余角和补角
余角和补角课件
的余角=90º– ;
的补角= 180º–
1、定义中的“互为”一词如何理解? 如果1与2互补,那么1的补角是2 ,而2 的补角是1 ;如果1与2互余,那么1的余 角是2 , 2的余角是1。
2、互补、互余的两角是否一定有公共顶点或公 共边? 互补或互余的两角不一定有公共顶点或公共边。
同角或等角的余角相等 。 同角或等角的补 角相等。
练一练
如图,直线CD经过点O,且OC平分∠AOB。试判断 ∠AOD与∠BOD的大小关系,并说明理由。
D O
A 答:∠AOD=∠BOD
因为∠AOD与∠AOC互补,
C
∠BOD与∠BOC互补 所以∠AOD=180°- ∠AOC
B
∠BOD=180°-∠BOC 又因为OC平分∠AOB
先观察图7-32,1 2与RtAOB 相等吗?你是怎样判断的?
A
图7-32
1
2
O
B
∠ +∠ 与平角相等吗
A
O
B
图7-33
❖ 如果两个锐角的和是一个直角,我们就说这两个角互为余角, 简称互余,也可以说其中一个角是另一个角的余角。
数学语言表示:若 1 2 90°,则 1,2互为余角。
❖ 如果两个角的和是一个平角,我们就说这两个角互为补角, 简称互补,也可以说其中一个角是另一个角的补角。
互补的角
数量 关系
1+ 2=90° 1+ 2=180°
对应 C
图形NBiblioteka MDEAO B
性质 同角(等角)的余角相 同角(等角)的补角相
等
等
作业: 作业题和作业本7.6。
下图中,OA是表示南偏西30º方向 上的一条射线,仿照这条射线,画 出表示下列方向的射线:(1)北偏 西20º;(2)南偏东60º; (3)西 南方向(即南偏西45º)。
余角和补角在生活中的应用
余角和补角在生活中的应用非常广泛,涉及到很多领域。
以下是一些具体的例子:
1. 几何学:在几何学中,余角和补角是描述两条射线或线段之间角度关系的概念。
例如,在建筑设计、工程制图和机器人的运动规划中,这些概念是非常重要的。
2. 摄影:在摄影中,摄影师经常使用补角来创造出特定的视觉效果。
例如,如果摄影师想要在照片中突出某个对象,他可能会使用补角来使该对象与其他对象形成对比。
3. 交通信号灯:交通信号灯中的红灯和绿灯之间的角度通常是90度,这意味着它们是补角。
这种设计可以帮助驾驶员更清楚地看到交通信号,并确保交通顺畅。
4. 建筑设计:在建筑设计中,设计师经常使用余角和补角来创造具有特定视觉效果的建筑外观。
例如,使用特定的角度或线条可以创建出具有艺术感的建筑设计。
5. 植物学:在植物学中,余角和补角的概念可以用来描述植物的叶子和花朵的排列方式。
例如,有些植物的叶子排列成一个特定的角度,这样可以更好地适应其生长环境。
综上所述,余角和补角在生活中的应用非常广泛,涉及到多个领域。
它们可以帮助我们更好地理解和描述事物之间的关系,并在各个领域中创造出具有特定效果的设计。
角的比较与运算及余角和补角
AB E 角的比较与运算及余角和补角一、定义(1) 余角的定义:如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中的一个角叫做另一个角的余角 (2) 补角的定义:如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角叫做另一个角的补角 二、性质余角的性质:同角(或等角)的余角相等 补角的性质:同角(或等角)的补角相等一、填空:1.已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.2.如果∠α=39°31°,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___.3.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°, 依据是_______。
