空调 温度控制中的应 用
实际应用中的参 数调整和优化
空调温度控制的 效果评估和改进 方案
实例三:工业制程的温度控制
工业制程中温度 控制的重要性
PID算法在温度 控制中的应用
实际工业制程中 的温度控制案例
PID算法在温度 控制中的优势与 挑战
它广泛应用于工 业、医疗、科研 等领域,对于保 证产品质量、提 高生产效率和节 约能源具有重要 意义。
温度控制的基本 原理是通过测量 物体温度,并与 设定温度进行比 较,根据偏差值 调整加热或冷却 设备的输出,以 实现温度的自动 调节。
常用的温度控制 方法包括PID控 制、模糊控制等, 它们能够提高温 度控制的精度和 稳定性。
PID算法的改进方法
引入积分分离: 避免积分饱和, 提高系统响应
速度
微分先行:减 小超调量,提 高系统稳定性
积分分离与微 分先行结合: 进一步提高系
统性能
引入抗积分饱 和:防止积分 饱和导致的系
统失控
防止积分饱和的措施

外籍文献。温度控制简介和PID控制器

外籍文献。温度控制简介和PID控制器

Introductions to temperature controland PID controllers Process control system.Automatic process control is concerned with maintaining process vari ables temperatures pressures flows compositions, and the like at some desired operation value. Processes are dynamic in nature. Changes are always occurring, and if actions are not taken, the important process vari ables-those related to safety, product quality, and production rates-will no t achieve design conditions.In order to fix ideas, let us consider a heat exchanger in which a pr ocess stream is heated by condensing steam.The purpose of this unit is to heat the process fluid from some inlet temperature, Ti(t), up to a certain desired outlet temperature, T(t). As m entioned, the heating medium is condensing steam.The energy gained by the process fluid is equal to the heat release d by the steam, provided there are no heat losses to surroundings, iii th at is, the heat exchanger and piping are well insulated.In this process there are many variables that can change, causing t he outlet temperature to deviate from its desired value. [21 If this happe ns, some action must be taken to correct for this deviation. That is, the objective is to control the outlet process temperature to maintain its desir ed value.One way to accomplish this objective is by first measuring the temp erature T(t) , then comparing it to its desired value, and, based on this comparison, deciding what to do to correct for any deviation. The flow of steam can be used to correct for the deviation. This is, if the temperat ure is above its desired value, then the steam valve can be throttled ba ck to cut the stearr flow (energy) to the heat exchanger. If the temperat ure is below its desired value, then the steam valve could be opened some more to increase the steam flow (energy) to the exchanger. All of th ese can be done manually by the operator, and since the procedure is f airly straightforward, it should present no problem. However, since in mo st process plants there are hundreds of variables that must be maintaine d at some desired value, this correction procedure would required a trem endous number of operators. Consequently, we would like to accomplish this control automatically. That is, we want to have instnnnents that contr ol the variables wJtbom requ)ring intervention from the operator. (si This is what we mean by automatic process control.To accomplish ~his objective a control system must be designed and implemented.The first thing to do is to measure the outlet temperaVare of the pro cess stream. A sensor (thermocouple, thermistors, etc) does this. This se nsor is connected physically to a transmitter, which takes the output from the sensor and converts it to a signal strong enough to be transmitter t o a controller. The controller then receives the signal, which is related to the temperature, and compares it with desired value. Depending on this comparison, the controller decides what to do to maintain the temperatu re at its desired value. Base on this decision, the controller then sends another signal to final control element, which in turn manipulates the ste am flow.The preceding paragraph presents the four basic components of all control systems. They are(1) sensor, also often called the primary element.(2) transmitter, also called the secondary element.(3) controller, the "brain" of the control system.(4) final control system, often a control valve but not always. Other common final control elements are variable speed pumps, conveyors, an d electric motors.The importance of these components is that they perform the three basic operations that must be present in every control system. These op erations are(1) Measurement (M) : Measuring the variable to be controlled is us ually done by the combination of sensor and transmitter.(2) Decision (D): Based on the measurement, the controller must the n decide what to do to maintain the variable at its desired value.(3) Action (A): As a result of the controller's decision, the system m ust then take an action. This is usually accomplished by the final control element.As mentioned, these three operations, M, D, and A, must be presen t in every control system.PID controllers can be stand-alone controllers (also called single loo p controllers), controllers in PLCs, embedded controllers, or software in V isual Basic or C# computer programs.PID controllers are process controllers with the following characteristi cs:Continuous process controlAnalog input (also known as "measuremem" or "Process Variable" or "PV")Analog output (referred to simply as "output")Setpoint (SP)Proportional (P), Integral (I), and/or Derivative (D) constantsExamples of "continuous process control" are temperature, pressure, flow, and level control. For example, controlling the heating of a tank. Fo r simple control, you have two temperature limit sensors (one low and o ne high) and then switch the heater on when the low temperature limit s ensor tums on and then mm the heater off when the temperature rises t o the high temperature limit sensor. This is similar to most home air con ditioning & heating thermostats.In contrast, the PID controller would receive input as the actual tem perature and control a valve that regulates the flow of gas to the heater. The PID controller automatically finds the correct (constant) flow of gas to the heater that keeps the temperature steady at the setpoint. Instead of the temperature bouncing back and forth between two points, the tem perature is held steady. If the setpoint is lowered, then the PID controller automatically reduces the amount of gas flowing to the heater. If the se tpoint is raised, then the PID controller automatically increases the amou nt of gas flowing to the heater. Likewise the PID controller would autom atically for hot, sunny days (when it is hotter outside the heater) and for cold, cloudy days.The analog input (measurement) is called the "process variable" or " PV". You want the PV to be a highly accurate indication of the process parameter you are trying to control. For example, if you want to maintain a temperature of + or -- one degree then we typically strive for at least ten times that or one-tenth of a degree. If the analog input is a 12 bit analog input and the