PCB失效十大分析技术
PCB常见实效分析技术及仪器介绍

扫描式电子显微镜 SEM
IMC 观察
Page: 27/36
常见失效分析技术及仪器
能谱分析 EDS / EDX 功能 : 成分定性﹑定量分析 ( line scan / Area Mapping • 原子重量比 = (单一原子量 * 单一原子数) / 原子 总重量*100% • 原子数目比 = 单一原子数目 / 总原子数
Page: 6/36
常见失效分析技术及仪器
外观检察
外观初判 • 取板后先别急着进行破坏性分析, 先仔细观察 板面状况, 许多问 题可能从板面观察就可以了解状况并做初判, 甚至可能发现 不当 外力 造成损伤导致失效, 此时应立即反应并沟通以免后续争议影 像撷取留存
影像撷取留存 • 利用目视或影像撷取仪器﹐如放大镜﹑3D 显微镜﹑金相显微镜 ( Olympus STM6 )…等工具检查外观 • 整体、双面、局部 、微观 影像须被绝对清晰留存, 若后续分析 结果与客户认知有落差时作为证据 • 寻找失效的部位和相关的物证,主要的作用就是做失效定位留存 • 各阶段皆须将影像留存备用 ( 拆件前后 / 清洁前后 / 测试前后 / 切片进行中边切边拍 ) • 影像需 清晰、端正 不歪斜
Page: 30/36
常见失效分析技术及仪器
聚焦式离子束切割 FIB Focused Ion Beam 功能 : 精细切割﹑金属晶格成像
• 手动研磨切片以 SEM 无法观察金属晶格结构, 且金属具有延性, 经 过切片研磨会产生延展, 对于维系现象容易被掩盖与误判, FIB影像 可清楚呈现金属晶格结构, 且切割处无延展状况, 对于需要细微组织 结构, 或是微裂现象, FIB 可提供清楚明确的观察
PCB常见失效分析技术及仪器
课程大纲
PCB回流后出现爆板分层失效分析

PCB回流后出现爆板分层失效分析1.设计问题:PCB设计时,如果在板子上的高温区域没有经过适当的隔离或散热设计,就可能在回流过程中产生过多的热量导致分层失效。
此外,如果板子上的器件密度太高,导致局部区域导热不良,也会导致分层失效。
2.PCB材料问题:PCB材料中的玻璃纤维布和树脂会随着高温的作用而膨胀,如果PCB的设计和制造过程中没有考虑到热胀冷缩的因素,就可能导致分层失效。
此外,如果PCB中使用的材料质量不佳或者存放时间过长,也会导致分层失效。
3.制造工艺问题:PCB的回流过程中需要经历高温高压的环境,如果工艺控制不好,如回流时间过长、温控不准确等,就可能导致分层失效。
此外,如果回流过程中的机械振动过大,也会导致PCB的分层失效。
4.焊接材料问题:回流焊接中使用的焊锡材料可能会对PCB的分层造成影响。
例如,焊锡材料的成分与PCB材料相兼容性差,就容易导致分层失效。
此外,焊接过程中使用的流动剂,如果使用过量或者不合适,也会对PCB的分层造成影响。
对于出现爆板分层失效的PCB,以下是一些可能的处理方法和预防措施:1.设计时应考虑合理的散热设计,确保高温区域有良好的散热和隔离措施。
2.在PCB的设计和制造过程中,应考虑玻璃纤维布和树脂的热胀冷缩因素,合理选择和使用材料。
3.在PCB的制造过程中,严格控制回流焊接的工艺参数,确保回流时间和温度的准确控制。
4.对于焊锡材料的选择,应考虑其与PCB材料的兼容性,避免因为焊锡材料导致的分层失效。
5.合理使用流动剂,避免过量使用,以免对PCB的分层造成影响。
总之,PCB回流后出现爆板分层失效的原因可能多种多样,需要从设计、材料、制造工艺等多个方面综合考虑。
只有在每个环节都做好细致的控制和预防措施,才能有效避免爆板分层失效的问题。
pcb制程常见不良及分析技术

印刷电路板(P.C.B)制程的常见问题及解决方法
资料整理:袁斌
特别说明:本教程内容基本上来自己本人的工作经验总结及网站网友提供的技术援助,适用於PCB行业培训及各位PCB同行借鉴之用。
在此特别感谢。
对本资料有任何意见和建议请和本人联系。
联系方式:E_MAIL:&Y
目录:
(一)图形转移工艺 (2)
(二)线路油墨工艺 (4)
(三)感光绿油工艺 (5)
(四)碳膜工艺 (7)
(五)银浆贯孔工艺 (8)
(六)沉铜(PTH)工艺 (9)
(七)电铜工艺 (11)
(八)电镍工艺 (12)
(九)电金工艺 (13)
(十)电锡工艺 (14)
(十一)蚀刻工艺 (15)
(十二)有机保焊膜工艺 (15)
(十三)喷锡(热风整平)艺 (16)
(十四)压合工艺 (17)
(十五)图形转移工艺流程及原理 (20)
(十六)图形转移过程的控制 (24)
(十七)破孔问题的探讨 (28)
(十八)软性电路板基础 (33)
(十九)渗镀问题的解决方法 (38)。
PCB短路失效分析

