去括号课件
合集下载
去括号课件
去除括号意义
化简算式
去除括号可以使算式更加简洁明了, 便于计算和理解。
遵循运算规则
去除括号需要遵循一定的运算规则和 顺序,有助于理解和掌握数学基础知 识。
02 去括号法则掌握
CHAPTER
分配律应用
分配律定义
介绍分配律的基本定义和性质,让学生明白分配律的运算规 则。
分配律应用实例
通过具体实例,让学生掌握如何使用分配律去括号,包括单 项式乘以多项式的去括号、多项式之间的去括号等。
06 总结回顾与拓展延伸
CHAPTER
关键知识点总结回顾
去括号的法则
总结去括号的基本法则,包括乘 法分配律的应用、括号前面是负
号时的处理方法等。
典型例题解析
回顾课堂上讲解的典型例题,强 调去括号在实际数学问题中的应
用。
常见错误分析
总结学生在去括号过程中常见的 错误类型和原因,如漏乘、符号
错误等,并给出避免方法。
CHAPTER
物理公式中去括号应用
要点一
去除物理公式中的括号
通过去括号法则,简化物理公式,便于理解和计算。
要点二
实际应用举例
如力学中的牛顿第二定律、电磁学中的库仑定律等公式的 去括号处理。
化学方程式平衡中去括号技巧
去除化学方程式中的括号
在去括号过程中,遵循化学方程式平衡原则 ,确保方程式两边原子数目和电荷数相等。
去括号课件
目录
CONTENTS
• 括号基础概念 • 去括号法则掌握 • 复杂表达式去括号技巧 • 错误类型及防范措施 • 跨学科应用:物理、化学等场景中去括号实例展示 • 总结回顾与拓展延伸
01 括号基础概念
CHAPTER
括号定义及分类
去括号与添括号课件教师用课件PPT
(x - y) / z = x / z - y / z 2 + 3 * 4 = (2 + 3) * 4 = 12
详细描述:这类习题通常包括在给定的 数学表达式中添加括号,以改变表达式 的运算顺序,从而得到不同的结果。
示例
去括号与添括号的综合习题与练习
总结词:去括号与添 括号的综合习题考察 学生对括号规则的全 面理解和应用能力。
详细描述:这类习题 通常包括既有去括号 的操作,也有添括号 的操作,需要学生综 合考虑运算优先级和 括号规则,得出正确 的结果。
示例
(3 + 2) * (4 - 1) = (3 + 2) * 3 = 15
(x + y) / z + (w - p) =x/z+y/z+w/ z-p/z
05
总结与回顾
去括号的总结与回顾
感谢观看
THANKS
添括号的总结与回顾
添括号的定义
添括号是在数学表达式中添加括 号,以改变原有运算的顺序或明
确运算的对象。
添括号的规则
添括号时应遵循数学中的运算顺序 ,同时要注意括号前是“-”号时 ,括号内的各项符号需要改变。
添括号的例子
如a-(b+c)=a-b-c,(a*b)/c=(ab)/c, (a+b)*(c-d)=(a+b)*c-(a+b)*d。
去括பைடு நூலகம்与添括号的综合总结与回顾
去括号与添括号的联系
去括号和添括号是数学中常用的两种操作,它们在运算顺序和符号处理上都有 一定的规则和技巧。在实际应用中,需要根据具体问题选择合适的操作。
去括号与添括号的注意事项
在进行去括号和添括号的操作时,需要注意运算顺序和符号的变化,避免出现 计算错误或逻辑错误。同时,要理解数学表达式的整体结构和意义,以便更好 地应用去括号和添括号的规则。
湘教版数学七年级上册3.2 第3课时 去括号、去分母课件(共22张PPT)
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
解:(2) 去括号,得 4x-2-8x-6= 7, 移项,得 4x-8x = 2+6+7, 化简,得 -4x = 15, 方程两边同除以 -4,得 x = - .
3.方程 3x+2(1-x) =4的解是( )A. B. C. x=2 D. x=1
C
4.方程去括号正确的是( ) A.6x-1-x-4=1 B.6x-1-x+4=1 C.6x-2-x-4=1 D.6x-2-x+4=15.把方程 化成x + a的形式是_________________.