temperature range for the sensor is 0 to 400 degre es then our "theoretical" accuracy is calculated to be 400 degrees divide d by 4,096 (12 bits) =0.09765625 degrees. [~] We say "theoretical" beca use it would assume there was no noise and error in our temperature s ensor, wiring, and analog converter. There are other assumptions such a s linearity, etc.. The point being--with 1/10 of a degree "theoretical" accur acy--even with the usual amount of noise and other problems-- one degr ee of accuracy should easily be attainable.The analog output is often simply referred to as "output". Often this is given as 0~100 percent. In this heating example, it would mean the v alve is totally closed (0%) or totally open (100%).The setpoint (SP) is simply--what process value do you want. In this example--what temperature do you want the process at?The PID controller's job is to maintain the output at a level so that t here is no difference (error) between the process variable (PV) and the setpoint (SP).In Fig. 3, the valve could be controlling the gas going to a heater, t he chilling of a cooler, the pressure in a pipe, the flow through a pipe, t he level in a tank, or any other process control system. What the PID c ontroller is looking at is the difference (or "error") between the PV and t he SP.It looks at the absolute error and the rate of change of error. Absolute error means--is there a big difference in the PV and SP or a little differ ence? Rate of change of error means--is the difference between the PV or SP getting smaller or larger as time goes on.When there is a "process upset", meaning, when the process variabl e or the setpoint quickly changes--the PID controller has to quickly chan ge the output to get the process variable back equal to the setpoint. If y ou have a walk-in cooler with a PID controller and someone opens the door and walks in, the temperature (process variable) could rise very qui ckly. Therefore the PID controller has to increase the cooling (output) to compensate for this rise in temperature.Once the PID controller has the process variable equal to the setpoi nt, a good PID controller will not vary the output. You want the output to be very steady (not changing) . If the valve (motor, or other control ele ment) is constantly changing, instead of maintaining a constant value, thi s could cause more wear on the control element.So there are these two contradictory goals. Fast response (fast chan ge in output) when there is a "process upset", but slow response (stead y output) when the PV is close to the setpoint.Note that the output often goes past (over shoots) the steady-state output to get the process back to the setpoint. For example, a cooler m ay normally have its cooling valve open 34% to maintain zero degrees (after the cooler has been closed up and the temperature settled down). If someone opens the cooler, walks in, walks around to find something, then walks back out, and then closes the cooler door--the PID controlle r is freaking out because the temperature may have raised 20 degrees! So it may crank the cooling valve open to 50, 75, or even 100 percent--to hurry up and cool the cooler back down--before slowly closing the co oling valve back down to 34 percent.Let's think about how to design a PID controller.We focus on the difference (error) between the process variable (PV) and the setpoint (SP). There are three ways we can view the error. The absolute errorThis means how big is the difference between the PV and SP. If th ere is a small difference between the PV and the SP--then let's make a small change in the output. If there is a large difference in the PV and SP--then let's make a large change in the output. Absolute error is the "proportional" (P) component of the PID controller.The sum of errors over timeGive us a minute and we will show why simply looking at the absol ute error (proportional) only is a problem. The sum of errors over time is important and is called the "integral" (I) component of the PID controller. Every time we run the PID algorithm we add the latest error to the su m of errors. In other words Sum of Errors = Error 1 q- Error2 + Error3 + Error4 + ....The dead timeDead time refers to the delay between making a change in the outp ut and seeing the change reflected in the PV. The classical example isgetting your oven at the right temperature. When you first mm on the he at, it takes a while for the oven to "heat up". This is the dead time. If y ou set an initial temperature, wait for the oven to reach the initial tempe rature, and then you determine that you set the wrong temperature--then it will take a while for the oven to reach the new temperature setpoint. This is also referred to as the "derivative" (D) component of the PID con troller. This holds some future changes back because the changes in the output have been made but are not reflected in the process variable ye t.Absolute Error/ProportionalOne of the first ideas people usually have about designing an autom atic process controller is what we call "proportional". Meaning, if the diffe rence between the PV and SP is small--then let's make a small correctio n to the output. If the difference between the PV and SP is large-- then let's make a larger correction to the output. This idea certainly makes s ense.We simulated a proportional only controller in Microsoft Excel. Fig.4 i s the chart showing the results of the first simulation (DEADTIME = 0, p roportional only):Proportional and Integral ControllersThe integral portion of the PID controller accounts for the offset prob lem in a proportional only controller. We have another Excel spreadsheet that simulates a PID controller with proportional and integral control. He re (Fig. 5) is a chart of the first simulation with proportional and integral (DEADTIME :0, proportional = 0.4).As you can tell, the PI controller is much better than just the P cont roller. However, dead time of zero (as shown in the graph) is not comm on.Derivative ControlDerivative control takes into consideration that if you change the out put, then it takes tim for that change to be reflected in the input (PV).Fo r example, let's take heating of the oven.If we start turning up the gas flow, it will take time for the heat to b e produced, the heat to flow around the oven, and for the temperature s ensor to detect the increased heat. Derivative control sort of "holds back " the PID controller because some increase in temperature will occur wit hout needing to increase the output further. Setting the derivative consta nt correctly allows you to become more aggressive with the P & I const ants.中文翻译温度控制简介和PID控制器过程控制系统自动过程控制系统是指将被控量为温度、压力、流量、成份等类型的过程变量保持在理想的运行值的系统。

温度控制与PID控制器简介.

温度控制与PID控制器简介.

