[精品]第三章 二维随机变量及其概率分布

合集下载

第三章 二维随机变量及其分布

第三章   二维随机变量及其分布

1第三章 二维随机变量及其分布在很多实际问题中,有一些随机试验需要用两个或两个以上的随机变量才能描述, 如, 炮弹着落点的位置必须用两个坐标X 和Y 来描述。

又如气候情况与气温、风力、降水量等多个随机变量有关,为了准确提供气候情况,我们就完全有必要将描述天气情况的多个随机变量作为一个整体来研究。

将n 个随机变量n X X X ,,,21 作为一个整体,记作),,,(21n X X X ,称为n 维随机变量。

在这一节我们主要研究二维随机变量的概率分布、边缘分布及二维随机变量的独立 性等. 这部分内容的讨论也可类推到)2(>n n 维随机变量的情形.§3. 1二维随机变量的联合分布3.1.1、二维随机变量的概率分布定义3.1:设)(Y X ,是二维随机变量,对于任意实数y x 、,称二元函数{}yY x X P y x F ≤≤=,,)(为二维随机变量)(Y X ,的分布函数或随机变量X 和Y 的联合分布函数,它表示随机事件}{x X ≤与}{y Y ≤同时发生的概率.2图3-1 图3-2将二维随机变量)(Y X ,看成是平面上随机点的坐标,那么分布函数)(y x F ,在点)(y x ,处的函数值就是随机点)(Y X ,落在直线x X =的左侧和直线y Y =的下方的无穷矩形区域内的概率(如图3-1)有了分布函数)(y x F ,,借助于图3-2,容易算出随机点)(Y X ,落在矩形区域 ){(y x D ,=}2121y Y y x X x ≤<≤<,内的概率为:)()(}{21222121y x F y x F y Y y x X x P ,,,-=≤<≤<)()(1112y x F y x F ,,+-.根据概率的定义和二维随机变量的定义,可得:二维分布函数)(y x F ,具有以下基本性质: (1)1)(0≤≤y x F ,;(2))(y x F ,关于变量x 和y 均单调非减,且右连续; (3)对于任意固定的y ,0)(lim )(==-∞-∞→y x F y F x ,,对于任意固定的x ,0)(lim )(==∞--∞→y x F x F y ,,1)(0)(=∞++∞=∞--∞,;,F F ; (4)对于任意2121y y x x <<,恒有:=≤<≤<}{2121y Y y x X x P ,0)()()()(11211222≥+--y x F y x F y x F y x F ,,,,3.3.1.2. 二维离散型随机变量及其分布定义3.2: 如果二维随机变量)(Y X ,可能取的值为有限对或可列无穷对实数,则称)(Y X ,为二维离散型随机变量.显然,)(Y X ,为二维离散型随机变量,当且仅当X 和Y 均为离散型随机变量.设二维离散型随机变量)(Y X ,所有可能的取值为)21()( ,,,,=j i y x j i ,且对应的概率为.,21}( ,,,,====j i p y Y x X P ij j i则称上式为二维随机变量)(Y X ,的概率分布或X 与Y 的联合概率分布.由概率的定义可知:(1) 210,,,=≥j i p ij .(2)∑∑+∞=+∞==111i j ij p .联合分布也常用表格表示,并称为X 与Y 联合概率分布表.4根据定义,离散型随机变量)(Y X ,的联合分布函数∑∑≤≤=≤≤=x x yy iji j py Y x X P y x F },{)(,即对一切满足不等式y y x x j i ≤≤,的ij p 求和.例3.1盒子里有2个黑球、2个红球、2个白球,在其中任取2个球,以X 表示取得的黑球的个数,以Y 表示取得的红球的个数,试写出X 和Y 的联合分布表,并求事件}{1≤+Y X 的概率.解:X 、Y 各自可能的取值均为0、1、2,由题设知,)(Y X ,取(1,2)、(2,1)、(2,2)均不可能. 取其他值的概率可由古典概率计算. 从6个球中任取2个一共有26C =15种取法. )(Y X ,取)00(,表示取得的两个球是白球,其取法只有一种,所以其概率为 }{1510,0===Y X P ,类似地)(Y X ,取其他几对数组的概率为如下: }151}20{}02{,154}11{154152201{}10{==========⨯======Y X P Y X P Y X P Y X P Y X P ,,,,,,)(Y X ,的联合概率分布表为5P {所取两个球中至少有一个白球}=P {所取两个球中黑球和红球的和不超过一个}=}1{≤+Y X P ,由于事件}1{≤+Y X 包含三个基本事件,分别对应着点(0,0)、(0,1)和(1,0),所以:.53154154151}01{}10{}00{}1{=++===+==+===≤+Y X P Y X P y X P Y X P ,,, 3.1.3 二维连续型随机变量及其分布定义3.3:设二维随机变量)(Y X ,的分布函数为)(y x F ,,如果存在非负可积的二元函数)(y x f ,,使得对任意实数y x 、,有}{⎰⎰∞-∞-=≤≤=xydudv v u f y Y x X P y x F )(,)(、,,则称)(Y X ,为二维连续型随机变量,称函数)(y x f ,为二维随机变量)(Y X ,的概率密度函数或随机变量X 和Y 的联合密度函数.由分布函数的定义知,联合密度函数)(y x f ,具有以下性质: (1)0)(≥y x f ,;(2)1)(=⎰⎰∞+∞-∞+∞-dxdy y x f ,;(1)(=∞++∞,即F )反过来,如果一个二元函数)(y x f 、同时满足性质(1)、(2),则它一定是某个二维随机变量的概率密度函数.6 (3)若)(y x f 、在点)(y x 、处连续,则有)()(2y x f yx y x F ,,=∂∂∂; (4)设D 是xoy 平面上任一区域,则点),(y x 落在D 内的概率为{σd y x f D Y X P D)(})(,,⎰⎰=∈.在几何上,{})(D Y X P ∈,的值等于以D 为底,曲面)(y x f Z 、=为顶的曲顶柱体的体积.与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布二维均匀分布:设D 是平面上的有界区域,其面积为A ,若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x A y x f则称),(Y X 在D 上服从均匀分布.二维正态分布:若二维随机变量)(Y X ,的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+-⋅---⋅---=2222221121212221)(2)()1(21exp 121),(σμσμσμρσμρρσσπy y x x y x f(+∞<<∞-+∞<<-∞y x ,)其中参数ρσσμμ,,,,2121均为常数,且10021<>>ρσσ,,,则称)(Y X ,服从参数为2121σσμμ,,,及ρ的二维正态分布,记作);,,,,ρσσμμ222121(~)(N Y X .7如图3-4所示,二维正态分布以),(21μμ为中心,在中心附近具有较高的密度,离中心越远,密度越小,这与实际中很多现象相吻合.图 3-3 二维正态分布密度函数图象例3.2 设二维随机变量)(Y X ,的概率密度函数为⎩⎨⎧≥≥=+-其它,,,,000)()32(y x Ce y x f y x求:(1)常数C ;(2))(Y X ,的分布函数)(y x F ,;(3)}{Y X P <.解:(1)由)(y x f ,的性质2可知:⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==)32()(1dxdy Ce dxdy y x f y x ,=⎰⎰∞+∞+--⋅=03261C dy e dx e Cy x所以:6=C (2)⎰⎰∞-∞-=xydxdy y x f y x F )()(,,8 ⎪⎩⎪⎨⎧≥≥--==⎰⎰--+-其它,,,000)1)(1(60032)32(y x e e dxdy e x y y x y x(3).526),(}{00)32(⎰⎰⎰⎰∞++-<===<y y x yx dy e dx dxdy y x f Y X P .