高三高职模拟考(数学)试卷与答案
高职高考一模数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = 2x + 3,则f(2)的值为()A. 7B. 9C. 11D. 132. 下列各数中,有理数是()A. √2B. πC. 3/4D. 无理数3. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 27B. 30C. 33D. 364. 下列各函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 2x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 下列各式中,正确的是()A. a^2 = aB. a^3 = aC. (ab)^2 = a^2b^2D. (a/b)^2 = a^2/b^27. 已知等比数列{an}的首项为2,公比为3,则第5项an的值为()A. 54B. 162C. 486D. 14588. 若函数f(x) = kx + 1,其中k为常数,则f(x)的图像是()A. 直线B. 抛物线C. 双曲线D. 椭圆9. 已知三角形的三边长分别为3、4、5,则这个三角形的面积是()A. 6B. 8C. 10D. 1210. 下列各式中,正确的是()A. log2(8) = 3B. log2(4) = 2C. log2(2) = 1D. log2(1) = 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若sinθ = 1/2,则cosθ的值为________。
12. 已知复数z = 3 + 4i,则|z|的值为________。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an的通项公式为________。
14. 若等比数列{an}的首项为a1,公比为q,则第n项an的通项公式为________。
高职高考数学试卷模拟卷
一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。
A. √9B. √-16C. πD. 2√22. 如果 |a| = 3,那么 a 的值为()。
A. ±3B. ±4C. ±2D. ±13. 已知二次函数y = ax² + bx + c(a ≠ 0),如果它的图像开口向上,且顶点坐标为(1,-2),那么 a 的取值范围是()。
A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在等差数列 {an} 中,如果 a1 = 3,d = 2,那么第10项 an 的值为()。
A. 19B. 20C. 21D. 225. 若函数 f(x) = 2x + 1 在区间 [1, 3] 上单调递增,那么函数 g(x) = f(x) - 3 在区间 [1, 3] 上的单调性是()。
A. 单调递减B. 单调递增C. 先增后减D. 先减后增二、填空题(每题5分,共20分)6. 已知等差数列 {an} 的前n项和为 Sn,如果 S5 = 50,a1 = 2,那么 d =________。
7. 函数y = x² - 4x + 4 的图像与x轴的交点坐标为 ________。
8. 在直角坐标系中,点 A(2,3)关于 y 轴的对称点坐标为 ________。
9. 二项式定理 (a + b)ⁿ的展开式中,a³b⁷的系数为 ________。
10. 等比数列 {an} 的公比 q = 1/2,如果 a1 = 16,那么第5项 an 的值为________。
三、解答题(每题10分,共20分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\4x - y = 2\end{cases}\]12. 已知函数 f(x) = -3x² + 12x - 4,求函数 f(x) 的最大值。
四、应用题(15分)13. 一批货物由甲、乙两辆卡车运输,甲车每小时运输20吨,乙车每小时运输30吨。
高三模拟考数学试卷答案
一、选择题(每题5分,共50分)1. 答案:C解析:根据指数函数的性质,当x增大时,函数值单调递增,故选C。
2. 答案:B解析:由题意得,函数的对称轴为x=1,故选B。
3. 答案:D解析:利用导数的定义,求出函数的导数,再令导数等于0,解得x=1,故选D。
4. 答案:A解析:根据三角函数的周期性,得T=π,故选A。
5. 答案:C解析:利用二项式定理展开,得C(10,3)×(-1)^3=-120,故选C。
6. 答案:B解析:由题意得,方程的解为x=±√2,故选B。
7. 答案:A解析:由题意得,点P到直线l的距离为1,故选A。
8. 答案:D解析:根据三角函数的性质,得sinθ=cos(π/2-θ),故选D。
9. 答案:C解析:利用向量的数量积公式,得a·b=|a||b|cosθ,故选C。
10. 答案:B解析:根据二次函数的性质,得对称轴为x=1,故选B。
二、填空题(每题10分,共40分)11. 答案:1/2解析:根据等比数列的性质,得a1/a2=a2/a3,解得a1/a3=1/2。
12. 答案:π/3解析:根据正弦定理,得sinA/sinB=a/b,解得A=π/3。
13. 答案:-1解析:根据导数的定义,得f'(x)=lim(h→0)(f(x+h)-f(x))/h,代入x=1,得f'(1)=-1。
14. 答案:4解析:根据复数的乘法运算,得(2+3i)(2-3i)=4+9=13,故选4。
15. 答案:π/4解析:根据余弦定理,得c^2=a^2+b^2-2abcosC,代入a=1,b=1,C=π/4,得c=√2。
三、解答题(每题20分,共80分)16. 答案:(1)令f(x)=x^3-3x^2+4x,则f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=2/3。
(2)当x<2/3时,f'(x)>0,函数单调递增;当x>2/3时,f'(x)<0,函数单调递减。
中职高三数学模拟试卷
一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + 3,其图像的对称轴是:A. x = 1B. x = 2C. x = 3D. x = -12. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 35,则公差d为:A. 2B. 3C. 4D. 53. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,cosA = 1/2,则边c的长度为:A. 2√6B. 4√6C. 6√6D. 8√64. 下列函数中,在定义域内单调递减的是:A. y = 2x - 3B. y = -x^2 + 4x + 3C. y = 1/xD. y = 3x^25. 已知复数z = 1 + i,则|z|的值为:A. √2C. 1D. 0二、填空题(每题5分,共25分)6. 若log2(3x - 2) = 1,则x = ________。
7. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第5项a5 = ________。
8. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为_______。
9. 若sinθ = 3/5,且θ为锐角,则cosθ的值为_______。
10. 二项式(2x - 3y)^3展开后,x^2y的系数为_______。
三、解答题(每题15分,共45分)11. (15分)已知函数f(x) = x^3 - 3x^2 + 4x + 6,求:(1)函数f(x)的零点;(2)函数f(x)的图像的对称中心。
12. (15分)已知等差数列{an}的前n项和为Sn,且a1 = 1,S10 = 55,求:(1)公差d;(2)数列{an}的第15项a15。
13. (15分)在直角坐标系中,已知点A(2, 3),点B在直线y = 2x + 1上,且|AB| = √10,求直线AB的方程。
四、证明题(20分)14. (20分)已知函数f(x) = x^2 - 4x + 5,证明:对于任意实数x,都有f(x) ≥ 1。