PCB短路失效分析PCB短路失效是指在电路板上的两个或多个电路之间发生了错误的电连接,导致电流绕过了原本设计的路径,从而造成电路功能受损或完全失效的情况。
PCB短路失效可能是因为设计错误、制造缺陷、材料选择不当、组装过程中操作不当等因素导致的。
首先,设计错误可能是导致PCB短路失效的主要原因之一、设计人员在布局电路板时,如果排线过于接近或布线不合理,就有可能导致两个或多个电路之间的短路。
因此,为了减少短路失效的风险,在设计阶段应该合理布局和布线,并避免将不同电路放置得过于接近。
其次,制造缺陷也是导致PCB短路失效的常见原因。
在PCB制造过程中,例如蚀刻、覆铜、印刷等步骤可能会存在一些问题,导致导线间的间距太小或出现外覆材料的异常粘连等情况,从而引发短路失效。
材料选择不当也可能导致PCB短路失效。
在PCB制造过程中使用的材料应该符合设计要求,例如导线应该具有足够的绝缘性能,外覆材料应该具有良好的耐热性等。
如果材料的绝缘性能不合格或耐热性能不足,就有可能出现短路失效的情况。
此外,组装过程中操作不当也可能引发PCB短路失效。
在PCB组装过程中,例如焊接过程中的温度控制、焊点清洁等操作都需要严格执行。
如果焊接温度过高或焊点清洁不彻底,就可能导致焊点短路,从而引发短路失效。
为了避免PCB短路失效,可以采取以下措施:1.合理布局和布线:在设计阶段,应尽量避免将不同电路放置得过于接近,合理布局和布线,减少短路的风险。
2.严格控制制造过程质量:在PCB制造过程中,要严格控制每一个环节的质量,确保导线间的间距够大,外覆材料没有异常粘连等问题。
3.选择合适的材料:在PCB制造中,选择符合设计要求的材料,确保导线具有足够的绝缘性能,外覆材料具有良好的耐热性等。
4.注意焊接过程:在PCB组装过程中,要注意焊接温度的控制,并确保焊点清洁彻底,避免因操作不当导致短路失效。
综上所述,PCB短路失效是一种常见的电路板故障,可能由设计错误、制造缺陷、材料选择不当、组装过程中操作不当等因素导致。
PCB失效分析技术及解决方案

PCB失效分析技术及解决方案由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB出现了润湿不良、爆板、分层、CAF等等各种失效问题。
介绍这些分析技术在实际案例中的应用。
PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。
部分案例:一、板电后图电前擦花1、断口处的铜表面光滑、没有被蚀痕迹。
2、OPEN处的基材有或轻或重的被损伤痕迹(发白)。
3、形状多为条状或块状。
4、附近的线路可能有渗镀或线路不良出现。
5、从切片上看,图电层会包裹板电层和底铜。
二、铜面附着干膜碎1、断口处沙滩位与正常线路一致或相差很小2、断口处铜面平整、没有发亮三、铜面附着胶或类胶的抗镀物1、断口处铜面不平整、发亮;有时成锯齿状2、通常伴随短路或残铜出现四、曝光不良1.断口呈尖形,没有沙滩位,除断口附近幼线外板面其它位置没有幼线2.断口呈尖形或圆形,没有沙滩位,附近伴随线路不良出现3.断口呈尖形,没有沙滩位,伴随曝光垃圾造成的残铜或短路出现4.从切片上看,图电层会伸出一个弯钩状,有长有短.五、擦花干膜1、面积较大、常伴随短路出现2、形状不规则、但有方向性六、锡面擦花1.断口没有明显沙滩位,为较重的擦花导致;较轻时有沙滩位,或没有蚀穿.2.从切片上看,被蚀处较为圆滑,有平缓的坡度,沙滩位较大。
七、溶锡或电锡不良八、显影不净1、较少发生、一般面积较大2、断口及附近线路边缘发亮,九、图电后擦花切片图1、图电后的擦花,一般擦花处的基材和铜面都较为粗糙,基材上会有铜粒,擦花的线路处会有明显被擦花的痕迹,线路边会有顺着擦花方向的突出。
2、从切片上看,擦花处的线路会被压向基材方向,有明显的弯曲。
(公众号:电子汇)十、甩膜干膜余胶导致的线路不良1、干膜余胶造成的线路不良,基材位不会有残铜。
2、线路不良处底部一般都非常平整,会露出铜的颜色,与周围线路的颜色不一样。
3、从切片上看,线路不良处板电层和底铜完整,但镀不上二铜,周围的图电层有一个包裹的动作。
PCB失效分析技术与典型案例