例3.3 设二维随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,,010104)(y x xy y x fD 为xoy 平面内由x 轴、y 轴和不等式1<+y x 所确定的区域,求{}DY X P ∈)(,.解:如图3-4所示: {}⎰⎰=∈Ddxdy y x f D Y X P )(),(,⎰⎰-=xxydy dx 101461=例3.4 设),(Y X 在圆域}{4),(22≤+y x y x 上服从均匀分布,求(1)),(Y X 的概率密度;(2)}{10,10<<<<Y X P解:(1)圆的面积为π4=A ,故),(Y X 的概率密度为9⎪⎩⎪⎨⎧≤+=其他,04,41),(22y x y x f π(2)用G 表示不等式10,10<<<<y x 所确定的区域,由分布函数的性质4有}{10,10<<<<Y X P =⎰⎰=Gdxdy y x f 41),(.(注意概率密度),(y x f 在圆以外的区域都等于零)10 §3.2 边缘分布二维随机变量)(Y X ,作为一个整体,它具有分布函数)(y x F ,.而分量X 和Y 也都是随机变量,也有其各自的分布函数. 记X 和Y 的分布函数为)(x F X 和)(y F Y ,分别称它们为二维随机变量)(Y X ,关于X 和关于Y 的边缘分布函数. 边缘分布函数可以由)(Y X ,的联合分布函数)(y x F ,来确定:{}{})()(∞+=+∞<≤=≤=,,x F Y x X P x X P x F X即:)()(∞+=,x F x F X ;同理)()(y F x F Y ,+∞=. 下面分别讨论二维离散型随机变量和二维连续型随机变量的边缘分布3.2.1 二维离散型随机变量)(Y X ,的边缘分布设)(Y X ,是二维离散型随机变量,设其概率分布为{}.21 ,,,,,====j i p y Y x X P ij j i则X 的边缘分布律为:{}{}{}{}.21121,,,,,==+==++==+====∑∞=i p y Y x X P y Y x X P y Y x X P x X P j ijj i i i i X 的边缘分布函数为 ∑∑≤=+∞=x x jijX i px F x F ),()(.若将{}∑∞===1j iji px X P 记为),.21( =∙i p i ,则X 的边缘分布可写成表格形式且满足1=∑⋅ii p .同理,Y 的边缘分布律为:{}{}{}{}.21121,,,,,===+==++==+====⋅∞=∑j p p y Y x X P y Y x X P y Y x X P y Y P ji ij j i j j j写成表格形式有满足1=∑⋅jj p .Y 的边缘分布函数为∑∑≤=+∞=y y iijY j py F y F ),()(例3.5 设)(Y X ,的概率分布由下表给出,求X 和Y 的边缘分布.解:{}{}000====Y X P X P ,+{}10==Y X P ,+{}20==Y X P , 80.035.030.015.0=++=同理可求得:20.003.012.005.0}1{=++==X P20.0}0{==Y P , 42.0}1{==Y P , 38.0}2{==Y P将X 和Y 的边缘分布列入),(Y X 的联合分布表中通过该例,可以很明显地看出,边缘分布∙i p 和j p ∙分别是联合分布表中第i 行和第j列各元素之和.3.2.2 二维连续型随机变量)(Y X ,的边缘分布设)(Y X ,是二维连续型随机变量,它的概率密度函数为),(y x f ,则X 的边缘分布函数为: ⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=∞+=x X dx dy y x f x F x F )()()(,, 其密度函数为:⎰∞+∞-=∞+'='=dy y x f x F x F x f XX )()()()(,,同理,Y 的边缘分布函数为⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=+∞=y Y dy dx y x f y F y F )(),()(,其密度函数为⎰∞+∞-='=dx y x f y F y f Y Y )()()(,通常分别称)(x f X 和)(y f Y 为二维随机变量)(Y X ,关于X 和Y 的边缘密度函数. 例3.6 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤=其它,,,010)(y x y x k y x f试求参数k 的值及X 和Y 的边缘密度.解:根据联合密度函数的性质,有⎰⎰⎰⎰∞+∞-∞+∞-===101181)(x k ydydx x k dxdy y x f , 所以: 8=kX 的边缘密度函数⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且1≤≤y x 时,xy y x f 8),(=,所以⎰-==12)1(48)(xX x x xydy x f即: ⎩⎨⎧≤≤-=其它,,010)1(4)(2x x x x f X同理可得: ⎩⎨⎧≤≤=其它,,0104)(3y y y f Y例3.7 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,010,104)(y x y x y x f试求X 和Y 的边缘密度.解:关于X 的边缘密度⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且10≤≤y 时,xy y x f 4),(=,所以⎰==124)(x xydy x f X即: ⎩⎨⎧≤≤=其它,,0102)(x x x f X同理可得:⎩⎨⎧≤≤=其它,,0102)(y y y f Y例3.8 求二维正态随机变量)(~)(222121ρσσμμ;,,,,N Y X 的边缘密度.解:记X 和Y 的边缘密度函数分别为)(x f X 和)(y f Y由于222222112121)(2)(σμσμσμρσμ-+-⋅---y y x x=211221122))(1()(σμρσμρσμ--+---x x y所以:dy eedy y x f x f x y x X 211222121)()1(212)(221121)()(σμρσμρσμρσπσ-----∞+∞-∞+∞---∞+∞-⎰⎰⎰⋅-==,令 )(1111222σμρσμρ----=x y t则 )(x f X dt eet x ⎰∞+∞----=22)(1212121σμσπ21212)(121σμσπ--=x e (+∞<<-∞x )可见 )(~211σμ,N X ;同理可得:2222)(221)(σμσπ--=y Y ey f (+∞<<-∞y )即)(~222σμ,N Y .比较联合密度)(y x f ,和边缘密度函数)()(y f x f Y X 、,我们注意到当且仅当0=ρ时,对一切)y x ,(有)()()(y f x f y x f Y X ⋅=,. 以上对二维正态分布的讨论说明:(1)二维正态分布的边缘分布是一维正态分布,由二维联合分布可以唯一确定其每个分量的边缘分布;(2)已知X 与Y 的边缘分布,并不能唯一确定其联合分布,还必须知道参数ρ的值.譬如两个二维正态分布);,,,2/11100(N 和);,,,3/11100(N ,它们的联合分布不同,但其边缘分布都是标准正态分布. 引起这一现象的原因是二维联合分布不仅含有每个分量的概率分布,而且还含有两个变量X 与Y 之间相互关系的信息,而后者正是人们研究多维随机变量的原因. 联合分布中的参数ρ的值,反映了两个变量X 与Y 之间相关关系的密切程度.从以上几个例题可知,联合密度决定边缘密度,但反过来知道边缘密度并不能唯一确定联合密度3.2.3.二维随机变量的独立性在前面我们已经知道,随机事件的独立性在概率计算中起着很大的作用.在多维随机变量中,它们的分量的独立性在概率论和数理统计的研究中占有十分重要的地位。