解:(1) 去括号,得 4y+8+6y-14= 0, 移项,得 4y+6y = 14-8, 化简,得 10y = 6, 方程两边同除以 10,得y = .
2. 把下列方程化成x + a的形式.
运用乘法对加法的分配律,得 6x+15=x+5,移项,得 6x-x=5-15,合并同类项,得 5x=-10,两边都除以5,得 x=-2.
上面运用乘法对加法的分配律,将方程中的括号去掉,方程的这种变形叫作去括号.
在例4中,在原方程的两边都乘各个分母的最小公倍数,从而将分母去掉,方程的这种变形叫作去分母.
下面方程的去分母是否正确?如有错误,请改正.=2,去公母,得5x-2x+3=2;=4,去分母,得4(3x+1)+25x=80.
议一议
=2,去分母,得25x-3(2x-3)=30..
解:去分母,得 2(3x+1)=7+x,去括号,得 6x+2=7+x,移项,得 6x-x=7-2,合并同类项,得 5x=5,两边同除以5,得 x=1.
解:(2) 去括号,得 4x-2-8x-6= 7, 移项,得 4x-8x = 2+6+7, 化简,得 -4x = 15, 方程两边同除以 -4,得 x = - .
3.方程 3x+2(1-x) =4的解是( )A. B. C. x=2 D. x=1
C
4.方程去括号正确的是( ) A.6x-1-x-4=1 B.6x-1-x+4=1 C.6x-2-x-4=1 D.6x-2-x+4=15.把方程 化成x + a的形式是_________________.
解:(1) 去括号,得 4y+8+6y-14= 0, 移项,得 4y+6y = 14-8, 化简,得 10y = 6, 方程两边同除以 10,得y = .
2. 把下列方程化成x + a的形式.
运用乘法对加法的分配律,得 6x+15=x+5,移项,得 6x-x=5-15,合并同类项,得 5x=-10,两边都除以5,得 x=-2.
上面运用乘法对加法的分配律,将方程中的括号去掉,方程的这种变形叫作去括号.
在例4中,在原方程的两边都乘各个分母的最小公倍数,从而将分母去掉,方程的这种变形叫作去分母.
下面方程的去分母是否正确?如有错误,请改正.=2,去公母,得5x-2x+3=2;=4,去分母,得4(3x+1)+25x=80.
议一议
=2,去分母,得25x-3(2x-3)=30..
解:去分母,得 2(3x+1)=7+x,去括号,得 6x+2=7+x,移项,得 6x-x=7-2,合并同类项,得 5x=5,两边同除以5,得 x=1.
整式的加减(去括号)课件
一元多项式加减的方法有哪些?
垂直对齐法
将整式按照字母的次数排列,通过对齐相同次数的 项进行加减运算。
水平对齐法
将整式按照系数的大小排列,通过对齐相同系数的 项进行加减运算。
如何判断同类项?
判断同类项的方法是比较它们的字母部分是否相同,字母部分相同的项在加 减运算中可以合并。
同类项加减的方法是什么?
整式的加减(去括号)课件 ppt
整式的加减(去括号)课件ppt 大纲:介绍整式加减的基本原理、括号的去除方 法、同类项的判断和加减方法,以及多项式的项次整理和相加减的技巧。
什么是整式加减?
整式加减是指对含有整数、字母和乘方的代数式进行相加或相减的运算。它 是代数学中最基本的运算之一。
整式加减的基本原理是什么?
同类项加减的方法是将同类项的系数相加减,并保持字母部分不变。
如何整理多项式的项次?
整理多项式的项次时,将同类项按照字母的次数从高到低排列,以便更方便地进行加减运算。
如何将多项式相加或相减?
将多项式相加或相减时,按照同类项合并的原则将相同字母部分的系数相加 减,并保留字母部分不变。
整式加减的基本原理是将同类项合并,并根据各项的系数进行相应的加减运 算。
如何去掉括号?
