河南省南阳市2014-2015学年高一数学上学期期中质量评估试题

合集下载

2015-2016年河南省南阳市高一(上)期中数学试卷及参考答案

2015-2016年河南省南阳市高一(上)期中数学试卷及参考答案

2015-2016学年河南省南阳市高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁A)∪B为()UA.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.f(x)=﹣B.f(x)=C.f(x)=lnx+2 D.f(x)=x+3.(5分)下列函数中,与函数y=x表示同一函数的是()A.B.C.,且a≠1)D.,且a≠1)4.(5分)已知集合A={x|0≤x≤2},B={y|y=2x,x>0},则A∩B=()A.(1,2]B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]5.(5分)已知a是函数f(x)=2x﹣x的零点,若0<x 0<a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定6.(5分)已知f (x)=ax5+bx﹣+2,f (2)=4,则f(﹣2)=()A.0 B.1 C.2 D.37.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.8.(5分)如果一个点时一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”,下列四个点P1(1,1),P2(1,2),P3(,),P4(2,2)中,“好点”的个数为()A.1 B.2 C.3 D.49.(5分)设a=(),b=(),c=logπ(),则()A.c<a<b B.c<b<a C.a<b<c D.b<a<c10.(5分)已知:a∈R,b∈R,若集合{a,,1}={a2,a+b,0},则a2015+b2015的值为()A.﹣2 B.﹣1 C.1 D.211.(5分)已知函数f(x)=,函数g(x)=2x﹣2则函数F(x)=f(x)﹣g(x)的零点个数为()A.2 B.3 C.4 D.512.(5分)已知定义在R上的单调函数f(x)的值域是(﹣∞,0),则关于x 的方程[f(x)]3﹣3f(x)﹣1=0的解的个数是()A.0 B.1 C.2 D.3二、填空题13.(3分)函数的值域是.14.(3分)已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.15.(3分)函数f(x)=﹣x2+2x,x∈(0,2),若a<f(x)恒成立,则实数a 的取值范围是.16.(3分)若函数f(x)=,在R上为增函数,则实数b的取值范围为.三、解答题17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.18.(12分)计算:(1)(×)6+()﹣4×()﹣×80.25﹣(﹣2005)0(2).19.(12分)设a是实数,f(x)=a﹣(x∈R)(1)证明:不论a为何实数,f(x)均为增函数(2)试确定a的值,使得f(﹣x)+f(x)=0恒成立.20.(12分)设二次函数f(x)=x2+ax++1(a∈R),求函数f(x)在[﹣1,1]上的最小值,g(a)的表达式.21.(12分)已知:函数f(x)=lg(1﹣x)+lg(p+x),其中p>﹣1(1)求f(x)的定义域;(2)若p=1,当x∈(﹣a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.22.(12分)定义域为R的函数f(x)满足:对任意的m,n∈R有f(m+n)=f (m)•f(n),且当x≥0时,有0<f(x)<1,f(4)=.(1)求f(0)的值;(2)证明:f(x)>0在R上恒成立;(3)证明:f(x)在R上是减函数;(4)若x>0时,不等式f(x+ax)>f(2+x2)恒成立,求实数a的取值范围.2015-2016学年河南省南阳市高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁A)∪B为()UA.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}【解答】解:∵∁U A={0,4},∴(∁U A)∪B={0,2,4};故选:D.2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.f(x)=﹣B.f(x)=C.f(x)=lnx+2 D.f(x)=x+【解答】解:A、f(x)=﹣,当x≥﹣1时,函数f(x)为减函数,B、f(x)=是减函数,C、f(x)=lnx+2,在(0,+∞)上是增函数,D、f(x)=x+在(0,1)为减函数,在(1,+∞)上是增函数,故选:C.3.(5分)下列函数中,与函数y=x表示同一函数的是()A.B.C.,且a≠1)D.,且a≠1)【解答】解:函数y=x的定义域为R,函数=,与函数y=x的解析式不同,所以不是同一函数;的定义域是{x|x≠0},所以与函数y=x的定义域不同,不是同一函数;函数的定义域是{x|x>0},与函数y=x的定义域不同,不是同一函数;函数,与函数为同一函数.故选:D.4.(5分)已知集合A={x|0≤x≤2},B={y|y=2x,x>0},则A∩B=()A.(1,2]B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]【解答】解:∵集合A={x|0≤x≤2}=[0,2],B={y|y=2x,x>0}=(1,+∞),∴A∩B=(1,2],故选:A.5.(5分)已知a是函数f(x)=2x﹣x的零点,若0<x 0<a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定【解答】解:∵在(0,+∞)上是增函数,a是函数的零点,即f(a)=0,∴当0<x0<a时,f(x0)<0,故选:C.6.(5分)已知f (x)=ax5+bx﹣+2,f (2)=4,则f(﹣2)=()A.0 B.1 C.2 D.3【解答】解:∵,∴f(x)﹣2=ax5+bx﹣为奇函数,则f(2)﹣2=a•25+2b﹣,f(﹣2)﹣2=﹣a•25﹣2b+,两式相加得f(﹣2)﹣2+f(2)﹣2=0,即f(﹣2)=2+2﹣f(2)=4﹣4=0,故选:A.7.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【解答】解:把四个图象分别叫做A,B,C,D.若为A,由图象知a<0,对称轴为x=0,解得矛盾,所以不成立.若为B,则由图象知a>0,对称轴为x=0,解得矛盾,所以不成立.若为C,由图象知a<0,对称轴为x>0,且函数过原点,得a2﹣1=0,解得a=﹣1,此时对称轴有可能,所以此时a=﹣1成立.若为D,则由图象知a>0,对称轴为x>0,且函数过原点,得a2﹣1=0,解得a=1,此时对称轴,矛盾,所以不成立.故图象为第三个,此时a=﹣1.故选:B.8.(5分)如果一个点时一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”,下列四个点P1(1,1),P2(1,2),P3(,),P4(2,2)中,“好点”的个数为()A.1 B.2 C.3 D.4【解答】解:设指数函数为y=a x,对数函数为y=log b x;对于对数函数,x=1时,y=0,则P1,P2不是对数函数图象上的点;∴P1,P2不是好点;将P3的坐标分别代入指数函数和对数函数解析式得:;解得;即P 3是指数函数和对数函数的交点,即P3为“好点”;同样,将P4坐标代入函数解析式得:;解得;∴P4是“好点”;∴“好点”个数为2.故选:B.9.(5分)设a=(),b=(),c=logπ(),则()A.c<a<b B.c<b<a C.a<b<c D.b<a<c【解答】解:∵函数y=在(0,+∞)上为增函数,且,故()>(),即a>b,又∵函数y=为减函数,,∴(),又∵函数y=logπx为增函数,∴logπ()=logπe<logππ=,故b>c,综上所述,c<b<a,故选:B.10.(5分)已知:a∈R,b∈R,若集合{a,,1}={a2,a+b,0},则a2015+b2015的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:∵a∈R,b∈R,且{a,,1}={a2,a+b,0},∴分母a≠0,∴b=0,a2=1,且a2≠a+b,解得a=﹣1;∴a2015+b2015=﹣1.故选:B.11.(5分)已知函数f(x)=,函数g(x)=2x﹣2则函数F(x)=f(x)﹣g(x)的零点个数为()A.2 B.3 C.4 D.5【解答】解:令F(x)=f(x)﹣g(x)=0,即有f(x)=g(x),分别作出y=f(x)和y=g(x)的图象,由图象可得当x<2时,图象有两个交点;当x>2时,可得x=4时,f(4)=g(4)=4;x=6时,f(6)=g(6)=16.即有两个交点.综上可得,共有4个交点.即为4个零点.故选:C.12.(5分)已知定义在R上的单调函数f(x)的值域是(﹣∞,0),则关于x 的方程[f(x)]3﹣3f(x)﹣1=0的解的个数是()A.0 B.1 C.2 D.3【解答】解:令t=f(x),则有t3﹣3t﹣1=0,令g(t)=t3﹣3t﹣1,g′(t)=3t2﹣3=3(t+1)(t﹣1),于是可得:g(t)的图象如右:∴方程t3﹣3t﹣1=0有3个不同的解,其中2个解是负的,而函数f(x)的值域是(﹣∞,0],并且函数f(x)单调,∴方程f3(x)﹣3f(x)﹣1=0有2个不同的实数解,故选:C.二、填空题13.(3分)函数的值域是(0,] .【解答】解:由,得,∵x∈R∴,解之得0<y;故答案为:(0,].14.(3分)已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.15.(3分)函数f(x)=﹣x2+2x,x∈(0,2),若a<f(x)恒成立,则实数a 的取值范围是a≤0.【解答】解:∵函数f(x)=﹣x2+2x的图象是开口朝下,且以直线x=1为对称轴的抛物线,故当x∈(0,2)时,f(x)∈(0,1],若a<f(x)恒成立,则a≤0,故答案为:a≤016.(3分)若函数f(x)=,在R上为增函数,则实数b的取值范围为[,0] .【解答】解:f(x)在R上为增函数;∴;解得;∴实数b的取值范围为[].故答案为:[].三、解答题17.(10分)已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a 的范围.【解答】解:当A=φ时即2a>a+3,a>3,此时满足A∩B=∅当A≠∅时,2a≤a+3,即a≤3时有2a≥﹣1且a+3≤5解之﹣≤a≤2,此时A∩B=φ综合知,当a>3或﹣≤a≤2时,A∩B=∅18.(12分)计算:(1)(×)6+()﹣4×()﹣×80.25﹣(﹣2005)0(2).【解答】解:(1)(×)6+()﹣4×()﹣×80.25﹣(﹣2005)0=4×27+2﹣7﹣2﹣1=100.(2)=====1.19.(12分)设a是实数,f(x)=a﹣(x∈R)(1)证明:不论a为何实数,f(x)均为增函数(2)试确定a的值,使得f(﹣x)+f(x)=0恒成立.【解答】证明:(1)设存在任意x1<x2,∴,,,则f(x1)﹣f(x2)=﹣()=﹣=<0,∴f(x1)<f(x2),∴不论a为何实数,f(x)均为增函数.解:(2)若f(﹣x)+f(x)=0,则f(x)为奇函数,则f(0)=a﹣1=0∴a=1,当a=1时,f(x)=1﹣=满足f(﹣x)+f(x)=0恒成立.20.(12分)设二次函数f(x)=x2+ax++1(a∈R),求函数f(x)在[﹣1,1]上的最小值,g(a)的表达式.【解答】解:f(x)=x2+ax++1=(x+)2+1,对称轴为x=﹣,(1)若﹣≥1,即a≤﹣2时,f(x)在[﹣1,1]上是减函数,∴g(a)=f(1)=+a+2;(2)若﹣1<﹣<1,即﹣2<a<2时,f(x)在[﹣1,1]上先减后增,∴g(a)=f(﹣)=1;(3)若﹣≤﹣1,即a>2时,f(x)在[﹣1,1]上增函数,∴g(a)=f(﹣1)=﹣a+2.综上可得,g(a)=.21.(12分)已知:函数f(x)=lg(1﹣x)+lg(p+x),其中p>﹣1(1)求f(x)的定义域;(2)若p=1,当x∈(﹣a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.【解答】解:(1)由题意可得,即有,由p>﹣1,可得﹣p<1,即有﹣p<x<1,则函数的定义域为(﹣p,1);(2)f(x)=lg(1﹣x)+lg(1+x)=lg(1﹣x2),(﹣a<x≤a),令t=1﹣x2,(﹣a<x≤a),y=lgt,为递增函数.由t的范围是[1﹣a2,1],当x=a时,y=lgt取得最小值lg(1﹣a2),故存在x=a,函数f(x)取得最小值,且为lg(1﹣a2).22.(12分)定义域为R的函数f(x)满足:对任意的m,n∈R有f(m+n)=f (m)•f(n),且当x≥0时,有0<f(x)<1,f(4)=.(1)求f(0)的值;(2)证明:f(x)>0在R上恒成立;(3)证明:f(x)在R上是减函数;(4)若x>0时,不等式f(x+ax)>f(2+x2)恒成立,求实数a的取值范围.【解答】解:(1)令m=n=0,∴f(0)=f(0)f(0),0<f(0)<1,∴f(0)=1;(2)设m=x<0,n=﹣x>0,f(﹣x)∈(0,1)∴f(m+n)=f(m)f(n)=f(0)=1,∴f(m)>1,即当x<0时f(x)>1…(4分)故f(x)>0在R上恒成立;(3)∀x1<x2∈R,则x2﹣x1>0,0<f(x2﹣x1)<1,f(x1)>0,f(x2)﹣f(x1)=f(x2﹣x1+x1)﹣f(x1)=f(x2﹣x1)f(x1)﹣f(x1)=f(x1)[f(x2﹣x1)﹣1]<0∴f(x)在R 上单调递减.(4)f(x+ax)>f(2+x2)恒成立,∴x+ax<2+x2恒成立,∴a<+x﹣1,令g(x)=+x,知当x>0时,g(x)≥2,∴a<2﹣1.。