概率论之二维随机变量及其分布

概率论之二维随机变量及其分布

2
arctan
y 4
(2) P(3<<+,0<4)
=F(+,4)-F(+,0) -F(3,4) +F(3,0)
1. 16
3、二维随机变量的概率分布
1)离散型随机变量
如果二维随机变量(,)是在有限个或无限可列 个点(xi,yj)上取值(i,j=1,2,…)。则称(,)为
离散型随机变量。 并称
P{ =xi, =yj}=pij i,j=1,2,… 为二维离散型随机变量(,)的概率分布或分布律, 或称二维型离散随机变量(,)的联合分布律。
2)性质
二维分布函数F(x,y)具有下述性质:
(1) F(x,y)是x、y的单调不减函数.即对任意固定 的y,当x2>x1时,F(x2,y) ≥F(x1,y),对任意固 定的x,当y2>y1时,F(x,y2)≥F(x,y1);
(2)F(x,y)关于x、y均是右连续的,即
F(x,y)=F(x+0,y),F(x,y)=F(x,y+0);
j 1,2,
例5 一盒中装有三只正品和两只次品的某种产品, 现随机地抽取两次,每次抽取一种产品,记
1, 0,
第一次取出的是正品, 第一次取出的是次品。
1, 0,
第二次取出的是正品, 第二次取出的是次品。
试就有放回、无放回情形考察(,)的分布。
(1) 有放回情形
的分布
0
1
pi
0 22 32
2
55 55 5
xy
F ( x, y)
p(u, v)dudv
则称(,)是连续型二维随机变量,函数p(x,y)称 为二维随机变量(,)的概率密度,或称随机变量

31二维随机变量的概率分布

31二维随机变量的概率分布

思考:根据这个定义,上例中张三的身高X和 李四的体重Y能构成二维随机向量(X,Y)吗?
3.1 二维随机变量的概率分布
一、二维随机变量的分布函数 二、二维离散型随机变量及其分布 三、二维连续型随机变量及其分布
一、二维随机变量的分布函数
二维随机变量(X, Y)的性质不仅与X,Y有关,而且还依赖 于这两个随机变量的相互关系 . 为此,我们引入二维随机 变量的分布函数.
二维随机变量 ( X,Y) 的分布律也可用表格表示为:
有了二维离散 型随机变量的 分布律 pij , 就 能容易的得到
XY
x1 x2 ? xi ?
y1
y2 ?
p11
p12
?
p 2 1 p 22
?
pi1 pi 2 ?
??
yi ? p1 j ? p2 j ?} ?
定义1 设 ( X, Y )是二维随机变量, 对于任意实数 x, y,
称二元函数 F(x, y) ? P{X ? x,Y? y}
y
为二维随机变量 (X,Y)
( x, y) ?
的分布函数 , 或X和Y
X ? x,Y ? y
的联合分布函数 .
O
x
借助右图 可知对于任意
的x1, y1, x2, y2(x1<x2, y1<y2),
Y y2
随机点 (X,Y) 落在矩形域
( x1 ? X ? x2 , y1 ? Y ? y2 ) 及点 (x2, y2) 的概率分别为
P{x1 ? X ? x2, y1 ? Y ? y2}
y1 O x1
x2 X
? F ( x2 , y2 ) ? F ( x1 , y2 ) ? F ( x2 , y1 ) ? F ( x1 , y1 )

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

概率论与数理统计§3.1 二维随机变量及其函数;§3.2 二维随机变量的分布

2. 性质
(1) f ( x , y ) 0.
( 2)
f ( x, y ) d x d y F (, ) 1.