Introductions to temperature controland PID controllersProcess control system.Automatic process control is concerned with maintaining process vari ables temperatures pressures flows compositions, and the like at some desired operation value. Processes are dynamic in nature. Changes are always occurring, and if actions are not taken, the important process vari ables-those related to safety, product quality, and production rates-will no t achieve design conditions.In order to fix ideas, let us consider a heat exchanger in which a pr ocess stream is heated by condensing steam.The purpose of this unit is to heat the process fluid from some inlet temperature, Ti(t, up to a certain desired outlet temperature, T(t. As m entioned, the heating medium is condensing steam.The energy gained by the process fluid is equal to the heat release d by the steam, provided there are no heat losses to surroundings, iii th at is, the heat exchanger and piping are well insulated.In this process there are many variables that can change, causing t he outlet temperature to deviate from its desired value. [21 If this happe ns, some action must be taken to correct for this deviation. That is, the objective is to control the outlet process temperature to maintain its desir ed value.One way to accomplish this objective is by first measuring the temp erature T(t , then comparing it to its desired value, and, based on this comparison, deciding what to do to correct for any deviation. The flow of steam can be used to correct for the deviation. This is, if the temperat ure is above its desired value, then the steam valve can bethrottled ba ck to cut the stearr flow (energy to the heat exchanger. If the temperat ure is below its desired value, then the steam valve could be opened some more to increase the steam flow (energy to the exchanger. All of th ese can be done manually by the operator, and since the procedure is f airly straightforward, it should present no problem. However, since in mo st process plants there are hundreds of variables that must be maintaine d at some desired value, this correction procedure would required a trem endous number of operators. Consequently, we would like to accomplish this control automatically. That is, we want to have instnnnents that contr ol the variables wJtbom requring intervention from the operator. (si This is what we mean by automatic process control.To accomplish ~his objective a control system must be designed and implemented.The first thing to do is to measure the outlet temperaVare of the pro cess stream. A sensor (thermocouple, thermistors, etc does this. This se nsor is connected physically to a transmitter, which takes the output from the sensor and converts it to a signal strong enough to be transmitter t o a controller. The controller then receives the signal, which is related to the temperature, and compares it with desired value. Depending on this comparison, the controller decides what to do to maintain the temperatu re at its desired value. Base on this decision, the controller then sends another signal to final control element, which in turn manipulates the ste am flow.The preceding paragraph presents the four basic components of all control systems. They are(1 sensor, also often called the primary element.(2 transmitter, also called the secondary element.(3 controller, the "brain" of the control system.(4 final control system, often a control valve but not always. Other common final control elements are variable speed pumps, conveyors, an d electric motors.The importance of these components is that they perform the three basic operations that must be present in every control system. These op erations are(1 Measurement (M : Measuring the variable to be controlled is us ually done by the combination of sensor and transmitter.(2 Decision (D: Based on the measurement, the controller must the n decide what to do to maintain the variable at its desired value.(3 Action (A: As a result of the controller's decision, the system m ust then take an action. This is usually accomplished by the final control element.As mentioned, these three operations, M, D, and A, must be presen t in every control system.PID controllers can be stand-alone controllers (also called single loo p controllers, controllers in PLCs, embedded controllers, or software in V isual Basic or C# computer programs.PID controllers are process controllers with the following characteristi cs:Continuous process controlAnalog input (also known as "measuremem" or "Process Variable" or "PV"Analog output (referred to simply as "output"Setpoint (SPProportional (P, Integral (I, and/or Derivative (D constantsExamples of "continuous process control" are temperature, pressure, flow, and level control. For example, controlling the heating of a tank. Fo r simple control, you have two temperature limit sensors (one low and o ne high and then switch the heater on when the low temperature limit s ensor tums on and then mm the heater off when the temperature rises t o the high temperature limit sensor. This is similar to most home air con ditioning & heating thermostats.In contrast, the PID controller would receive input as the actual tem perature and control a valve that regulates the flow of gas to the heater. The PID controller automatically finds the correct (constant flow of gas to the heater that keeps the temperature steady at the setpoint. Instead of the temperature bouncing back and forth between two points, the tem perature is held steady. If the setpoint is lowered, then the PID controller automatically reduces the amount of gas flowing to the heater. If the se tpoint is raised, then the PID controller automatically increases the amou nt of gas flowing to the heater. Likewise the PID controller would autom atically for hot, sunny days (when it is hotter outside the heater and for cold, cloudy days.The analog input (measurement is called the "process variable" or " PV". You want the PV to be a highly accurate indication of the process parameter you are trying to control. For example, if you want to maintain a temperature of + or -- one degree then we typically strive for at least ten times that or one-tenth of a degree. If the analog input is a 12 bit analog input and the temperature range for the sensor is 0 to 400 degre es then our "theoretical" accuracy is calculated to be 400 degrees divide d by 4,096 (12 bits=0.09765625 degrees. [~] We say "theoretical" beca use it would assume there was no noise and error in our temperature s ensor, wiring, and analog converter. There are other assumptions such a s linearity, etc.. The point being--with 1/10 of a degree "theoretical" accur acy--even with the usual amount of noise and other problems-- one degr ee of accuracy should easily be attainable.The analog output is often simply referred to as "output". Often this is given as0~100 percent. In this heating example, it would mean the v alve is totally closed (0% or totally open (100%.The setpoint (SP is simply--what process value do you want. In this example--what temperature do you want the process at?The PID controller's job is to maintain the output at a level so that t here is no difference (error between the process variable (PV and the setpoint (SP.In Fig. 3, the valve could be controlling the gas going to a heater, t he chilling of a cooler, the pressure in a pipe, the flow through a pipe, t he level in a tank, or any other process control system. What the PID c ontroller is looking at is the difference (or "error" between the PV and t he SP .It looks at the absolute error and the rate of change of error. Absolute error means--is there a big difference in the PV and SP or a little differ ence? Rate of change of error means--is the difference between the PV or SP getting smaller or larger as time goes on.When there is a "process upset", meaning, when the process variabl e or the setpoint quickly changes--the PID controller has to quickly chan ge the output to get the process variable back equal to the setpoint. If y ou have a walk-in cooler with a PID controller and someone opens the door and walks in, the temperature (process variable could rise very qui ckly. Therefore the PID controller has to increase the cooling (output to compensate for this rise in temperature.Once the PID controller has the process variable equal to the setpoi nt, a good PID controller will not vary the output. You want the output to be very steady (not changing . If the valve (motor, or other control ele ment is constantly changing, instead of maintaining a constant value, thi s could cause more wear on the control element.So there are these two contradictory goals. Fast response (fast chan ge in output when there is a "process upset", but slow response (steady output when the PV is close to the setpoint.Note that the output often goes past (over shoots the steady-state output to get the process back to the setpoint. For example, a cooler m ay normally have its cooling valve open 34% to maintain zero degrees (after the cooler has been closed up and the temperature settled down. If someone opens the cooler, walks in, walks around to find something, then walks back out, and then closes the cooler door--the PID controlle r is freaking out because the temperature may have raised 20 degrees! So it may crank the cooling valve open to 50, 75, or even 100 percent-to hurry up and cool the cooler back down--before slowly closing the co oling valve back down to 34 percent. Let's think about how to design a PID controller. We focus on the difference (error between the process variable (PV and the setpoint (SP. There are three ways we can view the error. The absolute error This means how big is the difference between the PV and SP. If th ere is a small difference between the PV and the SP--then let's make a small change in the output. If there is a large difference in the PV and SP--then let's make a large change in the output. Absolute error is the "proportional" (P component of the PID controller. The sum of errors over time Give us a minute and we will show why simply looking at the absol ute error (proportional only is a problem. The sum of errors over time is important and is called the "integral" (I component of the PID controller. Every time we run the PID algorithm we add the latest error to the su m of errors. In other words Sum of Errors = Error 1 q- Error2 + Error3 + Error4 + .... The dead time Dead time refers to the delay between making a change in the outp ut and seeing the change reflected in the PV. The classical example isgetting your oven at the right temperature. When you first mm on the he at, it takes a while for the oven to "heat up". This is the dead time. If y ou set an initial temperature, wait for the oven to reach the initial tempe rature, and then you determine that you set thewrong temperature--then it will take a while for the oven to reach the new temperature setpoint. This is also referred to as the "derivative" (D component of the PID con troller. This holds some future changes back because the changes in the output have been made but are not reflected in the process variable ye t. Absolute Error/Proportional One of the first ideas people usually have about designing an autom atic process controller is what we call "proportional". Meaning, if the diffe rence between the PV and SP is small--then let's make a small correctio n to the output. If the difference between the PV and SP is large-- then let's make a larger correction to the output. This idea certainly makes s ense. We simulated a proportional only controller in Microsoft Excel. Fig.4 i s the chart showing the results of the first simulation (DEADTIME = 0, p roportional only: Proportional and Integral Controllers The integral portion of the PID controller accounts for the offset prob lem in a proportional only controller. We have another Excel spreadsheet that simulates a PID controller with proportional and integral control. He re (Fig. 5 is a chart of the first simulation with proportional and integral (DEADTIME :0, proportional = 0.4. As you can tell, the PI controller is much better than just the P cont roller. However, dead time of zero (as shown in the graph is not comm on.Derivative Control Derivative control takes into consideration that if you change the out put, then it takes tim for that change to be reflected in the input (PV.Fo r example, let's take heating of the oven. If we start turning up the gas flow, it will take time for the heat to b e produced, the heat to flow around the oven, and for the temperature s ensor to detect the increased heat. Derivative control sort of "holds back " the PID controller because some increase in temperature will occur wit hout needing to increase the output further. Setting the derivative consta nt correctly allows you to become more aggressive with the P & I const ants.。