视系统来检查。X 光透视系统就是利用不同材料厚度或是不同材料密度对 X 光的吸湿或透过率的不 同原理来成像。该技术更多地用来检查 PCBA 焊点内部的缺陷、通孔内部缺陷和高密度封装的 BGA 或 CSP 器件的缺陷焊点的定位。目前的工业 X 光透视设备的分辨率可以达到一个微米以下,并正由 二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种 5D 的 X 光 透视系统非常贵重,很少在工业界有实际的应用。
前言 PCB 作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键
的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化 以及无铅无卤化的环保要求,PCB 也向高密度高 Tg 以及环保的方向发展。但是由于成本以及技术 的原因,PCB 在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄 清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。本 文将讨论和介绍一部分常用的失效分析技术,同时介绍一些典型的案例。
综合上述分析可知,PP 层粘接材料的局部固化不足,增大了 PCB 在高温强热中所受的的应力, 外层铜箔与 PP 层树脂结合力不足, 降低了铜箔与树脂之间的结合强度, 而这些均与板的层压工及艺 粘接材料的性能相关。 PCB 板吸潮又严重降低了 PCB 的耐热性能,使得 PCB 在过回流焊中水份急剧 汽化导致出现爆板分层失效现象。 结论
1.1 外观检查 外观检查,就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查
PCB 的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断 PCB 的失效模式 。 外观检查主要检查 PCB 的污染、腐蚀、爆板的位置、电路布线以及失效的规律性,如是批次的或是 个别,是不是总是集中在某个区域等等。另外,有许多 PCB 的失效是在组装成 PCBA 后才发现,是 不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
失效分析方法大汇总

失效分析简介失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。
在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。
失效分析流程图1 失效分析流程各种材料失效分析检测方法1 PCB/PCBA失效分析PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。
图2 PCB/PCBA失效模式爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。
常用手段无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像表面元素分析:扫描电镜及能谱分析(SEM/EDS)显微红外分析(FTIR)俄歇电子能谱分析(AES)X射线光电子能谱分析(XPS)二次离子质谱分析(TOF-SIMS)热分析:差示扫描量热法(DSC)热机械分析(TMA)热重分析(TGA)动态热机械分析(DMA)导热系数(稳态热流法、激光散射法)电性能测试:击穿电压、耐电压、介电常数、电迁移破坏性能测试:染色及渗透检测2 电子元器件失效分析电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。
图3 电子元器件失效模式开路,短路,漏电,功能失效,电参数漂移,非稳定失效等常用手段电测:连接性测试电参数测试功能测试无损检测:开封技术(机械开封、化学开封、激光开封)去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层)微区分析技术(FIB、CP)制样技术:开封技术(机械开封、化学开封、激光开封)去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层)微区分析技术(FIB、CP)显微形貌分析:光学显微分析技术扫描电子显微镜二次电子像技术表面元素分析:扫描电镜及能谱分析(SEM/EDS)俄歇电子能谱分析(AES)X射线光电子能谱分析(XPS)二次离子质谱分析(SIMS)无损分析技术:X射线透视技术三维透视技术反射式扫描声学显微技术(C-SAM)3 金属材料失效分析随着社会的进步和科技的发展,金属制品在工业、农业、科技以及人们的生活各个领域的运用越来越广泛,因此金属材料的质量应更加值得关注。
PCB失效十大分析技术

PCB失效十大分析技术PCB(Printed Circuit Board,印刷电路板)是现代电子产品中最常见且重要的组成部分之一、然而,由于各种因素的影响,PCB有可能发生失效,从而导致整个电子产品无法正常工作。
在调查和诊断PCB失效时,有十种常用的分析技术,下面将逐一进行介绍。
1.压电散射谱分析(PEA)压电散射谱分析是一种非接触式的电子显微镜分析技术,可以检测PCB中的晶体缺陷、晶界和位错,以及应力集中区域。
通过PEA可以获得有效的晶体结构信息,从而帮助定位和诊断PCB失效。
2.红外热成像(ITI)红外热成像是一种通过检测物体表面的热辐射来分析其温度分布的技术。
在PCB中,通过ITI可以快速地检测到电路板上的热点、热斑和过热现象,从而帮助发现可能的失效原因,如短路、过载等。
3.电子探针微分脉冲散射(EPDPS)EPDPS是一种非接触式的故障诊断技术,通过探针对PCB表面进行扫描,检测到表面异常情况,如缺陷、镶嵌物或腐蚀等。
EPDPS能够提供高分辨率的故障检测结果,帮助精确定位和分析PCB失效。
4.电荷共振分析(CRA)电荷共振分析是一种电荷感应式故障诊断技术,通过在PCB上施加电荷并检测电荷的反应来分析电路板上的失效。
CRA可以快速检测出电容、电阻、电感等设备在工作状态下的性能,从而帮助发现可能的故障原因。
5.X射线显微镜(XRM)X射线显微镜是一种利用X射线对材料进行断层成像和分析的技术。
在PCB失效分析中,XRM可以提供非破坏性的高分辨率图像,帮助识别PCB中的微小缺陷、内部连接问题等。
6.扫描电子显微镜(SEM)扫描电子显微镜是一种通过扫描电子束来获取样本表面形貌和组成的高分辨率显微镜技术。
在PCB失效分析中,SEM可以提供高放大倍数的图像,帮助检测PCB中的表面缺陷、腐蚀、氧化等故障。
7.能谱分析(EDS)能谱分析是一种利用X射线能谱仪分析物质成分的技术。
在PCB失效分析中,EDS可以快速检测到PCB中金属元素的成分和分布,帮助发现金属短路、金属腐蚀等故障。
PCBPCBA失效分析