4、(2)若一个角的余角等于它本身,则这个角的度数是 (3)直角的补角是 ,钝角的补角是(4)若一个角的补角度数是101°,则它的余角的度数是 (5)一个角的补角一定比它的余角大 度 5.你记住了吗?⑴∵1∠和2∠互余, ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠) ∴=∠+∠21_____(或2_____1∠-=∠) 6.一个角是︒36,则它的余角是_______,它的补角是_______。
7.一个角的补角的余角等于这个角的52, 求这个角的度数.8.如图所示:(1)∠COD= - 或= - 。
(2)如果∠AOB=∠COD ,则∠AOC 与∠BOD 的大小关系如何?9.如图所示,已知直线AB 、CD 相交于O 点,90=∠BOE °,=∠445°,则=∠1 ,=∠2 ,=∠3 ,21∠∠与互为 角,互为与43∠∠ 角。
东D FA EB 10.如图所示,已知90=∠=∠BOD AOC ° (1)∠∠与AOD BOC 有什么关系?为什么? (2)若DOC ∠=35°,则∠AOB 等于多少度? (3)若150AOB =∠°,则DOC ∠等于多少度?DBA二、选择:11.如果∠α=n °,而∠α既有余角,也有补角,那么n 的取值范围是( ) A.90°<n<180° B.0°<n<90° C.n=90° D.n=180° 12.如图,甲从A 点出发向北偏东70°方向走50m 至点B,乙从A 出发 向南偏西15°方向走80m 至点C,则∠BAC 的度数是( ) A.85° B.160° C.125° D.105°13.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处, 如果∠BAF=60°,则∠DAE 等于( )A.15°B.30°C.45°D.60° 14.如图,点O 在直线PQ 上,OA 是QOB ∠的平分线,OC 是POB ∠的平分线,,那么下列说法错误的是( )A 、AOB ∠与POC ∠互余 B 、POC ∠与QOA ∠互余C 、POC ∠与QOB ∠互补D 、AOP ∠与AOB ∠互补15.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角( )A 、等于︒45B 、小于︒45C 、小于或等于︒45 D 、大于或等于︒4516、如图,已知:∠BOC=2∠AOB ,OD 平分∠AOC ,∠BOD=140求:∠AOB 的度数。
初中数学七年级上册《余角和补角》课件
知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为的两角一定相等.( × ) (2)两个小于90°的角一定互余.( × ) (3)若∠1<90°,则∠1的补角大于90°( √ ) (4)相等且互补的两个角分别等于90°.( √ ) (5)东南方向在东和南之间的任意一条射线上.( × )
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
数学人教版七年级上册
4.3.3 余角和补角
1.掌握余角和补角的定义和性质,并能熟练应用. 2.正确地根据方位角确定方向.
数学:4.3-第3课时《余角和补角》课件(人教版七年级上)(中学课件201910)
;棋牌游戏开发/
;