职高数学高三模拟试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 已知函数$f(x) = x^2 - 4x + 4$,则$f(2)$的值为:A. 0B. 2C. 4D. 82. 若$a > b$,则下列不等式中正确的是:A. $a^2 > b^2$B. $\frac{1}{a} > \frac{1}{b}$C. $a - b > 0$D. $a + b > 0$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,则该数列的公差为:A. 1B. 2C. 3D. 44. 函数$y = \frac{1}{x}$的图像是:A. 一条直线B. 一条抛物线C. 一条双曲线D. 一条指数曲线5. 在直角坐标系中,点$A(2, 3)$关于直线$y = x$的对称点为:A. $B(-2, -3)$B. $B(-3, -2)$C. $B(3, 2)$D. $B(2, 3)$二、填空题(每题5分,共20分)6. 若$|x - 1| = 3$,则$x$的值为______。
7. 若$a = 3$,$b = 4$,则$(a + b)^2 - 2ab$的值为______。
8. 等差数列$\{a_n\}$的通项公式为$a_n = 2n + 1$,则该数列的第10项为______。
9. 函数$y = -x^2 + 4x - 3$的图像与$x$轴的交点坐标为______。
10. 若$\angle A = 45^\circ$,$\angle B = 90^\circ$,则$\angle C$的度数为______。
三、解答题(共50分)11. (10分)已知函数$f(x) = x^3 - 3x^2 + 4x + 2$,求:(1)$f(2)$的值;(2)函数$f(x)$的零点。
12. (15分)已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,求:(1)该数列的首项和公差;(2)求该数列的前10项和。
职高数学高三模拟试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. 0.1010010001...C. 3.14159D. -1/3答案:A2. 函数 y = -2x + 1 的图像是()A. 一次函数图像B. 二次函数图像C. 反比例函数图像D. 指数函数图像答案:A3. 已知 a、b 是实数,且 a + b = 0,则 a^2 + b^2 的值是()A. 1B. 0C. -1D. 无法确定答案:B4. 下列各对数式中,相等的是()A. log2(8) = 3B. log3(27) = 2C. log4(16) = 2D. log5(25) = 1答案:D5. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为()A. 1B. 3C. 5D. 7答案:C6. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 6, 9, 12, 15答案:A7. 已知等比数列的前三项分别为 2, 6, 18,则该数列的公比是()A. 1B. 2C. 3D. 6答案:B8. 在直角坐标系中,点 P(2, 3) 关于直线 y = x 的对称点坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A9. 下列各函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C10. 已知等差数列的前三项分别为 3, 7, 11,则该数列的通项公式是()A. an = 4n - 1B. an = 2n + 1C. an = 4n + 1D. an = 2n - 1答案:A二、填空题(每题5分,共25分)11. 函数 y = x^2 - 4x + 4 的最小值是 ________。
答案:012. 已知 a、b 是实数,且 |a| = |b|,则 a + b 的值是 ________。
高三数学模考试卷及答案
一、选择题(每题5分,共50分)1. 函数f(x) = (x-1)^2在区间[0,2]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 无单调性2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10等于:A. 23B. 21C. 19D. 173. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为:A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)4. 若复数z满足|z-1|=|z+1|,则复数z的取值范围是:A. z=0B. z=1C. z=-1D. z=±15. 已知等比数列{bn}的首项b1=4,公比q=2,则第5项b5等于:A. 32B. 16C. 8D. 46. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系是:A. a+b+c=0B. a-b+c=0C. a+b-c=0D. a-b-c=07. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°8. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于原点对称的是:A. x=0B. x=1C. x=-1D. x=39. 若不等式2x-3<5,则x的取值范围是:A. x<2B. x<8C. x>2D. x>810. 在平面直角坐标系中,直线y=2x+1与y轴的交点坐标为:A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(每题5分,共50分)11. 函数f(x) = (x-1)/(x+1)的图像与x轴的交点坐标是______。
12. 若等差数列{an}的通项公式为an = 3n-2,则该数列的前5项和为______。
13. 在三角形ABC中,若AB=AC,则角B和角C的度数分别为______和______。
职高高三数学试题及答案
职高高三数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 4a + 4 = 0 \) 和 \( b^2 - 4b + 4 = 0 \),则 \( a + b \) 的值为:A. 4B. -4C. 2D. -2答案:A3. 函数 \( y = \frac{1}{x} \) 的图象在点 \( (1, 1) \) 处的切线方程是:A. \( y = x \)B. \( y = -x + 2 \)C. \( y = x - 1 \)D. \( y = -x + 1 \)答案:D4. 已知 \( \sin(\alpha) = \frac{1}{2} \),\( \alpha \) 为锐角,则 \( \cos(\alpha) \) 的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( -\frac{\sqrt{3}}{2} \)D. \( -\frac{1}{2} \)答案:A二、填空题(每题5分,共20分)1. 已知 \( \tan(\alpha) = 2 \),则 \( \sin(\alpha) \) 的值为________。
答案:\( \frac{2\sqrt{5}}{5} \)2. 函数 \( y = \sqrt{x} \) 的定义域为 ________。
答案:\( [0, +\infty) \)3. 等差数列 \( 3, 7, 11, \ldots \) 的第 \( n \) 项为 ________。
答案:\( 4n - 1 \)4. 已知 \( \cos(\alpha) = \frac{3}{5} \),\( \alpha \) 为锐角,则 \( \sin(\alpha) \) 的值为 ________。
高职高考数学模拟试卷(一)课件
(2)当x∈N*时,f(1),f(2),f(3),f(4),…构成一数列,求其通项公式.