高精度 PID温度控制器

高精度 PID温度控制器

高精度PID温度控制器时间:2007-04-19 来源: 作者:江孝国王婉丽祁双喜点击:4468 字体大小:【大中小】摘要:介绍一种高精度的、采用PID 控制原理的温度控制器, 给出了实验结果。

这种控制器适用于小功率半导体器件的工作温度控制, 其控制精度可达±0.05℃。

1 引言温度控制已成为工业生产、科研活动中很重要的一个环节, 能否成功地将温度控制在所需的范围内关系到整个活动的成败。

由于控制对象的多样性和复杂性, 导致采用的温控手段的多样性。

例如: 某种半导体激光器对工作温度的稳定性有较高的要求, 一般要将温度控制在±0.1℃左右, 才能保证器件输出的激光波长不发生超出要求的漂移, 否则,激光波长的超范围漂移将使研究工作难以开展。

为达到这种温控要求, 笔者根据工作中的情况, 采用PID 控制原理研制成适合用于小功率半导体器件的温度控制器。

该控制器能够达到很好的控制效果, 若精心选择PID 的各种参数, 温度控制的精度可以达到±0.05℃, 完全可以保证器件的正常工作。

2 温度控制原理在上述温控实例中, 器件工作时产生的热量将使器件本身工作温度升高, 最后达到很高的基本稳定的温度。

较高的温度将严重影响器件的各种性能参数, 也很可能导致器件不能正常工作, 甚至损坏。

温度控制的目的就是将器件的工作温度以一定的精度稳定在一个较低的水平上, 这样一来就要求根据器件工作时的实际情况(如产热量大小等) 采取一定的措施,随时将产生的热量即时散掉, 并且要求器件在单位时间里产生的热量等于控制器在单位时间里吸收的热量, 若两者达到动态平衡, 则可以保持器件工作温度的稳定[1]。

在一定的控制系统中, 首先将需要控制的被测参数(如温度) 由传感器转换成一定的信号后再与预先设定的值进行比较, 把比较得到的差值信号经过一定规律的计算后得到相应的控制值, 将控制量送给控制系统进行相应的控制, 不停地进行上述工作, 从而达到自动调节的目的。

浅淡PID温度控制

浅淡PID温度控制

• 165•浅淡P I D 温度控制中国电子科技集团公司第二研究所 赵兴亮随着科学技术的发展,各种先进的技术和设备被用到生产和科研中,对其也提出了更高的要求,其中在工业生产和科研活动一个重要的环节就是温度控制,为了确保生产过程的安全顺利进行,就必须要把温度控制在一定的范围之内。