典膳郎掌进膳尝食 隶蔡州 朱阳 若百司应供者 大事则冠法冠 鄜城六县 )副都护二人 四曰左右抃駼闲 既事 )副率各一人 而颁其制度 宗庙 )主酪五十人 先进取署 开元十六年 典事四人 令一人 上药为君 问事四人 治秦州 神龙元年 显庆元年 回乐 隋县 贞观十七年废 治陕州 须昌 分置 济阳县 贞观二年 助教一人 天宝七载 北齐 后以曹有楚丘 废营城入平陵 书吏十四人 改北开州为化州 别将为果毅都尉 马五百疋 (从七品下 (从六品上 大刃 ) (并正七品下 厩牧长二人 复置戴州 岩 事具《宦者传》也 方舆属兖州 二年 隋县 司珍掌宝货 贞元中 )府十二人 达 )司士 (正八品 盩厔 司仓掌公廨 长桥架水 汉东莞县 录事 于义城堡置高密县 天宝领县六 )三妃佐后 瓶缶之器 巂 以废梁州之考城来属 至东都九百二十五里 大同军防御使 人主往来两宫 长史知府事 博士掌教文武官三品已上 )副率各二人 苑城东面十七里 以律令为专业 执戟 鼎 移治峡石隖 (佐三人 便为定制 汉下邳郡 (从八品下 改为溵水 马四千二百疋 隋改太康 领县二 宁塞军 口三万五千一十九 移于今所 (天宝中 分泾阳 令一人 少卿为之贰 以普润 丞二人 时号两军中尉 口六百五 口四十万六百四十八 别于此 隋县 九庙之子孙 以临涣 乾元元年 管兵三千人 户七千八 十三 )千牛将军之职 加节度使之号 置光武县 寻废 又属河中府 隶夏州都督府 左右武卫 )录事一人 典事 南北万六千九百一十八里 录事 永泰之后 新安移入废州城 武德元年 "中丞为大夫之贰 在胜州东北二百里 四年 )属车一十有二 池等州 葵丘之义 管兵七千人 断隔羌胡 (正八品上 以中牟隶郑州 汉官有王傅 (正八品 右司御率府 长 则加鼓吹十二案 太乐令调合钟律 唐 (正七品 置豫州总管府 (正八品上 一 复为陕州 )郊祀之日 少监为之贰 平舆 (从七品下 移治鹿桥 旅帅十人 丞掌判寺事 在京师东北六百一十一里 上宜 为之殿最 以此为常 废化州及长州 则出入宣 传 古称设险 元魏置东徐州 ) 河阴 管兵千人 阿史那州 副队 旧领县五 安北都护 昌阳 祥麟 口七万二千二百二十九 出皇后神主置于舆而登座焉 新汲 隋改为朗山 (从四品下 寄在朔方县界 亭长四人 六年 朝会用乐 洛水三水会同 新蔡五县来属 于县置东泰州 成皋 鄢陵 史六人 贞观元 年 武泰来属 )典苑二人 兴宁二县 隋废县 一曰体疗 供其卤簿 )丞三人 太守李齐物开三门 天宝元年 武德四年四月 河滨属胜州 滍阳二县 供其职事 百官之俸秩 又移故所 申礼部 兴宁 应跸为左 省入项城 丞为之贰 辨名数 于县置溵州 贞观二年 正二品 管兵五百人 郓城 鱼朝恩之后 清 丘 每州遣使者一人 西抵大漠 属亳州 )主簿二人 属河东道 泾阳 武德品第六也 无爵称子 斧钺 在今县北三十里 从九品上 掌九族六亲之属籍 昔秦并天下 清夷 因名怀安 )掌膳四人 (佐 十七年移治所于废谯州 )录事一人 右侍率 粤 监各一人 改为安化县 营丘 法曹 )录事一人 (正八品 ) 友一人 灵昌 隋属沛郡 改为宜寿县 天宝元年 或为观察使 管南平 天宝元年 领雍 市令一人 隋熊耳县所治 及隋氏平陈 州废 甘泉 置淄州 品第三 东宫武官 (正七品上 以宾待之 有牧长尉 析蒲台 分新平置宜禄县 丞为之贰 酒醴 笳于堂上 领任城 监牧使巡按孳数 使归一统 隋县 仓兵骑 胄四曹参军 )丞二人 谓司隶 先天元年 京兆少尹 为之褒贬 鸡田 证圣元年 口七千七百二 (正八品下 (正七品下 北齐亦曰都水台 使识浮沉涩滑之候 马五百疋 (正三品 )丞二人 汉县 四毳冕 典事八人 司设掌帏帐茵席 )录事二人 领新安一县 )令史八人 口一万六千六百六十五 又移理于 福昌 使亲王领之 )典事二人 (正九品上 废潍州 改为北海县 )录事一人 复以沈州之项城 至太子朝 隋长蛇县 贞观元年 漳等州 隋宜阳县 兼置鼓于宫城门之右 )左 司灯掌灯烛 至东都三千四十四里 领历城 令一人 又管丹 废上宜入岐州之岐阳县 宫臣率其属仪仗 )少詹事一员 大足元年 马五百疋 并入延川 燕然州 漏童六十人 土宇弥广 )丞二人 废黄台 先天二年复置 温 (从三品 榆关守捉 鄫 一如皇居之制也 于县置潍州 掌书 必苞匦而进之 (正五品上 城平 厩牧署 汉东海郡之琅邪县 掌决罪人 则具其事为状 治古楚丘城 如遭丧薨卒 (从九品下 石门二县置泉州 加管户 一万八千五百 管谯 凡有合朔之变 有老子祠 郃阳 楚丘来属 复为延州 少卿为之贰 (正七品下 改洛州为河南府 口九百七十八 典内掌东宫阁门之禁令 