【解】 (2)f(1)=5,f(x)-f(x-1)=3, f(x)构成的数列为首项为5,公差为3的等差数列. 则f(x)=5+3(x-1)=3x+2(x∈N*).
24.(本小题满分14分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,
【答案】A 【解析】由lg(x-2)≥0得x≥3,答案选A.
8.在等比数列{an}中,若a2=3,a4=27,则a5= ( )
A.-81
B.81
C.81或-81 D.3或-3
9.抛掷一颗骰子,落地后,面朝上的点数为偶数的概率等于( )
A.0.5
B.0.6
C.0.7
D.0.8
11.函数y=sin2x+cos 2x的最小值和最小正周期分别为 ( )
2.已知函数f(x+1)=2x-1,则f(2)= ( )
A.-1
B.1
C.2
D.3
【答案】B 【解析】 f(2)=f(1+1)=21-1=1.
3.“a+b=0”是“a·b=0”的 ( )
A.充分条件
B.必要条件
C.充要条件
D.既非充分又非必要条件
【答案】D 【解析】 a+b=0⇒a·b=0,a·b=0⇒a+b=0,故选D.
于(a,b),给出的下列四个结论:
①a=ln b ②b=ln a ③f(a)=b ④当x>a时,f(x)<ex
其中正确的结论共有
()
A.1个
B. 【解析】因为两个函数图像都经过点(a,b),所以f(a)=b,ea=b,
又y=ex在(a,+∞)上增函数,y=f(x)为减函数,所以f(x)<ex.
高职数学试题试卷及答案
高职数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是微分方程 \( y' = 2y \) 的解?A. \( y = e^{2x} \)B. \( y = e^{-2x} \)C. \( y = e^{x} \)D. \( y = e^{-x} \)答案:A4. 求定积分 \(\int_{0}^{1} x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A5. 矩阵 \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\) 的行列式是多少?A. 5B. -5C. 7D. -7答案:B6. 以下哪个选项是函数 \( f(x) = x^2 - 4x + 4 \) 的极值点?A. \( x = 0 \)B. \( x = 2 \)C. \( x = 4 \)D. \( x = -2 \)答案:B7. 计算二重积分 \(\iint_{D} x^2 + y^2 dA\),其中 \(D\) 是由\(x^2 + y^2 \leq 1\) 定义的圆盘区域。
A. \(\frac{\pi}{2}\)B. \(\frac{\pi}{4}\)C. \(\pi\)D. \(2\pi\)答案:C8. 以下哪个选项是曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线方程?A. \( y = 3x - 2 \)B. \( y = 3x - 1 \)C. \( y = 3x + 1 \)D. \( y = 3x \)答案:B9. 以下哪个选项是函数 \( f(x) = \ln(x) \) 的反函数?A. \( f^{-1}(x) = e^x \)B. \( f^{-1}(x) = \ln(x) \)C. \( f^{-1}(x) = e^{-x} \)D. \( f^{-1}(x) = \frac{1}{x} \)答案:A10. 以下哪个选项是函数 \( f(x) = \cos(x) \) 的周期?A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案:A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \sin(x) \) 的导数是 ________。
职高高考模拟数学试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 无理数答案:C2. 已知 a < b,下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 0答案:A3. 下列函数中,定义域为全体实数的是()A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = log2x答案:C4. 已知等差数列 {an} 的前n项和为 Sn,若 S5 = 25,S10 = 75,则 a1 = ()A. 1B. 2C. 3D. 4答案:A5. 下列命题中,正确的是()A. 若 a > b,则 a^2 > b^2B. 若 a > b,则 a - b > 0C. 若 a > b,则 ac > bcD. 若 a > b,则 a/c > b/c答案:B6. 已知等比数列 {an} 的前三项为 a1, a2, a3,若 a1 + a2 + a3 = 12,a1 a2 a3 = 64,则 a1 = ()A. 1B. 2C. 4D. 8答案:C7. 已知函数 y = ax^2 + bx + c,若 a ≠ 0,且函数图象开口向上,则()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c >0 D. a < 0, b < 0, c > 0答案:B8. 已知正方形的对角线长为2√2,则其面积是()A. 4B. 6C. 8D. 10答案:A9. 下列各数中,绝对值最小的是()A. -1/2B. -1C. 1/2D. 1答案:C10. 已知函数 y = x^3 - 3x,求该函数的极值点。
2024年高职单独招生考试数学模拟试题及答案
2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。
中职高三模拟试卷数学答案
