SLPA Uncovering Overlapping Communities in Social Networks via A Speaker-listener Interaction

合集下载

重叠共识名词解释

重叠共识名词解释

重叠共识名词解释
重叠共识 (Overlapping Consensus) 是一种分布式系统中的共识算法,旨在解决分布式系统中节点之间的信任问题,确保分布式系统中的数据一致性。

重叠共识算法在多个节点之间进行共识,这些节点之间需要完成某种形式的同步,以便它们能够共同确定区块链的状态。

在重叠共识算法中,节点之间的同步是渐进的,即节点首先发送请求给其他节点,并在收到其他节点的响应后更新自己的状态。

节点之间的同步过程是异步的,这意味着节点可以在不同的时间发送请求和接收响应,而且节点之间的通信是安全的,不需要信任其他节点。

重叠共识算法的主要优点是在不建立信任关系的情况下实现分布式系统中的数据一致性。

这意味着可以在多个节点之间共享数据,而不需要担心节点之间的信任问题。

重叠共识算法还可以提高分布式系统的性能和可扩展性,因为它们允许多个节点同时处理交易并确定区块链的状态。

重叠共识算法的示例包括 PoS(权益共识) 和 DPoS(代议制权益共识) 算法。

其中,PoS 算法中节点通过赢得选举或拥有足够的代币数量来获得对区块链的共识控制权;而 DPoS 算法中,节点可以通过提交提案并获得足够的支持来获得对区块链的共识控制权。

这两种算法都具有优点和缺点,可以根据具体情况选择。

ArcGIS拓扑规则类型汇总与举

ArcGIS拓扑规则类型汇总与举

ArcGIS拓扑规则类型汇总与举1. 禁止重叠(Must Not Overlap)这条规则要求要素类的多边形内部不重叠。

多边形之间可以共用顶点和边。

这条规则应用于一块区域不能为两个或多个多边形同时所有的情况。

它在下述情况下有用:模拟行政边界,比如ZIP Codes或者选举区;以及互相排他的区域分类,比如土地覆盖或地形类型等。

相减(Subtract):Subtract方法从每个有拓扑错误的要素中删除几何重叠的部分,在这个位置产生一个间隙或者空白区。

这个方法可以用于一个或多个选中的Must Not Overlap错误。

合并(Merge):对于不符合规则的要素,Merge方法在一个要素中添加重叠部分,而从其他要素中减掉重叠的部分。

需要在Merge 对话框中选择接收重叠部分的要素。

这个方法只能用于一个Must Not Overlap错误。

创建要素(Create Feature):Create Feature方法在重叠区生成一个新的多边形,并且从每个产生错误的要素中删除重叠的部分,来创建一个要素几何平面。

这个方法可以用于一个或多个选中的Must Not Overlap错误。

2. 不许有间隔(Must Not Have Gaps)这个规则要求在一个多边形内部和相邻的多边形之间不能有空值区域。

所有多边形必须形成一个连续的表面。

总是在这个表面的边界处会出现错误。

可以忽略这个错误或者将其标注为异常。

对那些必须覆盖整个区域的数据应用这就不能存在间隔或形成空白区——它们必须覆盖整个区域。

可以使用Create Feature条规则。

比如说土壤多边形或者将边界上的错误标注为异常。

3. 禁止要素类间重叠(Must Not Overlap 该规则要With)求一个要素类的多边形内部不能与另一个要素类的多边形内部重叠。

两个要素类的多边形可以共用边或顶点,或者完全不相连。

当一个区域不能同时属于两个独立要素类时要应用这个规则。

4. 必须被要素类覆盖(Must Be Covered By FeatureClass Of)这个规则要求一个要素类中的多边形必须与其他要素类的多边形共用它的所有区域。

Identification of overlapping community structure in complex networks using fuzzy c-means clustering

Identification of overlapping community structure in complex networks using fuzzy c-means clustering