( 3) 设 G 是 xoy 平面上的一个区域, 点 ( X ,Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
2F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
P X a, Y c P (a X , c Y )
1 F (, c ) F (a, ) F (a, c )
(+,c)
x
例2. 设二维随机变量(X ,Y )的联合分布函数
x y F ( x, y ) A B arctan C arctan 2 2 x , y
F ( x, y)
x yy pij , x
i j
其中和式是对一切满足xi x , y j y 的 i , j 求和.
例如,在例4中
1 1 F (1, 2) P{ X 1, Y 2} p11 p12 0 . 3 3
3.2.3 二维连续型随机变量 1.定义
其中A , B , C 为常数. (1) 确定A , B , C ;
(2) 求P (X > 2).
解 (1) F (, ) A B C 1 2 2 y F (, y ) A B C arctan 0 2 2 x F ( x, ) A B arctan C 0 2 2 1 B ,C , A 2 . 2 2 1 x y (2) F ( x, y ) 2 ( arctan )( arctan ) 2 2 2 2

第三章 二维随机变量及其分布

第三章  二维随机变量及其分布

第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξΛ2、重要公式和结论例3.1 二维随机向量(X ,Y )共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布},1||,1|:|),{(≤-≤+=y x y x y x D求X 的边缘密度f X (x)例3.3:设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立。

例3.4:如图3.1,f(x,y)=8xy, f X (x)=4x 3, f Y (y)=4y-4y 3,不独立。

例3.5:f(x,y)=⎩⎨⎧≤≤≤≤其他,010,20,2y x Axy例3.6:设X 和Y 是两个相互独立的随机变量,且X ~U (0,1),Y ~e (1),求Z=X+Y 的分布密度函数f z (z)。

例3.7:设随机变量X 与Y 独立,其中X 的概率分布为,6.04.021~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡X 而Y 的概率密度为e(1),求随机变量U=1+Y X的概率密度g(u)。

二维连续随机变量及其概率分布

二维连续随机变量及其概率分布
P{x1 X x2, y1 Y y2} P{x1 X x2}P{y1 Y y2}
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,

《概率论与数理统计》第3章 二维随机变量及其分布

《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2

(X,
Y)

p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)

概率论第三章二维随机变量

概率论第三章二维随机变量

取下列数组中的值:(0,0),( :(0,0),(例2 二维离散型随机向量 ( X ,Y ) 取下列数组中的值:(0,0),(-1,1) 1,2),(2,0);且相应的概率依次为 且相应的概率依次为:1/6, (-1,2),(2,0);且相应的概率依次为:1/6, 1/3, 1/12, 5/12. 的联合概率分布 分布. 求X与Y的联合概率分布.
X Y y1
y2

yj

Hale Waihona Puke x1 p11 x 2 p21 ⋮ ⋮ xi pi1 ⋮ ⋮ 联合分布律 联合分布律的性质 (1) p ij ≥
p12 ⋯ p1 j p22 ⋯ p2 j ⋮ ⋮ pi 2 ⋯ pij ⋮ ⋮ 0 ; (2) ∑ ∑
⋯ ⋯ ⋯
p ij = 1
i ≥1 j ≥1
边缘分布 分布律 2. 边缘分布律 二维离散型随机变量的边缘分布律可列于联合分布 二维离散型随机变量的边缘分布律可列于联合分布 可列 的两侧: 表的两侧 Y y y ⋯ y ⋯
型随机变量(X,X, 的分布律,或随机变量X 型随机变量(X,X,)的分布律,或随机变量X与Y的联合 (X,X 分布律 分布律.可记为
, ( X ,Y) ~ pij = P( X = xi ,Y = y j ) (i, j =1,2,⋯ )
二维离散型随机变量的联合分布律可列表如下: 二维离散型随机变量的联合分布律可列表如下 可列表如下
p12 1/ 4 p22 1/ 2 p32 1/ 4 1/ 2 1/ 2 1
3. 求联合分布的步骤与方法 求联合分布的步骤与方法 分布 先画出二向表的表头,并确定X 的取值; (1) 先画出二向表的表头,并确定X与Y的取值; 求联合分布表的中的概率项. (2) 求联合分布表的中的概率项.

第三章 二维随机变量及其分布重点与难点

第三章  二维随机变量及其分布重点与难点

第三章二维随机变量及分布的重点难点一、重点、难点概要复述二维随机变量的概率分布及其性质,二维随机变量的分布函数的概念,二维随机变量的均匀分布和正态分布,条件分布,随机变量的独立性,二维随机变量函数的概率分布的基本知识是重点。

其中二维连续型随机变量的相关内容是教学中的难点。

二、常见问题及解法(一)二维离散型随机变量的分布律及边缘分布律的问题X的分布律及边缘分布律1.求二维离散型随机变量),(YX的有可能取值点;解法:(1)找),(YX在各点上取值的概率;(2)求),(Y(3)分别求X和Y在各自有可能取值点上的概率;X的分布律及边缘分布律;(4)写出)(Y,(5)用分布律性质检验计算结果。

2.确定分布律中的待定系数解法:(1)利用分布律的性质确定;(2)利用联合分布律与边缘分布律的关系确定。

(二)求二维均匀分布的概率密度函数解法:(1)计算区域D的面积S;(2)利用定义写出概率密度函数。

(三)条件分布的问题1.求条件分布律解法:(1)找出联合分布律及边缘分布律;(2)利用条件分布律定义,找出条件分布律中所有可能取值点;(3)利用条件分布律定义,计算条件分布律中各点上的概率值;(4)写出条件概率分布律;(5)用分布律性质检验计算结果。