针对温度控制的复杂性,提出了PID 控制,这一控制技术得到了广泛的应用,形成了一套完整的控制方法和典型的结构。

本文就对PID 温度控制进行了详细的研究。

1 PID控制介绍PID 控制属于自动控制系统,能够自动的纠正变差和调节控制,此系统主要有两个部分,分别是开环控制系统和闭环控制系统,每一个控制系统都是由控制器、传感器以及变送器和执行机构、接口组成的,其中控制器的输出是经过输出接口和执行结构加到北控系统上,然后在经过传感器和变送器通过输入接口送到控制器。

1.1 开环控制系统首先分析开环控制系统,是PID 自动控制系统的一个重要组成部分,是施控装置指挥执行机构动作,从而改变被控对象的工作状态,控制信号和被控量之间没有反馈回路,那么也就是说被控对象的输出对控制器的输出没有影响。

开环控制系统结构简单,而且成本比较低。

1.2 闭环控制系统闭环控制系统又被称之为反馈控制系统,是基于反馈原理建设的自动控制系统,能够根据输出变化的信息进行控制行为,并且消除存在的偏差以此来达到预期的系统性能。

也就是说被控对象的输出会对控制器产生影响,形成闭环。

主要是由控制器和被控对象以及反馈通路组成的,相比较开环控制系统,不论是收到任何干扰导致的被控制量的变化,系统都会进行偏差的消除,确保其在规定的值,抗干扰能力强。

1.3 PID控制运行原理随着科学技术的更新,PID 控制策略的先关技术成熟,应经被广泛的应用与温度控制中,不论是在工业生产中还是科研活动中,又或者是在数学模型中,都得了有效的应用,并且取得了应有的效果。

而且经过长期的研究实践,对于PID 控制方法和结构得到了完善。

PID温度控制

PID温度控制

渤海大学毕业设计(论文)PID温度控制摘要模糊PID的温度控制系统具有真正的智能化和灵活性,越来越多的温度控制系统都基于模糊PID算法而设计。

随着控制对象变得复杂,应用常规PID温度控制精度和鲁棒性降低。

当控制对象很复杂的情况下,常规PID温度控制器已经不再适用了,为了提高对复杂系统的控制性能,要使用模糊PID温度控制器。

一种将PID控制与模糊控制的简便性、灵活性、以及鲁棒性融为一体,构造了一个模糊PID温度控制器。

本文设计了一种基于模糊PID的温度控制系统,以AT89C51单片机为核心,主要做了如下几方面的工作:首先介绍了模糊PID控制理论基础,其次进行系统的硬件设计以及硬件选择,最后进行系统的软件设计以及仿真。

关键词:模糊PID;AT89C51单片机;温度控制;仿真Fuzzy PID temperature control system with real intelligence and flexibility, more and more temperature control systems are designed based on fuzzy PID algorithm.With the control object becomes complicated, using conventional PID temperature control accuracy and robustness of the lower.When the control object is a complex situation, conventional PID temperature controller is no longer applied, in order to improve the control performance of complex systems, to use the fuzzy PID temperature controller.A way to PID control and fuzzy control of simplicity, flexibility, and robustness of the integration, we constructed a fuzzy PID temperature controller.This design presents a fuzzy-based PID temperature control system to AT89C51 SCM,made the following main areas of work:first introduce the theory of fuzzy PID control,second for the hardware design and hardware design,and finally to the system software design and simulation.Keywords: Fuzzy PID; AT89C51 SCM; temperature control; simulation第一章绪论 (1)1.1选题背景及其意义 (1)1.2概述 (1)1.3温度测控技术的发展与现状 (1)1.3.1定值开关控温法 (2)1.3.2PID线性控温法 (2)1.3.3智能温度控制法 (2)第二章模糊PID控制理论 (4)2.1PID控制器 (4)2.1.1PID控制的发展 (4)2.1.2PID控制理论 (4)2.1.3PID控制算法 (5)2.2模糊控制原理 (7)2.2.1模糊控制系统的基本概念 (7)2.2.2模糊控制系统的组成 (7)2.2.3模糊控制的基本原理 (8)2.3模糊PID复合控制算法 (9)2.3.1模糊PID复合算法 (9)2.3.2模糊PID算法运用 (10)第三章模糊PID温度控制系统硬件设计 (14)3.1系统硬件电路构成 (14)3.2系统设计原则及系统总电路图 (14)3.2.1系统设计原则 (14)3.2.2系统总电路图 (15)3.3 单片机的选择 (15)3.4温度传感器的选择 (19)3.4.1DS18B20简介 (19)3.4.2DS18B20的性能特点 (20)3.4.3DS18B20的管脚排列 (21)3.4.4DS18B20的内部结构 (21)3.4.5DS18B20的测温原理 (22)3.5数码管输出 (22)3.6键盘接口电路 (23)3.7蜂鸣电路 (24)3.8外部存储模块 (24)3.9电机驱动模块 (25)第四章系统软件设计 (27)4.1主程序模块 (27)4.2温度传感器DS18B20模块 (27)4.3LED显示模块 (29)4.4键盘控制模块 (29)第五章系统的仿真 (31)5.1仿真工具 (31)5.2 MATLAB及其模糊逻辑工具箱和仿真环境 (31)5.2.1MATLAB概况 (31)5.2.2模糊逻辑工具箱 (31)5.3模糊PID的仿真 (32)5.3.1控制对象模型 (32)5.3.2MATLAB仿真 (33)5.4仿真结果与分析 (35)结论 (37)参考文献 (38)附录 (39)附件一:部分源程序 (39)1.DS18B20相关子程序 (39)2.LED相关子程序 (39)3.按键相关子程序 (40)附件二:英文文献 (43)附件三:系统总电路图 (51)谢辞 (51)第一章绪论1.1选题背景及其意义在人类的生活环境中,温度扮演着极其重要的角色。