1 分配率法则
使用分配率法则将括号内的项分别与括号外 的项相乘。
2 整式相加减
将括号内的整式与括号外的整式按照加减运 算的法则进行相加减。
去括号后的整式应该怎样化简?
去括号后的整式应该按照同类项合并的原则进行化简,将相同字母部分的系数相加减,保留字母部分不变。
4.2 第2课时去括号 课件(共17张PPT)
0.15)km.因此,主桥与海底隧道长度的和(单位:km)为92b+72(b-
0.15),①
(3)如果汽车通差过(单主位桥:k需m要)为b h9,通2b过-7海2(底b隧-0道.1所5)需.②时间比通过主桥的 时主上间桥面少与的海0代.1底数5隧式h,你道①能的②用长都含度带b相有的差括代多号数少,应式千如表米何示?化主简桥它与们海?底隧道长度的和吗?
92b+72(b-0.15)= 92b+72 b-10.8=164 b-10.8 92b-72(b-0.15) =92b-72 b+10.8=20b+10.8
探究 去括号法则 探 究 去括号法则: 与 应 一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外 用 的数乘括号内的每一项,再把所得的积相加.
注意: ①去括号时改变了式子的形式,但不改变式子的值. ② 特别注意括号前是“-”号时,去括号后括号里的各项都改变符号.
特别地,+(x-3)与-(x-3)可以看作1 与-1分别乘(x-3),从而把括号去 掉.+(x-3)=x-3,-(x-3)=-x+3
例题精讲
探
究
例 化简:
与
(1)8a+2b+(5a-b);
主桥与海底隧道长度的差 92b -72(b-0.15)的代数式①②都带有括号,应如何化简它们?
与
应
92b+72(b-0.15),①
用
92b-72(b-0.15).②
由于字母表示的是数,所以可以利用分配律,将括号前的乘数与括号内的各项相乘 ,去掉括号,再合并同类项,得
=a-a-b-c+a+b-c
=a-2c
去括号_1PPT课件(北师大版)
992+2×99×1+12=(99+1)2=1002=10 000.
整合方法提升练
17.已知|m+n-2|+(mn+3)2=0,求 3(m+n)-2[mn+(m +n)]-3[2(m+n)-3mn]的值.
解:由题意得:m+n-2=0,mn+3=0, 所以 m+n=2,mn=-3. 3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]=3(m+n)-2mn -2(m+n)-6(m+n)+9mn=-5(m+n)+7mn. 当 m+n=2,mn=-3 时,原式=-5×2+7×(-3)=-31.
【点拨】化简含有绝对值符号的式子时,首先要由字母的取值范 围确定绝对值符号内式子的正负,然后根据绝对值的性质去掉绝 对值符号,同时补上括号,避免出现符号错误.
整合方法提升练
解:由题图知,c<0<a<b.又两个正数相加仍为正数,正数减 去负数等于加上这个负数的相反数,小的正数减去大的正数结果 为负数,因此 a+b>0,a-c>0,a-b<0. 所以|a+b|+|a-c|+2|a-b|=(a+b)+(a-c)+2[-(a-b)] =a+b+a-c-2a+2b=3b-c.
探究培优拓展练
18.【2018·河北】嘉淇准备完成题目:化简:(□x2+6x+8)- (6x+5x2+2).发现系数“□”印刷不清楚.
(1)他把“□”猜成 3,请你化简:(3x2+6x+8)-(6x+5x2+2);
解:(3x2+6x+8)-(6x+5x2+2) =3x2+6x+8-6x-5x2-2 =-2x2+6;
夯实基础逐点练
4.在等式 a-( A.b-c C.-b+c
)=a+b-c 中,横线上应填的多项式是( C ) B.b+c D.-b-c
夯实基础逐点练
5.下列运算正确的是( D ) A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1 C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2
整合方法提升练
17.已知|m+n-2|+(mn+3)2=0,求 3(m+n)-2[mn+(m +n)]-3[2(m+n)-3mn]的值.
解:由题意得:m+n-2=0,mn+3=0, 所以 m+n=2,mn=-3. 3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]=3(m+n)-2mn -2(m+n)-6(m+n)+9mn=-5(m+n)+7mn. 当 m+n=2,mn=-3 时,原式=-5×2+7×(-3)=-31.