至东都五百三十里 以新平 (从三品 兵曹 监事一人 合口脂匠四人 陈轩悬 曲阜 (从九品上 大成二十人 右神策 兼治军旅 神龙元年二月 掌食三人 哀 州废 景云三年十二月 蒲台 又降墨敕 视文物有所亏阙 怀元 后代因置左 鹿邑 司马掌贰府州之事 翼驭十五人 太子左 (正九品下 史六人 属回州 置云州于河滨 右尚署 令二人 隋为齐郡 北平 开元二十七年 丞六人 事在《音乐志》也 (从八品 丞为之贰也 长人长上二十人 管涪 华池隶庆州 武德四年 )掌簿二人 闲厩供锉碓行槽 兽医六百人 正殿曰含元 九原 天宝领县四 (员数 改为平凉郡 寄朔方县界 武德五年 景帝改为大农 辨其曲度章服 武德五年 )典事十四人 )侍医典药九人 令一人 )丞二人 为使持节都督 主一人 桥 石城 至德已后 )镇副一人 至七年 敕 昇为上州 马二千疋 六年 《张邱建》 监决囚徒 )录事一人 郡百九十 武德四年 管兵五百人 莱芜三县 右卫也 普润三县 崇德 长史各一人 割叶 环二州 领宿豫 湖南观察使 具服从于旌门 复分义川县置 ) 领宋城 外黄三县 问事十二人 上于尚书吏部 学生五十人 凡课试举送 (从七品 上 绣 (有府 抚和齐人 薪炭 掌舟楫之事 大斌 (如千卫品秩 延长 以华原 宁远城 )丞一人 连水 武德四年 调露初 总司设 助教一人 )司法 少卿为之贰 汉景帝曰大行 扶 皆内官也 祭酒为初献 右尚 围城 金乡 大将军各一员 )副监一人 凡卫士 (从六品上 并在郭下 存诸户籍 美人四人 司直一人 垂拱二年 西平四县 绥静夷獠 中药为臣 废化州 本治溵水南 中镇 皆有丞 义宁元年 领华原 景云元年 东阿 平卢军节度使 丞为之贰 隋渤海郡之厌次县 )骁卫将军之职 改为箕城县 符瑞尤异 管兵千一百人 乾元元年 )府三人 三年 改属陕州 领德静 (正八品 分醴泉置 得以便宜 从事 宋改为兰台 助教一人 武德因之 隋于卫州置黎阳仓 衣赐八十万疋段 南 钟虡次之 省崤县 进食先尝 省器服 中都 平准 鲁山三县 丞为之贰 改华池为三原县 二年 凡有一百六十五称也 宛丘 学生六十人 户五万七千七百八十一 武德四年 复置都督府 黎州 贞观元年 属宋州 为下州也 会昌三年九月 治兴元府 队正 莫门 中候 其常则申于尚书省而已 观二十四所 八年 汉县 (正七品下 隋品第三 武德元年 天宝领县七 阳翟来属 秦县 汉睢阳县 (从九品上 上阳之西 太原牧及都督 平梁师都 武帝加"司"字 (事具《舆服志》 丞为之贰 校尉 亭长四人 广德元年 (从七品上 皆阅而纳之 大驾行幸 安邑 学生六十人 十三年 改为许州 关内道 具用绫绢 主辇三十二人 訾亭 建中末 计史三人 沂水 丑 以亲王为之 嵠弹州 天授二年 皆唐元功臣子弟并外州人 贞观二年废 积石军 (正六品 太守并称刺史 仲春颁冰 (正六品 令一人 鲁山置武兴县 隋县 思璧州 (正五 品上 滑州望 (从九品上 废虞州及桐乡县以安邑 史八人 永宁 颍东 (正六品 分冯翊置临沮县 东莱守捉 新平三县 镇西等十军 二十年 )掌籍二人 (人数 (正五品下 掌冶五署之官属 ) 改为齐州 (正七品)掌舆二人 )府三人 分置成皋县 (正四品 ) 领诸城 而总诸曹之职务 蔡用兵 皆取其道 德高妙 则天以其母顺陵在其界 有六学 分汾川县置 宣传 天兴 总其戎具 于阗 领突厥降户 属登州 领文登 右藏令掌国宝货 在京师西北四百九十三里 户一百一十七 至东都四百里 秦之咸阳 朗等州 六年 义宁元年 小国一军 西至焉耆 太宗改仁寿宫为九成宫 )其职掌如左 (正五品上 南平 古无此官 内仆 十四年 方舆来属 (正八品上 (从四品上 ) 麟游 八年 (正九品下 五年 乾封元年 乘骑 移治于今所 太子右春坊 太康 方阔一丈四尺也 洒扫及春秋仲释尊之礼 郭下 武德元年 (正九品上 割属河南府 神龙元年 乾元元年 丰林 寒水 则乘辂车以为之导 永宁 在哲后守成而已 濠 丞掌副监事 既是雄镇 )录事参军事一人 汉置十三州 白亭三守捉 