PID控制器外文文献翻译、中英文翻译

PID控制器外文文献翻译、中英文翻译

PID controllerA proportional–integral–derivative controller (PID controller) is a generic .control loop feedback mechanism widely used in industrial control systems. A PID controller attempts to correct the error between a measured process variable and a desired setpoint by calculating and then outputting a corrective action that can adjust the process accordingly.The PID controller calculation (algorithm) involves three separate parameters; the Proportional, the Integral and Derivative values. The Proportional value determines the reaction to the current error, the Integral determines the reaction based on the sum of recent errors and the Derivative determines the reaction to the rate at which the error has been changing. The weightedsum of these three actions is used to adjust the process via a control element such as the position of a control valve or the power supply of a heating element. By "tuning" the three constants in the PID controller algorithm the PID can provide control action designed for specific process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error, the degree to which the controller overshoots the setpoint and the degree of system oscillation. Some applications may require using only one or two modes to provide the appropriate system control. This is achieved by setting the gain of undesired control outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence of the respective control actions. PI controllers are particularly common, since derivative action is very sensitive to measurement noise, and the absence of an integral value may prevent the system from reaching its target value due to the control action.The PID control scheme is named after its three correcting terms, whose sum constitutes the manipulated variable (MV). Hence:where Pout, Iout, and Dout are the contributions to the output from the PID controller from each of the three terms, as defined below.1. Proportional termThe proportional term makes a change to the output that is proportional to the current error value. The proportional response can be adjusted by multiplying the error by a constant Kp, called the proportional gain.The proportional term is given by:WherePout: Proportional outputKp: Proportional Gain, a tuning parametere: Error = SP − PVt: Time or instantaneous time (the present)A high proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the system can become unstable (See the section on Loop Tuning). In contrast, a small gain results in a small output response to a large input error, and a less responsive (or sensitive) controller. If the proportional gain is too low, the control action may be too small when responding to system disturbances.In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice indicate that it is the proportional term that should contribute the bulk of the output change.2.Integral termThe contribution from the integral term is proportional to both the magnitude of the error and the duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output. The magnitude of the contribution of the integral term to the overall control action is determined by the integral gain, Ki.The integral term is given by:Iout: Integral outputKi: Integral Gain, a tuning parametere: Error = SP − PVτ: Time in the past contributing to the integral responseThe integral term (when added to the proportional term) accelerates the movement of the process towards setpoint and eliminates the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to accumulated errors from the past, it can cause the present value to overshoot the setpoint value (cross over the setpoint and then create a deviation in the other direction). For further notes regarding integral gain tuning and controller stability, see the section on loop tuning.3 Derivative termThe rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with respect to time) and multiplying this rate of change by the derivative gain Kd. The magnitude of the contribution of the derivative term to the overall control action is termed the derivative gain, Kd.The derivative term is given by:Dout: Derivative outputKd: Derivative Gain, a tuning parametere: Error = SP − PVt: Time or instantaneous time (the present)The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller setpoint. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and improve the combined controller-process stability. However, differentiation of a signal amplifies noise and thus this term in the controller is highly sensitive to noise in the error term, and can cause a process to become unstable if the noise and the derivative gain are sufficiently large.4 SummaryThe output from the three terms, the proportional, the integral and the derivative terms are summed to calculate the output of the PID controller. Defining u(t) as the controller output, the final form of the PID algorithm is:and the tuning parameters areKp: Proportional Gain - Larger Kp typically means faster response since thelarger the error, the larger the Proportional term compensation. An excessively large proportional gain will lead to process instability and oscillation.Ki: Integral Gain - Larger Ki implies steady state errors are eliminated quicker. The trade-off is larger overshoot: any negative error integrated during transient response must be integrated away by positive error before we reach steady state.Kd: Derivative Gain - Larger Kd decreases overshoot, but slows down transient response and may lead to instability due to signal noise amplification in the differentiation of the error.PID控制器比例积分微分控制器(PID调节器)是一个控制环,广泛地应用于工业控制系统里的反馈机制。

PID控制器 - 维基百科,自由的百科全书.

PID控制器 - 维基百科,自由的百科全书.

PID控制器的方块图PID控制器维基百科,自由的百科全书PID控制器(比例-积分-微分控制器),由比例单元P、积分单元I和微分单元D组成[1]。

通过Kp,Ki和Kd 三个参数的设定。

PID控制器主要适用于基本上线性,且动态特性不随时间变化的系统。

PID控制器是一个在工业控制应用中常见的反馈回路部件。

这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。

PID控制器可以根据历史数据和差别的出现率来调整输入值,使系统更加准确而稳定。

PID控制器的比例单元P、积分单元I和微分单元D分别对应目前误差、过去累计误差及未来误差。

若是不知道受控系统的特性,一般认为PID控制器是最适用的控制器[2]。

借由调整PID控制器的三个参数,可以调整控制系统,设法满足设计需求。

控制器的响应可以用控制器对误差的反应快慢、控制器过冲的程度及系统震荡的程度来表示。

不过使用PID控制器不一定保证可达到系统的最佳控制,也不保证系统稳定性。

有些应用只需要PID控制器的部分单元,可以将不需要单元的参数设为零即可。

因此PID控制器可以变成PI 控制器、PD控制器、P控制器或I控制器。

其中又以PI控制器比较常用,因为D控制器对回授噪声十分敏感,而若没有I控制器的话,系统不会回到参考值,会存在一个误差量。

目录1 反馈回路基础2 历史及应用3 理论3.1 比例控件3.1.1 稳态误差3.2 积分控件3.3 微分控件4 参数调试4.1 稳定性4.2 最佳性能4.3 各方法的简介4.4 人工调整4.5 齐格勒-尼科尔斯方法4.6 PID调试软件5 PID控制的限制5.1 线性5.2 噪声对微分器的影响6 PID算法的修改6.1 积分饱和6.2 PI控制器6.3 不动作区6.4 设定值的步阶变化6.5 无冲击运转7 串级PID控制器8 其他PID的形式及其表示法8.1 理想的PID及标准形PID8.2 倒数增益8.3 只针对过程变数进行微分控制8.4 只针对过程变数进行比例控制8.5 PID控制器的拉氏转换8.6 PID的极零点对消8.7 串级型或交互型8.8 离散化的控制器9 伪代码10 参见11 注释12 参考文献13 外部链接反馈回路基础PID回路是要自动实现一个操作人员用量具和控制旋钮进行的工作,这个操作人员会用量具测系统输出的结果,然后用控制旋钮来调整这个系统的输入,直到系统的输出在量具上显示稳定的需求的结果,在旧的控制文档里,这个过程叫做“复位”行为,量具被称为“测量”,需要的结果被称为“设定值”而设定值和测量之间的差别被称为“误差”。