【点拨】化简含有绝对值符号的式子时,首先要由字母的取值范 围确定绝对值符号内式子的正负,然后根据绝对值的性质去掉绝 对值符号,同时补上括号,避免出现符号错误.
整合方法提升练
解:由题图知,c<0<a<b.又两个正数相加仍为正数,正数减 去负数等于加上这个负数的相反数,小的正数减去大的正数结果 为负数,因此 a+b>0,a-c>0,a-b<0. 所以|a+b|+|a-c|+2|a-b|=(a+b)+(a-c)+2[-(a-b)] =a+b+a-c-2a+2b=3b-c.
探究培优拓展练
18.【2018·河北】嘉淇准备完成题目:化简:(□x2+6x+8)- (6x+5x2+2).发现系数“□”印刷不清楚.
(1)他把“□”猜成 3,请你化简:(3x2+6x+8)-(6x+5x2+2);
解:(3x2+6x+8)-(6x+5x2+2) =3x2+6x+8-6x-5x2-2 =-2x2+6;
夯实基础逐点练
4.在等式 a-( A.b-c C.-b+c
)=a+b-c 中,横线上应填的多项式是( C ) B.b+c D.-b-c
夯实基础逐点练
5.下列运算正确的是( D ) A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1 C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2
4.2 第2课时 去括号 课件(共20张PPT) 人教版七年级数学上册
同学们,我们来看这个问题:如图所示,在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分涂油漆.请根据图中尺寸算出:较大的一面比较小的一面的油漆面积大多少? 如果想要计算这个式子,我们需要什么?
问题导入
(2ab-πr2)-(ab-πr2)
去括号
那么如何去括号呢?
同学们,我们来玩一个游戏:选出五个同学,分别记为A,B,C,D,E. 谁能最快得出这五个同学所报数的和呢?
3.根据上述两个问题,你能发现去括号时,括号内各项的符号变化规律吗?4.请同学们阅读课本98-99页例4前.
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反
5.请同学们判断下列式子是否正确,若不正确,指出错误之处.a-(b-c+d)=a-b+c+d,-(a-b)+(-c+d)=a+b-c-d,a-3(b-2c)=a-3b+2c,x-2(-y-3z+1)=x-2y+6z.
知识点2:去括号法则的简单应用(重点)
通过分析实际问题列出代数式,利用去括号法则和合并同类项解决问题.
【题型一】去括号及利用其进行简单的化简求值
例1:根据去括号法则,在下列各式的方框里填“+”或“-”.(1)a-(-b+c)=a b c;(2)a (b-c-d)=a-b+c+d.
游戏导入
1. 你能类比数的运算,利用乘法分配律计算+(a-3)和-(a-3)吗?
(1)+120(u-0.5)=(+120)×u+(+120)×(-0.5)=120u-60.
2.你能类比数的运算,利用乘法分配律计算+120(u-0.5)和-120(u-0.5)吗?
(2)-120(u-0.5)=(-120)×u+(-120)×(-0.5)=-120u+60DΒιβλιοθήκη 【题型二】去括号法则的简单应用
问题导入
(2ab-πr2)-(ab-πr2)
去括号
那么如何去括号呢?
同学们,我们来玩一个游戏:选出五个同学,分别记为A,B,C,D,E. 谁能最快得出这五个同学所报数的和呢?
3.根据上述两个问题,你能发现去括号时,括号内各项的符号变化规律吗?4.请同学们阅读课本98-99页例4前.
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反
5.请同学们判断下列式子是否正确,若不正确,指出错误之处.a-(b-c+d)=a-b+c+d,-(a-b)+(-c+d)=a+b-c-d,a-3(b-2c)=a-3b+2c,x-2(-y-3z+1)=x-2y+6z.
知识点2:去括号法则的简单应用(重点)
通过分析实际问题列出代数式,利用去括号法则和合并同类项解决问题.