PCB/PCBA失效分析
1、简介
随着电子产品的高密度化及电子制造的无铅化,PCB及PCBA产品的技术水平、质量要求也面临严峻的挑战,PCB的设计与生产加工及组装过程中需要更严格的工艺与原材料的控制。
目前由于尚处于技术和工艺的转型期,客户对PCB制程及组装的认识尚有较大差异,于是类似漏电、开路(线路、孔)、焊接不良、爆板分层之类的失效常常发生,常引起供应商与用户间的质量责任纠纷,为此导致了严重的经济损失。
通过对PCB及PCBA的失效现象进行失效分析,通过一系列分析验证,找出失效原因,挖掘失效机理,对提高产品质量,改进生产工艺,仲裁失效事故有重要意义。
2、服务对象
印制板及其组件(PCB&PCBA)是电子产品的核心部件,PCB&PCBA可靠性直接决定了电子产品的可靠性。
为了保证和提高电子产品的质量和可靠性,对失效进行全面的理化分析,确认失效的内在机理,从而有针对性地提出改善措施。
美信咨询具备深厚的板级失效分析技术能力、完备的失效分析手段、庞大的分析案例数据库和专家团队,为您提供优质快捷的失效分析服务。
3、失效分析意义
1. 帮助生产商了解产品质量状况,对工艺现状分析及评价,优化改进产品研发方案及生产工艺;
2. 查明电子组装中失效根本原因,提供有效的电子组装现场工艺改进方案,降低生产成本;
3. 提高产品合格率及使用可靠性,降低维护成本,提升企业品牌竞争力;
4. 明确引起产品失效的责任方,为司法仲裁提供依据。
分析过的PCB/PCBA种类
刚性印制板、挠性印制板、刚挠结合板、金属基板
通讯类PCBA、照明类PCBA
4、主要针对失效模式(但不限于)。
PCB失效分析技术总结及实用案例分享

PCB失效分析技术总结及实用案例分享作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。
但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。
对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。
1.外观检查外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。
外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
2.X射线透视检查对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。
X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。
目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。
3.切片分析切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。
通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。
但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏;同时该方法制样要求高,制样耗时也较长,需要训练有素的技术人员来完成。
PCB失效原因与案例分析

PCB失效原因与案例分析PCB(Printed Circuit Board)是一种用于支持和连接电子组件的基板。
它是电子产品中最重要的组成部分之一,但由于各种原因,PCB也会出现失效的情况。
下面将从物理损坏、化学腐蚀以及设计和制造不良等角度分析PCB失效的原因,并列举一些相关的案例。
1.物理损坏物理损坏是导致PCB失效的主要原因之一、这种损坏可能由外部因素引起,例如机械压力、震动、温度变化等。
而且,也可能在制造和组装过程中造成,例如不正确的操作、错误的钳工行为等。
物理损坏可能导致PCB上电子元件的松动、脱落,以及电路轨迹断裂等失效现象。
案例1:一家制造商在PCB组装过程中不小心使用过于硬朗的工具,损坏了PCB上的电子元件。
这导致一些元件无法正常工作,最终导致整个电路板失效。
案例2:在运输过程中,由于未能妥善保护,PCB遭受了剧烈的撞击,导致电路轨迹断裂。
这使得PCB无法正常传递电流,导致整个电路板失效。
2.化学腐蚀化学腐蚀是导致PCB失效的另一个常见原因。
PCB会暴露在各种化学物质中,例如湿度、气体、液体等。
如果这些化学物质对PCB材料具有腐蚀性,它们会导致元件的氧化、腐蚀,甚至电路轨迹的腐蚀,从而导致电路板失效。
案例3:在一个潮湿的环境中,PCB上的金属电路轨迹开始发生氧化和腐蚀,导致电流无法正常传递,最终使整个电路板失效。
案例4:在一个工业环境中,PCB暴露在有害气体中,如硫化氢。
这导致PCB上的电子元件遭受腐蚀,损坏了电路的功能,从而导致PCB失效。
3.设计和制造不良设计和制造过程中的不良也是导致PCB失效的重要原因之一、设计不良可能导致电路板无法正常工作,例如布线错误、不正确的元件布局等。
制造不良可能导致电路板存在材料缺陷、焊接不良、导线间隙不正确、层间短路等问题,进而导致电路板失效。
案例5:在PCB设计中,布线人员错误地连接了两个电路轨迹,导致电流传输错误。
这导致PCB无法正常工作,最终导致整个电路板失效。
PCB行业之失效模式影响分析