一、选择题(每题4分,共40分)1. 若函数f(x) = 2x - 3在x=2时的导数为2,则f'(2)的值为()A. 2B. 4C. 6D. 8答案:A2. 下列不等式中,正确的是()A. |x| > 0B. x^2 > 0C. √x > 0D. |x| < 0答案:B3. 若等差数列{an}的首项为a1,公差为d,则第n项an=()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A4. 已知函数f(x) = x^3 - 3x + 2,若f(x)的图像与x轴的交点个数为2,则f'(x)的零点个数为()A. 1B. 2C. 3D. 4答案:A5. 下列函数中,在定义域内单调递增的是()A. f(x) = x^2B. f(x) = 2xC. f(x) = 1/xD. f(x) = -x^3答案:B6. 已知向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角θ的余弦值为()A. 1/2B. 1/3C. 1/4D. 1/5答案:A7. 若函数y = x^2 - 4x + 4在区间[1, 3]上的最大值为3,则函数的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 4答案:B8. 若复数z = a + bi(a, b为实数),则|z|^2 =()A. a^2 + b^2B. a^2 - b^2C. a^2 - 2abD. a^2 + 2ab答案:A9. 已知函数f(x) = e^x - x,若f'(x) > 0,则x的取值范围为()A. x > 0B. x < 0C. x ≤ 0D. x ≥ 0答案:A10. 若等比数列{an}的首项为a1,公比为q,则第n项an=()A. a1 q^(n-1)B. a1 / q^(n-1)C. a1 q^nD. a1 / q^n答案:A二、填空题(每题5分,共25分)11. 函数f(x) = (x-1)^2 + 1的图像的顶点坐标为______。
高三高职模拟考(数学)试卷与答案-8页
高三高职类高考模拟试卷姓名班级学号一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题5分,满分75分)1、已知全集U =R ,M={x|x 21,x R},N ={1,2,3,4},则C U M ∩N=( )A. {4}B. {3,4}C. {2,3,4}D. {1,2,3,4}2、“G =ab ”是“a,G,b 成等比数列”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3、函数y=)32(log 3x 的定义域为区间( )A. ),23( B. ),23[C. ),2( D. ),2[4、函数y=sin3xcos3x 是( )A. 周期为3的奇函数B. 周期为3的偶函数C. 周期为32的奇函数 D. 周期为32的偶函数5、已知平面向量AC 与CB 的夹角为90°,且AC =(k,1),CB =(2,6),则k 的值为( )A. -31 B.31 C. -3D. 36、在等差数列{a n }中,若S 9=45,则a 5=()A. 4B. 5C. 8D. 107、已知抛物线y=mx 2的准线方程为y=-1,则m =()A. -4B. 4C.41 D. -418、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形9、函数y=sin3x 的图像平移向量a 后,新位置图像的解析式为y=sin(3x-4)-2,则平移向量a =( )A. (6,-2)B. (12,2)C. (12,-2)D. (6,2)10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为( )A. 8B. 16C. 32D. 6411、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是()A. y=x 3B. y=-x3 C. y=x 33 D. y=-x3312、函数y=3sinx+cosx ,x [-6,6]的值域是( )A. [-3,3]B. [-2,2]C. [0,3]D. [0,2]13、已知tan =5,则sin ·cos = ()A. -526 B.526 C. -265 D.26514、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为( )A. 4B. 8C. 16D. 3215、若、都是锐角,且sin =734,cos(+)=1411,则=( )A.3 B.8 C.4 D.6第二部分(非选择题,共75分)二、填空题(本大题共5小题,每小题5分,满分25分)16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为.17、顶点在圆x 2+y 2=16上,焦点为F(5,0)的双曲线方程为.18、向量a 与b 的夹角为60°,|a |=2,|b |=3,则|a +b |=.19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= .20、若log 3x+log 3y=4,则x+y 的最小值为.三、解答题(21、22小题各10分,23、24小题各15分,满分50分)21、解不等式8x 2+2ax-3a 2≤0 (a ≠0)22、求以椭圆114416922yx的右焦点为圆心,且与双曲线116922yx的渐近线相切的圆的方程.23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里沿什么方向航行24、设数列{a n }是等差数列,)(21N k ka a ab kk(1)求证:数列{b n }也是等差数列.(2)若23132113211b b b a a a a ,求数列{a n },{b n }的通项公式.高三高职类高考班第二次模拟考试数学参考答案一、选择题BBDAC BCACB DCDCA二、选择题(5×5′=25′)16、-4 17、191622yx18、1919、-2x+220、18三、解答题(21、22小题各10分,23、24小题各15分,共50分)21、解:原不等式可化为(4x+3a)(2x-a)≤0∴x 1=a 43,x 2=a21(1)当a>0时,则a 21>a 43故原不等式的解集为[a 43,a 21](2)当a<0时,则a 21<a43故原不等式的解集为[a 21,a 43]22、解:椭圆114416922yx的右焦点为(5,0)令016922yx,则双曲线的渐近线方程为:xy 34即4x+3y=0及4x-3y=0由题意知,所求圆的圆心坐标为(5,0)半径为r=2234|0354|=4故所求圆的方程为(x-5)2+y 2=1623、解:如图,在△A 2B 2A 1中,已知B 2A 2A 1=60°,A 1A 2=302×31=102,B 2A 2=102,则△A 2B 2A 1是等边三角形,故A 1B 2=102,B 2A 1A 2=60°∴在△B 2A 1B 1中,B 2A 1B 1=45°,A 1B 1=20设B 1B 2=x 由余弦定理知,x 2=202+(102)2-2×20×102×cos45°=200∴x=102易知△B 1A 1B 2为等腰直角三角形,即A 1B 1B 2=45°故乙船每小时行驶31210=302海里,沿“北偏东30°”的方向航行.24、设数列{a n }的首项为a 1,公差为d ,则(1)a 1+a 2+…+a k =ka 1+dk k 2)1(∴b k =kd k k ka 2)1(1= a 1+2)1(d k 即b n =a 1+2)1(d n 当n =1时,b 1=a 1;当n>1时,b n -b n-1= [a 1+2)1(d n ]-[a 1+2)2(d n]=2d ∴数列{b n }是首项为a 1,公差为2d 的等差数列.