2.求条件概率密度函数 解法:(1)找出联合概率密度函数及边缘概率密度函数;(2)利用条件密度概率函数的计算公式,计算条件概率密度函数; (3)写出条件概率密度函数;(4)用概率密度函数性质检验计算结果。

(四)计算概率值的问题1.利用二维随机变量),(Y X 的分布律计算概率 解法:设D 为平面点集,),(Y X 的分布律为{};,3,2,1;,3,2,1,, =====j i p y Y x X P ij j i则{}{}∑∈===∈Dy x j i ji y Y x X P D Y X P ),(,),(。

2.利用二维随机变量),(Y X 的概率密度函数计算概率 解法:设D 为平面区域,),(y x f 为),(Y X 的概率密度函数,则{}⎰⎰=∈Ddxdy y x f D Y X P ),(),( 3.利用二维随机变量),(Y X 的分布函数计算概率解法:设d c b a ,,,均为实数且d c b a <<,,),(y x F 为),(Y X 的分布函数,则{}),(),(),(),(,c a F c b F d a F d b F d Y c b X a P +--=≤<≤<4.利用条件分布计算条件概率解法:(1)利用条件分布定义计算;(2)根据题意,仿照1.,2.,3.的思路计算。

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。

2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。

3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。

4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。

5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。

6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。

以Y表示中途下车的人数。

(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。

7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。

(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。

为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。

12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。

13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。

概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。

15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。

为(X,Y)的密度函数,Z=X+2Y,求的密度函数。

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

求分布律方法:先定值再求概率
Y
X
0
1
2
3
0
0
0
1
0
2
0
取4只球 P{X 0,Y 0} P{X 0,Y 1} P{X 1,Y 0} P{X 3,Y 2} 0
14
03 二维离散型随机变量的边缘分布律
例 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以 X 表示取 到黑球的只数, 以 Y 表示取到红球的只数, 求(X, Y)的联合分布律.
主讲教师 |
18
由此得 X , Y 的联合分布律为
X Y
0
1
0
0
0
6
1
0
35
1
6
2
35
35
2
3
3
2
35
35
12
2
35
35
3 0
35
16
第2讲 二维离散型随机变量及其分布
本节我们认识了二维离散型随机变量, 以及联合分布律和边 缘分布律, 要求理解它们概念和性质, 并且会求相应的概率.
17
概率论与数理统计
学海无涯, 祝你成功!
3
本讲内容
01 二维离散型随机变量 02 联合分布律 03 二维离散型随机变量的边缘分布律
4
02 联合分布律
2.联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称
P( X xi ,Y y j ) pij , i, j 1,2,
为二维随机变量( X ,Y ) 的联合概率分布, 简称概率分布或分布律.
7
02 联合分布律 已知联合分布律可以求概率

3.1二维随机变量及其分布

3.1二维随机变量及其分布

y
•(2,2)
1 1 1 0 1 0
(0,0)


(2,0)
x
故F(x, y)不能作为某二维 r.v.的分布函数.
二维联合分布函数(二维联合分布列、二维联合密度函数也一样) 含有丰富的信息,主要有以下三方面的信息:
每个分量的分布(每个分量的所有信息),即边际分布 两个分量之间的关联程度,在第4.3节用协方差和相关系数来描述 给定一个分量时,另一个分量的分布,即条件分布
定义 设随机试验的样本空间为 S , 而 X X ( ), Y Y ( ) 是定义在 S 上的两个随机变量, 称 ( X ,Y )为定义在 S 上的二维随机变量或二维随机向量. 注: 一般地, 称 n 个随机变量的整体
X ( X 1 , X 2 ,, X n ) 为 n 维随机变量或随机向量.

pij
特别地,联合分布函数为:
F ( x, y ) P{ X x, Y y} pij
xi x , y j y
4、边缘概率分布
pi P{ X xi } pij ,
j
P ({ X xi , Y y j })
P{ X xi ,Y y j }
实例2 考查某一地 区学 前儿童的发育情况 , 则儿 童的身高 H 和体重 W 就 构成二维随机变量(H,W). 如何研究多维r.v.的统计规律性呢,仿一维 r.v.,我们先研究联合分布函数,然后研究 离散r.v.的联合分布列、连续型r.v.的联合密 度函数等。
3.1 二维随机变量及其分布
一、二维随机变量
注:以上性质是分布函数的基
本性质,也是判断一个二元函 数作为随机向量的分布函数的 基本条件。

二维随机变量及分布

二维随机变量及分布

二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。

1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。

(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。

二维随机变量及其概率分布

二维随机变量及其概率分布

1第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1<x 2,y 1<y 2P{x 1<X ≤x 2,y 1<Y ≤y 2}=F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j )(i ,j =1,2,…)称(X,Y)为二维离散型随机变量.并称P{X=x i ,Y=y j }=p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性0≤p i j ≤1.(2)归一性∑∑=i jij p 1.3.(X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy iji j p 三.二维连续型随机变量及其联合概率密度1.定义如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.22.性质(1)非负性f (x,y)≥0.(2)归一性1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1.(X,Y)关于X 的边缘分布函数F X (x)=P{X ≤x ,Y<∞}=F (x ,∞).(X,Y)关于Y 的边缘分布函数F Y (y)=P{X<∞,Y ≤y}=F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律P{X=x i }=∑∞=1j ij p =p i ·(i =1,2,…)归一性11=∑∞=∙i i p .关于Y 的边缘分布律P{Y=y j }=∑∞=1i ij p =p ·j (j =1,2,…)归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),(归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=xd y x f ⎰∞∞-),(归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有F(x,y)=F X (x)F Y (y),则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j =p i ··p ·j (i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jji j j i p p y Y P y Y x X P ∙=====3P{X=x i |Y=y j }为在Y=y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.,}{},{∙=====i ji i j i p p x X P y Y x X P。