【最新经典文档】年河南省南阳市高三上学期期中数学试卷含解析答案(理科)

【最新经典文档】年河南省南阳市高三上学期期中数学试卷含解析答案(理科)

的值.
18.( 12 分)设曲线 f (x) =x2+1 和 g( x)=x3+x 在其交点处两切线的夹角为 θ, 求 cosθ.
19.( 12 分)已知△ ABC中,内角 A,B,C 的对边分别为 a,b,c,已知 a,b,
c 成等比数列,

(Ⅰ)求
的值;
(Ⅱ)设
的值.
20.( 12 分)设数列 { an} 的各项都是正数,且对任意 n∈N* ,都有 an2=2Sn﹣an, 其中 Sn 为数列 { an} 的前 n 项和. (Ⅰ)求数列 { an} 的通项公式; (Ⅱ)设 bn=3n+(﹣ 1)n﹣1?λ ?a2n(λ为非零整数, n∈ N*),试确定 λ的值,使得

A.
B.
C.
D.
【解答】 解:∵ f(x)=bsinx,
第 6 页(共 21 页)
∴ f ′( x)=bcosx, 则 f ′( )=bcos = , ∵图象在点 A( ,f ( ))处的切线与直线 x﹣2y+3=0 平行,
∴切线斜率 k= = ,解得 b=1.
∴ an=n2+bn=an=n2+n=n(n+1),

A.4 B.3 C.2 D.1
4.(5 分)已知向量 的模为 2 , =(1,﹣ 2),条件 p:向量 的坐标为( 4,
2),条件 q: ⊥ ,则 p 是 q 的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
5.( 5 分)设函数 f(x)=bsinx 的图象在点 A( ,f( ))处的切线与直线 x
最大值. 22.( 12 分)设 f(x)= +xlnx,g( x) =x3﹣ x2﹣3,

2014年河南省南阳市春期期中质量评估高一年级数学试题(word含答案)

2014年河南省南阳市春期期中质量评估高一年级数学试题(word含答案)

2014年春期高中一年级期中质量评估数 学 试 题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 下列赋值语句正确的是A .2a b -=B .5a =C .4a b ==D .2a a =+ 2. ,则表示该算法中一定有哪种逻辑结构A .循环结构和选择结构B .选择结构C .循环结构D .顺序结构和循环结构 3. 下列两个变量之间的关系是相关关系的是 A .正方体的棱长和体积B. 单位圆中角的度数和所对弧长C. 单产为常数时,土地面积和总产量D. 日照时间与水稻的亩产量4.现有60件产品,编号从1到60,若用系统抽样方法从中抽取6件检验,则所抽到的个体编号可能是 A .5,10,15,20,25,30 B .2,14,26,28,42,56C .5,8,31,36,48,54D .3,13,23,33,43,535. 某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是 A .恰有1名男生与恰有2名女生 B .至少有1名男生与全是男生C .至少有1名男生与至少有1名女生D .至少有1名男生与全是女生6. 甲、乙、丙、丁4人分乘两辆车,每辆车乘两人,则甲、乙同车的概率是A.16B.13C.14D.237. 某单位业务人员、管理人员、后勤服务人员人数之比依次为15∶3∶2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n 的样本,样本中业务人员人数为30,则此样本的容量n 为(A )20 (B )30 (C )40 (D )80 8.若样本1x +2,2x +2,…,n x +2的平均数为10,方差为3,则样本21x +3,22x +3,…,2n x +3,的平均数、方差、标准差是A .19,12,32B .23,12,32C .23,18,23D .19,18,239.下面的程序输出的结果是 A .3B . 5C .9D .1310. 定义某种运算※,a b ※的运算原理如上图所示。

河南省南阳市2015届高三上学期期中质量评估数学(理)试题(扫描版)

河南省南阳市2015届高三上学期期中质量评估数学(理)试题(扫描版)

2014年秋期高三年级理科期中考试答案一.选择题: 题目1 2 3 4 5 6 7 8 9 10 11 12 答案 DDBADCDAAABD二.填空题:13.5 14.0 15.1 16.①②③④ 三.解答题:17.解:(I )∵f x ()为偶函数()()∴s i n s i n -+=+ωϕωϕx x 即20s i n c o s ωϕx =恒成立∴cos ϕ=0 ∵,∴02≤≤=ϕπϕπ……………………………………………………………3分 又其图象上相邻对称轴之间的距离为π ∴T =2π ∴ω=1 ∴f x x ()c o s = ……………………………………………………………………5分(II )∵原式=-++=s i n c o s t a n s i n c o s22112αααα ……………………………7分 又∵,∴s i n c o s s i n c o s αααα+=+=231249 …… ………………………9分 即259s i n c o s αα=-, 故原式=-59………………………………………10分18.解:由⎩⎨⎧+=+=xx y x y 321,得0123=-+-x x x ,即0)1)(1(2=+-x x ,1=∴x ,∴交点为)2,1(.…………………………………2分又x x f 2)('=,2)1('=∴f ,∴曲线)(x f y =在交点处的切线1l 的方程为)1(22-=-x y ,……………………5分即x y 2=,又13)('2+=x x g . ∴4)1('=g .∴曲线)(x g y =在交点处的切线2l 的方程为)1(42-=-x y ,即24-=x y . ………………………………………………………………8分取切线1l 的方向向量为)2,1(=a ,切线2l 的方向向量为)4,1(=b ,…………10分 则858591759||||cos =⨯=⋅=b a b a θ. ……………………………………12分19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得 由ac b =2及正弦定理得 .sin sin sin 2C A B = 则CA AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+22sin()sin 147.sin sin sin 7A CB B B B +==== …………………………6分(Ⅱ)由32BA BC ⋅=,得23cos =B ac ,由43cos =B ,可得ac =2,即b 2=2.…………………………………………………………8分由余弦定理B ac c a b cos 2222-+=,得5cos 2222=+=+B ac b c a ,3,9452)(222=+=+=++=+c a ac c a c a ……………………12分20.解:(Ⅰ)∵*n N ∈时,n n n a S a -=22, ①当2≥n 时,21112n n n a S a ---=-, ② ………………………………2分 由①-②得,22111(2)(2)n n n n n n a a S a S a ----=---即2211n n n n a a a a ---=+,∵01>+-n n a a ∴)2(11≥=--n a a n n ,………………4分由已知得,当1=n 时, 21112a S a =-,∴11=a .………………………………5分 故数列}{n a 是首项为1,公差为1的等差数列.∴*()N n a n n =∈. …………6分 (Ⅱ)∵*()N n a n n =∈,∴n n n n b 2)1(31⋅-+=-λ,…………7分∴111133(1)2(1)2n n n n n n n n b b λλ++-+-=-+-⋅--⋅1233(1)2n n n λ-=⨯-⋅-⋅.要使得1n n b b +>恒成立,只须113(1)()2n n λ---⋅<. …………8分(1)当n 为奇数时,即13()2n λ-<恒成立.又13()2n -的最小值为1,∴1λ<. ……9分(2)当n 为偶数时,即13()2n λ->-恒成立.又13()2n --的最大值为32-,∴32λ>- ……………………………………10分∴由(1),(2)得312λ-<<,又0λ≠且λ为整数,……………………11分∴1λ=-对所有的*N n ∈,都有1n n b b +>成立. ………………12分21.解:(I )ax x x x f 22131)(23++-= ,a x x x f 2)('2++-=∴ …………………2分 函数)(x f 在),32(+∞上存在单调递增区间,即导函数在),32(+∞上存在函数值大于零的部分,0232)32()32('2>++-=∴a f 91->∴a ……………………………………6分(II))(x f 取到最小值316-,而a x x x f 2)('2++-=的图像开口向下,且对称轴方程为21=x ,02)1('>=a f , 0122)4('<-=a f则必有一点使得0'()0=f x ……………………………………8分此时函数)(x f 在0[1,]x 上单调递增,在0[,4]x 单调递减.612)1(+=a f ,a f 8340)4(+-=,)1()4(f f <∴3168340)4()(min -=+-==∴a f x f , 1=∴a , …………………10分此时,由200000'()202,1()=-++=∴==-舍去f x x x x x ,所以函数max 10()(2)3==f x f ………………………………………………………12分22.解答:[],4,10∈x.3分8分12分。

2014-2015年河南省南阳市高一上学期数学期中试卷和解析(理科)

2014-2015年河南省南阳市高一上学期数学期中试卷和解析(理科)