PCB行业之失效模式影响分析PCB行业是电子产品制造的基础,负责为电子设备提供电气连接和信号传输功能。
然而,由于电子元件和工艺的复杂性,PCB在使用过程中可能会出现各种失效现象。
了解和分析这些失效模式对于提高PCB质量和可靠性至关重要。
本文将讨论几种常见的PCB失效模式及其影响。
首先,焊膏开裂是一种常见的PCB失效模式。
焊膏是用于连接电子元件和PCB的材料,通常由锡和铅合金制成。
当焊接温度过高或焊接时间过长时,焊膏可能会发生开裂。
这种失效会导致焊点松动或脱落,进而影响电子元件的连接性和信号传输。
为了解决这个问题,PCB制造商可以优化焊接工艺,控制焊接温度和时间。
其次,线路跟踪断裂是另一种常见的PCB失效模式。
线路跟踪是PCB上用于电气连接的导线,通常由铜制成。
当线路跟踪处于过载或弯曲条件下,它们可能会发生断裂。
这导致电路中断,无法正常工作。
要防止线路跟踪断裂,PCB设计师可以增加线路跟踪的宽度和厚度,以提高其耐电流和耐机械应力能力。
另一种常见的PCB失效模式是电解腐蚀。
电解腐蚀是指电流通过PCB表面的导线和焊点时产生的化学反应。
这会导致导线或焊点的材料被腐蚀,最终导致PCB失效。
为了减少电解腐蚀,PCB制造商可以采用防腐蚀涂层或使用高耐蚀材料制造导线和焊点。
此外,PCB还可能面临温度循环引起的热应力和湿度引起的湿度敏感失效。
温度循环是指PCB在不同温度下频繁变化,导致PCB材料的膨胀和收缩。
长期温度循环会导致焊点和线路跟踪断裂。
湿度敏感失效是指PCB暴露在高湿度环境中时导致电子元件腐蚀或绝缘材料吸湿膨胀。
这可能导致导线短路或焊点发生电解腐蚀。
为了抵御这些失效模式,PCB制造商可以选择高温和湿度耐受材料,以及改善设计和封装技术。
综上所述,PCB行业的失效模式多种多样,可能影响PCB的连接性、信号传输和整体可靠性。
为了减少这些失效的发生,PCB制造商应该改善工艺、优化设计和选择合适的材料。
此外,持续监测和测试PCB的可靠性也是保证良好PCB质量的重要措施。
PCB失效分析技术与案例

PCB失效分析技术与案例PCB(Printed Circuit Board,印刷电路板)作为电子产品的核心组成部分,承载着各种电子元件和连接线路,是电子产品正常运行的基础。
然而,由于各种原因,PCB可能会出现失效现象,例如电气失效、机械失效、热失效等。
本文将介绍几种常见的PCB失效分析技术以及相应的案例。
一、电气失效分析技术1.测试仪器:使用示波器、万用表、频谱分析仪等仪器对PCB进行电气特性分析,检测电气性能是否正常。
2.红外测试:使用红外线热像仪对PCB进行红外检测,查找异常发热点,判断是否存在热失效等问题。
3.焦耳热分析:通过加热PCB,利用焦耳热效应来检测是否有电气连接不良,或是电敏感元器件的温度分布不均等问题。
案例:电子产品的PCB在使用过程中发现频繁死机。
经过电气失效分析发现,其中一个芯片温度异常升高,通过焦耳热分析发现该芯片与PCB之间的焊点存在接触不良,导致芯片发热过高而死机。
二、机械失效分析技术1.目视检查:通过目视检查PCB表面是否存在物理损伤,如裂纹、变形等。
2.显微镜观察:使用显微镜对PCB进行观察,检查PCB连接是否完好,是否存在疲劳裂纹等。
3.声发射检测:利用声发射检测仪器对PCB进行检测,通过检测不同频率的声波来判断是否存在机械失效。
案例:电子产品的PCB在物理冲击后无法正常工作。
经过机械失效分析发现,PCB上的一个元件发生了松动,导致接触不良。
通过目视检查和显微镜观察,最终发现该元件的焊点出现了裂纹,进一步造成了PCB的机械失效。
三、热失效分析技术1.热测量:使用热敏电阻或红外线热像仪对PCB进行温度测量,查找温度异常区域,判断热失效的可能性。
2.热分析:利用有限元软件对PCB进行热仿真分析,通过数值模拟来预测PCB在工作过程中的温度分布和热应力。
案例:电子产品的PCB过热导致无法正常工作。
经过热失效分析发现,PCB散热不良,导致温度过高。
通过热测量发现,PCB上的散热片连接不良,无法正确散热。
PCB设计常见的失效分析手段