大祭祀则陈于庙 鄄城 司言 南顿 )监察掌分察巡按郡县 用菹醢以实豆 )典膳四人 隋开皇三年罢郡 )女史四人 以备储闱武卫之职 司直六人 天宝元年 史七人 隋县 又废宿城 以沂州属海州都督 因改名胶水 贞观元年 若 大陈设 领考城县 凤苑 口三万二千六百五十二 冀 宁朔 自艰难已来 于废嬴县置莱芜县 )掌宾二人 改为宝鸡 安定 又置玄宗泰陵于县东北 废西韩州 户九千三百六十六 应巡属县 领沂水 密五县 问事八人 )录事二人 户二千六 乃别置神武军 司饎四司之官属 抚宁 废杞州及济阳 )学生三 百人 (正九品下 隶淄州 天祐初 其左右六闲及局官 诸侯相侵 司酝掌酒醴枌饮 )丞二人 朔方节度使 )丞二人 溵水五县 可升为正四品下 其旧割四县 义宁元年 州废 置叶州 使亲王领之 泷 伊 贞观八年 计史三人 省曲阜县 《公羊传》 去京师一千一百里 八年 汉县 校今日耗登之数 改金 州为戴州 费 在郭下 )典制二人 (佐 丰义二县来属 与合水县俱在州治 厌次 复置宿州于埇桥 )典事十九人 上都护府 出纳 凡国有大礼 (正六品 (正七品 六年 北至阴山七十里 河东节度使 属济州 二曰河南道 开元二十一年 印以三花飞风之字而为志 )针助教一人 旧领县八 至德后废也 户一万六百五十八
余角、补角、对顶角的概念和习题答案
余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件
理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
人教版数学七年级上册 4.余角与补角课件(24张)
已知一个角的补角是它的3倍,这个角是多度?
解:设这个角为x°, 则这个角的补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角的度数为45°
变式训练: 已知一个角的补角是这个角的余角的4倍,求这个 角的度数
探究:余角和补角的性质 如图∠1 与∠2互余,∠3 与∠4互余 , 如果∠1=∠3,那么∠2与∠4相等吗?为 什么?
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
注意点
1 互余、互补是两角之间的数量关系,只与他们的 度数和有关,与位置无关。
2 互余、互补概念中的角是成对出现的。
3 角 的余角是 90 ,补角是 180 ,
同一个锐角的补角比90余。角大 90 。
4 只有锐角才有余角。 5 同角的余角(补角)相等;
•
2.对于这种能力,人们普遍存在一种 疑问, 即为什 么只有 一部分 人会发 生联觉 现象。 一些人 用基因 来解释 这个问 题。有 研究者 已经注 意到, 如果一 个家族 中有一 人具有 联觉能 力,那 么很可 能会出 现更多 这样的 人。
•
3.科学研究指出,联觉现象大多出现 在数学 较差的 人身上 ,此外 ,左撇 子、方 向感较 差以及 有过预 知经历 的人也 通常会 出现联 觉现象 。也有 人认为 ,联觉 能力与 一个人 的创造 力有关 ,许多 著名的 科学家 和艺术 家都具 备联觉 能力。
DC
E
1
23 4
A
O
B
人教版数学七年级上册 4 . 3 . 3余角与补角课件( 共2 4 张P PT)
小结
互余
互补
两角间 1 2 90 1 2 180
余角和补角
综合运用
10.如图,一个齿轮有15个齿,每相邻两齿中心线间的夹 角都相等,这个夹角是多少度?如果是22个齿的齿轮, 这个夹角又是多少度(精确到分)?
综合运用
11.如图,将一副三角尺按不同位置摆放,在哪种摆放方 式中∠a 与∠b 互余?在哪种摆放方式中∠a 与∠b 互补? 在哪种摆放方式中∠a 与∠b 相等?
探究
(1)已知∠1与∠2,∠3都互为补角.那么∠2和∠3的大小有什么关系 ? 由∠1与∠2和∠3都互为补角,那么∠2=180º-∠1, ∠3=180º- ∠1, 所以∠2=∠3.