2014-2015学年河南省南阳市高一(上)期中数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.(5分)函数的定义域是()A.(﹣1,+∞)B.[﹣1,+∞)C.(﹣1,1)∪(1,+∞) D.[﹣1,1)∪(1,+∞)3.(5分)下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3﹣x B.f(x)=x2﹣3x C.f(x)=﹣D.f(x)=﹣|x| 4.(5分)若f:A→B能构成映射,下列说法正确的有()(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)B中的任一元素在A中必须有像.A.1个 B.2个 C.3个 D.0个5.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)6.(5分)若a=20.5,b=logπ3,c=log20.5,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)设函数f(x)=,则f(f(2))的值为()A.3 B.2 C.1 D.08.(5分)函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是(A.B.C.D.9.(5分)已知函数f(x)满足f(x+2)=f(x),当x∈(﹣1,0)时,有f(x)=2x,则当x∈(﹣3,﹣2)时,f(x)等于()A.2x B.﹣2x C.2x+2D.﹣2﹣(x+2)10.(5分)若a∈R,且log a(2a+1)<log a(3a)<0,则a的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)11.(5分)若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增加的,又f(3)=0,则不等式<0的解集为()A.(﹣3,0)∪(3,+∞) B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)12.(5分)已知y=f(x)是偶函数,当x>0时f(x)=(x﹣1)2,若当x∈[﹣2,﹣]时,n≤f(x)≤m恒成立,则m﹣n的最小值为()A.B.C.D.1二、填空题(共4小题,每小题5分,满分20分)13.(5分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x.则f (1)=.14.(5分)已知函数,且对于任意的x恒有f(x)≥f(x0),则x0=.15.(5分)若函数f(x)=lg|x﹣1|﹣m有两个零点x1和x2,则x1+x2=.16.(5分)函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<﹣a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(﹣x),则对于F(x)有以下四个说法:①定义域是[﹣b,b];②是偶函数;③最小值是0;④在定义域内单调递增.其中正确的有(填入你认为正确的所有序号)三.解答题(本大题共6小题,共70分)17.(10分)求值:(1);(2).18.(12分)已知集合A={x|﹣4<x<2},B={x|x<﹣5或x>1},C={x|m﹣1<x<m+1}.(1)求A∪B,A∩(∁R B);(2)若B∩C=∅,求实数m的取值范围.19.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?20.(12分)已知二次函数f(x)满足f(﹣1)=f(3)=3,f(1)=﹣1(Ⅰ)求f(x)的解析式;(Ⅱ)若f(x)在[a﹣1,a+1]上有最小值﹣1,最大值f(a+1),求a的取值范围.21.(12分)已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.(1)证明函数y=f(x)在R上的单调性;(2)讨论函数y=f(x)的奇偶性;(3)若f(x2﹣2)+f(x)<0,求x的取值范围.22.(12分)已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.(1)求k的值;(2)若方程f(x)=log4(a•2x﹣a)有且只有一个根,求实数a的取值范围.2014-2015学年河南省南阳市高一(上)期中数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3},则∁U(M∩N)={1,4},故选:D.2.(5分)函数的定义域是()A.(﹣1,+∞)B.[﹣1,+∞)C.(﹣1,1)∪(1,+∞) D.[﹣1,1)∪(1,+∞)【解答】解:由题意可得,∴x≥﹣1且x≠1,故函数的定义域是为:{x|x≥﹣1且x≠1}.故选:D.3.(5分)下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3﹣x B.f(x)=x2﹣3x C.f(x)=﹣D.f(x)=﹣|x|【解答】解:∵f(x)=3﹣x在(0,+∞)上为减函数,∴A不正确;∵f(x)=x2﹣3x是开口向上对称轴为x=的抛物线,所以它在(0,+∞)上先减后增,∴B不正确;∵f(x)=﹣在(0,+∞)上y随x的增大而增大,所它为增函数,∴C正确;∵f(x)=﹣|x|在(0,+∞)上y随x的增大而减小,所以它为减函数,∴D不正确.故选:C.4.(5分)若f:A→B能构成映射,下列说法正确的有()(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)B中的任一元素在A中必须有像.A.1个 B.2个 C.3个 D.0个【解答】解:根据映射的定义:给出A,B两个非空集合及一个对应关系f,在对应关系f的作用下,对集合A中的任意一个元素在集合B中都有唯一确定的像与之相对应.若f:A→B能构成映射,那么,A中的任一元素在B中必须有像且唯一,故结论(1)正确,结论(3)不正确;A中的多个元素可以在B中有相同的像,故结论(2)正确.B中的元素未必有原像,结论(4)不正确.故选:B.5.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)【解答】解:∵函数f(x)=e x+4x﹣3∴f′(x)=e x+4当x>0时,f′(x)=e x+4>0∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为f(0)=e0﹣3=﹣2<0f()=﹣1>0f()=﹣2=﹣<0∵f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:A.6.(5分)若a=20.5,b=logπ3,c=log20.5,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:∵20.5>20=1,0<logπ3<logππ=1,log20.5<log21=0,∴a>b>c.故选:A.7.(5分)设函数f(x)=,则f(f(2))的值为()A.3 B.2 C.1 D.0【解答】解:函数f(x)=,则f(2)==1.f(f(2))=f(1)=2×11﹣1=2.故选:B.8.(5分)函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是(A.B.C.D.【解答】解:∵y=f(x)的有两个零点,并且g(x)没有零点;∴函数y=f(x)•g(x)也有两个零点M,N,又∵x=0时,函数值不存在∴y在x=0的函数值也不存在当x∈(﹣∞,M)时,y<0;当x∈(M,0)时,y>0;当x∈(0,N)时,y<0;当x∈(N,+∞)时,y>0;只有A中的图象符合要求故选:A.9.(5分)已知函数f(x)满足f(x+2)=f(x),当x∈(﹣1,0)时,有f(x)=2x,则当x∈(﹣3,﹣2)时,f(x)等于()A.2x B.﹣2x C.2x+2D.﹣2﹣(x+2)【解答】解:令x∈(﹣3,﹣2),则x+2∈(﹣1,0),∵当x∈(﹣1,0)时,有f(x)=2x,∴f(x+2)=2x+2,∵f(x+2)=f(x),∴f(x+2)=f(x)=2x+2,x∈(﹣3,﹣2).故选:C.10.(5分)若a∈R,且log a(2a+1)<log a(3a)<0,则a的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)【解答】解:∵2a+1>0,3a>0,当a>1时,2a+1<3a<1,解得:a∈∅;当0<a<1时,原不等式可转化为:2a+1>3a>1,解得:<a<1.故选:D.11.(5分)若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增加的,又f(3)=0,则不等式<0的解集为()A.(﹣3,0)∪(3,+∞) B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)【解答】解:由已知条件知f(x)在(﹣∞,0)上是增函数,f(﹣x)=﹣f(x),f(3)=f(﹣3)=0;∴由原不等式得,所以:(1),或(2);∵f(x)在(0,+∞)和(﹣∞,0)上都是增函数;∴解不等式(1)(2)得﹣3<x<0或0<x<3;∴原不等式的解集为(﹣3,0)∪(0,3).故选:B.12.(5分)已知y=f(x)是偶函数,当x>0时f(x)=(x﹣1)2,若当x∈[﹣2,﹣]时,n≤f(x)≤m恒成立,则m﹣n的最小值为()A.B.C.D.1【解答】解:设x<0,则﹣x>0,有f(﹣x)=(﹣x﹣1)2=(x+1)2,原函数是偶函数,故有f(x)=f(﹣x)=(x+1)2,即x<0时,f(x)=(x+1)2.该函数在[﹣2,﹣]上的最大值为1,最小值为0,依题意n≤f(x)≤m恒成立,∴n≤0,m≥1,即m﹣n≥1.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x.则f (1)=﹣3.【解答】解:∵f(﹣1)=2+1=3∵f(x)是定义在R上的奇函数∴f(﹣1)=﹣f(1)∴f(1)=﹣3故答案为:﹣3.14.(5分)已知函数,且对于任意的x恒有f(x)≥f(x0),则x0=0.【解答】解:∵,∴f′(x)=2x•2•ln2,令f′(x)=2x•2•ln2=0,得x=0.列表,讨论x(﹣∞,0)0(0,+∞)f′(x)﹣0+f(x)↓极小值↑∴函数在x=0处取得极小值f(0)=2.∵函数只有一个极小值,故这个极小值就是函数的最小值.∵函数对于任意的x恒有f(x)≥f(x0),∴f(x)≥f(x)min=f(0),∴x0=0.故答案为:0.15.(5分)若函数f(x)=lg|x﹣1|﹣m有两个零点x1和x2,则x1+x2=2.【解答】解:令g(x)=lg|x﹣1|,画出函数g(x)的图象,如图示:,显然:图象关于直线x=1对称,∴=1,即x1+x2=2,故答案为:2.16.(5分)函数y=f(x)是定义在a,b上的增函数,其中a,b∈R且0<b<﹣a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(﹣x),则对于F(x)有以下四个说法:①定义域是[﹣b,b];②是偶函数;③最小值是0;④在定义域内单调递增.其中正确的有①②(填入你认为正确的所有序号)【解答】解:根据题意,依次分析4个命题:对于①,对于F(x)=f2(x)+f2(﹣x),有a≤x≤b,a≤﹣x≤b,而又由0<b<﹣a,则F(x)=f2(x)+f2(﹣x)中,x的取值范围是﹣b≤x≤b,即其定义域是[﹣b,b],则①正确;对于②,F(﹣x)=f2(﹣x)+f2(x)=F(x),且其定义域为[﹣b,b],关于原点对称,则F(x)为偶函数,②正确;对于③,由y=f(x)无零点,假设f(x)=2x,F(x)=22x+2﹣2x=22x+≥2,其最小值为2,故③错误;对于④,由于F(x)是偶函数,则F(x)在[﹣b,0]上与[0,b]上的单调性相反,故F(x)在其定义域内不会单调递增,④错误;故答案为①②.三.解答题(本大题共6小题,共70分)17.(10分)求值:(1);(2).【解答】解:(1)原式=﹣+(×=﹣+25×=﹣+2=(2)原式=lg(2lg+lg5)+(1﹣lg)(8分)=lg lg10+1﹣lg=1 (10分)18.(12分)已知集合A={x|﹣4<x<2},B={x|x<﹣5或x>1},C={x|m﹣1<x<m+1}.(1)求A∪B,A∩(∁R B);(2)若B∩C=∅,求实数m的取值范围.【解答】解:(1)∵集合A={x|﹣4<x<2},B={x|x<﹣5或x>1},∴A∪B={x|x<﹣5,或x>﹣4},又∵∁R B={x|﹣5≤x≤1},…(4分)∴A∩(∁U B)={x|﹣4<x≤1};…(6分)(2)∵B={x|x<﹣5或x>1},C={x|m﹣1<x<m+1},若B∩C=∅,则需,解得,…(10分)故实数m的取值范围为[﹣4,0].…(12分)19.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【解答】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.20.(12分)已知二次函数f(x)满足f(﹣1)=f(3)=3,f(1)=﹣1(Ⅰ)求f(x)的解析式;(Ⅱ)若f(x)在[a﹣1,a+1]上有最小值﹣1,最大值f(a+1),求a的取值范围.【解答】解(Ⅰ)设f(x)=ax2+bx+c(a≠0),∵f(﹣1)=f(3)=3,f(1)=﹣1,∴,解之得:a=1,b=﹣2,c=0,∴f(x)=x2﹣2x;(Ⅱ)∵f(x)在[a﹣1,a+1]上有最小值﹣1,最大值f(a+1),f(1)=﹣1,∴函数f(x)的对称轴在区间[a﹣1,a+1]上,a+1离对称轴远,∴,解之得:1≤a≤2,∴a的取值范围为[1,2].21.(12分)已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.(1)证明函数y=f(x)在R上的单调性;(2)讨论函数y=f(x)的奇偶性;(3)若f(x2﹣2)+f(x)<0,求x的取值范围.【解答】(1)证明:设x1>x2,则x1﹣x2>0,而f(a+b)=f(a)+f(b)∴f(x1)﹣f(x2)=f((x1﹣x2)+x2)﹣f(x2)=f(x1﹣x2)+f(x2)﹣f(x2)=f(x1﹣x2),又当x>0时,f(x)<0恒成立,∴f(x1)<f(x2),∴函数y=f(x)是R上的减函数;(2)由f(a+b)=f(a)+f(b),得f(x﹣x)=f(x)+f(﹣x),即f(x)+f(﹣x)=f(0),而f(0)=0,∴f(﹣x)=﹣f(x),即函数y=f(x)是奇函数.(3)(方法一)由f(x2﹣2)+f(x)<0,得f(x2﹣2)<﹣f(x),又y=f(x)是奇函数,即f(x2﹣2)<f(﹣x),又y=f(x)在R上是减函数,∴x2﹣2>﹣x解得x>1或x<﹣2.(方法二))由f(x2﹣2)+f(x)<0且f(0)=0,得f(x2﹣2+x)<f(0),又y=f(x)在R上是减函数,∴x2﹣2+x>0,解得x>1或x<﹣2.22.(12分)已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.(1)求k的值;(2)若方程f(x)=log4(a•2x﹣a)有且只有一个根,求实数a的取值范围.【解答】解:(I)由题意得f(﹣x)=f(x),即,化简得,…(2分)从而4(2k+1)x=1,此式在x∈R上恒成立,∴…(6分)(II)由题意,原方程化为且a•2x﹣a>0即:令2x=t>0…(8分)函数y=(1﹣a)t2+at+1的图象过定点(0,1),(1,2)如图所示:若方程(1)仅有一正根,只有如图的三种情况,可见:a>1,即二次函数y=(1﹣a)t2+at+1的开口向下都可,且该正根都大于1,满足不等式(2),…(10分)当二次函数y=(1﹣a)t2+at+1的开口向上,只能是与x轴相切的时候,此时a<1且△=0,即也满足不等式(2)综上:a>1或…(12分)赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa+b45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+ba45°ABE挖掘图形特征:a+bb x-aa 45°D Ba+b45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。