Physica A 374(2007)483–490Identification of overlapping community structure in complexnetworks using fuzzy c -means clusteringShihua Zhang a,Ã,Rui-Sheng Wang b ,Xiang-Sun Zhang aa Academy of Mathematics &Systems Science,Chinese Academy of Science,Beijing 100080,Chinab School of Information,Renmin University of China,Beijing 100872,ChinaReceived 28June 2006Available online 7August 2006AbstractIdentification of (overlapping)communities/clusters in a complex network is a general problem in data mining of network data sets.In this paper,we devise a novel algorithm to identify overlapping communities in complex networks by the combination of a new modularity function based on generalizing NG’s Q function,an approximation mapping of network nodes into Euclidean space and fuzzy c -means clustering.Experimental results indicate that the new algorithm is efficient at detecting both good clusterings and the appropriate number of clusters.r 2006Elsevier B.V.All rights reserved.Keywords:Overlapping community structure;Modular function;Spectral mapping;Fuzzy c -means clustering;Complex network1.IntroductionLarge complex networks representing relationships among set of entities have been one of the focuses of interest of scientists in many fields in the recent years.Various complex network examples include social network,worldwide web network,telecommunication network and biological network.One of the key problems in the field is ‘How to describe/explain its community structure’.Generally,a community in a network is a subgraph whose nodes are densely connected within itself but sparsely connected with the rest of the network.Many studies have verified the community/modularity structure of various complex networks such as protein-protein interaction network,worldwide web network and co-author network.Clearly,the ability to detect community structure in a network has important practical applications and can help us understand the network system.Although the notion of community structure is straightforward,construction of an efficient algorithm for identification of the community structure in a complex network is highly nontrivial.A number of algorithms for detecting the communities have been developed in various fields (for a recent review see Ref.[1]and a recent comparison paper see Ref.[2]).There are two main difficulties in detecting community structure.The first is that we don’t know how many communities there are in a given network.The usual drawback in many /locate/physa0378-4371/$-see front matter r 2006Elsevier B.V.All rights reserved.doi:10.1016/j.physa.2006.07.023ÃCorresponding author.E-mail addresses:zsh@ (S.Zhang),wrs@ (R.-S.Wang),zxs@ (X.-S.Zhang).algorithms is that they cannot give a valid criterion for measuring the community structure.Secondly,it is a common case that some nodes in a network can belong to more than one community.This means the overlapping community structure in complex networks.Overlapping nodes may play a special role in a complex network system.Most known algorithms such as divisive algorithm [3–5]cannot detect them.Only a few community-detecting methods [6,7]can uncover the overlapping community structure.Taking into account the first difficulty,Newman and Girvan [8]has developed a new approach.They introduced a modularity function Q for measuring community structure.In order to write the context properly,we refer to a similar formulation in Ref.[5].In detail,given an undirected graph/network G ðV ;E ;W Þconsisting of the node set V ,the edge set E and a symmetric weight matrix W ¼½w ij n Ân ,where w ij X 0and n is the size of the network,the modularity function Q is defined asQ ðP k Þ¼X k c ¼1L ðV c ;V c ÞL ðV ;V ÞÀL ðV c ;V ÞL ðV ;V Þ 2"#,(1)where P k is a partition of the nodes into k groups and L ðV 0;V 00Þ¼P i 2V 0;j 2V 00w ði ;j Þ.The Q function measuresthe quality of a given community structure organization of a network and can be used to automatically select the optimal number of communities k according to the maximum Q value [8,5].The measure has been used for developing new detection algorithms such as Refs.[5,9,4].White and Smyth [5]showed that optimizing the Q function can be reformulated as a spectral relaxation problem and proposed two spectral clustering algorithms that seek to maximize Q .In this study,we develop an algorithm for detecting overlapping community structure.The algorithm combines the idea of modularity function Q [8],spectral relaxation [5]and fuzzy c -means clustering method[10]which is inspired by the general concept of fuzzy geometric clustering.The fuzzy clustering methods don’t employ hard assignment,while only assign a membership degree u ij to every node v i with respect to the cluster C j .2.MethodSimulation across a wide variety of simulated and real world networks showed that large Q values are correlated with better network clusterings [8].Then maximizing the Q function can obtain final ‘optimal’community structure.It is noted that in many complex networks,some nodes may belong to more than one community.The divisive algorithms based on maximizing the Q function fail to detect such case.Fig.1shows an example of a simple network which visually suggests three clusters and classifying node 5(or node 9)intoFig.1.An example of network showing Q and e Qvalues for different number k of clusters using the same spectral mapping but different cluster methods,i.e.k -means and fuzzy c -means,respectively.For the latter,it shows every node’s soft assignment and membership of final clusters with l ¼0:15.S.Zhang et al./Physica A 374(2007)483–490484two clusters at the same time may be more appropriate intuitively.So we introduce the concept of fuzzy membership degree to the network clustering problem in the following subsection.2.1.A new modular functionIf there are k communities in total,we define a corresponding n Âk ‘soft assignment’matrix U k ¼½u 1;...;u k with 0p u ic p 1for each c ¼1;...;k and P kc ¼1u ic ¼1for each i ¼1;...;n .With this we define the membership of each community as ¯V c ¼f i j u ic 4l ;i 2V g ,where l is a threshold that can convert a soft assignment into final clustering.We define a new modularity function e Q as e Q ðU k Þ¼X k c ¼1A ð¯V c ;¯V c ÞA ðV ;V ÞÀA ð¯V c ;V ÞA ðV ;V Þ 2"#,(2)where U k is a fuzzy partition of the vertices into k groups and A ð¯V c ;¯V c Þ¼P i 2¯V c ;j 2¯V c ððu ic þu jc Þ=2Þw ði ;j Þ,A ð¯V c ;V Þ¼A ð¯V c ;¯V c ÞþP i 2¯V c ;j 2V n ¯V c ððu ic þð1Àu jc ÞÞ=2Þw ði ;j Þand A ðV ;V Þ¼P i 2V ;j 2V w ði ;j Þ.This of coursecan be thought as a generalization of the Newman’s Q function.Our objective is to compute a soft assignment matrix by maximizing the new Q function with appropriate k .How could we do?2.2.Spectral mappingWhite and Smyth [5]showed that the problem of maximizing the modularity function Q can be reformulated as an eigenvector problem and devised two spectral clustering algorithms.Their algorithms are similar in spirit to a class of spectral clustering methods which map data points into Euclidean space by eigendecomposing a related matrix and then grouping them by general clustering methods such as k -means and hierarchical clustering [5,9].Given a network and its adjacent matrix A ¼ða ij Þn Ân and a diagonal matrix D ¼ðd ii Þ,d ii ¼P k a ik ,two matrices D À1=2AD À1=2and D À1A are often used.A recent modification [11]uses the top K eigenvectors of the generalized eigensystem Ax ¼tDx instead of the K eigenvectors of the two matrices mentioned above to form a matrix whose rows correspond to original data points.The authors show that after normalizing the rows using Euclidean norm,their eigenvectors are mathematically identical and emphasize that this is a numerically more stable method.Although their result is designed to cluster real-valued points[11,12],it is also appropriate for network clustering.So in this study,we compute the top k À1eigenvectors of the eigensystem to form a ðk À1Þ-dimensional embedding of the graph into Euclidean space and use ‘soft-assignment’geometric clustering on this embedding to generate a clustering U k (k is the expected number of clusters).2.3.Fuzzy c-meansHere,in order to realize our ‘soft assignment’,we introduce fuzzy c -means (FCM)clustering method [10,13]to cluster these points and maximize the e Qfunction.Fuzzy c -means is a method of clustering which allows one piece of data to belong to two or more clusters.This method (developed by Dunn in 1973[10]and improved by Bezdek in 1981[13])is frequently used in pattern recognition.It is based on minimization of the following objective functionJ m ¼Xn i ¼1X k j ¼1u m ij k x i Àc j k 2,(3)over variables u ij and c with P j u ij ¼1.m 2½1;1Þis a weight exponent controlling the degree of fuzzification.u ij is the membership degree of x i in the cluster j .x i is the i th d -dimensional measured data point.c j is the d -dimensional center of the cluster j ,and k Ãk is any norm expressing the similarity between any measured data and the center.Fuzzy partitioning is carried out through an iterative optimization of the objective function shown above,with the update of membership degree u ij and the cluster centers c j .This procedure converges to a local minimum or a saddle point of J m .S.Zhang et al./Physica A 374(2007)483–4904852.4.The flow of the algorithmGiven an upper bound K of the number of clusters and the adjacent matrix A ¼ða ij Þn Ân of a network.The detailed algorithm is stated straightforward for a given l as follows:Spectral mapping:(i)Compute the diagonal matrix D ¼ðd ii Þ,where d ii ¼P k a ik .(ii)Form the eigenvector matrix E K ¼½e 1;e 2;...;e K by computing the top K eigenvectors of thegeneralized eigensystem Ax ¼tDx .Fuzzy c -means:for each value of k ,2p k p K :(i)Form the matrix E k ¼½e 2;e 3;...;e k from the matrix E K .(ii)Normalize the rows of E k to unit length using Euclidean distance norm.(iii)Cluster the row vectors of E k using fuzzy c -means or any other fuzzy clustering method to obtain a softassignment matrix U k .Maximizing the modular function:Pick the k and the corresponding fuzzy partition U k that maximizes e QðU k Þ.In the algorithm above,we initialize FCM such that the starting centroids are chosen to be as orthogonal as possible which is suggested for k -means clustering method in Ref.[12].The initialization does not change the time complexity,and also can improve the quality of the clusterings,thus at the same time reduces the need for restarting the random initialization process.The framework of our algorithm is similar to several spectral clustering methods in previous studies[5,9,12,11].We also map data points (work nodes in our study)into Euclidean space by computing the top K eigenvectors of a generalized eigen system and then cluster the embedding using a fuzzy clustering method just as others using geometric clustering algorithm or general hierarchical clustering algorithm.Here,we emphasize two key points different from those earlier studies:We introduce a generalized modular function e Q employing fuzzy concept,which is devised for evaluating the goodness of overlapping community structure. In combination with the novel e Qfunction,we introduce fuzzy clustering method into network clustering instead of general hard clustering methods.This means that our algorithm can uncover overlapping clusters,whereas general framework:‘‘Objective function such as Q function and Normalized cut function+Spectral mapping+general geometric clustering/hierarchical clustering’’cannot achieve this.3.Experimental resultsWe have implemented the proposed algorithm by Matlab.And the fuzzy clustering toolbox [14]is used for our analysis.In order to make an intuitive comparison,we also compute the hard clustering based on the original Q -function,spectral mapping (same as we used)and k -means clustering.We illustrate the fuzzy concept and the difference of our method with traditional divisive algorithms by a simple example shown in Fig.1.Just as mentioned above,the network visually suggests three clusters.But classifying node 5(or node 9)simultaneously into two clusters may be more reasonable.We can see from Fig.1that our method did uncover the overlapping communities for this simple network,while the traditional method can only make one node belong to a single cluster.We also present the analysis of two real networks,i.e.the Zachary’s karate club network and the American college football team network for better understanding the differences between our method and traditional methods.S.Zhang et al./Physica A 374(2007)483–490486S.Zhang et al./Physica A374(2007)483–490487 3.1.Zachary’s karate clubThe famous karate club network analyzed by Zachary[15]is widely used as a test example for methods of detecting communities in complex networks[1,8,16,3,4,17,9,18,19].The network consists of34members of a karate club as nodes and78edges representing friendship between members of the club which was observed over a period of two years.Due to a disagreement between the club’s administrator and the club’s instructor, the club split into two smaller ones.The question we concern is that if we can uncover the potential behavior of the network,detect the two communities or multiple groups,and particularly identify which community a node belongs to.The network is presented in Fig.2,where the squares and the circles label the members of the two groups.The results of k-means and our analysis are illustrated in Fig.3.The k-means combined with Q function divides the network into three parts(see in Fig.3A),but we can see that some nodes in one cluster are also connected densely with another cluster such as node9and31in cluster 1densely connecting with cluster2,and node1in cluster2with cluster3.Fig.3B shows the results of our method,from which we can see that node1,9,10,31belong to two clusters at the same time.These nodes in the network link evenly with two clusters.Another thing is that the two methods both uncover three communities but not two.There is a small community included in the instructor’s faction,since the set of nodes5,6,7,11,17only connects with node1in the instructor’s faction.Note that our method also classifies node1into the small community,while k-means does not.work of American college football teamsThe second network we have investigated is the college football network which represents the game schedule of the2000season of Division I of the US college football league.The nodes in the network represent the115 teams,while the links represent613games played in the course of the year.The teams are divided into conferences of8–12teams each and generally games are more frequent between members of the same conference than between teams of different conferences.The natural community structure in the network makes it a commonly used workbench for community-detecting algorithm testing[3,5,7].Fig.4shows how the modularity Q and e Q vary with k with respect to k-means and our method,respectively. The peak for k-means is at k¼12,Q¼0:5398,while for our algorithm at k¼10,e Q¼0:4673with l¼0:10. Both methods identify ten communities which contain ten conferences almost exactly.Only teams labeled as Sunbelt are not recognized as belonging to a same community for both methods.This group is classified as well in the results of Refs.[3,19].This happens because the Sunbelt teams played nearly as many games against Western Athletic teams as they played in their own conference,and they also played quite a number of gamesagainst Mid-American team.Our method identified11nodes(teams)which belong to at least twoFig.2.Zachary’s karate club network.Square nodes and circle nodes represent the instructor’s faction and the administrator’s faction, respectively.Thisfigure is from Newman and Girvan[8].communities (see Fig.5,11red nodes).These nodes generally connect evenly with more than one community,so we cannot classify them into one specific community correctly.These nodes represent ‘fuzzy’points which cannot be classified correctly by employing current link information.Maybe such points play a ‘bridge’role in two or more communities in complex network of other types.4.Conclusion and discussionIn this paper,we present a new method to identify the community structure in complex networks with a fuzzy concept.The method combines a generalized modularity function,spectral mapping,and fuzzy clustering technique.The nodes of the network are projected into d -dimensional Euclidean space which is obtained by computing the top d nontrivial eigenvectors of the generalized eigensystem Ax ¼tDx .Then the fuzzy c -means clustering method is introduced into the d -dimensional space based on general Euclidean distance to cluster the data points.By maximizing the generalized modular function e QðU d Þfor varying d ,we obtain the appropriate number of clusters.The final soft assignment matrix determines the final clusters’membership with a designated threshold l .Fig.3.The results of both k -means and our method applied to karate club network.A:The different colors represent three different communities obtained by k -means and the right table shows values of NG’Q versus different k .B:Four red nodes represent the overlap of two adjacent communities obtained by our method and the right table shows values of new Q versus different k with l ¼0:25.3.t y 0510152000.10.20.30.40.50.6k-meansK N G ' Q 0510152000.10.20.30.40.5fuzzy c-means K N e w Q Fig.4.Q and e Qvalues versus k with respect to k -means and fuzzy c -means clustering methods for the network of American college football team.S.Zhang et al./Physica A 374(2007)483–490488Although spectral mapping has been comprehensively used before to detect communities in complex networks (even in clustering the real-valued points),we believe that our method represents a step forward in this field.A fuzzy method is introduced naturally with the generalized modular function and fuzzy c -means clustering technique.As our tests have suggested,it is very natural that some nodes should belong to more than one community.These nodes may play a special role in a complex network system.For example,in a biological network such as protein interaction network,one node (protein or gene)belonging to two functional modules may act as a bridge between them which transfers biological information or acts as multiple functional units [6].One thing should be noted is that when this method is applied to large complex networks,computational complexity is a key problem.Fortunately,some fast techniques for solving eigensystem have been developed[20]and several methods of FCM acceleration can also be found in the literature [21].For instance,if we adopt the implicitly restarted Lanczos method (IRLM)[20]to compute the K À1eigenvectors and the efficient implementation of the FCM algorithm in Ref.[21],we can have the worse-case complexity of O ðmKh þnK 2h þK 3h Þand O ðnK 2Þ,respectively,where m is the number of edges in the network and h is the number of iteration required until convergence.For large sparse networks where m $n ,and K 5n ,the algorithms will scale roughly linearly as a function of the number of nodes n .Nonetheless,the eigenvector computation is still the most computationally expensive step of the method.We expect that this new method will be employed with promising results in the detection of communities in complex networks.AcknowledgmentsThis work is partly supported by Important Research Direction Project of CAS ‘‘Some Important Problem in Bioinformatics’’,National Natural Science Foundation of China under Grant No.10471141.The authors thank Professor M.E.J.Newman for providing the data of karate club network and the college football team network.Fig.5.Fuzzy communities of American college football team network (k ¼10and e Q¼0:4673)with given l ¼0:10(best viewed in color).S.Zhang et al./Physica A 374(2007)483–490489References[1]M.E.J.Newman,Detecting community structure in networks,Eur.Phys.J.B 38(2004)321–330.[2]L.Danon,J.Duch,A.Diaz-Guilera,A.Arenas,Comparing community structure identification,J.Stat.Mech.P09008(2005).[3]M.Girvan,M.E.J.Newman,Community structure in social and biological networks,A 99(12)(2002)7821–7826.[4]J.Duch,A.Arenas,Community detection in complex networks using extremal optimization,Phys.Rev.E 72(2005)027104.[5]S.White,P.Smyth,A spectral clustering approach to finding communities in graphs,SIAM International Conference on DataMining,2005.[6]G.Palla,I.Derenyi,I.Farkas,T.Vicsek,Uncovering the overlapping community structure of complex networks in nature and society,Nature 435(2005)814–818.[7]J.Reichardt,S.Bornholdt,Detecting fuzzy community structures in complex networks with a Potts model,Phys.Rev.Lett.93(2004)218701.[8]M.E.J.Newman,M.Girvan,Finding and evaluating community structure in networks,Phys.Rev.E 69(2004)026113.[9]L.Donetti,M.A.Mun oz,Detecting network communities:a new systematic and efficient algorithm,J.Stat.Mech.P10012(2004).[10]J.C.Dunn,A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,J.Cybernet.3(1973)32–57.[11]D.Verma,M.Meila,A comparison of spectral clustering algorithms.Technical Report,2003,UW CSE Technical Report 03-05-01.[12]A.Ng,M.Jordan,Y.Weiss,On spectral clustering:analysis and an algorithm,Adv.Neural Inf.Process.Systems 14(2002)849–856.[13]J.C.Bezdek,Pattern Recognition with Fuzzy Objective Function Algorithms,Plenum Press,New York,1981.[14]Fuzzy Clustering Toolbox-h http://www.fmt.vein.hu/softcomp/fclusttoolbox/i .[15]W.W.Zachary,An information flow model for conflict and fission in small groups,J.Anthropol.Res.33(1977)452–473.[16]M.E.J.Newman,Fast algorithm for detecting community structure in networks,Phys.Rev.E 69(2004)066133.[17]F.Radicchi,C.Castellano,F.Cecconi,V.Loreto,D.Parisi,Defining and identifying communities in networks,Proc.Natl.Acad.A 101(9)(2004)2658–2663.[18]F.Wu,B.A.Huberman,Finding communities in linear time:a physics approach,Eur.Phys.J.B 38(2004)331–338.[19]S.Fortunato,tora,M.Marchiori,A method to find community structures based on information centrality,Phys.Rev.E 70(2004)056104.[20]Z.Bai,J.Demmel,J.Dongarra,A.Ruhe,H.Vorst (Eds.),Templates for the Solution of Algebraic Eigenvalue Problems:A PracticalGuide,SIAM,Philadelphia,PA,2000.[21]J.F.Kelen,T.Hutcheson,Reducing the time complexity of the fuzzy c -means algorithm,IEEE Trans.Fuzzy Systems 10(2)(2002)263–267.S.Zhang et al./Physica A 374(2007)483–490490。