(2)由题意知:2322)113(13132)113(131311132113211d a da b b b a a a a ,易得:d=21故a n =1+n 21,b n =n4145。
职高高三数学模拟试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C2. 若a,b是方程x² - 3x + m = 0的两个实数根,则m的取值范围是()A. m > 3B. m ≤ 3C. m ≥ 3D. m < 3答案:B3. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标是()A. (1, 0), (3, 0)B. (0, 1), (3, 1)C. (1, 3), (3, 3)D. (0, 3), (3, 3)答案:A4. 在直角坐标系中,点A(2, 3),点B(-2, -3),则线段AB的中点坐标是()A. (0, 0)B. (1, 1)C. (2, 2)D. (-1, -1)答案:A5. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10等于()A. 90B. 100C. 110D. 120答案:A6. 若等差数列{an}的第一项为a₁,公差为d,则第n项an的表达式是()A. an = a₁ + (n - 1)dB. an = a₁ - (n - 1)dC. an = a₁ + ndD. an = a₁ - nd答案:A7. 下列函数中,是偶函数的是()A. f(x) = x² - 3x + 2B. f(x) = x³ + 2x² - 3xC. f(x) = 2x + 3D. f(x) = x² + 2答案:D8. 若sinθ = 1/2,则cos(2θ)的值是()A. 3/4B. 1/4C. -1/4D. -3/4答案:B9. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. √6/4答案:C10. 下列不等式中,恒成立的是()A. x² + 1 > 0B. x² - 1 > 0C. x² + 1 < 0D. x² - 1 < 0答案:A二、填空题(每题5分,共25分)11. 若函数f(x) = 3x² - 2x + 1在x = 1时取得极值,则该极值为______。
高职高考模拟数学试卷
一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则该函数的对称轴为:A. x = -1B. x = 1C. x = 2D. x = 32. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an等于:A. 17B. 18C. 19D. 203. 若复数z = 2 + 3i的模为√13,则z的共轭复数为:A. 2 - 3iB. 3 + 2iC. -2 + 3iD. -3 + 2i4. 下列不等式中,正确的是:A. 2x + 3 > 5B. 3x - 2 < 4C. x^2 + 1 > 0D. x^2 - 1 < 05. 已知函数y = log2(x - 1),则该函数的定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 16. 若等比数列{bn}中,b1 = 3,公比q = 2,则第4项bn等于:A. 12B. 24C. 48D. 967. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 已知函数y = sin(x + π/2),则该函数的周期为:A. πB. 2πC. 3πD. 4π9. 若等差数列{cn}中,c1 = 5,d = -2,则第n项cn等于:A. 5 - 2(n - 1)B. 5 + 2(n - 1)C. 5 - 2(n + 1)D. 5 + 2(n + 1)10. 下列函数中,单调递增的是:A. y = x^2B. y = 2xC. y = -xD. y = x^3二、填空题(每题5分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 4x - 6,则f(1)的值为______。
高职高考数学模拟试卷(三)课件
一、选择题(本大题共15小题,每小题5分,满分75分.在每小题给出的四个选
项中,只有一项是符合题目要求的.)
1.设集合A={x|-2<x<4},B={2,3,4,5},则A∩B= ( )
A.{2}
B.{2,3}
C.{3,4}
D.{2,3,4}
【答案】B 【解析】因为2,3是集合A和B的公共元素.故选B.
C.(0,3)
D.(0,-2)
13.一组数据5,7,7,a,10,11,它的平均值是8,则其标准差是 ( )
A.2
B.4
C.8
D.1
15.某班学生参加数学测试,成绩的频率分布直方图如图,数据的分
组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,
2.函数f(x)=lg(1-x)的定义域是 A.(-∞,1) B.(-1,+∞)
() C.(-∞,1]
D.(-∞,+∞)
【答案】A 【解析】由真数1-x>0得x<1,所以选A.
【答案】C 【解析】A项定义域不满足题目要求,故排除. B项底数大于1,故应为增函数,排除. D项也为增函数. 所以选C,因为底数小于1,为减函数.
【答案】C 【解析】令a=0即可排除A,B. 取a,b均为负数即可排除D. 故选C.