河南省南阳市部分示范高中高一数学上学期期中试题(扫描版)新人教A版

河南省南阳市部分示范高中高一数学上学期期中试题(扫描版)新人教A版

河南省南阳市部分示范高中2013-2014学年高一数学上学期期中试题(扫描版)新人教A版高一数学试题答案一.选择题:1--5.CBDBA; 6-10.CBADA; 11-12.DB二.填空题:13.3,22⎛⎫⎪⎝⎭;14.(],1-∞; 15.26-; 16.8. 三.17.解:当B =∅时,211m m -<+ , 解得2m < K K (2分) 当B ≠∅时,由B A ⊆得12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得23m ≤≤ K K (8分)综上可知:3m ≤ K K (10分)18.解:(1)原式=34414299π--++- =92π- K K (6分) (2)原式=25517log 22++=17222++=6 K K (6分 ) 19.解:(Ⅰ)依题意x x y 829-+=22)1,=-+,∴当2=,即4x =时,蓄水池水量最少; K K (6分)(Ⅱ) 若每小时向水池供水3千吨,则x x y 839-+=∴3)829(--+=x x y (032)34(32>+-=x , 因此,水厂每小 时注入3千吨水,不会发生供水紧张情况. K K (12分) 20.(1)证明:)(x f Θ的定义域为R ,令0==y x ,则)0(2)0()0()00(f f f f =+=+, ,0)0(=∴f 令x y -=,则)()()(x f x f x x f -+=-,即0)()()0(=-+=x f x f f . )()(x f x f -=-∴,故)(x f 为奇函数. K K 4分(2)证明:任取,,21R x x ∈且21x x <,则)()()()()(121212x x f x f x f x f x f -=-+=-又012>-x x Θ,0)(12<-∴x x f ,0)()(12<-∴x f x f ,即)()(21x f x f >. 故)(x f 是R 上的减函数. K K 8分(3)解:,4)1()1()2(,2)1(=-+-=-∴=-f f f f Θ又)(x f 为奇函数,8)2()2()4(,4)2()2(-=+=∴-=--=∴f f f f f由(2)知)(x f 是R 上的减函数,所以当2-=x 时,)(x f 取得最大值,最大值为4)2(=-f ;当4=x 时,)(x f 取得最小值,最小值为8)4(-=f . K K 11分 所以函数)(x f 在区间]4,2[-上的值域为[]4,8-. K K 12分 21.解:函数1222()42(2)22(12)x x x x f x a a a a x +=--=--≤≤ K 2分) 令2x t =则24t ≤≤原函数可化为22222()2(24)y t at a t a a t =--=--≤≤ K K (4分)(1)当3a <时:242x t x ===即时2max ()(2)816f x f a a ==--+(2)当3a ≥时:221x t x ===即时 2max ()(1)44f x f a a ==--+228163()443a a a g a a a a ⎧--+ <⎪∴=⎨--+≥⎪⎩ K K K K (8分) 当3a <时:2()816g a a a =--+此时max ()(4)32g a g =-= 当3a ≥时:2()44g a a a =--+此时max ()(3)17g a g ==-综上可知max ()32g a = K K K K (12分)22.解:(1)∵f(x)在[-1,1]上是奇函数,∴f(0) =0……………1分 设(0,1]x ∈,则[1,0)x -∈-142)()(+=--=∴x xx f x f ……………3分2,[1,0)41()0,02,(0,1]41xx xx x f x x x ⎧-∈-⎪+⎪⎪∴==⎨⎪⎪∈⎪+⎩………………………………4分(2)设1212,(0,1),x x x x ∈<且,则212112212121222(41)2(41)()()4141(41)(41)x x x x x x x x x x f x f x +-+-=-=++++211221(22)(12)(41)(41)x x x x x x +--=++………………6分∵1212,(0,1),x x x x ∈<且,∴211222,21x x x x +>>。

河南省南阳市2014-2015学年高一下学期期中质量评估数学试题 Word版含答案

河南省南阳市2014-2015学年高一下学期期中质量评估数学试题 Word版含答案

南阳市2014-2015学年春期高一质量评估数学试题1.没有信息损失的统计图表是A.条形统计图 B.扇形统计图 C.折线统计图 D.茎叶图2.将两个数a=2, b= -6交换,使a= -6, b=2,下列语句正确的是A...3.505样的方法,则所选5名学生的学号可能是A.1,2,3,4,5 B.5,15,25,35,45 C.2,4,6,8,10 D.4,13,22,31,404.在一次随机实验中彼此互斥的事件A、B、C、D的概率分别为0.2、0.2、0.3、0.3,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件;B.B+C与D是互斥事件,也是对立事件;C.A+C与B+D是互斥事件,但不是对立事件;D.A与B+C+D是互斥事件,也是对立事件;5.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样 6、如果一组数12,,...,n x x x 的平均数是x ,方差是2s ,12n 平均数和方差分别是2s2s2s22s ++7. 右边程序运行结果为A .7B .6C .5D .48.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称“乙心相近于甲”.现任意找两人玩这个游戏,则“乙心相近于甲”的概率为A .19 B .29 C .718 D .499.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

河南省南阳市2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

河南省南阳市2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

2014年秋期高三年级文科期中考试答案一.选择题: 题目 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADBADCDAACAB二.填空题:13.1 14.重心 15.4116.①②③④ 三.解答题:17.解:(I )∵f x ()为偶函数()()∴s i n s i n -+=+ωϕωϕx x 即20s i n c o s ωϕx =恒成立∴cos ϕ=0 ∵,∴02≤≤=ϕπϕπ……………………………………………………………3分 又其图象上相邻对称轴之间的距离为π ∴T =2π ∴ω=1∴f x x ()c o s = ……………………………………………………………………5分 (II )∵原式=-++=s i n c o s t a n s i n c o s22112αααα ……………………………7分 又∵,∴s i n c o s s i n c o s αααα+=+=231249 …… ………………………9分 即259s i n c o s αα=-, 故原式=-59………………………………………10分18.解:由⎩⎨⎧+=+=xx y x y 321,得0123=-+-x x x , 即0)1)(1(2=+-x x ,1=∴x ,∴交点为)2,1(.…………………………………2分 又x x f 2)('=,2)1('=∴f ,∴曲线)(x f y =在交点处的切线1l 的方程为)1(22-=-x y , 即x y 2=, ……………………5分又13)('2+=x x g . ∴4)1('=g .∴曲线)(x g y =在交点处的切线2l 的方程为)1(42-=-x y ,即24-=x y . ………………………………………………………………8分 取切线1l 的方向向量为)2,1(=a ,切线2l 的方向向量为)4,1(=b ,…………10分 则858591759||||cos =⨯=⋅=b a b a θ. ……………………………………12分19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由ac b =2及正弦定理得 .s i n s i ns i n 2C A B = 则CA AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+22sin()sin 147.sin sin sin 7A CB B B B +==== …………………………6分(Ⅱ)由32BA BC ⋅=,得23cos =B ac ,由43cos =B ,可得ac =2,即b 2=2.…………………………………………………………8分由余弦定理B ac c a b cos 2222-+=,得5cos 2222=+=+B ac b c a , 3,9452)(222=+=+=++=+c a ac c a c a ……………………12分20.解:(Ⅰ)∵*n N ∈时,n n n a S a -=22,当2≥n 时,21112n n n a S a ---=-,…………………………………………………2分由①-②得,22111(2)(2)n n n n n n a a S a S a ----=---即2211n n n n a a a a ---=+,∵01>+-n n a a ∴)2(11≥=--n a a n n ,………………4分 由已知得,当1=n 时,21112a S a =-,∴11=a .………………………………5分故数列}{n a 是首项为1,公差为1的等差数列.∴*()N n a n n =∈. …………6分 (Ⅱ)∵*()N n a n n =∈,∴n n n n b 2)1(31⋅-+=-λ,…………7分∴111133(1)2(1)2n n n n n n n n b b λλ++-+-=-+-⋅--⋅1233(1)2n n n λ-=⨯-⋅-⋅.要使得1n n b b +>恒成立,只须113(1)()2n n λ---⋅<. …………8分(1)当n 为奇数时,即13()2n λ-<恒成立.又13()2n -的最小值为1,∴1λ<. ……9分(2)当n 为偶数时,即13()2n λ->-恒成立.又13()2n --的最大值为32-,∴32λ>- ……………………………………10分∴由(1),(2)得312λ-<<,又0λ≠且λ为整数,……………………11分∴1λ=-对所有的*N n ∈,都有1n n b b +>成立. ………………12分21.解:[)(] 1.-2f(-x),0,1x -,1,0-x )1(-x =∴∈∈则令又,)(是奇函数x f ∴f(-x)=-f(x),∴,12)()(-=-=--x x f x f ∴[).0,1,1)21()(-∈+-=x x f x.................................6分(2) f(x+4)=f(x),∴f(x)是以4为周期的周期函数, ),4,5(24log 24log 221--∈-=∴),0,1(424log 21-∈+∴211161241)21()424(log )24(log 424log 212121-=+⨯-=+-=+=∴+f f .......12分22.解:(I )ax x x x f 22131)(23++-= ,a x x x f 2)('2++-=∴ …………………2分 函数)(x f 在),32(+∞上存在单调递增区间,即导函数在),32(+∞上存在函数值大于零的部分, 0232)32()32('2>++-=∴a f 91->∴a ……………………………………6分(II))(x f 取到最小值316-,而a x x x f 2)('2++-=的图像开口向下,且对称轴方程为21=x ,02)1('>=a f ,0122)4('<-=a f则必有一点使得0'()0=f x……………………………………8分此时函数)(x f 在0[1,]x 上单调递增,在0[,4]x 单调递减.612)1(+=a f ,a f 8340)4(+-=,)1()4(f f <∴3168340)4()(min -=+-==∴a f x f , 1=∴a , …………………10分 此时,由200000'()202,1()=-++=∴==-舍去f x x x x x ,所以函数max 10()(2)3==f x f ………………………………………………………12分[],4,10∈x。

2014-2015学年高一上学期期中考试数学试题(含答案解析)

2014-2015学年高一上学期期中考试数学试题(含答案解析)