面向对象的植被与建筑物重叠区域的点云分类方法

面向对象的植被与建筑物重叠区域的点云分类方法

面向对象的植被与建筑物重叠区域的点云分类方法面向对象的植被与建筑物重叠区域的点云分类方法现代城市中,建筑物与植被往往会存在重叠区域,例如建筑物上的屋顶花园或者立体绿化墙。

对于地理信息系统(GIS)和城市规划等领域来说,能够准确地将这些重叠区域中的点云数据进行分类,对于分析城市景观和进行空间规划至关重要。

基于面向对象的分类方法被广泛应用于点云数据的处理和分析中。

这种方法将点云数据分为不同的对象或者类别,而不是简单地对每个点进行处理。

在植被与建筑物重叠区域中,我们可以利用面向对象的分类方法来将点云数据分为植被、建筑物和地表等类别。

首先,为了获取点云数据,我们可以使用激光雷达或者结构光扫描仪等设备进行扫描。

这些设备能够快速、高精度地获取点云数据,并将其保存为地理信息格式,如LAS或者XYZ等。

接下来,在点云数据预处理阶段,我们可以利用滤波算法对数据进行去噪和平滑处理。

这可以帮助我们去除野点和噪声,提高后续分类的准确性。

然后,根据点云数据的特征,我们可以使用一些经典的分类算法,如支持向量机(SVM)、随机森林(Random Forest)或者深度学习方法,来对点云数据进行分类。

这些算法通常需要根据已知的训练样本进行模型训练,然后用训练好的模型对未知的点云数据进行分类。

在植被与建筑物重叠区域的分类中,我们可以利用点云数据中的高度信息来区分建筑物和植被。

一般来说,建筑物的高度会远远高于植被,因此我们可以根据高度阈值来将点云数据进行分割。

对于高度超过阈值的点云,我们可以将其归类为建筑物;而对于低于阈值的点云,我们可以将其归类为植被。

此外,我们还可以利用点云数据的形状特征、颜色信息等来进一步细分和分类重叠区域中的对象。

最后,为了提高分类的准确性和效率,我们可以利用基于机器学习的方法进行自动化分类。

通过使用大量的训练样本和合适的特征表示,我们可以训练出更准确的分类模型,并将其应用于实际的点云数据处理中。

总结起来,面向对象的植被与建筑物重叠区域的点云分类方法可以通过点云数据获取、预处理、特征提取和分类等步骤来实现。

《文献检索与利用》总复习题库

《文献检索与利用》总复习题库

《文献检索与利用》总复习题库《文献检索与利用》总复习题库一、单项选择题1. 以下不是布尔逻辑算符的是()A.NOTB.ORC.ANDD.NEAR2.布尔逻辑算符通常的运算顺序是():A.有括号时,括号内的先执行;无括号时NOT > AND > OR B.有括号时,括号内的先执行;无括号时 NOT > OR >AND C.有括号时,括号内的先执行;无括号时 AND >NOT > OR D.有括号时,括号内的先执行;无括号时 AND > OR > NOT3.截词符“?”可以用来代替0个或()个字符?A.多个B.1个C.2个D.3个4.以下哪个是图书馆公共目录检索系统的简称?A. CalisB. NSTLC. OCLCD. OPAC5.ISSN号是哪种文献特有的标识?A.会议文献B.标准文献C.学位论文D.期刊6.ISBN号是哪种文献特有的标识?A.图书B.期刊C.科技报告D.专利文献7.下列哪个数据库是全文数据库A.CPCIB.Elsevier Science DirectC.EI8.用Adobe Reader可以阅读以下哪种格式的文件A .PDFB. VIPC. HTMLD. TXT9.cajviewer是下面哪个数据库全文的阅读软件:A.超星数字图书馆B.维普中文科技期刊全文数据库/doc/ef4825752.html,KI中国知网期刊全文库D.万方数据资源10.浏览超星数字图书馆,应首先安装:A. Apabi ReaderB. Adobe ReaderC. CAJ ViewerD. SSReader11.下列数据库属于书目数据库的是A. SCIB. ISTPC.EID.图书馆OPAC12.PQDT是A.会议文献数据库B.学位论文数据库C.标准文献数据库D.科技报告数据库13.AD、PB、NASA、DOE 是四大美国政府报告,其中NASA是指A.行政报告B.能源报告C.军事报告D.宇航报告14.()是系统反映人类一切知识门类或某一知识门类基本知识和基本情况的大型资料性、综合性工具书,被称为“工具书之王”。

fluent求解器资料

fluent求解器资料

压力基求解器在压力基求解器中,控制方程是依次求解的。

压力基求解器是从原来的分离式求解器发展来的,按顺序仪次求解动量方程、压力修正方程、能量方程和组分方程及其他标量方程,如湍流方程等,和之前不同的是,压力基求解器还增加了耦合算法,可以自由在分离求解和耦合求解之间转换, 需要注意的是,在压力基求解器中提供的几个物理模型,在密度基求解器中是没有的。