PCB设计常见的失效分析手段在失效分析过程中,往往需要借助多种失效分析手段综合分析,方能得到可靠的分析结论。
而在分析前,需理解各分析手段的原理,充分了解其能力,并依据相关测试方法和标准进行测试分析,常用的测试分析标准包括IPC-TM-650、GJB360B、QJ832B 和JESD22等。
以下介绍常见的失效分析手段:SEM">SEM即扫描电子显微镜(Scanning Electron Microscope),EDS即X射线能谱分析仪(Energy Dispersive Spectrometer),两者是业内最常见的联用设备,能够观察样品表面的微观形貌,并进行微区成分分析。
扫描电子显微镜由其电子枪的不同,分为钨灯丝、热场和冷场电镜,不同的电镜之间,其放大倍率和分辨率均有区别,场发射电镜往往放大数十万倍也毫不费力,分辨率接近1nm。
SEM主要是通过聚焦高能电子束轰击扫描样品表面,被激发的区域将产生各种信号,如二次电子、背散射电子和特征X射线等,不同的信号被不同的探头接收从而得到试样的各类信息,其中二次电子主要反映形貌特征,背散射电子主要反映元素特征,而特征X射线信号则被能谱仪接收,通过计算机内部的计算,实现微区成份分析。
为了得到稳定的图像,要求样品表面要导电,不导电样品则采用喷镀碳膜、铂膜等方式使其导电。
在PCB/PCBA失效分析应用方面,SEM主要应用于PCB/PCBA表面形貌的观察,通过形貌特征判断问题点和失效机理,比如焊点合金层(IMC)形貌、沉金镍腐蚀、干膜浮起、铜面微蚀形貌等。
在分析SEM">⑴与光学显微镜不同,SEM输出的是电子像,只有黑白两色,那么在有些情况下光学显微镜可以轻易观察到的问题,在SEM图像上却“隐藏”了起来,比如说金面氧化、镀层凹坑和锡面发黄等;这些样品在进样前需对缺陷位置作特殊标识,必要时用光学显微镜拍的图像作位置比对;。
PCB有哪些失效分析技术 PCB失效分析方法汇总

PCB 有哪些失效分析技术PCB 失效分析方法汇总
对于PCB 失效问题,我们需要用到一些常用的失效分析技术,来使得PCB 在制造的时候质量和可靠性水平得到一定的保证,为此笔者为大家重点总结了十项用于PCB 失效分析的技术,包括:
1、外观检查
外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB 的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。
外观检查主要检查PCB 的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB 的失效是在组装成PCBA 后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
2、X 射线透视检查
对于某些不能通过外观检查到的部位以及PCB 的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。
X 光透视系统就是利用不同材料厚度或是不同材料密度对X 光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA 焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA 或CSP 器件的缺陷焊点的定位。
目前的工业X 光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D 的X 光透视系统非常贵重,很少在工业界有实际的应用。
3、切片分析
切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和。
pcba失效 应变

pcba失效应变(实用版)目录1.PCB 失效的原因2.PCB 失效对电子产品的影响3.应变措施正文一、PCB 失效的原因PCB(印刷电路板)是电子产品中的重要组成部分,负责连接各个电子元件,传递电信号。
然而,在使用过程中,PCB 可能会出现失效现象,导致电子产品无法正常工作。
PCB 失效的原因有很多,主要包括以下几点:1.电气性能问题:如线路间短路、断路、电阻值偏差等。
2.机械性能问题:如板材变形、裂纹、钻孔损伤等。
3.化学性能问题:如腐蚀、氧化、溶剂残留等。
4.热性能问题:如热应力、热膨胀等。
5.环境因素:如湿度、温度、振动等。
二、PCB 失效对电子产品的影响PCB 失效对电子产品的正常运行会产生很大的影响,主要表现在以下几个方面:1.系统故障:PCB 失效可能导致整个电子产品系统崩溃,无法正常工作。
2.信号传输问题:PCB 失效可能导致信号传输受到干扰,影响电子产品的性能。
3.电子元件损坏:PCB 失效可能导致连接的电子元件受到损害,进一步降低电子产品的可靠性。
4.安全隐患:PCB 失效可能引发短路、断路等安全问题,对使用者造成人身安全风险。
三、应变措施为了降低 PCB 失效对电子产品的影响,可以采取以下应变措施:1.设计优化:在设计阶段,选择合适的 PCB 材料、合理的线路布局和设计参数,提高 PCB 的可靠性。
2.工艺控制:在生产过程中,严格把控各个工艺环节,确保 PCB 的质量。
3.质量检测:对生产出的 PCB 进行全面的质量检测,剔除不合格品。
4.环境适应性测试:对 PCB 进行环境适应性测试,确保其在不同环境下的可靠性。
5.故障分析与处理:对失效的 PCB 进行详细的故障分析,找出原因并采取相应的处理措施。
综上所述,PCB 失效对电子产品的可靠性具有重要影响。
PCB失效十大分析技术

对于PCB失效问题,我们需要用到一些常用的失效分析技术,来使得PCB 在制造的时候质量和可靠性水平得到一定的保证,为此笔者为大家重点总结了十项用于PCB失效分析的技术,包括:1外观检查外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。
外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
备注1:爆板是指无铅再流焊接过程中,发生在HDI积层多层PCB第二次压合的PP层和次层铜箔棕化面之间的分离现象。
有挥发物的形成源死产生爆板的必要条件:(1)PCB板中存在水汽是导致爆板的首要原因。
(2)存储和生产过程中湿气的影响也是导致爆板的重要原因。
备注2:HDI 是高密度互连(High Density Interconnector)的缩写是生产印制板的一种(技术),使用微盲埋孔技术的一种线路分布密度比较高的电路板。
当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
可改善射频干扰/电磁波干扰/静电释放(RFI/EMI/ESD)2X射线透视检查对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。
X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。
目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。
PCB十大质量问题与对策

