19.1平行四边形的性质(导学案)
平行四边形的性质(1)导学案.doc
课题内容:平行四边形的性质(1) 学习目标:1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯。
2、探索并掌握平行四边形的性质,并能简单应用。
3、通过观察、实验、猜想、验证…等活动进一步发展学生的合情推理能力。
教学重点1、理解并掌握平行四边形的概念,2、探索平行四边形的性质。
教学难点有条理的表达平行四边形性质的验证过程学习过程:(1)微课引入:①通过微课引入“平行四边形”的定义。
②通过微课讲解定义的理解。
两组对边分别平行的四边形,叫做平行四边形。
平行四边形的相邻的两个顶点连成的一段叫做它的对角线。
教师进一步强调,平行四边形定义中的两个条件:①四边形,②两边分别分别平行AD//BC且AB〃DC平行四边形的表示(2)小组活动:动手制作一个平行四边形,观察平行四边形,总结平行四边形的其他性质问题:同学们拿出准备好的剪刀、彩纸或白纸一张。
将你们设计的平行四边形进行研讨分析。
思考两个问题:%1小组内能研究出平行四边形有哪些的特性(性质)%1请你们通过所学的知识来证明你们得出的结论。
(2)理论推导:上述猜想涉及线段相等、角相等。
我们知道,利用三角形全等得出全等三角形的对应边、对应角都相等,是证明线段相等、角相等的-•种重要的方法。
为此,我们通过添加辅助线,构造两个角形,通过三角形全等进行证明°性质理论推导:证明:如图,连接ACV AD//BC且AB//DC:.Z1 = Z2 , Z3 = Z4又AC是AABC和\CDA的公共边・.. \ABC^\CDAAD=CB, AB = CD:.ZB = ZD这样我们证明了平行四边形具有以下性质:%1平行四边形的对边相等%1平行四边形的对角相等(3)例题1:如图,在平行四边形ABCD中, DE A. AB ,BF1CD垂足分别为E, F o求证:AE = CF证明:..•四边形ABCD是平行四边形A ZA = ZC, AD = CB・「ZAED = ZCFB = 90°.I AADE g XCBF:.AE = CF(4)巩固练习:在平行四边形ABCD中,对角线AC, BD相交于点0, AO16, BD=10,则AO, B0二。
19章四边形导学案(修订版)
水洛中学导学案时间2013.5 学科数学年级八年级主备人谢晓斌课题19.1.1平行四边形的性质课时第一课时教学目标1..理解平行四边形的定义及有关概念。
2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。
3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。
教学重难点教学重点:平行四边形的概念和性质。
教学难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)教学过程一:导入现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝……处处都有四边形的身影。
在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。
在章前图中,你能找出它们吗?在本章,我们将进一步认识这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。
二:讲授新课阅读教材P83-P84内容,思考、讨论、合作交流后完成下列问题:1.什么叫做平行四边形?如何表示一个平行四边形?2.四边形与平行四边形有怎样的从属关系?你能举出生活中的平行四边形的例子吗?3.平行四边形有什么性质?你能证明吗?当堂检测题设计(具体训练题)1.教材P84练习第1,2,3题。
2.如图在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个 B。
5个 C。
8个 D。
9个3.在平行四边形ABCD中,AB的度数之比为5:4,则∠C等于()A.60° B.80° C.100° D.120°【拓展训练】已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形?如果存在,请你作出平行四边形;如果不存在请说明理由。
课堂小结及作业布置小结:通过学习,本节课你学到了哪些知识?与同伴交流一下。
第十九章四边形全章导学案
第十九章四边形平行四边形及其性质(1)主备人:初审人:终审人:【导学目标】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.【导学重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.【导学难点】运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形.【导学流程】一、呈现目标、明确任务1.平行四边形的定义.2.平行四边形性质1 平行四边形的对边相等.3.平行四边形性质2 平行四边形的对角相等.二、检查预习、自主学习1.平行四边形的定义:的四边形叫做平行四边形.通过观察或者度量填写下列空格2.平行四边形的性质1:边的性质:AB‖;BC‖,AB= ;BC=.即:平行四边形对边.3.平行四边形的性质2: 角的性质:∠A= ,∠B= .即:平行四边形对角.三、教师引导例1 如图,小明用一根36厘米长的绳子围成一个平行四边形场地,其中AB边长为8厘米,其它三边长各是多少?这是平行四边形性质的实际应用,题目比较简单,目的就是让学生能运用平行四边形的性质进行有关的计算,可以让学生来解答.四、问题导学、展示交流如图,在平行四边形ABCD中,AE=CF.求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、点拨升华、当堂达标1.填空:(1)在□ABCD中,∠A= ,则∠B= ,∠C= ,∠D= .(2)如果□ABCD中,∠A—∠B=240,则∠A= ,∠B= ,∠C= ,∠D= .