π 3 f (a ) − f (b ) > 0 成立,则必有( 9. 定义在 R 上的函数 f ( x ) 对任意两个不相等实数 a,b ,总有 a −b
D. f (−1) > f (−π ) > f ( ) A. 函数 f ( x ) 是先增 加后减少 C. f ( x ) 在 R 上是增函数 B. 函数 f ( x ) 是先减少后增加 D. f ( x ) 在 R 上是减函数
)个
12.定义在 [ −1,1] 的函数 f ( x) 满足下列两个条件:①任意的 x ∈ [−1,1] ,都有 f (− x) = − f ( x) ;②任意的 m, n ∈ [0,1] ,当
f ( m) − f ( n) < 0 ,则不等式 f (1 − 3 x) < f ( x − 1) 的解集是 m−n 1 1 2 1 2 B. ( , ] C. [−1, ) D. [ ,1] A. [0, ) 2 2 3 2 3 二、填空题(共 4 小题,每小题 5 分,共 20 分) 2 x − 1 (x ≥ 3) ,则 f ( f (− 1)) 的值是 13. 已知函数 f ( x ) = 。 1 − 3 x (x < 3) m ≠ n ,都有
[来源:学科
π 3
B. f ( ) > f (−1) > f (−π )
π 3
π 3

10. 如果函数 f ( x) = x 2 + 2(a − 1) x + 2 在区间 ( −∞, 4] 上单调递减,那么实数 a 的取值范围是 A. a ≥ 5 B.
a≤5
C. a ≥ −3
第- 1 -页,共 4 页
20.(本小题满分 12 分)已知函数 f ( x) 是定义在 R 上的奇函数,当 x > 0 时, f ( x) = x (1)求 f ( x) 的解析式; ( 2)解关于 x 的不等式 f ( x) ≤

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。

XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。

$\{2\}$。

B。

$\{1,2\}$。

C。

$\{0,1,2\}$。

D。

$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。

$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。

2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。

利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。

3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。

$(1,+\infty)$。

B。

$[1,+\infty)$。

C。

$(0,+\infty)$。

D。

$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。

由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。

4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。

$y=-|x|$。

B。

$y=x$。

C。

$y=|x|$。

试题精选_河南省南阳市2014-2015学年高一上学期期中质量评估数学调研试卷(扫描版)_精校完美版

试题精选_河南省南阳市2014-2015学年高一上学期期中质量评估数学调研试卷(扫描版)_精校完美版

2014秋期中高一数学参考答案一. 选择题:DDCBC ABACD BD二.填空题:13.-3 14. 0 15. 2 16. ①②三.解答题:17.解:(1)原式=22133284910002()()()279825-+⨯ ………………………………(3分) 472171252932599=-+⨯=-+= ………………………………(5分)(2)原式=lg5)(1++- (8分)=lg101+-=1 (10分)18.解:(1)}24{<<-=x x A ,{}15>-<=x x x B 或,∴{|5A B x x =<-或}4->x ,又R {51}B x x =-≤≤ð,…………………(4分) ∴(){41}U A B x x =-<≤ð;………………………(6分)(2)若B C =∅,则需 ⎩⎨⎧≤+-≥-1151m m ,解得⎩⎨⎧≤-≥04m m , ……………(10)分 故实数m 的取值范围为]0,4[-.………………………………………12(分)19.解:(1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆. (4分)(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050 ×50 (7分)整理得:f (x )=-x 250 +162x -21000=-150 (x -4050)2+307050(10分)∴当x =4050时,月收益f (x )最大,最大值为f (4050)=307050 元(12分)20. (Ⅰ)设2()f x ax bx c =++(0)a ≠,则(1)3(3)933(1)1f a b c f a b c f a b c -=-+=⎧⎪=++=⎨⎪=++=-⎩……………………………………(2分)解之得:1,2,0a b c ==-=………………………………(4分)2()2f x x x ∴=-…………………………………(6分)(Ⅱ)根据题意: 111(1)11(1)a a a a -≤≤+⎧⎨+-≥--⎩………………………(8分)…………………………………(10分)解之得:12a ≤≤ [1,2]a ∴的取值范围为…………………(1 2分)21.解:21 (1)证明:设12x x >,则120x x ->,而()()()f a b f a f b +=+∴)()()()()())(()()(212221222121x x f x f x f x x f x f x x x f x f x f -=-+-=-+-=-又当0x >时,()0f x <恒成立,所以)()(21x f x f <∴函数()y f x =是R 上的减函数………………(4分)(2)解:由()()()f a b f a f b +=+得()()()f x x f x f x -=+-即()()(0)f x f x f +-=,而(0)0f =∴()()f x f x -=-,即函数()y f x =是奇函数。

2014-2015学年高一上期中试题--数学

2014-2015学年高一上期中试题--数学

2014-2015学年高一上数学期中试题第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. )1. 设集合{|20142015}A x x =≤≤,{|}B x x a =<,若A B ≠⊂,则实数a 的取值范围是( )A. 2014a >B. 2015a >C. 2014a ≥D. 2015a ≥ 2. 函数1()f x x x=-的图象关于( )A. 坐标原点对称B. x 轴对称C. y 轴对称D. 直线y x =对称 3. 若0.52a =,log 3b π=,2log 0.3c =,则( )A. b c a >>B. b a c >>C. c a b >>D. a b c >> 4. 下列各组函数中,表示同一函数的是( )A. 2)(|,|)(x x g x x f ==B. 22)()(,)(x x g x x f ==C. 1)(,11)(2+=--=x x g x x x f D. 1)(,11)(2-=-⋅+=x x g x x x f 5. 定义在R 上的函数⎩⎨⎧>---≤-=)0)(2()1()0)(4(log )(2x x f x f x x x f 则)3(f 的值为( )A. 1-B. 2-C. 1D. 2 6. 若2lg(2)lg lg (,)x y x y x y R -=+∈,则yx的值为( )A. 4B. 1或14C. 1或4D. 147. 已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则)1(-f 等于( ) A. 2- B. 0 C. 1 D. 28. 函数212()log (12)f x x x =+-的值域为是( )A. [1,0)-B. [1,)-+∞C. (0,1)D. [1,)+∞9. 函数2()ln(1)f x x x=+-的零点所在的大致区间是( )A. (0,1)B. (1,2)C. (2,)eD. (3,4) 10.函数1(2y = )A. 1[1,]2- B. (,1]-∞- C. [2,)+∞ D. 1[,2]211. 已知函数⎩⎨⎧≥+-<=)0(4)3()0()(x a x a x a x f x 满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的范围是( )A. 1(0,]4B. (0,1)C. 1[,1)4D. (0,3)12.若函数52(20)()log (02)x x f x g x x x ⎧-≤<⎪=⎨-<≤⎪⎩()(是奇函数,当02x ≤<时,()g x 的最大值为( )A. 14 B. 34- C. 34 D. 14-第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13. 函数43)1ln(2+--+=x x x y 的定义域为__________.14. 若()f x 是幂函数,且满足3)2()4(=f f ,则=)21(f __________.15. 如果xxxf -=1)1(,则当0≠x 且1≠x 时,=)(x f __________ 16. 函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数. 例如,函数)(12)(R x x x f ∈+=是单函数. 下列命题: ①函数)()(2R x x x f ∈=是单函数;②若)(x f 为单函数,A x x ∈21,且21x x ≠,则)()(21x f x f ≠;③若B A f →:为单函数,则对于任意B b ∈,A 中至多有一个元素与之对应;④函数)(x f 在某区间上具有单调性,则)(x f 一定是单函数. 其中的正确的是______. (写出所有正确的编号)三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. ) 17. (本题满分10分)计算:(1)2320215183369412--+--.)(.)( (2)323396415932455---+-)(log log log18.(本题满分12分)已知集合}22|{a x a x A +≤≤-=,}045|{2≥+-=x x x B . (1)当3=a 时,求B A ,)(B C A U ; (2)若φ=B A ,求实数a 的取值范围.19. (本题满分12分) 已知)()(a x ax xx f ≠-=. (1)若2-=a ,试证)(x f 在)2,(-∞内单调递增;(2)若0>a 且)(x f 在),1(+∞内单调递减,求a 的取值范围.20. (本题满分12分)设)3(log )1(log )(x x x f a a -++=(0>a 且1≠a ),且2)1(=f . (1)求a 的值及)(x f 的定义域.(2)求)(x f 在区间]23,0[上的最大值.21. (本题满分12分)集合A 是由具备下列性质的函数)(x f 组成的: ①函数)(x f 的定义域是),0[+∞; ②函数)(x f 的值域是)4,2[-;③函数)(x f 在),0[+∞上是增函数,试分别探究下列两小题:(1)判断函数)0(2)(1≥-=x x x f 及)0()21(64)(2≥⋅-=x x f x 是否属于集合A ?并简要说明理由;(2)对于(1)中你认为属于集合A 的函数)(x f ,不等式)1(2)2()(+<++x f x f x f 是否对于任意的0≥x 恒成立?请说明理由.22.(本题满分12分)定义:已知函数)(x f 在)](,[n m m n <上的最小值为t ,若m t ≤恒成立,则称函数)(x f 在)](,[n m m n <上具有“DK ”性质.(1)判断函数222+-=x x x f )(在],[21上是否具有“DK ”性质,说明理由. (2)若22+-=ax x x f )(在],[1+a a 上具有“DK ”性质,求a 的取值范围.参考答案一、选择题1-6 BADABD 7-12 ABBDAC 二、填空题13. (-1,1) 14. 3115. 11-x 16. (2)(3) 三、解答题17. 解:(1)21(2)-2118. 解:(1)A ∩B={x|-1≤x ≤1或4≤x ≤5}, A ∪(ðU B )={x|-1≤x ≤5}.(2)当a <0时,A=Ø,显然A ∩B=Ø,合乎题意. 当a ≥0时,A ≠Ø,A={x|2-a ≤x ≤2+a}, B={x|x 2-5x+4≥0}={x|x ≤1或x ≥4}.由A ∩B=Ø,得2a 12a 4-⎧⎨+⎩><,解得0≤a <1.故实数a 的取值范围是(-∞,1). 19. 证明:(1)任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a∵a>0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1]. 20. 解:(1)2=a ,)(x f 的定义域为(-1,3) (2))32(log )(22++-=x x x f ,1=x 取最大值2.21. 解:(1)函数f 1(x -2不属于集合A. 因为f 1(x )的值域是[-2,+∞),所以函数f 1(x 2不属于集合A. f 2(x )=4-6·(12)x (x ≥0)属于集合A ,因为:①函数f 2(x )的定义域是[0,+∞);②f 2(x )的值域是[-2,4); ③函数f 2(x )在[0,+∞)上是增函数.(2)是. ∵f (x )+f (x +2)-2f (x +1)=6·(12)x (-14)<0, ∴不等式f (x )+f (x +2)<2f (x +1)对任意的x ≥0恒成立. 22. 解:(1)∵f (x )=x 2-2x+2,x ∈[1,2] ∴f (x )min =1≤1, ∴函数f (x )在[1,2]上具有“DK ”性质.(2)f (x )=x 2-ax+2,x ∈[a,a+1],其对称轴为x= a 2. ①当a 2≤a ,即a ≥0时,函数f (x )min =f (a )=a 2-a 2+2=2. 若函数f (x )具有“DK ”性质,则有2≤a 总成立,即a ≥2.②当a<a 2<a+1,即-2<a<0时,f (x )min =f (a2)=-2a 4+2.若函数f (x )具有“DK ”性质,则有- 2a 4+2≤a 总成立,解得a ∈Ø.③当a 2≥a+1,即a ≤-2时,函数f (x )的最小值为f (a+1)=a+3. 若函数f (x )具有“DK ”性质,则有a+3≤a,解得a ∈Ø.综上所述,若f (x )在[a,a+1]上具有“DK ”性质,则a 的取值范围为[2,+∞).。