PID控制概述

PID控制概述

PID控制概述PID控制的原理和特点在工业现场实际应用中,最为广泛的调节器控制规律是比例积分微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI 和PD控制。

PID控制器就是根据系统的误差,利用比例积分微分计算出控制量进行控制的。

1、比例(P)控制比例控制是一种最简单的控制方式其控制器的输出与输入误差信号成比例关系当仅有比例控制时系统输出存在稳态误差(Steady-state error)2、积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)为了消除稳态误差,在控制器中必须引入积分项积分项对误差取决于时间的积分,随着时间的增加,积分项会增大这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差3、微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳,其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化超前,即在误差接近零时,抑制误差的作用就应该是零。

PID controller(PID 控制器)

PID controller(PID 控制器)

PID控制器Wikipedia,免费百科全书比例积分微分控制器(PID调节器)是一个控制环,广泛地应用于工业控制系统里的反馈机制。

PID控制器通过调节给定值与测量值之间的偏差,给出正确的调整,从而有规律地纠正控制过程。

PID控制器算法涉及到三个部分:比例,积分,微分。

比例控制是对当前偏差的反应,积分控制是基于新近错误总数的反应,而微分控制则是基于错误变化率的反应。

这三种控制的结合可用来调节过程系统,例如调节阀的位置,或者加热系统的电源调节。

根据具体的工艺要求,通过PID控制器的参数整定,从而提供调节作用。

控制器的响应可以被认为是对系统偏差的响应。

注意一点的是,PID算法不一定就是系统或系统稳定性的最佳控制。

一些应用可能只需要运用一到两种方法来提供适当的系统控制。

这是通过把不想要的控制输出置零取得。

在控制系统中存在P,PI,PD,PID调节器。

PI调节器很普遍,因为微分控制对测量噪音非常敏感。

积分作用的缺乏可以防止系统根据控制目标而达到它的目标值。

图1. PID控制器框图注释:由于控制理论和应用领域的差异,很多相关变量的命名约定是常用的。

1.控制环基础一个关于控制环类似的例子就是保持水在理想温度,涉及到两个过程,冷、热水的混合。

人可以凭触觉估测水的温度。

基于此他们设计一个控制行为:用冷水龙头调整过程。

重复这个过程,调节热水流直到温度处于期望的稳定值。

感觉水温就是对过程值或变量的测量。

期望得到的温度称为给定值。

控制器的输出对象和过程的输入对象称为控制参数。

测量值与给定值之间的差就是偏差值,太高、太低或正常。

作为一个控制器,在确定温度给定值后,就可以粗略决定改变阀门位置多少,以及怎样改变偏差值。

首次估计即是PID 控制器的比例度的确定。

当它几乎正确时,PID控制器的积分作用就是起着逐渐调整温度的作用。

微分作用就是根据水温变得更热、更冷,以及变化速率来决定什么时候、怎样调整那些阀门。

当偏差小时而做了一个大变动,相当于一个大的调整控制器,会导致超调。

温度控制器研究报告

温度控制器研究报告

温度控制器研究报告引言温度控制器是一种用于监测和调节温度的设备,广泛应用于各个领域,如工业生产、农业、医疗、研究等。

本文将对温度控制器的原理、应用和未来发展进行深入研究和探讨。

一、温度控制器的原理温度控制器的基本原理是通过感知温度并与设定温度进行比较,然后根据差异来控制加热或制冷设备,以达到温度稳定的目的。

常见的温度控制器有PID控制器、ON-OFF控制器和模糊控制器等。

1. PID控制器PID控制器是最常用的温度控制器之一。

它根据当前温度与设定温度之间的差异,计算出一个控制信号,然后通过控制阀门或加热元件来调整温度。

PID控制器具有良好的稳定性和动态性能,广泛应用于工业生产领域。

2. ON-OFF控制器ON-OFF控制器是一种简单的温度控制器,它将温度传感器输出的信号与设定温度进行比较,当温度高于设定温度时,控制器关闭加热设备;当温度低于设定温度时,控制器打开加热设备。

ON-OFF 控制器的稳定性较差,易产生温度波动。

3. 模糊控制器模糊控制器是一种基于模糊逻辑的温度控制器。

它通过将温度传感器输出的信号与设定温度进行模糊化处理,然后利用模糊规则进行推理,最终得到一个控制信号,用于调节加热或制冷设备。

模糊控制器具有较好的鲁棒性和适应性,适用于非线性和复杂系统。

二、温度控制器的应用温度控制器在各个领域都有广泛的应用。

1. 工业生产在工业生产中,温度控制器常用于控制炉温、烘干、冷却等过程。

通过合理调节温度,可以提高产品质量和生产效率,减少能源消耗。

2. 农业在农业领域,温度控制器被广泛应用于温室、养殖和种植等环境中。

通过控制温度,可以提供适宜的生长环境,促进作物的生长和动物的繁殖。

3. 医疗在医疗领域,温度控制器用于控制手术室、实验室和药品储存等场所的温度。

确保温度的稳定可以保证医疗设备的正常运行,并保护药品和生物样本的质量。

4. 研究在科研领域,温度控制器被广泛应用于实验室中的各种实验。

通过精确控制温度,可以保证实验的可重复性和准确性,提高研究结果的可信度。

PID水温控制系统

PID水温控制系统

PID水温控制系统摘要:随着社会主义现代化的发展,在科学技术突飞猛进的今天,人工智能起不不可忽视的作用。

尤其是各种智能化的仪器、仪表在农、工业的广泛应用给社会带来了极大的便利。

本文从温控模型和特点出发,采用以单片机PIC16F877为核心,用AD7416数字温度传感器进行测量温度。

以PID算法控制温度,并对温度进行良好的精度控制。

本系统的多个部件如,定时器,加热开关,按键设置水温,实时显示温度,控制温度和报警保温等功能等都可利用单片机来实现。

文章着重介绍核心器件的选择、温度控制系统分析、各部份电路及软件的设计。

它具有结构简单、可靠性好,抗干扰能力强、实现容易,成本低,具有实用价值等特点。

它提供了一个通过温度来控制设备的基本思想和原理,相信能在实际应用中为我们的生活带来更大的便利。