7.在等差数列{an}中,已知a5+a8=20,则S12的值是 ( )
A.240
B.120
C.60
D.200
8.将点A(1,-3)按向量a=(-1,1)平移得到点B,则点B的坐标为( )
A.(2,-4)
B.(-2,4)
已知上框架与下框架的高的比为1∶2,设上窗框木料的长为x米, 窗框的面积为y.(中间木档的面积可忽略不计)
高三职业模拟试卷数学答案
一、选择题(每题5分,共50分)1. 若函数 $f(x) = ax^2 + bx + c$ 在 $x=1$ 处取得最小值,则 $a$、$b$、$c$ 之间的关系是:- A. $a > 0$,$b = 0$,$c$ 可以是任意实数- B. $a > 0$,$b \neq 0$,$c$ 可以是任意实数- C. $a < 0$,$b = 0$,$c$ 可以是任意实数- D. $a < 0$,$b \neq 0$,$c$ 可以是任意实数- 答案:A2. 已知等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n = 3n^2 - 2n$,则 $a_1$ 等于:- A. 1- B. 3- C. 5- D. 7- 答案:A3. 若 $log_2(3x - 1) = log_2(4 - 2x)$,则 $x$ 的值为:- A. 1- B. 2- C. 3- D. 4- 答案:B4. 圆 $(x - 2)^2 + (y + 1)^2 = 1$ 的标准方程是:- A. $x^2 + y^2 - 4x + 2y = 0$- B. $x^2 + y^2 - 4x - 2y = 0$- C. $x^2 + y^2 + 4x + 2y = 0$- D. $x^2 + y^2 + 4x - 2y = 0$- 答案:B5. 下列函数中,在定义域内单调递减的是:- A. $y = x^2$- B. $y = 2^x$- C. $y = \log_2x$- D. $y = x^3$- 答案:C二、填空题(每题5分,共25分)6. 函数 $y = -x^2 + 4x + 3$ 的顶点坐标为______。
- 答案:$(2, 3)$7. 等差数列 $\{a_n\}$ 的公差为 $d$,若 $a_1 = 2$,$a_5 = 10$,则 $d = $______。
- 答案:28. 若 $log_3(2x + 1) = 2$,则 $x = $______。
职高数学摸底考试(含答案)
涉县职教中心高三摸底考试数学试卷一、选择题(本题共15个小题,每题3分,共45分)1、设{}4|≤=x x A ,{}82|<≤=x x B ,则B A 是( ). A.]8,4[- B.]4,2[ C.)8,4(- D. )4,2[2、已知全集},5|{N x x x U ∈≤=,集合},1{U x x A ∈>=,则A C U 等于( ). A.}1{ B.}0{ C.}1,0{ D.}2,1,0{3、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ). A.1个 B.2个 C.3个 D.4个4、b a =是b a =的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5、21>+x 是1>x 的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D. 既不充分也不必要条件 6、下列命题中正确的是( ).A.若b a >,则bc ac >B.若22bc ac >,则b a > C. 若b a >,则22bc ac > D.若d c b a >>,,则bd ac >7、如果b a >,那么下列不等式恒成立的是( ). A.bc ac > B.22b a > C.c b c a +>+ D.0)lg(>-b a8、已知集合}21|{<-=x x A ,}11|{>-=x x B ,则=B A ( ). A.)3,1(- B.),3()0,(+∞-∞ C.)0,1(- D.)3,2()0,1( - 9、不等式22)6(4)6(-≥-x x x 的解集是( ). A.),4[+∞ B.),6[+∞ C.]6,4[ D.),6[]6,4[+∞ 10、下列各组函数中,表示同一函数的是( ).A.xx y 2=与x y = B.2x y =与x y =C.xx x y 2=与x y = D.0x y =与1=y11、函数3212-+=x x y 的定义域是( ).A.),0(+∞B.),1[]3,(+∞--∞C.)1,3(-D. ),1()3,(+∞--∞12、⎩⎨⎧-∞∈-+∞∈+=)0,(,3),0[,1)(2x x x x x f ,则=-)]2([f f ( ).A.5B.2C.26D.-213、奇函数)(x f y =在]2,1[上是增函数且有最大值3,则)(x f y =在]1,2[--上是( ). A.增函数且有最小值-3 B.增函数且有最大值-3 C.减函数且有最小值-3 D.减函数且有最大值-3 14、下列函数为奇函数的是( ) .A.x y 2log =B.x y 3=C.13++=x x y D.x y =15、下列函数为单调函数的是( ).A.)0(1>=x xy B.12+=x y C.x x y -=2 D.21x y -= 二、填空题(本题共15空,每空2分,共30分)1、已知集合},3,2{2a M =,}12,3,2{-=a N ,若N M =,则=a .2、已知集合}0,{a M =,}2,1{=N ,且}1{=N M ,则=N M .3、设全集},104|{N x x x U ∈≤≤=,}10,8,6,4{=A ,则=A C U .4、1sin =x 是︒=90x 的 条件.5、6:>x p ,5:≥x q ,则p 是q 的 条件.6、已知2)1(-=x a ,)1(22+-=x x b ,则a 与b 的大小关系是 .7、不等式011222≤+-+x x x 的解集是 (用区间表示). 8、已知⎩⎨⎧>≤=0,20,sin )(x x x x x f ,则=)1(f ,=)0(f .9、函数x x f 2log 2)(-=的定义域是 .10、已知函数)(x f y =是奇函数且在),0(+∞上是增函数,则函数)(x f y =在)0,(-∞上的单调性为 函数.11、若函数)2)(1()(a x x x f +-=为偶函数,则常数=a ,此函数的单调递增区间为 .12、已知2)()(+=x g x f ,且)(x g 为奇函数,17)5(=-f ,则=)5(g ,=)5(f . 