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题

2014-2015学年度上学期期末考试高一数学试题时间:120分钟 总分:150分一、选择题(请把正确选项填到答题卡对应题号下面。

共12题,每题5分,共60分)1、下列大小关系正确的是A .30.440.43log 0.3<< B.30.440.4log 0.33<<C. 30.44log 0.30.43<<D.0.434log 0.330.4<<2、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A.0 B.1 C.2 D.33、函数34x y =的图象是A B C D4、若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( )A .2B .3C .5D .1 5对角线长为( )A. B. C .6 D6、已知菱形ABCD 的两个顶点坐标:(2,1),(0,5)A C -,则对角线BD 所在直线方程为( )A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=7、圆心为(11),且与直线4x y +=相切的圆的方程是( )A .22(1)(1)2x y -+-=B .22(1)(1)4x y -+-=C .22(1)(1)2x y +++=D .22(1)(1)4x y +++=8、下列函数中,在上为增函数的是( )A 、B 、C 、D 、 9、几何体的三视图如图,则几何体的体积为( )A .3πB .23πC .πD .43π 10、已知α、β是平面,m 、n 是直线,则下命题不正确的是( ).A .若m ∥n , m ⊥α, 则n ⊥α B. 若,m ⊥α, m ⊥β, 则α∥βC.若m ⊥α, m ∥n , n ⊂β, 则α⊥βD. .若m ∥α, α ∩β=n 则m ∥n11、由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B .CD .312、下列四个正方体图形中,A B 、为正方体的两个顶点,M N P 、、分别为其所在棱的中点,能得出 //AB 平面MNP 的图形的序号是( )A. ①、③B. ①、④C. ②、③D. ②、④二、填空题(把答案填在题中横线上。