关键词:单片机数字温度传感器PID温度控制PID-based temperature control systemAbstract:Along with the development of socialist modernization, rapid progress in science and technology today, not artificial intelligence from the role that can not be overlooked. Especially the variety of intelligent instruments, meters in the agricultural, industrial society to the broad application brought great convenience. In this paper the characteristics of the model and temperature control, the introduction of SCM PIC16F877 at the core, with AD7416 digital temperature sensor to measure the temperature. PID algorithm to control the temperature , and temperature control for good accuracy. Many parts of the system such as, timers, heating switches, buttons installed water temperature, real-time display of temperature, temperature control and alarm functions, such as insulation SCM can be used to achieve. The article highlights the core device of choice, temperature control system, part of the circuit and software design. It has a simple structure, reliability, and strong interference capability to achieve easy, low cost, has practical value, and other characteristics. It provides a temperature controlled equipment through the basic ideas and principles, I believe in the practical application of our life more convenient.Keywords: microcomputer digital temperature PID temperature control目录一、前言 (1)(一)设计任务及要求 (1)(二)方案的比较与选择 (2)二、总体设计 (2)(一)系统总体设计 (2)(二)单元电路的功能原理分析 (7)(三)发挥部分设计 (8)三、系统软件设计 (9)(一)程序的主流程图 (9)(二)各个功能模块流程 (10)四、系统测试与调试 (14)(一)电路测试 (14)(二)仪器的使用 (15)(三)测试的结果 (15)(四)发挥部分测试 (15)五、结论 (15)致谢 (16)附录 (17)附录一设计总电路图 (17)附录二设计PCB图 (18)附录三设计3D图 (19)附录四程序清单 (20)参考文献 (28)一、前言(一)设计任务及要求本文介绍的是一个由PIC16F877为核心的单片机制作的一个水温控制器。

PID控制详解.pdf

PID控制详解.pdf

PID控制详解一、PID控制简介PID( Proportional Integral Derivative)控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节,它实际上是一种算法。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

从信号变换的角度而言,超前校正、滞后校正、滞后-超前校正可以总结为比例、积分、微分三种运算及其组合。

PID调节器的适用范围:PID调节控制是一个传统控制方法,它适用于温度、压力、流量、液位等几乎所有现场,不同的现场,仅仅是PID参数应设置不同,只要参数设置得当均可以达到很好的效果。

均可以达到0.1%,甚至更高的控制要求。

PID控制的不足1. 在实际工业生产过程往往具有非线性、时变不确定,难以建立精确的数学模型,常规的PID控制器不能达到理想的控制效果;2. 在实际生产现场中,由于受到参数整定方法烦杂的困扰,常规PID控制器参数往往整定不良、效果欠佳,对运行工况的适应能力很差。

二、PID控制器各校正环节任何闭环控制系统的首要任务是要稳(稳定)、快(快速)、准(准确)的响应命令。

PID调整的主要工作就是如何实现这一任务。

增大比例系数P将加快系统的响应,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现,过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。

温度控制与PID算法

温度控制与PID算法

温度控制与PID算法下面的叙述以波峰焊及回流焊加热温区的温度控制为实例,简单地结合控制理论,以浅显的方式,将温度控制及PID算法作一个简单的描述。

1.温度控制的框图这是一个典型的闭环控制系统,用于控制加热温区的温度(PV)保持在恒定的温度设定值(SV)。

系统通过温度采集单元反馈回来的实时温度信号(PV)获取偏差值(EV),偏差值经过PID调节器运算输出,控制发热管的发热功率,以克服偏差,促使偏差趋近于零。

例如,当某一时刻炉内过PCB板较多,带走的热量较多时,即导致温区温度下降,这时,通过反馈的调节作用,将使温度迅速回升。

其调节过程如下:温度控制的功率输出采用脉宽调制的方法。

固态继电器SSR的输出端为脉宽可调的电压U OUT 。

当SSR的触发角触发时,电源电压U AN通过SSR的输出端加到发热管的两端;当SSR的触发角没有触发信号时,SSR关断。

因此,发热管两端的平均电压为U d=(t/T)* U AN=K* U AN其中K=t/T,为一个周期T中,SSR触发导通的比率,称为负载电压系数或是占空比,K 的变化率在0-1之间。

一般是周期T固定不便,调节t, 当t在0-T的范围内变化时,发热管的电压即在0-U AN之间变化,这种调节方法称为定频调宽法。

下面将要描述的PID 调节器的算式在这里的实质即是运算求出一个实时变化的,能够保证加热温区在外界干扰的情况下仍能保持温度在一个较小的范围内变化的合理的负载电压系数K。

2.温度控制的两个阶段温度控制系统是一个惯性较大的系统,也就是说,当给温区开始加热之后,并不能立即观察得到温区温度的明显上升;同样的,当关闭加热之后,温区的温度仍然有一定程度的上升。

另外,热电偶对温度的检测,与实际的温区温度相比较,也存在一定的滞后效应。

这给温度的控制带来了困难。

因此,如果在温度检测值(PV)到达设定值时才关断输出,可能因温度的滞后效应而长时间超出设定值,需要较长时间才能回到设定值;如果在温度检测值(PV)未到设定值时即关断输出,则可能因关断较早而导致温度难以达到设定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档