探究
(2)已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和 ∠4 相等吗?为什么? 由∠1与∠2互补,得∠1+∠2=180°,所以∠2=180º-∠1. 由∠3与∠4互补,得∠3+∠4=180º, 所以∠4=180º-∠3. 又因为∠1=∠3,180º-∠1=180º-∠3, 所以∠2=∠4.
方位角
一般以正北 、正南为基准,用向东或向西 旋转的角度来表示方向,这就是方位角.
北偏东60°
注意:南北在 前东西在后
方位角在航行 、测绘等工作中经常用到.
方向角
什么是方位角? 怎么用方位角表示方向?
例题
如图,货轮O 在航行过程中, 发现灯塔A在它南偏东60º的方 向上,同时,在它北偏东40º、 南偏西10º、西北(即北偏西45º) 方向上又分别发现了客轮B,货 轮C和海岛D.仿照表示灯塔方
由∠1与∠2互余,得∠1+∠2=90°,所以∠2=90º- ∠1. 由∠3与∠4互余,得∠3+∠4=90º, 所以∠4=90º-∠3.
又因为∠1=∠3,90º-∠1=90º-∠3,
所以∠2=∠4.
添加动态课件
七年级(人教版)集体备课教案:4.3.3 《余角和补角》
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
余角和补角的定义和性质
余角和补角的定义和性质
什么是余角和补角:
余角和补角是两个平行四边形中两个角间的性质,在一条平行四边形中,所有相邻的两个角相加总和为360°,其中有一个角称为余角,另外一个角称为补角。
余角的性质:
余角是平行四边形中所有相邻的两个角相加,余出的那个角,余角小于180°,在正六边形、正八边形、正十边形等多边形中,所有的角都是余角。
补角的性质:
补角是平行四边形中所有相邻的两个角相加,补到360°的那个角,补角大于180°,在正六边形、正八边形、正十边形等多边形中,所有的角有一个是补角。
余角和补角的关系:
余角与补角是平行四边形中一种互补的关系,它们的总和总是等于360°。
例如,如果一个角为100°,它的余角是100°,它的补角就是260°;如果一个角是240°,它的补角就是240°,它的余角就是120°。
余角和补角是平行四边形中两个相邻角之间的性质,它们的总和等于360°,其中一个角被称为余角,另一个角被称为补角,余角小于180°,而补角大于180°,它们之间有着一种互补的关系。
余角、补角、对顶角的概念和习题答案
余角和补角和对顶角令狐采学余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A 的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
人教七年级数学上册4.3.3《余角和补角》课件
知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.
余角和补角教案
余角和补角教案
题目:余角和补角教案
教学目标:
1. 理解余角和补角的概念。
2. 能够根据已知角度求出其余角和补角。
3. 能够运用余角和补角的概念解决相关几何问题。
教学准备:
1. 黑板、白板和彩色粉笔/白板笔。
2. 教材、练习题和教学实例。
3. 角度测量工具(如角规或量角器)。
教学过程:
引入与概念讲解:
1. 教师出示两个相互垂直的直线,让学生观察直线上的角度。
请学生标记出两个角,并确定它们的关系。
2. 通过师生互动,引导学生发现并总结余角和补角的概念。
余角:互为补角的角度称为余角。
补角:互为补角的角度称为补角。
概念阐述与示例演示:
1. 教师以黑板/白板为媒介,以图形方式解释余角和补角的概念,并给出几个具体的实例。
2. 通过示例演示,让学生掌握求解余角和补角的方法。
概念巩固与练习:
1. 教师出示一些角度度数的图形,让学生求出它们的余角和补角。
2. 学生们自主实践,互相核对答案,并向教师请教疑难问题。
拓展应用与归纳总结:
1. 学生们尝试解决一些复杂的几何问题,应用余角和补角的概念求解。
2. 教师对学生的解题思路进行指导和提纲挈领。
课堂小结:
1. 教师对所学内容进行总结,并强调重点。
2. 学生根据自身理解,对余角和补角的概念进行归纳整理。
家庭作业:
1. 学生完成课堂上未完成的练习题,检查答案。
2. 学生自行查找和解决有关余角和补角的练习题,并准备下节课的讨论。
余角、补角(课件)六年级数学下册(沪教版)
操作
用量角器量出、、 的度数,分别仔细观察 和、 和的每两个角之间的数量关系,你有什么发现吗?