这些物理模型包括:流体体积模型(VOF),多项混合模型,欧拉混合模型,PDF燃烧模型,预混合燃烧模型,部分预混合燃烧模型,烟灰和NOx模型,Rosseland辐射模型,熔化和凝固等相变模型,指定质量流量的周期流动模型,周期性热传导模型和壳传导模型等.与密度基求解器的区别:区别1:压力基求解器主要用于低速不可压缩流动的求解,而密度基求解器则主要针对高速可压缩流动而设计,但是现在两种方法都已经拓展成为可以求解很大流动速度范围的求解方法。

两种求解方法的共同点是都使用有限容积的离散方法,但线性化和求解离散方程的方法不同。

区别2:密度基求解器从原来的耦合求解器发展来的,同时求解连续性方程、动量方程、能量方程和组分方程。

然后依次再求解标量方程。

(注:密度基求解器不求解压力修正方程,因为其压力是由状态方程得出的)。

密度基求解器收敛速度快,需要内存和计算量比压力基求解器要大!特点:适用于压力基但不适用于密度基的模型:(1)空化模型(2) VOF模型(3) Mixture多相流模型(4) Eulerian多相流模型(5)非预混燃烧模型(6)预混燃烧模型(7)部分预混燃烧模型(8) 组合PDF传输模型密度基求解器(Coupled Sover)是同时fluent求解连续方程、动量方程、能量方程及组分输运方程的耦合方程组,然后逐一地求解湍流标量方程.由于控制方程是非线性的,且相互之间是耦合的,因此,在得到收敛解之前,要经过多轮迭代:1)根据当前的解的结果,更新所有流动变量。

如果计算刚刚开始,则用初始值来更新。

英语字母手写体格式

英语字母手写体格式

05
Practice suggestions
Basic exercises
Letter recognition
Identify each letter of the English alphabet and its corresponding sound
Forming letters
Practice writing each letter of the English alphabet in its correct form
affect the efficiency of writing
Practice
to improve speed control, practice is essential Frequent writing practice can help improve the ability to control writing speed, making the letters more legal
02
Letter form
Capital letters
A-Z
The capital letters in the English alphabet are A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z
Typical usage
Lowercase letters are used for most words in a sentence
Special Letters
1-9
These are not part of the English alphabet but are used for numbers

拓扑检查重叠,重复编码检查 及修复

拓扑检查重叠,重复编码检查 及修复

拓扑检查
打开arccatalog
写名字一直下一步
选单个
输入要导入的矢量,输出要素类的名字跟输出位置的名字必须一样然后点确定等待提示完成,打开要素数据集里面有要素类
提示错误,就关掉ArcGIS重新拓扑
这勾一下
点击添加规则
确定

关掉arccatalog
打开arcmap,添加个人地理数据库里的要素数据集,开始编辑状态下
仅搜索可见范围去掉勾然后点立即搜索
选中一条大写状态下P键可以快捷移动到该位置
右键合并,看它该合并到哪块地上然后点击确定
完了保存一下右键要素数据集把数据导出来
重新编辑GISAREA字段,因为拓扑完了字段大小会改变
编码重复检查
右键NYBM字段,汇总,确定
右键矢量-----连接和关联---连接JI
基于的字段选择NYMB,验证链接,确定
找到最后一列,双击排序,1代表唯一,2代表有两个重复的编码,3代表有三个相同的编码,编辑状态下更改编码在前面的NYBM下更改。

修改完了保存编辑内容,停止编辑
右键矢量-----连接和关联---移除链接-----移除所有连接
右移除表。

Google开源激光SLAM算法论文原文

Google开源激光SLAM算法论文原文
I. INTRODUCTION
As-built floor plans are useful for a variety of applications. Manual surveys to collect this data for building management tasks typically combine computed-aided design (CAD) with laser tape measures. These methods are slow and, by employing human preconceptions of buildings as collections of straight lines, do not always accurately describe the true nature of the space. Using SLAM, it is possible to swiftly and accurately survey buildings of sizes and complexities that would take orders of magnitude longer to survey manually.
1All authors are at Google.
loop closure detection. Some methods focus on improving on the computational cost by matching on extracted features from the laser scans [4]. Other approaches for loop closure detection include histogram-based matching [6], feature detection in scan data,and using machine learning [7].

operation would result in non-manifold bodies

operation would result in non-manifold bodies

operation would result in non-manifold bodies在计算机图形学和几何建模领域,非流形体是指在三维空间中形状的一种特殊类型。

一个非流形体具有一个或多个不符合流形特性的区域。

流形是指一个无边界、表面光滑、内部无孔洞的物体,而非流形体则违反了这些性质。

非流形体在计算机图形学中经常出现,因为在建模和形状编辑过程中,一些操作可能会导致这种类型的物体。

下面是一些可能导致非流形体的操作:1. 重叠面:当一个物体的两个面共享相同的边或边集时,就会出现重叠面。

这可能是由于复制、移动或变形等操作导致的,会导致一个或多个非流形体形成。

2. 孔洞:一个非流形体可能有一个或多个孔洞,即在物体内部形成的空心区域。

这可能是由于布尔运算(如取交集、取并集)或其他形状编辑操作导致的。

3. 自交:自交是指一个物体的某个部分与其它部分相交。

这可能是由于旋转、拉伸、挤压等操作导致的,会导致非流形体的产生。

4. 嵌塞:嵌塞是指一个物体的某个部分被另一个物体或其自身部分所包围。

这可能是由于复制、移动、布尔运算等操作导致的。

5. 物体边界:非流形体的边界可能会有额外的不连续部分,即在其中一个顶点出现了一个无界的半边。

这种情况可以由于顶点的合并、分裂、删除等操作引起。

非流形体的存在可能会影响后续的计算和渲染过程。

例如,非流形体在进行体现场计算(CSG)和有限元分析时可能会导致错误的结果。

此外,在图形渲染过程中,非流形体可能会导致阴影、光照、纹理映射等效果的不准确或意外变化。

为了处理非流形体,通常需要进行修复操作,将其转换为流形体。

修复非流形体的方法有很多,一些常用的方法包括:1. 网格替代:通过重新生成一个流形网格替代非流形网格。

这可能涉及到重建表面或拓扑结构,以确保生成的网格符合流形特性。

2. 清理操作:通过一系列操作,例如顶点合并、边合并、面合并等,来清理非流形体中的不连续和重叠部分。

3. 网格修剪:通过删除非流形体中的不规则部分或孔洞,使其成为一个流形体。

postgis st_overlaps 用法 -回复

postgis st_overlaps 用法 -回复

postgis st_overlaps 用法-回复【PostGIS ST_Overlaps 用法】PostGIS 是PostgreSQL 数据库的一个扩展,它为数据库添加了空间数据类型和操作。

这些功能使得PostGIS 成为了地理信息系统(GIS)领域的重要工具。

在本文中,我们将深入探讨PostGIS 中的ST_Overlaps 函数的使用方法。

首先,我们需要理解什么是ST_Overlaps。

ST_Overlaps 是一个用于判断两个几何对象是否重叠的函数。

如果两个几何对象有共同的部分,但不完全包含对方,则这两个对象被认为是重叠的。

一、语法ST_Overlaps 函数的基本语法如下:ST_Overlaps(geometry A, geometry B)其中,geometry A 和geometry B 分别是要进行比较的两个几何对象。

这个函数返回的是布尔值,即真或假。

如果两个几何对象重叠,那么返回true;否则,返回false。

二、示例让我们通过一些具体的例子来更好地理解ST_Overlaps 函数的用法。

假设我们有一个名为"polygons" 的表,其中包含两个多边形,分别是"polygon1" 和"polygon2"。

我们可以使用以下SQL 查询来判断这两个多边形是否重叠:SELECT ST_Overlaps(polygon1, polygon2) FROM polygons;如果查询结果为true,那么说明这两个多边形是重叠的;如果查询结果为false,那么说明这两个多边形没有重叠。

三、应用场景ST_Overlaps 函数在GIS 应用中有很多用途。

例如,我们可以使用它来检测地图上的两个区域是否有重叠。

这对于城市规划、土地管理等应用是非常重要的。

另外,ST_Overlaps 函数还可以用于数据分析。

例如,如果我们想知道两个地区的居民是否有可能相互接触,我们可以通过比较这两个地区的边界来得到答案。

fluent overset mesh应用介绍

fluent overset mesh应用介绍
36
直升机旋翼运动分析 (重叠网格)
37
网格 & 设置
Component 2 Component 1
• • • •
直升机旋翼叶片转动模拟 叶片转速: RPM: 360 Turbulence Model: SSTKW Time step size: 1e-4s
Component 3 Component 4
• 包含局部供体单元的网格优先级高
0 0
− 网格过渡不考虑网格的分辨率
1
0 0
1
1
0
16
重叠拓扑
组件网格可任意重叠
− 重叠网格边界是允许的 Wall intersections not permissible
允许边界重叠,但不允许边界交叉
− 挖洞过程中自动进行匹配检测/相同边界条件类型的
重叠几何 (wall, symmetry, …)
孤立网格单元
19
并行重叠网格
1.8M cells
2.7M cells
Intersection time [s] vs. Number of processors
20
瞬态重叠性能 , R18.0
parallel, -t6, Metis
n0[s]
n0[s]
n1 [s]
intersection
34.6
16.1 Initial Intersection, R17.0
26.2
13.5
17.0
3.9 First time step R18.0 n1 [s] 32.5 8.1
21
Moving ball 3.3M cells
filling extended zones
parallel, -t36, Metis intersection filling extended zones

isolation forest方法 -回复

isolation forest方法 -回复

isolation forest方法-回复什么是孤立森林算法(Isolation Forest)?孤立森林(Isolation Forest)是一种无监督的异常检测算法,用于发现数据集中的孤立样本。