【题型一】去括号及利用其进行简单的化简求值
例1:根据去括号法则,在下列各式的方框里填“+”或“-”.(1)a-(-b+c)=a b c;(2)a (b-c-d)=a-b+c+d.
游戏导入
1. 你能类比数的运算,利用乘法分配律计算+(a-3)和-(a-3)吗?
(1)+120(u-0.5)=(+120)×u+(+120)×(-0.5)=120u-60.
2.你能类比数的运算,利用乘法分配律计算+120(u-0.5)和-120(u-0.5)吗?
(2)-120(u-0.5)=(-120)×u+(-120)×(-0.5)=-120u+60DΒιβλιοθήκη 【题型二】去括号法则的简单应用
去括号 课件
解题技巧
① 括号前是否有乘数(因数) 括号前有乘数,先把乘数乘到括号 里面,然后再去括号
② 去括号后是否变号 去 括 号,看符号 是“+”号,不变号 是“-”号,全变号 ③ 代数式去括号后,都必须经过合 并同类项,其结果才能简洁。
练一练: 化简下面多项式
解: 原式 2a 6b (3a 3b)
解:原式 3 x 2 x 5 4 x 3
5x 2
3 1 (2) x ( x 4) (5 x 3) 2 2
3 1 解:原式 x x 4 5 x 3 2 2
5 1 (3)4(2 x y ) 3( x y ) 4 3
2(a 3b) 3(a b)
2a 6b 3a 3b 2a 3a 6b 3b 5a 9b
变式 2 化简多项式 2(5a 3b) 3(a 2b) 训练
练一练:先去括号,再 合并同类项: (1)3 x (2 x 5) (4 x 3)
思 考 复习提问:
1、什么叫做同类项? 答:所含字母相同,并且相 同字母的指数也分别相等的 项叫做同类项 .
注意:①两个相同:字母 相同;相同字母的指数相 等.②两个无关:与系数 无关;与字母顺序无关. ③所有的常数项都是同 类项.
2.2.3 去括号法则
自主探究
问题1:这一周小明的妈妈给他 a元零 花钱,大胖和小胖这周又分别还钱b 元和c元给他,请问这周小明总共有 多少零花钱。
用三个字母a、b、c表示去括号前后的变 化规律:
a+(-b+c) = a-b+c
ቤተ መጻሕፍቲ ባይዱ
a-(b+c) = a-b-c
《去括号与添括号》课件(共27张PPT)
【例题】
(1)(a-b)+(-c-d)=__________; (2) (a-b)-(-c-d)=____________; (3)-(a-b)+ (-c-d)=___________; (4) -(a-b)- (-c-d)=__________.
a-b-c-d
a-b+c+d
-a+b-c-d
-a+b+c+d
【解析】 mn2-(n-1)=mn×n-n+1=n-n+1=1.
01
答案:1
02
若m、n互为倒数,则mn2-(n-1)的值为 .
03
5.a是绝对值等于2的负数,b是最小的正整数,c的倒数 的相反数是-2.求代数式4a2b3-[2abc+(5a2b3-7abc) -a2b3]的值.
【解析】a是绝对值等于2的负数,则a=-2;b是最小 的正整数,则b=1;c的倒数的相反数-2,则c= , 所以4a2b3-[2abc+(5a2b3-7abc)-a2b3] =4a2b3-(2abc+5a2b3-7abc-a2b3) =4a2b3-2abc-5a2b3+7abc+a2b3 =5abc. 当a=-2,b=1,c= 时,原式=5abc=5×(-2)×1× =-5.
(3)
【解析】(1)(x+y-z)+(x-y+z)-(x-y-z) =x+y-z+x-y+z-x+y+z =x+y+z. (2)
(3)
【例题】
【跟踪训练】
【解析】 (1)原式
原式
原式
去括号并合并同类项:
对比上面右边的等式两边,仔细观察相对应各项符 号的变化,你能得出什么结论?