PCB十大质量冋题与对策漫长的生产流程,诸多的控制点,一招不慎,板子就坏。
PCB的质量问题层出不穷也是业界一直头疼的问题,一片板子有问题,贴上去的绝大部分器件就得一起报废。
可恨的是,这些问题通过进料检验(IQC)还发现不了。
而更让人烦躁的是,很多问题供应商还能跟你东拉西扯,改善进展缓慢,交货问题不断。
笔者收集了PCB经常出现的一些质量问题,整理如下:PCB不艮统计除了上述问题外,还有一些潜在风险较大的问题,笔者一共整理了十大问题,在此列出并附上一些处理的经验,与诸君分享:1.【分层】分层是PCB的老大难问题了,稳居常见问题之首。
其发生原因大致可能如下:(1)包装或保存不当,受潮;(2)保存时间过长,超过了保存期,PCB板受潮;(3)供应商材料或工艺问题;(4)设计选材和铜面分布不佳。
受潮问题是比较容易发生的,就算选了好的包装,工厂内也有恒温恒湿仓库,可是运输和暂存过程是控制不了的。
笔者曾“有幸”参观过一个保税仓库,温湿度管理是别指望了,房顶还在漏水,箱子是直接呆在水里的。
不过受潮还是可以应对的,真空导电袋或者铝箔袋都可以不错地防护水汽侵入,同时包装袋里要求放湿度指示卡。
如果在使用前发现湿度卡超标,上线前烘烤一般可以解决,烘烤条件通常是120度,4耳如果是供应商处材料或工艺发生问题,那报废的可能性就比较大了。
常见的可能原因包括:棕(黑)化不良,PP或内层板受潮,PP胶量不足,压合异常等。
为了减少这种情况的问题发生,需要特别关注PCB供应商对对应流程的管理和分层的可靠性试验。
以可靠性试验中的热应力测试为例,好的工厂通过标准要求是5次以上不能分层,在样品阶段和量产的每个周期都会进行确认,而普通工厂通过标准可能只是2次,几个月才确认一次。
而模拟贴装的IR测试也可以更多地防止不良品流出,是优秀PCB厂的必备。
当然设计公司本身的PCB设计也会带来分层的隐患。
例如板材Tg的选择,很多时候是没有要求的,那PCBT为了节约成本,肯定选用普通Tg的材料,耐温性能就会比较差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于PCB失效问题,我们需要用到一些常用的失效分析技术,来使得PCB 在制造的时候质量和可靠性水平得到一定的保证,为此笔者为大家重点总结了十项用于PCB失效分析的技术,包括:1外观检查外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。
外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
备注1:爆板是指无铅再流焊接过程中,发生在HDI积层多层PCB第二次压合的PP层和次层铜箔棕化面之间的分离现象。
有挥发物的形成源死产生爆板的必要条件:(1)PCB板中存在水汽是导致爆板的首要原因。
(2)存储和生产过程中湿气的影响也是导致爆板的重要原因。
备注2:HDI 是高密度互连(High Density Interconnector)的缩写是生产印制板的一种(技术),使用微盲埋孔技术的一种线路分布密度比较高的电路板。
当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
可改善射频干扰/电磁波干扰/静电释放(RFI/EMI/ESD)2X射线透视检查对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。
X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。
目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。
备注1:PCBA是英文Printed Circuit Board +Assembly 的简称,也就是说PCB空板经过SMT上件,再经过DIP插件的整个制程,简称PCBA .这是国内常用的一种写法,而在欧美的标准写法是PCB'A。
PCBA可理解为成品线路板,也就是线路板的所有工序都完成了后,才能算PCBA。
由于电子产品不断微小化跟精细化,目前大多数的电路板都是采用贴附蚀刻阻剂(压膜或涂布),经过曝光显影后,再以蚀刻做出电路板。
在以前对清洗的认知还不够,是因为PCBA的组装密度不高,也有认为助焊剂残留是不导电的、良性的,不会影响到电气性能。
3切片分析切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。
通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。
但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏;同时该方法制样要求高,制样耗时也较长,需要训练有素的技术人员来完成。
要求详细的切片作业过程,可以参考IPC的标准IPC-TM-650 2.1.1和IPC-MS-810规定的流程进行。
4扫描声学显微镜目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。
因此,扫描声学显微镜可以用来检测元器件、材料以及PCB与PCBA内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。
如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。
典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在SMT工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的PCB也会常常出现爆板现象。
此时,扫描声学显微镜就凸现其在多层高密度PCB无损探伤方面的特别优势。
而一般的明显的爆板则只需通过目测外观就能检测出来。
5显微红外分析显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不同材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。