它是通过构建一些简单的二叉树来实现的,这些树被称为孤立树(Isolation Tree)。

孤立森林的核心思想是将孤立样本与正常样本进行隔离,并通过评估样本在构建的树中的位置来判断其异常程度。

孤立树的构建方式是通过随机选择一个特征和一个分割值,将样本划分为左右两个子树,直到达到指定的树的高度或者每个子树只有一个样本点。

这样,在构建树的过程中,孤立样本点只需要进行少数比较操作就可以得到它们的异常程度。

与其他基于距离的方法相比,孤立森林在处理高维数据的时候具有一定的优势。

孤立树的高度控制了孤立样本点的数量和正常样本点的数量。

通过构建多个孤立树并将它们的异常程度进行平均,可以提高该算法的鲁棒性。

如何构建孤立树?构建孤立树的第一步是选择一个随机的特征和分割值。

特征的选择可以是从所有可能的特征中随机选择,也可以使用特征的分布信息来确定。

分割值的选择可以是该特征在数据集中的最小值和最大值之间的一个随机值。

接下来,根据选择的特征和分割值,将样本划分为两个部分,分别进入左右子树。

这个过程会递归进行,直到达到指定的高度或者子树中只有一个样本点。

在划分过程中,不需要计算所有样本之间的距离,只需要根据特征和分割值进行比较即可。

构建孤立树有两种终止条件,一种是树的高度达到了事先指定的最大高度,另一种是当前子树中的样本点只有一个。

当子树只有一个样本点时,可以将该样本点判断为孤立样本。

孤立样本的定义是在构建的树中,孤立样本的路径长度要短于正常样本的路径长度。

如何使用孤立森林进行异常检测?使用孤立森林进行异常检测的过程如下:1. 构建孤立森林:根据给定的训练数据集,通过随机构建多个孤立树来构建孤立森林。

这个过程中,可以使用交叉验证等方法来确定最佳的树的高度和子树的数量。

loalap loec expose image error -回复

loalap loec expose image error -回复

loalap loec expose image error -回复如何修复“loalap loec expose image error”错误。

“loalap loec expose image error”是一个常见的错误消息,它通常出现在使用图像编辑软件或浏览器时。

这个错误意味着软件无法正常加载或显示图像,可能是由于多种原因造成的。

在本文中,我将详细解释如何一步一步修复这个错误。

第一步:检查图像文件路径首先,我们需要确认图像文件所在的路径是否正确。

在很多情况下,这个错误是由于文件路径错误造成的。

打开图像编辑软件或浏览器,然后在文件路径中查看图像文件的位置。

确保该文件实际存在,并且路径正确。

如果路径不正确,你需要修复路径或将文件移动到正确的位置。

第二步:确认图像文件格式“loalap loec expose image error”错误还可能是由于图像文件格式的问题引起的。

有一些文件格式可能不受某些软件支持,或者文件格式本身出现问题。

检查图像文件的格式,确保它是一种常见的格式,如JPEG、PNG或GIF。

如果文件格式不正确,你需要将图像转换为正确的格式。

第三步:更新软件或浏览器另一个解决“loalap loec expose image error”错误的方法是确保你使用的软件或浏览器是最新版本。

软件和浏览器的更新通常包含对图像加载和显示的改进。

检查软件或浏览器是否有可用的更新,如果有,下载并安装它们。

在安装更新后重新启动软件或浏览器,并尝试加载图像。

第四步:清除缓存清除缓存可能还能解决这个错误。

图像和其他文件通常被缓存在计算机或浏览器的缓存中,以提高加载速度。

然而,有时缓存中的文件可能会损坏或过期,导致加载错误。

清除缓存可以清除这些问题。

具体操作方式因软件或浏览器不同而有所不同,一般可以在设置或选项菜单中找到缓存清除选项。

清除缓存后,重新加载软件或浏览器,并尝试打开图像。

第五步:检查图像文件的完整性如果上述方法都无效,那么可能是图像文件本身出现问题。

遥感数据成果001m重叠度标准

遥感数据成果001m重叠度标准

遥感数据成果001m重叠度标准
遥感数据成果的重叠度标准通常被定义为两个相邻图像之间的共同区域的比例。

重叠度标准是评估数据成果准确性和一致性的重要指标。

常见的重叠度标准有以下两种:
1. 前后同名点法:通过在相邻图像上提取相同位置的地物点,计算两幅图像中的相同点数量的比例来评估重叠度。

具体操作是在每幅图像上选取一定数量的地物特征点,并进行精确测量,然后在两幅图像上找出相同特征点的数量,将相同特征点的数量除以总特征点的数量得到重叠度。

2. 遥感控制点法:通过在两个相邻图像之间选择一组地面控制点,并使用正射变换等方法将控制点从一个图像转换到另一个图像上,计算控制点的重合度来评估重叠度。

重叠度可以通过计算两个图像上的控制点之间的差异来确定。

一般来说,控制点变换后的坐标差异越小,重叠度越高。

重叠度标准的具体数值标准根据实际应用而定,可以根据项目需求和要求进行调整。

一般来说,较高的重叠度标准有助于提高数据成果的精度和可信度。

具体的数值标准应根据具体项目的要求来确定。

pcl 拟合平面的方法 -回复

pcl 拟合平面的方法 -回复

pcl 拟合平面的方法-回复PCL(Point Cloud Library)是一个开源的点云处理库,提供了丰富的函数和算法来处理、分析和可视化点云数据。

其中一个重要的功能是拟合平面,即通过点云数据找到最佳拟合的平面模型。

拟合平面在很多应用中都是非常有用的,比如地面分割、物体识别以及机器人导航等。

本文将一步一步介绍PCL库中拟合平面的方法,详细解释每个步骤的原理和实现方式。

1. 导入PCL库首先,我们需要在我们的项目中导入PCL库。

PCL库可以在官方网站(apt-get install libpcl-dev。

在项目中包含PCL库的头文件,并链接相应的库文件,这样我们就可以使用PCL库中的函数和算法了。

2. 加载点云数据在进行拟合平面之前,我们需要先加载点云数据。

PCL库提供了多种方式来加载点云数据,比如从文件中读取、从ROS中获取等。

这里我们假设我们已经有了一个PointCloud对象cloud,它包含了我们要处理的点云数据。

3. 预处理点云在进行拟合平面之前,通常需要对点云数据进行一些预处理,以去除噪声和离群点,并进行一些滤波操作。

PCL库提供了各种滤波器和处理函数来实现这些操作。

例如,我们可以使用StatisticalOutlierRemoval滤波器来去除离群点:cpppcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;sor.setInputCloud(cloud);sor.setMeanK(50);sor.setStddevMulThresh(1.0);sor.filter(*cloud_filtered);这里,我们设置了平均值窗口的大小为50,标准差乘数的阈值为1.0,将去除点云中的离群点,并将结果存储在cloud_filtered中。

4. 创建平面模型接下来,我们需要创建一个平面模型对象,以存储我们拟合得到的平面参数。

在PCL库中,平面模型使用pcl::ModelCoefficients类来表示,它包含了平面的法向量和偏移量。

在小波变换中如何处理重叠与漏填问题

在小波变换中如何处理重叠与漏填问题

在小波变换中如何处理重叠与漏填问题小波变换是一种用于信号处理和数据分析的强大工具。

它能够将信号分解成不同频率的子信号,并提供了一种有效的方法来分析信号的时频特性。

然而,在应用小波变换时,我们常常会遇到重叠与漏填的问题。

本文将探讨在小波变换中如何处理这些问题。

一、重叠问题重叠问题指的是在进行小波变换时,相邻子信号之间存在部分重叠的情况。

这可能导致分析结果不准确或失真。

为了解决这个问题,我们可以采取以下几种方法。

1. 窗函数法窗函数法是一种常用的处理重叠问题的方法。

它通过在每个子信号的边界处应用一个窗函数来减小重叠的影响。

常用的窗函数有汉宁窗、汉明窗等。

通过选择合适的窗函数,可以在减小重叠的同时保持信号的频率特性。

2. 重叠-相加法重叠-相加法是另一种常见的处理重叠问题的方法。

它通过将相邻子信号的重叠部分进行加权平均来减小重叠的影响。

具体而言,我们可以将相邻子信号的重叠部分按照一定的权重进行加权平均,从而得到更准确的分析结果。

3. 前向-后向法前向-后向法是一种较为复杂但有效的处理重叠问题的方法。

它通过将信号分解为两个子信号序列,分别进行前向和后向的小波变换,然后将两个子信号序列的结果进行合并,从而得到更准确的分析结果。

这种方法需要进行两次小波变换,因此计算量较大,但可以有效地处理重叠问题。

二、漏填问题漏填问题指的是在进行小波变换时,部分信号成分未被分析到的情况。

这可能导致分析结果不完整或遗漏重要信息。

为了解决这个问题,我们可以采取以下几种方法。

1. 增加小波尺度增加小波尺度是一种常用的处理漏填问题的方法。

小波尺度决定了信号在频域的分辨率,较小的尺度可以更好地捕捉高频成分,较大的尺度可以更好地捕捉低频成分。

通过增加小波尺度,我们可以提高对低频成分的分析能力,从而减小漏填的问题。

2. 多级小波变换多级小波变换是另一种常见的处理漏填问题的方法。

它通过对信号进行多次小波变换,每次变换都对低频成分进行进一步分解,从而提高对信号细节的分析能力。

eps数据合法性检查是图框面重叠

eps数据合法性检查是图框面重叠

eps数据合法性检查是图框面重叠1、是编码合法性检查检查每一个地物符号的编码是否与模板中的地物编码相对应,本软件编绘地物的编码一般都是合法的,极个别的情况是,用新版本软件打开旧版本的文件时会提示不合法的情况,这时候的解决办法就是把不合法编码的地物批量换码。