高一数学上学期第一次质检试卷(a卷)(含解析)-人教版高一全册数学试题

高一数学上学期第一次质检试卷(a卷)(含解析)-人教版高一全册数学试题

2014-2015学年某某省某某市龙河中学高一(上)第一次质检数学试卷(A卷)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x∈Q|x>﹣1},则()A.∅∈A B. C. D.⊈A2.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A. {2,3,4} B. {3} C. {2} D. {0,1,2,3,4}3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A. 35 B. 25 C. 28 D. 154.如图所示的韦恩图中A,B是非空集合,定义集合A*B为阴影部分表示的集合,则 A*B ()A.∁U(A∪B) B. A∪(∁U B) C.(∁U A)∪(∁U B) D.(A∪B)∩∁U(A∩B)5.下列函数中,在区间(0,2)上为增函数的是()A. y=3﹣x B. y=x2+1 C. D. y=﹣|x|6.已知函数f(x)的定义域为(3﹣2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A. B. 2 C. 4 D. 67.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(x﹣1)的定义域是()A. [0,5] B. [﹣1,4] C. [﹣3,2] D. [﹣2,3]8.若函数f(x)为奇函数,且当x>0时,f(x)=x﹣1,则当x<0时,有()A. f(x)>0 B. f(x)<0 C. f(x)f(﹣x)≤0 D. f(x)﹣f(﹣x)>0 9.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=() A. B. C. D.10.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.①②④ B.④②③ C.①②③ D.④①②11.函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值X围是()A. a≤2 B. a≥﹣2 C.﹣2≤a≤2 D. a≤﹣2或a≥212.已知函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,则f(1)的X围是() A. f(1)≥25 B. f(1)=25 C. f(1)≤25 D. f(1)>25二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=+的定义域是.14.设函数f(x)=则f[f(﹣1)]的值为.15.已知A有限集合,x∉A,B=A∪{x},若A,B的子集个数分别为a,b,且b=ka,则k=.16.函数f(x)=2x2﹣3|x|的单调减区间是.三、解答题(本大题共6小题,满分70分)17.已知集合A={x|3≤x<10},集合B={x|2x﹣8≥0}.(1)求A∪B;(2)求∁R(A∩B).18.设集合A={a,a2,b+1},B={0,|a|,b}且A=B.(1)求a,b的值;(2)判断函数在[1,+∞)的单调性,并用定义加以证明.19.已知f(x)=x2013+ax3﹣﹣8,f(﹣2)=10,求f(2).20.已知函数f(x)=,x∈[1,+∞).(1)当a=时,判断并证明f(x)的单调性;(2)当a=﹣1时,求函数f(x)的最小值.21.定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=﹣4x2+8x﹣3.(Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).22.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.2014-2015学年某某省某某市龙河中学高一(上)第一次质检数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A={x∈Q|x>﹣1},则()A.∅∈A B. C. D.⊈A考点:元素与集合关系的判断.专题:计算题.分析:先从已知的集合中看出集合中元素的本质属性,再结合元素与集合关系及集合与集合关系对选项进行判断即可.解答:解:∵集合A={x∈Q|x>﹣1},∴集合A中的元素是大于﹣1的有理数,对于A,符号:“∈”只用于元素与集合间的关系,故错;对于B、C、D,因不是有理数,故B对,C、D不对;故选B.点评:本小题主要考查元素与集合关系的判断、常用数集的表示等基础知识,考查符号的运算求解能力.属于基础题.2.已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁U M)∩N=()A. {2,3,4} B. {3} C. {2} D. {0,1,2,3,4}考点:交、并、补集的混合运算.专题:计算题.分析:利用全集求出M的补集,然后求出与N的交集.解答:解:全集U={0,1,2,3,4},M={0,1,2},N={2,3},则C U M={3,4},所以(C U M)∩N={3}.故选B.点评:本题考查交、并、补集的混合运算,常考题型,基础题.3.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是()A. 35 B. 25 C. 28 D. 15考点:集合中元素个数的最值.专题:计算题.分析:设两项测验成绩都及格的人数为x人,我们可以求出仅跳远及格的人数;仅铅球及格的人数;既2项测验成绩均不及格的人数;结合全班有50名同学参加跳远和铅球测验,构造方程,可得答案.解答:解:全班分4类人:设两项测验成绩都及格的人数为x人;由跳远及格40人,可得仅跳远及格的人数为40﹣x人;由铅球及格31人,可得仅铅球及格的人数为31﹣x人;2项测验成绩均不及格的有4人∴40﹣x+31﹣x+x+4=50,∴x=25故选B点评:本题考查的知识点是集合中元素个数的最值,其中根据已知对参加测试的学生分为四类,是解答本题的关键.4.如图所示的韦恩图中A,B是非空集合,定义集合A*B为阴影部分表示的集合,则 A*B ()A.∁U(A∪B) B. A∪(∁U B) C.(∁U A)∪(∁U B) D.(A∪B)∩∁U(A∩B)考点: Venn图表达集合的关系及运算.专题:规律型.分析:先判断阴影部分表示元素的性质,再根据交集、并集与补集的意义判定即可.解答:解:∵图中阴影部分表示属于集合A或集合B,且不同时属于A又属于B的元素组成的集合,即表示属于集合(A∪B),且不属于集合(A∩B)的元素组成的集合,故选D.点评:本题考查Venn图表示集合的关系及运算.5.下列函数中,在区间(0,2)上为增函数的是()A. y=3﹣x B. y=x2+1 C. D. y=﹣|x|考点:函数单调性的判断与证明.专题:计算题.分析:根据增函数的定义对A、B、C、D四个选项进行一一判断;解答:解:A、y=3﹣x=﹣x+3,是减函数,故A错误;B、∵y=x2+1,y为偶函数,图象开口向上,关于y轴对称,当x>0,y为增函数,故B正确;C、∵y=,当x>0,为减函数,故C错误;D、当x>0,y=﹣|x|=﹣x,为减函数,故D错误;故选B.点评:此题主要考查函数的单调性的判断与证明,此题考查的函数都比较简单,是一道基础题.6.已知函数f(x)的定义域为(3﹣2a,a+1),且f(x+1)为偶函数,则实数a的值可以是()A. B. 2 C. 4 D. 6考点:函数奇偶性的性质.专题:函数的性质及应用.分析:函数f(x+1)为偶函数,说明其定义域关于“0”对称,函数f(x)的图象是把函数f(x+1)的图象向右平移1个单位得到的,说明f(x)的定义域(3﹣2a,a+1)关于“1”对称,由中点坐标公式列式可求a的值.解答:解:因为函数f(x+1)为偶函数,则其图象关于y轴对称,而函数f(x)的图象是把函数f(x+1)的图象向右平移1个单位得到的,所以函数f(x)的图象关于直线x=1对称.又函数f(x)的定义域为(3﹣2a, a+1),所以(3﹣2a)+(a+1)=2,解得:a=2.故选B.点评:本题考查了函数图象的平移,考查了函数奇偶性的性质,函数的图象关于y轴轴对称是函数为偶函数的充要条件,此题是基础题.7.已知函数y=f(x+1)定义域是[﹣2,3],则y=f(x﹣1)的定义域是()A. [0,5] B. [﹣1,4] C. [﹣3,2] D. [﹣2,3]考点:函数的定义域及其求法.专题:函数的性质及应用.分析:先由函数y=f(x+1)定义域求出函数f(x)的定义域,然后由x﹣1在f(x)的定义域内求函数y=f(x﹣1)的定义域.解答:解:因为y=f(x+1)定义域是[﹣2,3],即x∈[﹣2,3],所以x+1∈[﹣1,4],所以函数f(x)的定义域为[﹣1,4],由﹣1≤x﹣1≤4,得:0≤x≤5,所以函数y=f(x﹣1)的定义域是[0,5].故选A.点评:本题考查了函数定义域及其求法,给出了函数f(x)的定义域为[a,b],求函数f[g (x)]的定义域,让a≤g(x)≤b求解x的X围即可,此题是基础题.8.若函数f(x)为奇函数,且当x>0时,f(x)=x﹣1,则当x<0时,有()A. f(x)>0 B. f(x)<0 C. f(x)f(﹣x)≤0 D. f(x)﹣f(﹣x)>0考点:函数奇偶性的性质.专题:函数的性质及应用.分析:借助于函数为奇函数,当x>0时,f(x)=x﹣1,求解当x<0时,函数解析式,然后,代入各个选项,从而得到正确答案.解答:解:∵函数为奇函数,令x<0,则﹣x>0,∴f(﹣x)=﹣x﹣1,∵f(﹣x)=﹣f(x),∴f(x)=x+1,∴当x<0时,f(x)=x+1,此时,f(x)=x+1的函数值符合不定,因此排除选项A、B,∵f(x)f(﹣x)=﹣(x+1)2≤0成立,∴选项C符合题意,故选:C.点评:本题重点考查函数为奇函数的性质,注意函数的性质的灵活运用,属于中档题.9.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=() A. B. C. D.考点:抽象函数及其应用.专题:计算题.分析:函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,令x=y=4,x=y=2,即可求得f(2)的值.解答:解:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=,令x=y=2,f(4)=2f(2)=,∴f(2)=.故选B.点评:考查抽象函数及其应用,求抽象函数的有关命题,常采用赋值法求解,属基础题.10.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.①②④ B.④②③ C.①②③ D.④①②考点:函数的图象.专题:数形结合.分析:根据回家后,离家的距离又变为0,可判断(1)的图象开始后不久又回归为0;由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图象上升速度越来越快.解答:解:离家不久发现自己作业本忘记在家里,回到家里,这时离家的距离为0,故应先选图象④;回校途中有一段时间交通堵塞,则这段时间与家的距离必为一定值,故应选图象①;最后加速向学校,其距离与时间的关系为二次函数,故应选图象②.故选D.点评:本题考查的知识点是函数的图象,我们分析实际情况中离家距离随时间变化的趋势,找出关键的图象特征,对四个图象进行分析,即可得到答案.11.函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值X围是()A. a≤2 B. a≥﹣2 C.﹣2≤a≤2 D. a≤﹣2或a≥2考点:奇偶性与单调性的综合.专题:计算题.分析:由已知中函数f(x)是定义在实数集R上的偶函数,根据偶函数在对称区间上单调性相反,结合f(x)上在(﹣∞,0]为单调增函数,易判断f(x)在](0,+∞)上的单调性,根据单调性的定义即可求得.解答:解:由题意,f(x)在(0,+∞)上为单调减函数,从而有或,解得a≤﹣2或a≥2,故选D.点评:本题考查的知识点是函数单调性的应用,其中利用偶函数在对称区间上单调性相反,判断f(x)在(0,+∞)上的单调性是解答本题的关键.12.已知函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,则f(1)的X围是() A. f(1)≥25 B. f(1)=25 C. f(1)≤25 D. f(1)>25考点:函数单调性的性质.专题:计算题.分析:由二次函数图象的特征得出函数f(x)=4x2﹣mx+5在定义域上的单调区间,由函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,可以得出[﹣2,+∞)一定在对称轴的右侧,故可以得出参数m的取值X围,把f(1)表示成参数m的函数,求其值域即可.解答:解:由y=f(x)的对称轴是x=,可知f(x)在[,+∞)上递增,由题设只需≤﹣2⇒m≤﹣16,∴f(1)=9﹣m≥25.应选A.点评:本小题的考点是考查二次函数的图象与二次函数的单调性,由此得出m的取值X围再,再求以m为自变量的函数的值域.二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=+的定义域是{x|x≥﹣1,且x≠2} .考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据使函数y=+的解析式有意义的原则,构造不等式组,解不等式组可得函数的定义域.解答:解:要使函数y=+的解析式有意义自变量x须满足:解得x≥﹣1,且x≠2故函数y=+的定义域是{x|x≥﹣1,且x≠2}故答案为:{x|x≥﹣1,且x≠2}点评:本题考查的知识点是函数的定义或及其求法,其中根据使函数y=+的解析式有意义的原则,构造不等式组,是解答的关键.14.设函数f(x)=则f[f(﹣1)]的值为 4 .考点:函数的值.专题:计算题.分析:由函数f(x)=,知f(﹣1)=(﹣1)2+1=2,所以f[f(﹣1)]=f (2),由此能求出结果.解答:解:∵函数f(x)=,∴f(﹣1)=(﹣1)2+1=2,∴f[f(﹣1)]=f(2)=22+2﹣2=4,故答案为:4.点评:本题考查分段函数的函数值的求法,是基础题.解题时要认真审题,仔细解答.15.已知A有限集合,x∉A,B=A∪{x},若A,B的子集个数分别为a,b,且b=ka,则k= 2 .考点:并集及其运算.专题:计算题.分析:设A中元素有m个,根据A有限集合,x∉A,B=A∪{x},得到B中元素有(m+1)个,分别表示出子集的个数,即可确定出k的值.解答:解:设集合A中元素为m个,∵A有限集合,x∉A,B=A∪{x},∴B中元素有(m+1)个,∴a=2m,b=2m+1,即b=2a,则k=2.故答案为:2点评:此题考查了并集及其运算,以及子集,弄清题意是解本题的关键.16.函数f(x)=2x2﹣3|x|的单调减区间是(﹣∞,﹣]和[0,] .考点:函数的单调性及单调区间.专题:函数的性质及应用.分析:首先根据题中的已知条件把自变量进行分类,得出分段函数的解析式,进一步画出函数的图象,然后得出单调区间.解答:解:函数f(x)=2x2﹣3|x|=图象如下图所示f(x)减区间为(﹣∞,﹣]和[0,].故答案为:(﹣∞,﹣]和[0,].点评:本题考查的知识点:分段函数的解析式,二次函数的图象以及单调区间的确定,三、解答题(本大题共6小题,满分70分)17.已知集合A={x|3≤x<10},集合B={x|2x﹣8≥0}.(1)求A∪B;(2)求∁R(A∩B).考点:交、并、补集的混合运算.专题:计算题.分析:(1)求解一次不等式化简集合B,然后直接进行并集运算;(2)首先进行交集运算,然后进行补集运算.解答:解:(1)由A={x|3≤x<10},B={x|2x﹣8≥0}={x|x≥4}.∴A∪B={x|3≤x<10}∪{x|x≥4}={x|x≥3}.(2)A∩B={x|3≤x<10}∩{x|x≥4}={x|4≤x<10}.∴∁R(A∩B)={x|x<4或x≥10}.点评:本题考查了交、并、补集的混合运算,是基础的会考题型.18.设集合A={a,a2,b+1},B={0,|a|,b}且A=B.(1)求a,b的值;(2)判断函数在[1,+∞)的单调性,并用定义加以证明.考点:函数单调性的判断与证明;集合的相等.专题:计算题.分析:(1)求,b的值,由于两集合相等,观察发现其对应特征,建立方程求出a,b的值(2)将a,b的值代入,先判断单调性,再用定义法证明即可.解答:解:(1)两集合相等,观察发现a不能为O,故只有b+1=0,得b=﹣1,故b与a对应,所以a=﹣1,故a=﹣1,b=﹣1(2)由(1)得,在[1,+∞)是增函数任取x1,x2∈[1,+∞)令x1<x2,f(x1)﹣f(x2)=﹣=(x1﹣x2)(1﹣)∵1≤x1<x2,∴x1﹣x2<0,又x1x2>1,故1﹣>0∴f(x1)﹣f(x2)=(x1﹣x2)(1﹣)<0∴f(x1)<f(x2)故,在[1,+∞)是增函数点评:本题考查集合相等的概念以及函数单调性的证明方法﹣﹣定义法,解答第二小问时要注意步骤,先判断再证明,注意格式.19.已知f(x)=x2013+ax3﹣﹣8,f(﹣2)=10,求f(2).考点:基本不等式.专题:不等式的解法及应用.分析:利用g(x)=x2013+ax3﹣为奇函数即可得出.解答:解:已知g(x)=x2013+ax3﹣为奇函数,即对g(x)=x2013+ax3﹣有g(﹣x)=﹣g(x),也即g(﹣2)=﹣g(2),f(﹣2)=g(﹣2)﹣8=﹣g(2)﹣8=10,得g(2)=﹣18,∴f(2)=g(2)﹣8=﹣26.点评:本题考查了奇函数的性质,属于基础题.20.已知函数f(x)=,x∈[1,+∞).(1)当a=时,判断并证明f(x)的单调性;(2)当a=﹣1时,求函数f(x)的最小值.考点:函数单调性的性质;函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)当a=时,f(x)==x+2+=x++2.任取x1,x2是[1,+∞)上的任意两个实数,且x1<x2,利用做差法,可判断函数f(x)在[1,+∞)上是增函数.(2)当a=﹣1时,f(x)=x﹣+2.由函数y1=x和y2=﹣在[1,+∞)上都是增函数,可得f(x)=x﹣+2在[1,+∞)上是增函数,故当x=1时,f(x)取得最小值.解答:解:(1)当a=时,f(x)==x+2+=x++2.设x1,x2是[1,+∞)上的任意两个实数,且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=(x1﹣x2)+(﹣)=(x1﹣x2)+=(x1﹣x2)(1﹣)=(x1﹣x2)•.因为1≤x1<x2,所以x1﹣x2<0,x1•x2>0,x1x2﹣>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2).所以函数f(x)在[1,+∞)上是增函数.(2)当a=﹣1时,f(x)=x﹣+2.因为函数y1=x和y2=﹣在[1,+∞)上都是增函数,所以f(x)=x﹣+2在[1,+∞)上是增函数.当x=1时,f(x)取得最小值f(1)=1﹣+2=2,即函数f(x)的最小值为2.点评:本题考查的知识点是函数单调性的性质,函数的最值及其几何意义,函数的单调性的证明,是函数单调性与最值的综合应用,难度中档.21.定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=﹣4x2+8x﹣3.(Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).考点:函数奇偶性的性质;二次函数的性质.专题:计算题.分析:(Ⅰ)先根据函数的奇偶性以及x≥0的解析式求出x<0的解析式,因为函数定义在R上,所以函数是分段函数,写出各段的解析式,用大括号连接即可.(Ⅱ)先根据(Ⅰ)中所求函数解析式,求出函数在每段上的最大值,其中最大的就是函数f(x)的最大值,再由函数两段上的图象都是开口向下的抛物线,结合对称轴就可求出函数的单调区间.解答:解:(Ⅰ)设x<0,则﹣x>0,∴f(﹣x)=﹣4(﹣x)2﹣8x﹣3=﹣4x2﹣8x﹣3.又∵f(x)是偶函数,∴f(x)=f(﹣x)=﹣4x2﹣8x﹣3.∴f(x)=(Ⅱ)当x≥0时,f(x)=﹣4x2+8x﹣3,图象为对称轴是x=1,开口向下的抛物线,当x=1时f(x)有最大值为1当x<0时,f(x)=﹣4x2﹣8x﹣3,图象为对称轴是x=﹣1,开口向下的抛物线,当x=﹣1时f(x)有最大值为1∴f(x)的最大值是1.函数单调增区间为(﹣∞,﹣1],和[0,1],单调减区间为[﹣1,0],和[1,+∞)点评:本题主要考查利用函数的奇偶性求分段函数的解析式,以及分段函数的最值,单调区间的求法.22.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.考点:抽象函数及其应用;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)先利用特殊值法,求证f(0)=0,令y=﹣x即可求证;(2)由(1)得f(x)为奇函数,f(﹣x)=﹣f(x),利用定义法进行证明;(3)由函数为减函数,求出f(﹣2)和f(4)继而求出函数的值域,解答:解:(1)证明:∵f(x)的定义域为R,令x=y=0,则f(0+0)=f(0)+f(0)=2f (0),∴f(0)=0.令y=﹣x,则f(x﹣x)=f(x)+f(﹣x),即f(0)=f(x)+f(﹣x)=0.∴f(﹣x)=﹣f(x),故f(x)为奇函数.(2)证明:任取x1,x2∈R,且x1<x2,则f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1).又∵x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)<0,即f(x1)>f(x2).故f(x)是R上的减函数.(3)∵f(﹣1)=2,∴f(﹣2)=f(﹣1)+f(﹣1)=4.又f(x)为奇函数,∴f(2)=﹣f(﹣2)=﹣4,∴f(4)=f(2)+f(2)=﹣8.由(2)知f(x)是R上的减函数,所以当x=﹣2时,f(x)取得最大值,最大值为f(﹣2)=4;当x=4时,f(x)取得最小值,最小值为f(4)=﹣8.所以函数f(x)在区间[﹣2,4]上的值域为[﹣8,4].点评:本题主要考查了抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.。