第三章二维随机变量及其分布

第三章二维随机变量及其分布

y
x 0, y 0 y x
0
3 2 dy 1 5 5
x

0
3e
3 y
dy
0
3e
5 y
例2 已知二维随机变量(X,Y)的分布密度为
1 (6 x y ), 0 x 2, 2 y 4 f ( x, y ) 8 其他 0,
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3,
P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3, Y X 1 2 1 2
0 1/3
1/3 1/3
P(X1=0,X2=0)=P(|Y|≥1,|Y|≥2) =P(|Y|≥2) =1-P(|Y|<2) =2-2Φ(2)=0.0455 P(X1=0,X2=1)=P(|Y|≥1,|Y|<2) =P(1≤|Y|<2) =P(-2≤Y<-1)+P(1≤Y<2) =2P(1≤Y<2) =2[Φ(2)-Φ(1)] =0.2719
第三章 二维随机变量及其分布
二维随机变量及其联合分布 边缘分布与独立性
两个随机变量的函数的分布
前面我们讨论的是随机实验中单独的一个随机变量,又称 为一维随机变量;然而在许多实际问题中,常常需要同时 研究一个试验中的两个甚至更多个随机变量。
例如 E:抽样调查15-18岁青少年的身高 X与体重 Y,以研 究当前该年龄段青少年的身体发育情况。
A (x,y)
二维随机变量的联合分布函数
定义
若(X,Y)是随机变量, 对于任意的实数x,y.