2、层合法性检查新版本这个层更加细分了,多了湖泊水库池塘层,我的解决办法就是把不对的图层直接归层就可以了3、重叠地物检查产生就是因为同一地物进行的重复编绘所形成的,比如重复展绘高程点、控制点等,或者是重复对同一地块重复构面形成的,重复调入外部数据也会形成重复数据。

(输入法下:全角也可空格)一般解决办法可用“过滤选择”功能选取重复对象进行删除。

4、空间逻辑(性)检查1)线对象只有一个点2)一个线对象上相邻点重叠(画线中同一个折点处捕捉了2次以上形成(或很近距离有2个折点),solve:把该处用“W”命令抹去多余的折点)3)一个线对象上相邻点往返(回头线)4)少于3个点的面对象(至少要3个点,错误eg:用面的编码只画了一条线)5)不闭合的面对象上3)出现情况还有:构岛面的方法不对用线搭桥再选封闭面所构成的面会形成回头线地物。

构岛面是用面分割的方法。

回头线地物边界范围大、折点多,处理这种问题麻烦,不适宜大量处理数据,对应斜坡、台阶等组合型地物只能是删去重新画线。

5、悬挂点检查是因为该重合而未重合,2点之间或者点线之线的间距很小的点,一般是因为捕捉不到位而产生。

悬挂点存在往往会造成房屋和地物线的相交、交叉、分裂等情况,(但个别某个房角与某个房屋边线存在很小距离的情况)1)线上点与它线点悬挂2)自身相邻点悬挂(同一条线本身2个点之间距离很小,小于5厘米时对于圆弧形成的阳台会存在很多自身相邻点悬挂。

solve:一般设定一个容许值批量修复,有时修复后会造成某些线相交或分裂,。

批量修复对于1-3厘米的限距较好,3-5厘米应用人工判断)。

occ 分割曲面 -回复

occ 分割曲面 -回复

occ 分割曲面-回复什么是分割曲面?分割曲面(Occlusion Culling)是一种用于计算机图形学中的技术,它的主要目的是在渲染场景时,只绘制那些对最终图像可见的部分,从而提高渲染性能。