如果没有显微镜的结合,通常红外光谱只能分析样品量较多的样品。
而电子工艺中很多情况是微量污染就可以导致PCB焊盘或引线脚的可焊性不良,可以想象,没有显微镜配套的红外光谱是很难解决工艺问题的。
显微红外分析的主要用途就是分析被焊面或焊点表面的有机污染物,分析腐蚀或可焊性不良的原因。
6扫描电子显微镜分析扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,其工作原理是利用阴极发射的电子束经阳极加速,由磁透镜聚焦后形成一束直径为几十至几千埃(A)的电子束流,在扫描线圈的偏转作用下,电子束以一定时间和空间顺序在试样表面作逐点式扫描运动,这束高能电子束轰击到样品表面上会激发出多种信息,经过收集放大就能从显示屏上得到各种相应的图形。
激发的二次电子产生于样品表面5~10nm范围内,因而,二次电子能够较好的反映样品表面的形貌,所以最常用作形貌观察;而激发的背散射电子则产生于样品表面100~1000nm范围内,随着物质原子序数的不同而发射不同特征的背散射电子,因此背散射电子图象具有形貌特征和原子序数判别的能力,也因此,背散射电子像可反映化学元素成分的分布。
现时的扫描电子显微镜的功能已经很强大,任何精细结构或表面特征均可放大到几十万倍进行观察与分析。
在PCB或焊点的失效分析方面,SEM主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。
与光学显微镜不同,扫描电镜所成的是电子像,因此只有黑白两色,并且扫描电镜的试样要求导电,对非导体和部分半导体需要喷金或碳处理,否则电荷聚集在样品表面就影响样品的观察。
此外,扫描电镜图像景深远远大于光学显微镜,是针对金相结构、显微断口以及锡须等不平整样品的重要分析方法。
7X射线能谱分析上面所说的扫描电镜一般都配有X射线能谱仪。
当高能的电子束撞击样品表面时,表面物质的原子中的内层电子被轰击逸出,外层电子向低能级跃迁时就会激发出特征X射线,不同元素的原子能级差不同而发出的特征X射线就不同,因此,可以将样品发出的特征X射线作为化学成分分析。
同时按照检测X射线的信号为特征波长或特征能量又将相应的仪器分别叫波谱分散谱仪(简称波谱仪,WDS)和能量分散谱仪(简称能谱仪,EDS),波谱仪的分辨率比能谱仪高,能谱仪的分析速度比波谱仪快。
由于能谱仪的速度快且成本低,所以一般的扫描电镜配置的都是能谱仪。
随着电子束的扫描方式不同,能谱仪可以进行表面的点分析、线分析和面分析,可得到元素不同分布的信息。
点分析得到一点的所有元素;线分析每次对指定的一条线做一种元素分析,多次扫描得到所有元素的线分布;面分析对一个指定面内的所有元素分析,测得元素含量是测量面范围的平均值。
在PCB的分析上,能谱仪主要用于焊盘表面的成分分析,可焊性不良的焊盘与引线脚表面污染物的元素分析。
能谱仪的定量分析的准确度有限,低于0.1%的含量一般不易检出。
能谱与SEM结合使用可以同时获得表面形貌与成分的信息,这是它们应用广泛的原因所在。
8光电子能谱(XPS)分析样品受X射线照射时,表面原子的内壳层电子会脱离原子核的束缚而逸出固体表面形成电子,测量其动能Ex,可得到原子的内壳层电子的结合能Eb,Eb因不同元素和不同电子壳层而异,它是原子的“指纹”标识参数,形成的谱线即为光电子能谱(XPS)。
XPS可以用来进行样品表面浅表面(几个纳米级)元素的定性和定量分析。
此外,还可根据结合能的化学位移获得有关元素化学价态的信息。
能给出表面层原子价态与周围元素键合等信息;入射束为X射线光子束,因此可进行绝缘样品分析,不损伤被分析样品快速多元素分析;还可以在氩离子剥离的情况下对多层进行纵向的元素分布分析(可参见后面的案例),且灵敏度远比能谱(EDS)高。
XPS在PCB的分析方面主要用于焊盘镀层质量的分析、污染物分析和氧化程度的分析,以确定可焊性不良的深层次原因。
9热分析差示扫描量热法(Differential Scanning Calorim-etry)在程序控温下,测量输入到物质与参比物质之间的功率差与温度(或时间)关系的一种方法。
DSC在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,可通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,而使两边热量平衡,温差ΔT消失,并记录试样和参比物下两只电热补偿的热功率之差随温度(或时间)的变化关系,根据这种变化关系,可研究分析材料的物理化学及热力学性能。
DSC的应用广泛,但在PCB的分析方面主要用于测量PCB上所用的各种高分子材料的固化程度、玻璃态转化温度,这两个参数决定着PCB在后续工艺过程中的可靠性。
10热机械分析仪(TMA)热机械分析技术(Thermal Mechanical Analysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能,常用的负荷方式有压缩、针入、拉伸、弯曲等。
测试探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过马达对试样施加载荷,当试样发生形变时,差动变压器检测到此变化,并连同温度、应力和应变等数据进行处理后可得到物质在可忽略负荷下形变与温度(或时间)的关系。
根据形变与温度(或时间)的关系,可研究分析材料的物理化学及热力学性能。
TMA的应用广泛,在PCB的分析方面主要用于PCB最关键的两个参数:测量其线性膨胀系数和玻璃态转化温度。
膨胀系数过大的基材的PCB在焊接组装后常常会导致金属化孔的断裂失效。
由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB 出现了润湿不良、爆板、分层、CAF等等各种失效问题。
介绍这些分析技术在实际案例中的应用。
PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。
来源:PCB设计论坛。