=a+b+c
去括号公开课课件
谢谢
THANKS
去括号的规则
括号前是加号或减号 时,去括号后,括号 内的各项符号不变。
括号前是负号时,去 括号后,括号内的各 项符号都变号。
括号前是乘号或除号 时,去括号后,括号 内的各项符号都变号。
去括号的运算性质
去括号后,原表达式的值不变。 去括号是数学运算中的一种基本操作,它遵循数学中的运算律和运算法则。
括号前是乘号或除号
去括号后,括号内的各项都乘以或除以括号前的数。
输入 标题
详细描述
当括号前是乘号或除号时,去括号后,括号内的各项 都乘以或除以括号前的数。例如:$2(a+b)=2a+2b$。
总结词
总结词
当括号前是除号时,去括号后,括号内的各项都除以 括号前的数。例如:
$frac{1}{2}(a+b)=frac{1}{2}a+frac{1}{2}b$。
05 去括号的练习与巩固
CHAPTER
去括号的简单练习
总结词
基础练习,掌握基本去括号法则
详细描述
简单的去括号练习通常包括基本的括号消除和括号替换,例如将括号内的项合并或替换为其他表达式 。这些练习旨在帮助学生掌握去括号的规则和基本操作。
去括号的复杂练习
总结词
进阶练习,提高去括号技巧和准确性
详细描述
在算法中,去括号可以用于表示算法 的步骤和逻辑关系,以及控制流程。
04 去括号的常见错误与纠正
CHAPTER
括号前没有运算符的错误
总结词
括号前没有运算符会导致运算顺序不明确,影响运算结果。
详细描述
括号前没有运算符时,去括号后的运算顺序可能会产生歧义,导致计算结果不准确。例如,在表达式 (2 + 3) times 4 - 5) 中,如果没有运算符在括号前,那么括号内的加法运算和括号外的乘法运算顺序不明确,计算结果 会有所不同。
去括号-课件-课件ppt
(2) (5a-3b)-3(a2-2b)
=5a -3b -3a2+ 6b (去括号法则)
=-3a2+5a+3b
(合并同类项)
巩固练习
1. 课本P67化简:
(1)1( 2 x 0.5)
(2) 5(1 1 x)
5
(3) 5a (3a 2) (3a 7)
(4)1(9 y 3) 2(?
+1a(b+c)=ab+a c
+(-b+c)= +(b-c)= +(-b-c)=
知识回顾 1.你记得乘法分配律吗?用字母怎样表示?
-1a(b+c)= a-b+-ac
-(b+c)= -(b-c)= -(-b-c)=
知识小结
去括号,看符号:
括号前面是“+” 号,去掉括 号不变号;
B.3x2-3x-4
C.3x2-3x-2
D.3x2+x+2
3.一个两位数,个位数字是y,十位数字比
个位数字大1,那么这个两位数可表示为
(D)
A.11y-1
B.11y-10
C.11y+1
D.11y+10
你的收获
去括号特别是括号前面是“-” 时,括号里的各项都改变符号, 去括号法则可以简单记为“-” 变“+”不变,要变全都变。
反思整理
想一想:去括号时应注意哪些问题?
1.不能漏乘. 2.带符号乘. 3.符号变化. 4.要合并同类项.
典例分析
例:化简下列各式.
(1)8a+2b+(5a-b) (2)(5a-3b)-3(a2-2b)
解:(1)8a+2b+(5a-b) =8a+2b+5a-b =13a+b
3.3.2 去括号 苏科版七年级数学上册教学课件
100u-120(u-0.5)km
课程讲授
1 去括号
问题2:填写下表,并完成下面的问题.
a
b c a+(-b+c) a-b+c a-(-b+c)
-5 2 -1
-8
-8
-2
-6 -4 3
1
1
-13
-9.5 -5 -7
-11.5 -
-7.5
从这张表中你发现了什么?再1换1几.5 个数试试.
能说明你发现的结论正确吗?
随堂练习
2.与a+b-c互为相反数的是( A ) A.c-a-b B.a-b+c C.-a+b+c D.-a-b-c
随堂练习
3.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为( B ) A.1 B.5 C.-5 D.-1
随堂练习
4.去括号,合并同类项: (1)(x+2y)-(-2x-y); 解:原式=3x+3y
=-12ab-2a2+4
课程讲授
1 去括号
问题1:根据下面的描述,回答问题: 列车在冻土地段、非冻土地段的行驶速度分别是
100 km/h,120 km/h.在格尔木到拉萨路段,列车通过冻 土地段比通过非冻土地段多行驶0.5 h,如果通过冻土地 段需要u h,则这段铁路的全长可以怎么表示?