三、解答题(本题共6小题,共45分)1、(7分)已知全集}32,3,2{2-+=a a U ,},2{a A =,A 的补集为}0{=A C U ,求a 的值.2、(7分)已知集合},023|{2R m x mx x A ∈=+-=,若A 中元素至多有一个,求m 的取值范围.3、(7分)若不等式0322>+-x ax 的解集为}13|{<<-x x ,求0322<++x ax 的解集(用区间表示).4、(8分)不等式012>+-kx kx 的解集为实数集R ,求k 的取值范围.5、(8分)求函数)12lg(212--+-=x x x x y 的定义域.6、(8分)设)(x f 是定义在区间),(a a -上的奇函数,)(x g 是定义在区间),(a a -上的偶函数.若)(),(x g x f 满足2)()(23--=+x x x g x f ,分别求)(),(x g x f 的表达式.涉县职教中心高三摸底考试数学试题答案一、选择题1--5、BCDAB 6—10、BCDDB 11—15、DCADA 二、填空题1、 12、}2,1,0{3、}9,7,5{4、必要不充分5、充分不必要6、b a <7、]3,4[-8、 2 09、]1,0( 10、 增 11、 1 ),0(+∞ 12、 -15 -13 三、解答题1、解:由题意知,0322=-+a a ,解得13或-=a若1=a ,则}1,2{=A ,}0,3,2{=U ,而集合A 就不是全集U 的子集,所以3-=a2、解:若0=m ,则023232=+-=+-x x mx ,则}32{=A ,符合题意;若0≠m ,由于A 中元素至多有一个,则方程0232=+-x mx 的根的判别式08924)3(2≤-=⨯--=∆m m ,解得89≥m 综上所述,m 的取值范围为),89[}0{+∞3、解:由题意知,3-和1为方程0322=+-x ax 的两个根, 所以031212=+⨯-⨯a ,解得1-=a所以0323222<++-=++x x x ax ,解得13-<>x x 或 即0322<++x ax 的解集为),3()1,(+∞--∞4、解:若0=k ,则0112>=+-kx kx 恒成立,即不等式012>+-kx kx 的解集为实数集R ;若0>k ,则由题意知,方程012=+-kx kx 的根的判别式04)(2>--=∆k k ,解得4>k ;若0<k ,不论k 取何值,都存在0x x =,使得0110202<+-=+-kx kx kx kx ,即不等式012>+-kx kx 的解集不是实数集R ;综上所述,求k 的取值范围),4(}0{+∞5、解:由题意知⎪⎪⎩⎪⎪⎨⎧>-≠-≥-≥-0120)12lg(02012x x x x x ,分别解这四个不等式得:⎪⎪⎩⎪⎪⎨⎧>≠≤≤≥211201x x x x ,所以原函数的定义域为]2,1(6、解:因为)(x f 是定义在区间),(a a -上的奇函数,)(x g 是定义在区间),(a a -上的偶函数所以)()(),()(x g x g x f x f =--=- 又因为2)()(23--=+x x x g x f所以2)()()()(23---=-=-+-x x x f x g x g x f 解得,3)(x x f =,2)(2--=x x g。
高职数学高三模拟试卷(一)
高职数学高三模拟试卷(一)一. 选择题:(本大题共10小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、设集合A={-3,0,3},B={0},则( )(A )B 为空集 (B )B ∈A (C )A ⊂B (D )B ⊂A 2.函数y=lgx 的定义域是 ( )A .()+∞∞-, B.[0,+∞] C.(0,+∞) D.(1,+∞) 3.式子log 39的值为( )A.1B.2C.3D.94.已知函数2)1(2+-=+x x x f ,则=)3(f ( )(A )8 (B )6 (C )4 (D )2 5.已知锐角α的终边经过点(1,1),那么角α为( )A .30° B. 90° C. 60° D. 45°6.已知一个圆的半径是2,圆心点是A (1,0),则该圆的方程是( )A .(x-1)2+ y 2=4 B.(x+1)2+y 2=4 C. (x-1)2+y 2=2 D. (x+1)2+y 2=2 7.已知a=4, b=9,则a 与b 的等比中项是( )A .±61 B. ± 6 C. 6 D.-68.同时抛掷两枚均匀的硬币,出现 两个反面的概率是( ) A .21 B.31 C.41 D.519.下列命题中正确的是( )(A )平行于同一平面的两直线平行 (B )垂直于同一直线的两直线平行 (C )与同一平面所成的角相等的两直线平行(D )垂直于同一平面的两直线平行 10.某地一种植物一年生长的高度如下表.A .0.80B .0.65C .0.40D .0.25第Ⅱ卷(非选择题 共70分)二、填空题:(本大题共12小题,每小题2分,共24分)。
1.Cos325°=_______________2. 设a=x2+2x,b=x2+x+2,若x>2,则a、b 的大小关系是________3.已知正方体的表面积是54cm2,则它的体积是__________4.函数)4log(2xxy-=的定义域为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三高职类高考模拟试卷
姓名 班级 学号 一、选择题(本大题共15小题,每题只有一个正确答案,请将其序号填在答题卡上,每小题
5分,满分75分)
1、已知全集U =R ,M={x|x 21+≤,x ∈R},N ={1,2,3,4},则C U M ∩N= ( ) A. {4} B. {3,4} C. {2,3,4} D. {1,2,3,4}
2、“G =ab ±”是“a,G,b 成等比数列”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
3、函数y=)32(log 3-x 的定义域为区间 ( )
A. ),23(+∞
B. ),2
3
[+∞
C. ),2(+∞
D. ),2[+∞
4、函数y=sin3xcos3x 是 ( ) A. 周期为3π的奇函数 B. 周期为3
π
的偶函数 C. 周期为
32π的奇函数 D. 周期为3
2π的偶函数 5、已知平面向量AC 与CB 的夹角为90°,且AC =(k,1),CB =(2,6),则k 的值为 ( )
A. -31
B. 3
1
C. -3
D. 3
6、在等差数列{a n }中,若S 9=45,则a 5= ( ) A. 4 B. 5 C. 8 D. 10
7、已知抛物线y=mx 2的准线方程为y=-1,则m = ( ) A. -4 B. 4 C.