当一个场景中有大量的物体需要渲染时,通过分割曲面可以有效地减少渲染的工作量,以提高图形渲染的效率。

为什么需要使用分割曲面?在计算机图形学中,渲染一个复杂的场景需要消耗大量的计算资源。

如果在渲染过程中没有使用分割曲面的技术,所有的物体都会被绘制出来,即使它们最终不会在最终图像中可见。

这会导致渲染过程的耗时增加,从而降低了图形渲染的效率和帧率。

然而,实际上,在复杂的场景中,大部分物体都会被其他物体所遮挡,而且对于观察者来说是不可见的。

因此,使用分割曲面可以通过检测物体是否被其他物体所遮挡,从而排除不可见的物体,只绘制可见的部分。

这样一来,可以极大地减少需要渲染的物体数量,加快渲染过程,提高图形渲染的效率和帧率。

分割曲面的工作原理是什么?分割曲面的工作原理可以分为以下几个步骤:1. 几何剔除(Geometry Culling):这是分割曲面的第一步。

在这一步中,系统会对场景中的几何图元(如三角形)进行遮挡剔除。

它通过检测几何图元与视野之间的关系来判断几何图元是否可见。

如果一个几何图元完全被其他几何图元所遮挡,它就被剔除,否则它将被继续处理。

2. 视锥剪裁(View Frustum Culling):视锥剪裁是分割曲面的第二步。

视锥剪裁基于相机(或观察者)的视锥体来确定场景中的物体是否在视野范围内。

只有在视锥体内的物体才可能对观察者可见,因此在这一步中,系统会移除那些完全落在视锥体外的物体。

3. 光栅剔除(Rasterization Culling):光栅剔除是分割曲面的最后一步。

在这一步中,系统会利用深度缓冲区(Z-buffer)来判断每个像素是否被其他物体遮挡。

如果一个像素被其他物体所遮挡,它就被剔除,否则它将被绘制到最终图像中。

louvain团体识别方法

louvain团体识别方法

louvain团体识别方法Louvain团体识别方法是一种用于社交网络分析的算法,它能够将网络中的节点划分成不同的社区或团体。

这种方法被广泛应用于社交网络、通信网络和生物网络等领域,可以帮助我们理解网络结构、发现潜在的社区结构以及研究信息传播等重要问题。

Louvain团体识别方法的核心思想是最大化网络内部的连接强度,同时最小化网络之间的连接强度。

在这个过程中,节点会被不断地重新分配到不同的社区中,直到最优的社区结构被找到。

具体来说,Louvain算法的步骤如下:1. 初始化:将每个节点看作一个独立的社区。

2. 第一轮迭代:对于每个节点,计算将其移到相邻社区所带来的模块度增益(即社区内部连接强度与社区之间连接强度的差值),选择增益最大的移动方式,并更新社区划分。

3. 第二轮迭代:将第一轮迭代中的每个社区作为一个新的节点,重新构建网络。

计算每个新节点移动到相邻社区所带来的模块度增益,并选择增益最大的移动方式。

不断重复这个过程,直到社区划分不再改变。

Louvain团体识别方法的优点在于它具有较高的运行效率和良好的可扩展性。

通过将网络划分为多个层次的社区结构,Louvain算法能够在保持较高的划分质量的同时,减少计算复杂度。

这使得它能够处理大规模的网络数据,并在实际应用中取得良好的效果。

除了在社交网络分析中的应用,Louvain团体识别方法还可以用于其他领域的研究。

例如,在生物网络中,它可以帮助我们发现蛋白质相互作用网络中的功能模块,从而理解生物系统的结构和功能。

在交通网络中,它可以用于寻找交通拥堵的瓶颈区域,优化交通流量的分配。

总结来说,Louvain团体识别方法是一种有效的社交网络分析算法,能够帮助我们理解网络结构、发现潜在的社区结构以及研究信息传播等重要问题。

它的优势在于高效的运行速度和良好的可扩展性,使得它能够处理大规模的网络数据,并在不同领域的研究中发挥重要作用。

通过应用Louvain算法,我们可以更好地理解和利用社交网络的特点,为实际应用提供更好的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SLPA:Uncovering Overlapping Communities in Social Networks via A Speaker-listener Interaction Dynamic ProcessJierui Xie and Boleslaw K.Szymanski Department of Computer ScienceRensselaer Polytechnic InstituteTroy,New York12180 Email:{xiej2,szymansk}@Xiaoming Liu Department of Computer Science University of the Western Cape Belville,South Africa Email:andyliu5738@Abstract—Overlap is one of the characteristics of social networks,in which a person may belong to more than one social group.For this reason,discovering overlapping structures is necessary for realistic social analysis.In this paper,we present a novel,general framework to detect and analyze both individual overlapping nodes and entire communities.In this framework,nodes exchange labels according to dynamic interaction rules.A specific implementation called Speaker-listener Label Propagation Algorithm(SLPA1)demonstrates an excellent performance in identifying both overlapping nodes and overlapping communities with different degrees of diver-sity.Keywords-social network;overlapping community detection; label propagation;dynamic interaction;algorithm;I.I NTRODUCTIONModular structure is considered to be the building block of real-world networks as it often accounts for the functionality of the system.It has been well understood that people in a social network are naturally characterized by multiple community memberships.For example,a person usually has connections to several social groups like family,friends and colleges;a researcher may be active in several areas;in the Internet,a person can simultaneously subscribe to an arbitrary number of groups.For this reason,overlapping community detection algo-rithms have been investigated.These algorithms aim to discover a cover[1],which is defined as a set of clusters in which each node belongs to at least one cluster.In this paper, we propose an efficient algorithm to identify both individual overlapping nodes and the entire overlapping communities using the underlying network structure alone.II.R ELATED W ORKThe work on detecting overlapping communities was previously proposed by Palla[2]with the clique percolation algorithm(CPM).CPM is based on the assumption that a community consists of fully connected subgraphs and detects overlapping communities by searching for each such subgraph for adjacent cliques that share with it at least 1SLPA1.0:https:///site/communitydetectionslpa/certain number of nodes.CPM is suitable for networks with dense connected parts.Another line of research is based on maximizing a local benefit function.Baumes[3]proposed the iterative scan algorithm(IS).IS expands seeded small cluster cores by adding or removing nodes until the local density function cannot be improved.The quality of discovered communi-ties depends on the quality of seeds.LFM[4]expands a community from a random seed node until thefitness function is locally maximal.LFM depends significantly on a parameter of thefitness function that controls the size of the communities.GONGA[5]extends Girvan and Newman’s divisive clus-tering algorithm by allowing a node to split into multiple copies.Both splitting betweenness defined based on the number of shortest paths on the imaginary edge and the usual edge betweenness are considered.In the refined version of GONGO[6],local betweenness is used to optimize the speed.Copra[7]is an extension of the label propagation al-gorithm[8]for overlapping community detection.Each node updates its belonging coefficients by averaging the coefficients over all its neighbors.Copra produces a number of small size communities in some networks.EAGLE[9]uses the agglomerative framework to produce a dendrogram.All maximal cliques that serve as initial com-munities arefirst computed.Then,the pair of communities with maximum similarity is merged iteratively.Expensive computation is one drawback of this algorithm.Fuzzy clustering has also been extended to overlapping community detection.Zhang[10]used the spectral method to embed the graph into k-1dimensional Euclidean space. Nodes are then clustered by the fuzzy c-mean algorithm. Nepusz[11]modeled the overlapping community detection as a nonlinear constraint optimization problem.Psorakis et al.[12]proposed a model based on Bayesian nonnegative matrix factorization(NMF).The idea of partitioning links instead of nodes to discover community structure has also been explored[13],[14].As a result,the node partition of a line(or link)graph leads to2011 11th IEEE International Conference on Data Mining Workshopsan edge partition of the original graph.III.SLPA:S PEAKER-LISTENER L ABEL P ROPAGATIONA LGORITHMThe algorithm proposed in this paper is an extension of the Label Propagation Algorithm(LPA)[8].In LPA,each node holds only a single label that is iteratively updated by adopting the majority label in the neighborhood.Disjoint communities are discovered when the algorithm converges. One way to account for overlap is to allow each node to possess multiple labels as proposed in[15].Our algorithm follows this idea but applies different dynamics with more general features.In the dynamic process,we need to determine1)how to spread nodes’information to others;2)how to process the information received from others.The critical issue related to both questions is how information should be maintained. We propose a speaker-listener based information propagation process(SLPA)to mimic human communication behavior. In SLPA,each node can be a listener or a speaker.The roles are switched depending on whether a node serves as an information provider or information consumer.Typically, a node can hold as many labels as it likes,depending on what it has experienced in the stochastic processes driven by the underlying network structure.A node accumulates knowledge of repeatedly observed labels instead of erasing all but one of them.Moreover,the more a node observes a label,the more likely it will spread this label to other nodes (mimicking people’s preference of spreading most frequently discussed opinions).In a nutshell,SLPA consists of the following three stages (see algorithm1for pseudo-code):1)First,the memory of each node is initialized withthis node’s id(i.e.,with a unique label).2)Then,the following steps are repeated until the stopcriterion is satisfied:a.One node is selected as a listener.b.Each neighbor of the selected node sendsout a single label following certain speak-ing rule,such as selecting a random labelfrom its memory with probability propor-tional to the occurrence frequency of thislabel in the memory.c.The listener accepts one label from thecollection of labels received from neigh-bors following certain listening rule,suchas selecting the most popular label fromwhat it observed in the current step.3)Finally,the post-processing based on the labels inthe memories of nodes is applied to output thecommunities.SLPA utilizes an asynchronous update scheme,i.e.,when updating a listener’s memory at time t,some already updated Algorithm1:SLPA(T,r)[n,Nodes]=loadnetwork();Stage1:initializationfor i=1:n doNodes(i).Mem=i;Stage2:evolutionfor t=1:T doNodes.ShuffleOrder();for i=1:n doListener=Nodes(i);Speakers=Nodes(i).getNbs();for j=1:Speakers.len doLabelList(j)=Speakers(j).speakerRule();w=Listener.listenerRule(LabelList);Listener.Mem.add(w);Stage3:post-processingfor i=1:n doremove Nodes(i)labels seen with probability<r; neighbors have memories of size t and some other neighbors still have memories of size t−1.SLPA reduces to LPA when the size of memory is limited to one and the stop criterion is convergence of all labels.It is worth noticing that each node in our system has a memory and takes into account information that has been observed in the past to make current decision.This feature is typically absent in other label propagation algorithms such as[15],[16],where a node updates its label completely forgetting the old knowledge.This feature allows us to combine the accuracy of the asynchronous update with the stability of the synchronous update[8].As a result, the fragmentation issue of producing a number of small size communities observed in Copra in some networks,is avoided.A.Stop CriterionThe original LPA stop criterion of having every node assigned the most popular label in its neighborhood does not apply to the multiple labels case.Since neither the case where the algorithm reaches a single community(i.e., a special convergence state)nor the oscillation(e.g.,on bipartite network)would affect the stability of SLPA,we can stop at any time as long as we collect sufficient information for post-processing.In the current implementation,SLPA simply stops when the predefined maximum number of iterations T is reached.In general,SLPA produces relatively stable outputs,independent of network size or structure, when T is greater than20.B.Post-processing and Community DetectionSLAP collects only label information that reflects the underlying network structure during the evolution.The detection of communities is performed when the storedFigure 1.The convergence behavior of the parameter in LFR benchmarks with n=5000.y-axis is the ratio of the numbers of detected to true communities.Figure2.The execution time in second of SLPA in LFR benchmarks with k=20.n ranges from1000to50000.information is post-processed.Given the memory of a node, SLPA converts it into a probability distribution of labels. This distribution defines the strength of association to com-munities to which the node belongs.This distribution can be used for fuzzy communities detection[17].More often than not,one would like to produce crisp communities in which the membership of a node to a given community is binary, i.e.,either a node is in a community or not.To this end,a simple thresholding procedure is performed.If the probabil-ity of seeing a particular label during the whole process is less than a given threshold r∈[0,1],this label is deleted from a node’s memory.After thresholding,connected nodes having a particular label are grouped together and form a community.If a node contains multiple labels,it belongs to more than one community and is therefore called an overlapping node.In SLPA,we remove nested communities, so thefinal communities are maximal.As shown in Fig.1,SLPA converges(i.e.,producing similar output)quickly as the parameter r varies.The effective range is typically narrow.Note that the threshold is used only in the post-processing.It means that the dynamics of SLPA is completely determined by the network structure and the interaction rules.The number of memberships is constrained only by the node degree.In contrast,Copra uses a parameter to control the maximum number of memberships granted during the iterations.plexityThe initialization of labels requires O(n),where n is the total number of nodes.The outer loop is controlled by the user defined maximum iteration T,which is a small constant2.The inner loop is controlled by n.Each operation of the inner loop executes one speaking rule and one listening rule.For the speaking rule,selecting a label from the memory proportionally to the frequencies is,in principle, equivalent to randomly selecting an element from the array, 2In our experiments,we used T