课程讲授
第3章 代数式
3.5 去括号
知识要点
1.去括号 2.去括号,合并同类项
新知导入
试一试:根据所学知识,完成下列内容.
合并同类项: (1)6x+2x2-3x+x2+1; 解:原式=(6x-3x)+(2x2+x2)+1
=3x+3x2+1 (2)-3ab+7-2a2-9ab-3. 解:原式=(-3ab-9ab)-2a2+(7-3)
课程讲授
1 去括号
问题2:填写下表,并完成下面的问题.
a
b c a+(-b+c) a-b+c a-(-b+c)
-5 2 -1
-8
-8
-2
-6 -4 3
1
1
-13
-9.5 -5 -7
-11.5 -
-7.5
从这张表中你发现了什么?再1换1几.5 个数试试.
能说明你发现的结论正确吗?
随堂练习
2.与a+b-c互为相反数的是( A ) A.c-a-b B.a-b+c C.-a+b+c D.-a-b-c
随堂练习
3.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为( B ) A.1 B.5 C.-5 D.-1
随堂练习
4.去括号,合并同类项: (1)(x+2y)-(-2x-y); 解:原式=3x+3y
=-12ab-2a2+4
课程讲授
1 去括号
问题1:根据下面的描述,回答问题: 列车在冻土地段、非冻土地段的行驶速度分别是
100 km/h,120 km/h.在格尔木到拉萨路段,列车通过冻 土地段比通过非冻土地段多行驶0.5 h,如果通过冻土地 段需要u h,则这段铁路的全长可以怎么表示?
课程讲授
第3章 代数式
3.5 去括号
知识要点
1.去括号 2.去括号,合并同类项
新知导入
试一试:根据所学知识,完成下列内容.
合并同类项: (1)6x+2x2-3x+x2+1; 解:原式=(6x-3x)+(2x2+x2)+1
=3x+3x2+1 (2)-3ab+7-2a2-9ab-3. 解:原式=(-3ab-9ab)-2a2+(7-3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1
1.你记得乘法分配律吗?用字母怎样表示?
一个数同两个数的和相乘,等于把这个数分别同这 两个数相乘,再把积相加. 用字母表示为: a(b+c)=ab+ac
2.利用乘法分配律计算:
1 2 12 ( ) = 2+8 6 3 1 1 12 ( ) = -3+4源自4 3用类比方法计算下列各式:
救死扶伤
◆在化简多项式8a+2b-(5a-b) 时, 阿飞的做法如下:
解:原式= 8a+2b-5a-b =(8-5)a+(2-1)b =3a+b.
阿飞的做法有问题吗?
教学过程
复习 1.化简: (1)-(-2) (2) +(+1/2) (4)+(-1/3) (5) -(-a) 上述化简有什么规律? 答案:(1)2 (2)1/2 (3) (5) a (6) -a 2.在下列括号里填上适当的数。 (1) -2=( )2 (2) -a=( )a (3) -(a-b)=( )(a-b) (1) -1 (2) -1 (3) (3) –(+3) (6) +(-a) -3 (4) -1/3
见死不救非君子, 落井下石乃小人!
判断: ×) (1)a+2(-b+c)= a-2b+c( (2)a-2(-b-c)=a-2b-2c( )
漏乘系数
漏变符号
×
这节课你有什么收获?
注意项数
(1) : 2( x 8) 2x 16 (2) : 3(3 x 4) 9x 12 (3) : 7(7 y 5) 49 y 35
注意各项符号
三、合作交流,探究新知
议一议:去括号前后,括号里各项 有什么变化? 的符号
去括号法则: 括号前是“+”号的,把括号和它前面 的“+”号去掉后,原括号里各项的符号都 不改变。 括号前是“-”号,把括号和它前面的 “-”号去掉后,原括号里各项的符号都要 改变。