41 D. -4
1
8、在△ABC 中,内角A 、B 所对的边分别是a 、b ,且bcosA=acosB ,则△ABC 是( ) A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形
9、函数y=sin3x 的图像平移向量后,新位置图像的解析式为y=sin(3x-4
π
)-2,则平移向量= ( ) A. (
6π,-2) B. (12π,2) C. (12π,-2) D. (6
π
,2)
10、设项数为8的等比数列的中间两项与2x 2+7x+4=0的两根相等,则该数列的各项的积为 ( )
A. 8
B. 16
C. 32
D. 64 11、过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第二象限,则该直线的方程是
( )
A. y=x 3
B. y=-x 3
C. y=x 33
D. y=-x 3
3
12、函数y=3sinx+cosx ,x ∈[-6π,6
π
]的值域是 ( ) A. [-3,3] B. [-2,2] C. [0,3] D. [0,2] 13、已知tan α=5,则sin α·cos α= ( ) A. -526 B. 526 C. -265 D. 26
5 14、椭圆4x 2+y 2=k 上任意两点间的最大距离为8,则k 的值为 ( ) A. 4 B. 8 C. 1
6 D. 32 15、若α、β都是锐角,且sin α=7
3
4,cos(α+β)=1411-,则β= ( )
A.
3π B. 8π
C. 4π
D. 6
π
第二部分(非选择题,共75分)
二、填空题(本大题共5小题,每小题5分,满分25分)
16、第四象限点A(2,y)到直线3x+4y-5=0的距离为3,则y 的值为 . 17、顶点在圆x 2+y 2=16上,焦点为F(±5,0)的双曲线方程为 . 18、向量与的夹角为60°,||=2,||=3,则|+|= . 19、经过点M(1,0),且与直线x-2y+3=0垂直的直线方程为y= . 20、若log 3x+log 3y=4,则x+y 的最小值为 .
三、解答题(21、22小题各10分,23、24小题各15分,满分50分) 21、解不等式 8x 2+2ax-3a 2≤0 (a ≠0)
22、求以椭圆
114416922=+y x 的右焦点为圆心,且与双曲线116
92
2=-y x 的渐近线相切的圆的方程.
23、如图,甲船以每小时230海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距210海里,问乙船每小时航行多少海里?沿什么方向航行?
24、设数列{a n }是等差数列,)(21N k k
a a a
b k
k ∈+++=
(1)求证:数列{b n }也是等差数列. (2)若2
3
132113211=++++++=b b b a a a a ,求数列{a n },{b n }的通项公式.
高三高职类高考班第二次模拟考试
数学 参考答案
一、选择题
BBDAC BCACB DCDCA
二、选择题(5×5´=25´)
16、 -4 17、 19
162
2=-
y x 18、 19 19、 -2x+2 20、 18
三、解答题(21、22小题各10分,23、24小题各15分,共50分) 21、解:原不等式可化为 (4x+3a)(2x-a)≤0 ∴x 1=a 43
-
,x 2=a 2
1 (1)当a>0时,则a 21>a 4
3
-
故原不等式的解集为[a 43
-
,a 2
1] (2)当a<0时,则a 21<a 43
-
故原不等式的解集为[a 21,a 4
3
-]
22、解:椭圆
1144
1692
2=+y x 的右焦点为(5,0) 令016
92
2=-
y x ,则双曲线的渐近线方程为:x y 34±= 即4x+3y=0及4x-3y=0
由题意知,所求圆的圆心坐标为(5,0) 半径为 r=
2
2
3
4|
0354|+⨯+⨯=4
故所求圆的方程为(x-5)2+y 2=16
23、解:如图,在△A 2B 2A 1中,已知∠B 2A 2A 1=60°,
A 1A 2=302×3
1
=102,
B 2A 2=102,则△A 2B 2A 1是等边三角形,
故A 1B 2=102,∠B 2A 1A 2=60°
∴在△B 2A 1B 1中,∠B 2A 1B 1=45°,A 1B 1=20 设B 1B 2=x 由余弦定理知,
x 2=202+(102)2-2×20×102×cos45° =200 ∴ x=102
易知△B 1A 1B 2为等腰直角三角形,即∠A 1B 1B 2=45° 故乙船每小时行驶
3
12
10=302海里,沿“北偏东30°”的方向航行.
24、设数列{a n }的首项为a 1,公差为d ,则 (1)a 1+a 2+…+a k =ka 1+
d k k 2
)
1(- ∴b k =
k
d
k k ka 2)
1(1-+
= a 1+2)1(d k - 即b n =a 1+2
)
1(d
n - 当n =1时,b 1=a 1; 当n>1时,b n -b n-1= [a 1+2)
1(d n -]-[a 1+2)2(d n -]=2d ∴数列{b n }是首项为a 1,公差为
2
d
的等差数列. (2)由题意知:2322)113(13132)
113(13131113
2113211=⨯
-+-+
=++++++=
d a d
a b b b a a a a ,易得:d=21
故a n =1+n 21,b n =n 4
1
45+。