二维随机变量及其分布简介

二维随机变量及其分布简介

第三章 多维随机变量及其分布在实际应用中, 有些随机现象需要同时用两个或两个以上的随机变量来描述. 例如, 研究某地区学龄前儿童的发育情况时, 就要同时抽查儿童的身高H 、体重W , 这里, H 和W 是定义在同一个样本空间==}{e S {某地区的全部学龄前儿童}上的两个随机变量. 又如, 考察某次射击中弹着点的位置时,就要同时考察弹着点的横坐标X 和纵坐标Y . 在这种情况下,我们不但要研究多个随机变量各自的统计规律,而且还要研究它们之间的统计相依关系,因而还需考察它们的联合取值的统计规律,即多为随机变量的分布. 由于从二维推广到多维一般无实质性的困难, 故我们重点讨论二维随机变量.第一节 多维随机变量的分布内容分布图示★ 二维随机变量★ 二维随机变量的分布函数 ★ 例1 ★ 二维离散型随机变量及其概率分布★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 二维连续型随机变量及其概率密度★ 例7 ★ 例8 ★ 例9★ 二维均匀分布 ★ 例10 ★ 二维正态分布 ★ 例11★ 内容小结 ★ 课堂练习 ★ 习题3-1内容要点:一、 二维随机变量定义1 设随机试验的样本空间为}{e S =, S e ∈为样本点,而)(),(e Y Y e X X ==是定义在S 上的两个随机变量, 称),(Y X 为定义在S 上的二维随机变量或二维随机向量.二、 二维随机变量的分布函数定义2 设),(Y X 是二维随机变量, 对任意实数y x ,, 二元函数},{)}{()}{(),(y Y x X P y Y P x X P y x F ≤≤≤≤=记为称为二维随机变量),(Y X 的分布函数或称为随机变量X 和Y 的联合分布函数.联合分布函数的性质: (1) ,1),(0≤≤y x F 且对任意固定的,y ,0),(=-∞y F 对任意固定的,0),(,=-∞x F x ;1),(,0),(=+∞+∞=-∞-∞F F(2) ),(y x F 关于x 和y 均为单调非减函数, 即对任意固定的,y 当),,(),(,1212y x F y x F x x ≥> 对任意固定的,x 当);,(),(,1212y x F y x F y y ≥>(3) ),(y x F 关于x 和y 均为右连续, 即 ).0,(),(),,0(),(+=+=y x F y x F y x F y x F三、 二维离散型随机变量及其概率分布定义3 若二维随机变量),(Y X 只取有限个或可数个值, 则称),(Y X 为二维离散型随机变量.结论:),(Y X 为二维离散型随机变量当且仅当Y X ,均为离散型随机变量.若二维离散型随机变量),(Y X 所有可能的取值为),(j i y x ,,2,1, =j i 则称),2,1,(},{ ====j i p y Y x X P ijj i为二维离散型随机变量),(Y X 的概率分布(分布律), 或Y X 与的联合概率分布(分布律).与一维情形类似,有时也将联合概率分布用表格形式来表示, 并称为联合概率分布表: 注:对离散型随机变量而言, 联合概率分布不仅比联合分布函数更加直观, 而且能够更加方便地确定),(Y X 取值于任何区域D 上的概率,即∑∈=∈Dy x ijj i pD Y X P ),(}),{(,特别地, 由联合概率分布可以确定联合分布函数:.},{),(,∑≤≤=≤≤=yy x x ijj i p y Y x X P y x F四、二维连续型随机变量及其概率密度定义 设),(Y X 为二维随机变量,),(y x F 为其分布函数, 若存在一个非负可积的二元函数),(y x f , 使对任意实数),(y x , 有,),(),(⎰⎰∞-∞-=xydsdt t s f y x F则称),(Y X 为二维连续型随机变量, 并称),(y x f 为),(Y X 的概率密度(密度函数), 或Y X ,的联合概率密度(联合密度函数).概率密度函数),(y x f 的性质: ;0),()1(≥y x f ;1),(),()2(=+∞+∞=⎰⎰∞∞-∞∞-F dxdy y x f(3) 设D 是xOy 平面上的区域,点),(Y X 落入D 内的概率为⎰⎰=∈Ddxdy y x f D y x P ),(}),{(特别地, 边缘分布函数},{}{)(+∞<≤=≤=Y x X P x X P x F X ,),(),(⎰⎰⎰⎰∞-+∞∞-∞-+∞∞-⎥⎦⎤⎢⎣⎡==x x ds dt t s f dsdt t s f上式表明: X 是连续型随机变量, 且其密度函数为:,),()(⎰+∞∞-=dy y x f x f X同理, Y 是连续型随机变量, 且其密度函数为:⎰+∞∞-=dx y x f y f Y ),()(,分别称)(x f X 和)(y f Y 为),(Y X 关于X 和Y 的边缘密度函数.(4) 若),(y x f 在点),(y x 连续, 则有 ).,(),(2y x f yx y x F =∂∂∂进一步, 根据偏导数的定义, 可推得:当y x ∆∆,很小时, 有,),(},{y x y x f y y Y y x x X x P ∆∆≈∆+≤<∆+≤<即, ),(Y X 落在区间],(],(y y y x x x ∆+⨯∆+上的概率近似等于.),(y x y x f ∆∆五、二维均匀分布设G 是平面上的有界区域,其面积为A .若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其它,0),(,1),(Gy x Ay x f 则称),(Y X 在G 上服从均匀分布.六、二维正态分布若二维随机变量),(Y X 具有概率密度⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=222221121122)1(21221121),(σμσμσμρσμρρσπσy y x x ey x f其中ρσσμμ,,,,2121均为常数,且1||,0,021<>>ρσσ,则称),(Y X 服从参数为ρσσμμ,,,,2121的二维正态分布.注:二维正态随机变量的两个边缘分布都是一维正态分布,且都不依赖于参数ρ,亦即对给定的2121,,,σσμμ,不同的ρ对应不同的二维正态分布,但它们的边缘分布都是相同的,因此仅由关于X 和关于Y 的边缘分布,一般来说是不能确定二维随机变量),(Y X 的联合分布的.例题选讲:二维随机变量的分布函数例1 设二维随机变量),(y x 的分布函数为+∞<<∞-+∞<<∞-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y x y C x B A y x F ,,3arctan 2arctan ),((1) 试确定常数.,,C B A(2) 求事件}30,2{≤<+∞<<Y X 的概率. 解 (1) 由二维随机变量的分布函数的性质, 可得 ,1)2/)(2/(),(=++=+∞+∞ππC B A F,0)2/)(2/(),(=+-=+∞-∞ππC B A F ,0)2/)(2/(),(=-+=-∞+∞ππC B A F由这三个等式中的第一个等式知,0≠A ,02/≠+πB ,02/≠+πC 故由第二、三个等式知,02/=-πB ,02/=-πC 于是得,2/π==C B 2/1π=A 故),(Y X 的分布函数为.3arctan 22arctan 21),(2⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=y x y x F πππ(2) 由(1)式得}30,2{<<∞+<Y X P )0,2()3,2()0,()3,(F F F F +-+∞-+∞=.16/1=二维离散型随机变量及其概率分布例2 (讲义例1) 设随机变量X 在1, 2, 3, 4四个整数中等可能地取一个值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求),(Y X 的分布律.解 由乘法公式容易求得),(Y X 的分布律. 易知},{j Y i X ==的取值情况是: ,4,3,2,1=i 取不大于i 的正整数, 且}{}|{},{i X P i X j Y P j Y i X P ======,411⋅=i ,4,3,2,1=i i j ≤于是),(Y X 的分布律为例3 (讲义例2) 把一枚均匀硬币抛掷三次, 设X 为三次抛掷中正面出现的次数, 而Y 为正面出现次数与反面出现次数之差的绝对值, 求),(Y X 的概率分布及),(Y X 关于Y X ,的边缘分布.解 ),(Y X 可取值(0,3),(1,1),(2,1),(3,3),8/1)2/1(}3,0{3====Y X P ,8/3)2/1(3}1,1{3====Y X P,8/3}1,2{===Y X P ,8/1}3,3{===Y X P故),(Y X 的概率分布如右表. 从概率分布表不难求得),(Y X 关于Y X ,的边缘分布.,8/1}0{==X P ,8/3}1{==X P ,8/3}2{==X P ,8/1}3{==X P ,8/68/38/3}1{=+==Y P ,8/28/18/1}3{=+==Y P从而得右表例4 设二维随机变量的联合概率分布为求}0,1{≥≤Y X P 及).0,0(F 解}0,1{≥≤Y X P}1,1{}0,1{=-=+=-==Y X P Y X P }1,1{}0,1{==+==+Y X P Y X P.4.002.01.01.0=+++=}0,1{}2,1{)0,0(=-=+-=-==Y X P Y X P F .4.01.03.0=+=二维连续型随机变量及其概率密度 例5 设),(Y X 的概率分布由下表给出,求 }0,0{},0,0{≤≤=≠Y X P Y X P |}.||{|},{},0{y X P Y X P XY P ===解}0,0{=≠Y X P }0,2{}0,1{==+===Y X P Y X P ,05.0005.0=+=}0,0{=≠Y X P }0,0{}1,0{==+-===Y X P Y X P ,3.02.01.0=+=}1,1{}0,0{|}||{|-==+====Y X P Y X P Y X P }1,1{-==+Y X P .6.01.03.02.0=++=例6 一整数N 等可能地在10,,3,2,1 十值中取一个值. 设=D )(N D 是能整除N 的正整数的个数,)(N F F =是能整除N 的素数的个数(注意1不是素数). 试写出D 和F 的联合分布律.并求分布律.解 将试验的样本空间及F D ,取值的情况列表如下:2111211110434242322110987654321F DD 所有可能取值为1,2,3,4; F 所有可能取值为0,1,2.容易得到),(F D 取),,(j i ,4,3,2,1=i 2,1,0=j 的概率, 可得D 和F 的联合分布律及边缘分布律如下表:即有边缘分布律10/310/210/410/14321k p D10/210/710/1210k p F例7 (讲义例3) 具有概率密度设二维随机变量),(Y X⎪⎩⎪⎨⎧>>=+-.,0,0,0,2),()2(其它y x ey x f y x(1) 求分布函数);,(y x F (2) 求概率}.{X Y P ≤ 解 (1) ⎰⎰∞-∞-=xy dxdy y x f y x F ),(),(⎪⎩⎪⎨⎧>>=⎰⎰+-,,00,0,20)2(0其它y x dxdy e xy x y即有.,00,0),1)(1(),(2⎩⎨⎧>>--=--其它y x e e y x F y x (2) 将),(Y X 看作是平面上随机点的坐标, 即有},),{(}{G Y X X Y ∈=≤ 其中G 为xOy 平面上直线x y =及其下方的部分, 如图. 于是G y x P X Y P ∈=≤),{(}{⎰⎰=Gdxdy y x f ),(⎰⎰+∞+-+∞=yy x dxdy e )2(02⎰⎰+∞+-+∞∞-=yy x dx e dy)2(2⎰+∞∞-∞+---=dy e e y x y ][2.313==⎰+∞∞--dy e y例8 (讲义例4) 设),(Y X 的概率密度是⎩⎨⎧≤≤≤≤-=其它,00,10),2(),(xy x x cy y x f求 (1) c 的值; (2) 两个边缘密度. 解 (1) 由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 确定.cdx dy x cy x ⎥⎦⎤⎢⎣⎡-⎰⎰01)2( ⎰-=12]2/)2([dx x x c24/5=c .5/24=c(2) ),2(512)2(524)(20x x dy x y x f xX -=-=⎰10≤≤x ,2223524)2(524)(21⎪⎪⎭⎫⎝⎛+-=-=⎰y y y dx x y y f yY 10≤≤y即⎪⎩⎪⎨⎧≤≤-=其它,010),2(512)(2x x x x f X.,010,2223524)(2⎪⎩⎪⎨⎧≤≤⎪⎪⎭⎫⎝⎛+-=其它y y y y y f Y二维均匀分布例9 设随机变量X 和Y 具有联合概率密度 ⎩⎨⎧≤≤=其它,0,6),(2xy x y x f求边缘概率密度),(x f X )(y f Y . 解⎰+∞∞-=dy y x f x f X ),()(,,010),(6622⎪⎩⎪⎨⎧≤≤-==⎰其它x x x dy xx⎰+∞∞-=dx y x f y f Y ),()(.,010),(66⎪⎩⎪⎨⎧≤≤-==⎰其它y y y dx yyOxy y x=y x =211例10 (讲义例5) 设),(Y X 服从单位圆域122≤+y x 上的均匀分布, 求X 和Y 的边缘概率密度.解,,01,/1),(22⎩⎨⎧≤+=其它时当y x y x f π 当1-<x 或1>x 时,,0),(=y x f 从而.0)(=x f X 当11≤≤-x 时,⎰+∞∞-=dy y x f x f X ),()(.12121122x dy x x-==⎰---ππ于是我们得到X 的边缘概率密度⎪⎩⎪⎨⎧≤≤--=其它,011,12)(2x x x f X π由X 和Y 在问题中地位的对称性, 将上式中的x 改成,y 就得到Y 的边缘概率密度.,011,12)(2⎪⎩⎪⎨⎧≤≤--=其它y y y f Y π二维正态分布例11 (讲义例6) 设二维随机变量),(Y X 的概率密度)sin sin 1(21),()(2122y x e y x f y x +=+-π试求关于Y X ,的边缘概率密度函数.解 利用Γ函数及奇偶函数的积分性质得,21),()(2/2x X edy y x f x f -+∞∞-==⎰π.21),()(2/2yY e dx y x f y f -+∞∞-==⎰π注: 此例说明, 边缘分布均为正态分布的二维随机变量, 其联合分布不一定是二维正态分布.课堂练习1.将两封信随意地投入3个邮筒, 设X ,Y 分别表示投入第1, 2号邮筒中信的数目, 求X 和Y 的联合概率分布及边缘概率分布.2.设向量),(Y X 的密度函数),(y x f 的密度函数为11xy-O⎩⎨⎧≤≤≤≤=其它,010,10,),(y x kxy y x f求 (1) 参数k 的值;(2)),(Y X 的边缘密度.。