set to100.which is O(1)operation.For listening rule,since the listener needs to check all the labels from its neighbors,it takes O(K)on average,where K is the average degree.The complexity of the dynamic evolution(i.e.,stage1and2)for the asynchronous update is O(T m)on an arbitrary network and O(T n)on a sparse network,when m is the total number of edges.In the post-processing,the thresholding operation requires O(T n)operations since each node has a memory of size T.Therefore,the time complexity of the entire algorithm is O(T n)in sparse networks.For a naive implementation,the execution time on synthetic networks(see section IV)scales slightly faster than a linear growth with n as shown in Fig. 2.IV.E XPERIMENTS AND R ESULTSA.Benchmark NetworksTo study the behavior of SLPA for overlapping com-munity detection,we conducted extensive experiments on both synthetic and real-world networks.Table I lists the classical social networks for our tests and their statistics 3.For synthetic networks,we adopted the LFR benchmark [18],which is a special case of the planted l-partition model, but characterized by heterogeneous distributions of node degrees and community sizes.In our experiments,we used networks with size n=5000. The average degree is kept at k=10which is of the same order as most of the real-world networks we tested.The rest of the parameters are as follows:node degrees and commu-nity sizes are governed by the power laws,with exponents 2and1;the maximum degree is50;the community size varies between20and100;the mixing parameterµvaries from0.1to0.3,which is the expected fraction of links of a node connecting it to other communities.The degree of overlapping is determined by parameters O n(i.e.,the number of overlapping nodes)and O m(i.e., 3Data are available at /∼mejn/netdata/ and http://deim.urv.cat/∼aarenas/data/welcome.htmFigure 3.F-score for networks with n =5000,k =10,µ=0.1.Figure 4.F-score for networks with n =5000,k =10,µ=0.3.Figure 5.NMI for networks with n =5000,k =10,µ=0.1.Figure 6.Ratio of the detected to the known numbers of memberships for networks with n =5000,k =10,µ=0.1.Values over 1are possible when more memberships are detected than there are known to exist.Figure 7.Ratio of the detected to the known numbers of communities for networks with n =5000,k =10,µ=0.1.Values over 1are possible when more communities are detected than there are known toexist.Figure 8.NMI for networks with n =5000,k =10,µ=0.3.Figure 9.Ratio of the detected to the known numbers of memberships for networks with n =5000,k =10,µ=0.3.Values over 1are possible when more memberships are detected than there are known to exist.Figure 10.Ratio of the detected to the known numbers of communities for networks with n =5000,k =10,µ=0.3.Values over 1are possible when more communities are detected than there are known to exist.the number of communities to which each overlapping node belongs).We fixed the former to be 10%of the total number of nodes.The latter,the most important parameter for our test,varies from 2to 8indicating the diversity of overlapping nodes.By increasing the value of O m ,we create harder detection tasks.We compared SLPA with three well-known algorithms,including CFinder (the implementation of clique propagation algorithm [2]),Copra [7](another label propagation algo-rithm),and LFM [4](an algorithm expanding communities based on a fitness function).Parameters for those algorithmswere set as follows.For CFinder,k varied from 3to 10;for Copra,v varied from 1to 10;for LFM αwas set to 1.0which was reported to give good results.For SLPA,the maximum number of iterations T was set to 100and r varied from 0.01to 0.1to determine its optimal value.The average performances over ten repetitions are reported for SLPA and Copra.B.Identifying Overlapping Nodes in Synthetic Networks Allowing overlapping nodes is the key feature of over-lapping communities.For this reason,the ability to identify overlapping nodes is an essential component for quantifyingTable IT HE Q ov’S OF DIFFERENT ALGORITHMS ON REAL-WORLD SOCIAL NETWORKS. Network n k SLPA std r Copra std v LFM Cfinder k karate34 4.50.650.210.330.440.1830.420.523 dolphins62 5.10.760.030.450.700.0440.280.663 lesmis77 6.60.780.030.450.720.0520.720.634 polbooks1058.40.830.010.450.820.0520.740.793 football11510.60.700.010.450.690.0320.644 jazz19827.70.700.090.450.710.0510.557 netscience379 4.80.850.010.450.820.0260.460.613 celegans4538.90.310.220.350.210.1410.230.264 email11339.60.640.030.450.510.2220.250.463 CA-GrQc4730 5.60.760.000.450.710.0110.450.513 PGP10680 4.50.820.010.450.780.0290.440.573the quality of a detection algorithm.However,the node level evaluation is often neglected in previous work.Note that the number of overlapping nodes alone is not sufficient to quantify the detection performance.To provide more precise analysis,we define the identification of overlapping nodes as a binary classification problem.We use F-score as a measure of accuracy,which is the harmonic mean of precision(i.e.,the number of overlapping nodes detected correctly divided by the total number of detected overlapping node)and recall(i.e.,the number of overlapping nodes discovered correctly divided by the expected value of overlapping nodes,500here).Fig.3and4show the F-score as a functions of the number of memberships.SLPA achieves the largest F-score in networks with different levels of mixture,as defined byµ.CFinder and Copra have close performance in the test.Interestingly,SLPA has a positive correlation with O m while other algorithms typically demonstrate a negative correlation.This is due to the high precision of SLPA when each node may belong to many groups.C.Identifying Overlapping Communities in Synthetic Net-worksMost measures for quantifying the quality of a partition are not suitable for a cover produced by overlapping detec-tion algorithms.We adopted the extended normalized mutual information(NMI)proposed by Lancichinetti[1].NMI yields the values between0and1,with1corresponding to a perfect matching.The best performances in terms of NMI are shown in Fig.5and Fig.8for all algorithms with optimal parameters.The higher NMI of SLPA clearly shows that it outper-forms other algorithms over different networks structures (i.e.,with differentµ’s).Comparing the number of de-tected communities and the average number of detected memberships with the ground truth in the benchmark helps understand the results.As shown in Fig.6,7,9and10, both quantities reported by SLPA are closer to the ground truth than those reported by other algorithms.This is even the case forµ=0.3and large O m.The decrease in NMI is also relatively slow,indicating that SLPA is less sensitive to diversity of O m.In contrast,Copra drops fastest with the growth of O m,even though it is better than CFinder and LFM on average.D.Identifying Overlapping Communities in Real-world So-cial NetworksTo evaluate the performance of overlapping community detection in real-world networks,we used an overlapping measure,Q ov,proposed by Nicosia[19].It is an extension of Newman’s Modularity[20].As the Q ov function,we adopted the one used in[7],f(x)=60x−30.Q ov values vary between0and1.The larger the value is,the better the performance is.In this test,SLAP uses r in the range from0.02to0.45. Other algorithms use the same parameters as before.In Table I,the r,v and k are parameters of the corresponding algorithms.LFM usedµ=1.0.For SLPA and Copra,the algorithms repeated100times and recorded the average and standard deviation(std)of Q ov.As shown in Table I,SLPA achieves the highest Q ov in almost all the test networks,except the jazz network for which SLPA’s result is marginally smaller(by0.01)than that of Copra.SLPA outperforms Copra significantly(by>0.1) on Karate,celegans and email networks.On average,LFM and CFinder perform worse than either SLPA or Copra. To have better understanding of the output from the detection algorithms,we showed(in Table II)the statistics, including the number of detected communities(denoted as Com#),the number of detected overlapping nodes(i.e.,O d n) and the average number of detected memberships(i.e.,O d m). Due to the space limitation,we present only results from SLPA(Columns2to4)and CFinder(Columns5to7).It is interesting that all algorithms confirm that the di-versity of overlapping nodes in the tested social networks is small(close to2),although the number of overlapping nodes differs from algorithm to algorithm.SLPA seems to have a stricter concept of overlap and returns smaller number of overlapping nodes than CFinder.We observed that the numbers of communities detected by SLPA are ingood agreement with the results from other non-overlapping community detection algorithms.It is consistent with the fact that the overlapping degree is relatively low in these networks.V.C ONCLUSIONSIn this paper,we present a dynamic interaction process and one of its implementation,SLPA,to allow efficient and effective overlapping community detection.This process can be easily modified to accommodate different rules(i.e. speaker rule,listening rule,memory update,stop criterion and post-processing)and different types of networks(e.g., k-partite graphs).Interesting future research directions in-clude fuzzy hierarchy detection and temporal community detection.Table IIT HE STATISTICS OF THE OUTPUT FROM SLPA AND CF INDER.SLPA CFinder Network Com#O d n O d m Com#O d n O d mkarate 2.12 1.80 2.0032 2.00dolphins 3.44 1.24 2.0046 2.00lesmis 5.01 1.13 2.0043 2.33polbooks 3.40 1.30 2.0049 2.00football10.30 1.47 2.00136 2.00jazz 2.71 2.00 2.00639 2.05 netscience37.84 2.25 2.006548 2.33celegans 5.6814.42 2.006192 2.70email27.96 5.57 2.004183 2.12CA-GrQc499.940.02 2.00605548 2.40PGP105141 2.00734422 2.22A CKNOWLEDGMENTThis work was supported in part by the Army Re-search Laboratory under Cooperative Agreement Number W911NF-09-2-0053and by the Office of Naval Research Grant No.N00014-09-1-0607.The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies either expressed or implied of the Army Research Labora-tory,the Office of Naval Research,or the ernment.R EFERENCES[1] ncichinetti,S.Fortunato,and J.Kert´e sz,“Detecting theoverlapping and hierarchical community structure of complex networks,”New Journal of Physics,vol.11,p.033015,2009.[2]G.Palla,I.Der´e nyi,I.Farkas,and T.Vicsek,“Uncoveringthe overlapping community structure of complex networks in nature and society,”Nature,vol.435,pp.814–818,2005. [3]J.Baumes,M.Goldberg,M.Krishnamoorthy,M.Magdon-Ismail,and N.Preston,“Finding communities by clusteringa graph into overlapping subgraphs,”in IADIS,2005.[4] ncichinetti,S.Fortunato,and J.Kertesz,“Detecting theoverlapping and hierarchical community structure in complex networks,”New J.Phys.,vol.11,p.033015,2009.[5]S.Gregory,“An algorithm tofind overlapping communitystructure in networks,”Lect.Notes Comput.Sci.,2007. [6]S.G.,“A fast algorithm tofind overlapping communities innetworks,”Lect.Notes Comput.Sci.,vol.5211,p.408,2008.[7]S..Gregory,“Finding overlapping communities in networksby label propagation,”New J.Phys.,vol.12,p.10301,2010.[8]U.N.Raghavan,R.Albert,and S.Kumara,“Near lineartime algorithm to detect community structures in large-scale networks,”Phys.Rev.E,vol.76,p.036106,2007.[9]H.Shen,X.Cheng,K.Cai,and M.-B.Hu,“Detect overlap-ping and hierarchical community structure,”Physica A,vol.388,p.1706,2009.[10]S.Zhang,R.-S.Wangb,and X.-S.Zhang,“Identification ofoverlapping community structure in complex networks using fuzzy c-means clustering,”Physica A,vol.374,pp.483–490, 2007.[11]T.Nepusz,A.Petr´o czi,L.N´e gyessy,and F.Bazs´o,“Fuzzycommunities and the concept of bridgeness in complex net-works,”Phys.Rev.E,vol.77,p.016107,2008.[12]I.Psorakis,S.Roberts,and B.Sheldon,“Efficient bayesiancommunity detection using non-negative matrix factorisa-tion,”arXiv:1009.2646v5,2010.[13]Y.-Y.Ahn,J.P.Bagrow,and S.Lehmann,“Link communitiesreveal multiscale complexity in networks,”Nature,vol.466, pp.761–764,2010.[14]T.Evans and mbiotte,“Line graphs of weighted net-works for overlapping communities,”Eur.Phys.J.B,vol.77, p.265,2010.[15]S.Gregory,“Finding overlapping communities in networks bylabel propagation,”New J.Phys.,vol.12,p.103018,2010.[16]J.Xie and B.K.Szymanski,“Community detection using aneighborhood strength driven label propagation algorithm,”in IEEE NSW2011,2011,pp.188–195.[17]S.Gregory,“Fuzzy overlapping communities in networks,”Journal of Statistical Mechanics:Theory and Experiment,vol.2011,no.02,p.P02017,2011.[18] ncichinetti,S.Fortunato,and F.Radicchi,“Benchmarkgraphs for testing community detection algorithms,”Phys.Rev.E,vol.78,p.046110,2008.[19]V.Nicosia,G.Mangioni,V.Carchiolo,and M.Malgeri,“Extending the definition of modularity to directed graphs with overlapping communities,”J.Stat.Mech.,p.03024, 2009.[20]M.E.J.Newman,“Fast algorithm for detecting communitystructure in networks,”Phys.Rev.E,vol.69,p.066133,2004.。

相关文档
最新文档