河南省南阳市高一数学上学期期中质量评估试题02140219

河南省南阳市高一数学上学期期中质量评估试题02140219

河南省南阳市高一数学上学期期中质量评估试题02140219注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各題的答題区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠,不破损.第I 卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},M={2,3,5},N={4,6},则=N M C U )(A. {4,6}B. {1,4,6}C.φD. {2,3,4,5,6}2.下列函数)(),(x g x f 表示的是相同函数的是A. x x g x f x 2log )(,2)(==B. 2)(|,|)(x x g x x f ==C. x x x g x x f 2)(,)(== D.3.函数82)5ln(-+-=x x y 的定义域是A.[2,3)B. [3,5)C. )3,(-∞D.(2,3) 4.已知x x x f 22)(2-=,则在下列区间中,)(x f 有零点的是A. (-3,-2)B.(-2,-l)C.(-1,0)D.(0,1)5.在映射B A f →:中,{}R y x y x B A ∈==,|),(,且)2,2(),(:y x y x y x f +-→,则元素(3,-1)在f 的作用下的原像为A. (0,-1)B.(1,-1)C. (-∞,3)D. (2,3)6.设312.0212,)31(,3log ===c b a ,则 A.a<b<c B. c<b<a C.c<a<b D.b<a<c 7.已知355)(xx x f --=,则)(x f 是 B.偶函数,在R 上为增函数 D.偶函数,在R 上为减函数A.奇函数,在R 上为增函数 C.奇函数,在R 上为减函数8.设函数⎩⎨⎧-≤=1>,log 11x ,2)(2x -1x x x f ,则满足4)(≤x f 的x 的取值范围是A.[-1,2]B. [0,2]C.[l,+∞)D.[-l,+∞) 9.已知二次函数42)(2--=x x x f 在区间[一l ,a)上的最小值为-5,最大值为-1,则实数a 的取值范围是A.[1,3)B.[1,3]C.[l,+∞)D. (1,3]10.已知函数)3(log )(221a ax x x f +-=在区间[2,+∞)是减函数,则实数a 的取值范围是A.(-∞,4]B.[4,+∞)C.(-4,4]D.[-4,4]11.已知定义在实数集R 上的函数)(x f y =不恒为零,同时满足)()()(y f x f y x f =+, 且当0>x 时,1>)(x f ,那么当0<x 时,一定有A. 1<)(-x fB. 0<)(<1-x fC. 1<)(<0x fD.[-4,4]12.已知函数⎩⎨⎧-+=2>),(log 2<|,2|)(2x m x x x x f ,若))(()()(321321x x x x f x f x f 、、==互不相等),且321x x x ++的取值范围为(-1,14),则实数m 的值为A.0B.-1C. 1D.2第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分.)13.已知幂函数)(y x f =的图象过点)22,21(,则=)8(log 2f . 14. 已知函数⎩⎨⎧≤=)0(30)>(log )(2x x x x f x ,则=)]41([f f .15.设函数422)(+-=x x f 和函数a ax x g +=)(,若对任意),0[1+∞∈x ,都有]1,(2-∞∈x 使得)()(21x g x f =,则实数a 的取值范围为 .16.若)(n f 为)(12*∈+N n n 的各位数字之和,如 142 +1 = 197, 1+9+7 = 17,则;记*∈===+N k n f f n f n f f n f n f n f k k )),(()()),...,(()(),()(1121,则=)8(2019f .三、解答题(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤.)17.(本题满分10分)计算:(1) 214303125.016)81(064.0++---; (2) 8log 74lg 25lg 27log 42log 37+-++.18.(本题满分12分) 设集合A={21,2|≤≤=x y y x },B={1<lgx <0|x },C={R t 2t,<x <1|∈+t x }.(1)求B A .(2)若C C A = ,求t 的取值范围.19.(本题满分12分)已知函数)(x f 是定义域为R 的奇函数,当0>x 时,x x x f 2)(2-=.(1)求出函数)(x f 在R 上的解析式;(2)在答题卷上画出函数)(x f 的图象,并根据图象写出)(x f 的单调区间;(3)若关于工的方程12)(+=a x f 有三个不同的解,求a 的取值范围.20.(本题满分12分)经过市场调查,某种商品在销售中有如下关系:第+∈≤≤N x x x ,301(天的销售价格(单位:元/件)为⎩⎨⎧≤-≤≤+=30<10,40101,20)(x x x x x f ,第x 天的销售量(单位:件)为 x(a -a g(x)=为常数),且在第10天该商品的销售收入为600元(销售收入=销售价格×销售量).(1)求a 的值,并求第15天该商品的销售收入;(2)求在这30天中,该商品日销售收入y 的最大值.21.(本题满分12分)已知R a ∈,函数)x1(log f(x)2a +=. (1)当a=3时,求不等式/Cc)>0的解集;(2)设a>0,221≤≤t ,若对任意的]1,[,21+∈t t x x ,都有,求实数 a 的取值范围. 22.(本题满分12分)已知定义域为R 的函数mn x f x x +-=+122)(是奇函数. (1)求)(x f 的解析式;(2)试判断)(x f 的单调性,并用定义法证明;(3)若存在]4,1[∈t ,使得不等式/0<)2()2(log 22k t f t t f -+-0成立,求实数k 的取值范围.2019年秋期高中一年级期中质量评估数学试题参考答案1-5 ABBCB 6-10 AADDC 11-12 CD13. 32 14. 91 15.()∞+,0 16. 8 17. 解:(1).10218125=++-=原式 ………………………………………………5分 (2)342332log 212425lg 3log +-⨯+=)(原式 232-223++= 3= ………………………………………………………10分(得分分解:4项中每项算对各得1分,最后结果正确再得1分)18. 解:(1)由题可知[]4,2=A , …………………………………………2分()e B ,1=, …………………………………………4分所以[)e B A ,2= . …………………………………………6分(2)因为,所以, …………………………………………7分 ①若是空集,则,得到, …………………………………………8分 ②若非空,则,得,…………………………………………11分 综上所述,,即的取值范围是..…………………………………12分19.解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-.所以22()()[()2()]2f x f x x x x x =--=----=--. 综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩…………4分.(2)图象如图所示.(图像给2分)单调增区间:),1[],1,(+∞--∞单调减区间:)1,1(- ………8分.(3)∵方程12)(+=a x f 有三个不同的解∴1121<+<-a …………… …………………………………10分. ∴01<<-a∴)0,1(-∈a ……………………………………………12分.20.解:(1)当10x =时,由(10)(10)(2010)(10)600f g a ⋅=+-=,解得30a =. ………… …………………………………3分. 从而可得(15)(15)2515375f g =⨯=(元),即第15天该商品的销售收入为375元. ………………………………… 5分(2)由题意可知(20)(30),110(40)(30),1030x x x y x x x +-≤≤⎧=⎨--<≤⎩, 即2210600,110701200,1030x x x y x x x ⎧-++≤≤=⎨-+<≤⎩当110x ≤≤时,2210600(5)625y x x x =-++=--+,故当5x =时y 取最大值,max 625y =,当1030x <≤时,21070101200600y <-⨯+=,故当5x =时,该商品日销售收入最大,最大值为625元. ……………………12分21.(1)由21log (3)0,x +>得131x +> 解得:10,2x x ><-或 因此不等式的解集为1(,)(0,)2-∞-⋃+∞………………………………………… 5分(2)由题意,函数f(x)在区间[,1]t t +上是减函数,因此min max ()(1),()()f x f t f x f t =+=化简得2(1)10at a t ++-≥,该式对任意的⎥⎦⎤⎢⎣⎡∈2,21t 恒成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014秋期中高一数学参考答案
一. 选择题:DDCBC ABACD BD
二.填空题:13.-3 14. 0 15. 2 16. ①② 三.解答题:
17.解:(1)原式=22
133284910002
()()()279825-+⨯ ………………………………(3分)
472171
252932599
=
-+⨯=-+= ………………………………(5分) (2)原式
=lg5)(1+- (8分)
=
lg101+-=1 (10分)
18.解:(1)}24{<<-=x x A ,{}
15>-<=x x x B 或, ∴{|5A
B x x =<-或}4->x ,又R {51}B x x =-≤≤ð,…………………(4分)
∴(){41}U A B x x =-<≤ð;………………………(6分) (2)若B
C =∅,则需 ⎩
⎨⎧≤+-≥-115
1m m ,解得⎩⎨⎧≤-≥04m m , ……………(10)分
故实数m 的取值范围为]0,4[-.………………………………………12(分)
19.解:(1)当每辆车月租金为3600元时,未租出的车辆数为 3600-3000
50
=12,所以这
时租出了88辆. (4分) (2)设每辆车的月租金定为x 元,则公司月收益为
f (x )=(100-x -300050
)(x -150)-x -3000
50
×50 (7分)
整理得:f (x )=-x 2
50 +162x -21000=-150
(x -4050)2
+307050
(10分)
∴当x =4050时,月收益f (x )最大,最大值为f (4050)=307050 元
(12分)
20. (Ⅰ)设2
()f x ax bx c =++(0)a ≠,则
(1)3(3)933(1)1f a b c f a b c f a b c -=-+=⎧⎪
=++=⎨⎪=++=-⎩
……………………………………(2分)
解之得:1,2,0a b c ==-=………………………………(4分)
2()2f x x x ∴=-…………………………………(6分)
(Ⅱ)根据题意: 111
(1)11(1)a a a a -≤≤+⎧⎨
+-≥--⎩
………………………(8分)
…………………………………(10分)
解之得:12a ≤≤ [1,2]a ∴的取值范围为…………………(1 2分)
21.解:21 (1)证明:设12x x >,则120x x ->,而()()()f a b f a f b +=+

)
()()()()())(()()(212221222121x x f x f x f x x f x f x x x f x f x f -=-+-=-+-=-
又当0x >时,()0f x <恒成立,所以)()(21x f x f < ∴函数()y f x =是R 上的减函数………………(4分) (2)解:由()()()f a b f a f b +=+得()()()f x x f x f x -=+- 即()()(0)f x f x f +-=,而(0)0f =
∴()()f x f x -=-,即函数()y f x =是奇函数。

…………(8分) (3)解:(方法一)由0)()2(2
<+-x f x f 得)()2(2
x f x f -<-
又)(x f y =是奇函数
即)()2(2
x f x f -<-又)(x f y =在R 上是减函数
所以x x ->-22
解得1>x 或2-<x ………………(12分)
(方法二))由0)()2(2<+-x f x f 且(0)0f =得)0()2(2
f x x f <+-
又)(x f y =在R 上是减函数,所以022
>+-x x 解得1>x 或2-<x ………………(12分) 22.解:(1)∵f(x)为偶函数,

f(

x)

f(x).. .................................................................................(1分)
即log 4(4-x +1)-kx =log 4(4x
+1)+kx , ∴
log 4
4x
+14
-log 4(4
x
+1)=
2kx ,.......................................................(3分)

(2k

1)x



k


1
2
.......................................................................(5分) (2)依题意知:log 4(4x +1)-12x =log 4(a·2x
-a).
整理得log 4(4x
+1)= log 4[(a·2x
-a) 2x
] ∴
41(2)2x x x a a +=⋅-⋅
(*) ..........................................................(7分)
令t =2x
,则(*)变为(1-a)t 2
+at +1=0 (**)只需其仅有一正根........(8分) . ①

a

1


t


1



意;..........................................................(9分)
②当(**)式有一正一负根时,∴⎩
⎪⎨⎪

Δ=a 2
-->0,
t 1t 2=1
1-a <0,得a >1
③当(**)式有两相等的正根时,Δ=0,∴a =±22-2,且
02(1)
a
a >-, ∴a =-2-22,
综上所述可知a 的取值范围为{a|a >1或a =-2-22}...............(12分)。

相关文档
最新文档