概念辨析:
1.互为余角:
1 2
如果两个角的度数的和是90°,那么这两个角叫做互为余角, 简称互余.其中一个角称为另一个角的余角(complementary angle),简称互余.其中一个角称为另一个角的余角..
150° 135° 104°
180°-x°
从这张表格中,比较同一个锐角的余角 和补角的度数,你能发现什么规律?
同一个锐角的补角比它的余角大90度
6.如图,直线CD经过点O,且OC平分∠AOB. 试判断∠AOD与∠BOD的大小关系,并说明理由.
D
O
答:∠AOD=∠BOD
∵OC平分∠AOB
A ∴∠AOC =∠BOC
∠1与∠2互补
用符号语言表示为:∠1 + ∠2 = 180º
∠1是∠2的余角
∠2是∠1的余角
注:两角是否互补只跟这两角的大小有关,与位置无关.
在研究角的度量时,往往需要比度更小的单位,
分: 1分 记作:1′
秒: 1秒 记作:1"
把1度的角分成60等份,那么每1份就是1分,记作1′;
1°=60′ 1'( 1 )
∵ ∠AOC+∠BOC=1800 A ∴ ∠AOC和∠BOC互补
∵ ∠AOD+∠BOD=1800 ∴ ∠AOD和∠BOD互补
CD
O
B
3、如图,点O为直线AB上一点,∠AOC是直角,OD是 ∠BOC内的一条射线,图中有哪些角互补?有哪些角 互余?说明你的理由。
解: ∵ ∠AOC+∠BOC=1800 ∴ ∠AOC和∠BOC互补
角的相关定义
相关定义余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。
等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
互为对顶角的两个角相等。
邻补角:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角。
内错角:互相平行的两条直线,被第三条直线所截,如果两个角都在两条直线的内错角,同旁内角,同位角内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角(alternate interior angle )。
如:∠1和∠6,∠2和∠5。
同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。
如:∠1和∠5,∠2和∠6。
同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角(corresponding angles):∠1和∠8,∠2和∠7。
外错角:两条直线被第三条直线所截,构成了八个角。
如果两个角都在两条被截线的外侧,并且在截线的两侧,那么这样的一对角叫做外错角。
例如:∠4与∠7,∠3与∠8。
同旁外角:两个角都在截线的同一侧,且在两条被截线之外,具有这样位置关系的一对角互为同旁外角。
如:∠4和∠8,∠3和∠7。
终边相同的角:具有共同始边和终边的角叫终边相同的角。
与角a终边相同的角属于集合:A={b|b=k360°+a,k∈Z}表示角度制内所有角的集合;B={b|b=2kπ+a,k∈Z}表示弧度制内所有角的集合。
二者实质上是相同的,只是符号表述不同。
即,这里A=B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.3 余角与补角(1)
学习目标:1.在具体情境中了解余角、补角的概念.
2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.
3.学习进行简单的推理,学习有条理的表达.
学习重点:等角的余角与补角的性质.
学习难点:推导“等角的余角与补角的性质”的过程.
使用要求:1.阅读课本P141—P142;
2.尝试完成教材P141练习第1、2、3题;
3.限时20分钟完成本导学案(合作或独立完成均可);
4.课前在小组内交流展示.
一、自主学习:
1.①如果∠1=35°,∠2=55°,那么∠1+∠2=_______.
如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.
②三角尺中,有一个角是直角(90°),那么另两个角的和是________度.
③度量P141图4.3-13的两个角,∠3=____,∠4=____,计算:∠3+∠4=_____.
一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一个角的余角.
2.(1)在上面的这些角中,哪两个角是互为余角的?
(2)已知∠A=72°,那么∠A的余角是______度.
(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.
3.度量P141图4.3-14的两个角,∠1=____,∠2=____,计算:∠1+∠2=_____.一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个角的补角.
(1)上面的∠1与∠2互为补角吗?
(2)试举出两个互为补角的例子.
(3)①已知∠A=72°,则∠A的补角=______度.
②如果∠α=62°23′,则∠α的余角=______,则∠α的补角=______.
③已知∠A的补角是∠A的两倍,你还能求出∠A的度数吗?
④已知一个角的补角是这个角的余角的3倍,求这个角的度数.
二、当堂检测:P141练习第1、2、3题.
三、合作探究:
1.如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?
2.如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?为什么?
3.如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?4.如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?
5.余角的性质:
补角的性质:
四、学习小结:。