二维随机变量及其概率分布

二维随机变量及其概率分布
一、二维随机变量
定义:设Ω是某试验的样本空间,X=X(e)和Y=Y(e)是定义在Ω 上的两个随机变量,称随机变量对(X,Y)为二维随机变量。
二维随机变量(X,Y)的性质不仅与X及Y的性质有关,且还依赖于 X和Y的相互关系,因此, 必须把(X,Y)作为一个整体加以研究。 为此, 首先需要引入二维随机变量(X,Y)的分布函数的概念。
因此,对任意实数x,研究形如 PX x Y y 的条件概率就很重要。
注意,对连续型r.v.,有P{Y=y}=0,上述条件概率无意义。为 此,设Y在区间(y-Δy,y)内概率不为零,此时条件概率
PX x y y Y y
便有意义,如果当Δy→0时,此条件极限
存在,则将此极限定义为 PX x Y y ,并称为X的条件分布函数。
1
2
21
22
2 j
2
p
i1
p
i2
p p
j ij
1

p
1
p
2
应用见p99例4,p102习题2
三、独立性
X Y
两个随机变量独立是指它们所代表的随机事件彼此独立。
定义:设F x , y , F x , F y 分别为X和Y的联合分布律和边缘分 布律, 如果对任意实数x , y,有 F x , y F x F y
p
P Y y P X , Y y p p
j x i ij i
j
ij
分布律及边缘分布的表格形式 →
Y X x x x p
j i 1
y p p
1
y p p
2

y p p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档