(3)如果□ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图,在□ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、布置预习预习下一节,完成练习2题.【教后反思】平行四边形及其性质(2)主备人:初审人:终审人:【导学目标】1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.【导学重点】平行四边形对角线互相平分的性质,以及性质的应用.【导学难点】综合运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形的性质.【导学流程】一、呈现目标、明确任务1.平行四边形的性质.2.平行四边形的性质的应用.二、检查预习、自主学习1. 的四边形叫做平行四边形.平行四边形对边平行且;平行四边形对角.2.展示预习成果,小组内进行交流.三、动手操作学生在纸上画两个全等的□ABCD 和□EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将 □ABCD 绕点O 旋转 ,观察它还和□EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、问题导学、展示交流 例2 在□ABCD 中,AB =10,AD =8,AC ⊥BC ,求BC ,CD ,AC ,OA 的长以及□ABCD 的面积. 讨论上面的问题.五、点拨升华、当堂达标1.已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE =CF ,BE =DF .证明:在 □ABCD 中,∵AB ∥CD ,∴∠1=∠2.∠3=∠4.又∵OA =OC (平行四边形的对角线互相平分), ∴△AOE ≌△COF (ASA ).∴OE =OF ,AE =CF (全等三角形对应边相等). ∵四边形ABCD 是平行四边形, ∴AB =CD (平行四边形对边相等). ∴AB —AE =CD —CF . 即 BE =FD . 2.完成练习1题. 六、布置预习预习《配套练习》“平行四边形(1)(2)”中的选择填空题. 【教后反思】平行四边形的判定(1)主备人: 初审人: 终审人:【导学目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题. 【导学重点】平行四边形的判定方法及应用.【导学难点】平行四边形的判定定理与性质定理的灵活应用. 【学法指导】问题导学、自主学习.【课前准备】如何判定一个四边形是平行四边形. 【导学流程】一、呈现目标、明确任务平行四边形判定方法1 两组对边分别相等的四边形是平行四边形. 平行四边形判定方法2 对角线互相平分的四边形是平行四边形. 二、检查预习、自主学习1.根据定义,什么样的四边形是平行四边形?2.根据判定,什么样的四边形是平行四边形?3.口头交流预习成果. 三、教师引导小明的父亲手中有一些木条,他想通过适当的操作,钉制一个平行四边形框架,你能帮他想出一些办法来吗?1.你能适当选择手中的硬纸板条搭建一个平行四边形吗? (1)用两长两短的四根;(2)用一长一短的两根先问做一个框架,图(1). 2.你怎样验证你搭建的四边形一定是平行四边形?图(2).四、问题导学、展示交流判定定理一:两组对边分别相等的四边形是平行四边形. 判定定理二:对角线互相平分的四边形是平行四边形. 五、点拨升华、当堂达标1.例3 已知:如图□ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形. 提示:可证明三角形全等. 2.完成练习2题.3.在□ABCD 中,对角线AC 与BD 交于O 点,已知点E 、F分别是DBAO、OC的中点,求证:四边形BFDE是平行四边形.4.如图,在□ABCD中,点E、F是对角线AC上的两点,且AE=CF,求证:四边形BFDE是平行四边形.六、布置预习预习下一节,弄懂两个定理,完成练习2题.【教后反思】平行四边形的判定(2)主备人:初审人:终审人:【导学目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的五种判定方法和性质来证明问题.【导学重点】平行四边形各种判定方法及其应用.【导学难点】平行四边形的判定定理与性质定理的综合应用.【学法指导】问题导学、自主学习.【课前准备】明确平行四边形的判定方法.【导学流程】一、呈现目标、明确任务1.(定义法)两组对边分别平行的四边形叫做平行四边形;√2.两组对边分别相等的四边形是平行四边形;√3.两组对角分别相等的四边形是平行四边形;√4.对角线互相平分的四边形是平行四边形.√5.一组对边平行且相等的四边形是平行四边形.二、检查预习、自主学习判定定理:一组对边平行且相等的四边形是平行四边形用几何语言表示:∵_________//____________________=____________∴四边形ABCD是____________.三、自主探究1.取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?2.已知:如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、点拨升华、当堂达标1.在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.2.完成习题19.1中1—4题. 五、布置预习预习习题19.1中1—5题,书面完成5题. 【教后反思】平行四边形的判定(3)主备人: 初审人: 终审人:【导学目标】1.学习三角形的中位线定理.2.学习平行线间的距离. 【导学重点】三角形的中位线定理.【导学难点】三角形的中位线定理定理的综合应用. 【学法指导】问题导学、自主学习. 【课前准备】明确平行四边形的判定方法. 【导学流程】一、呈现目标、明确任务1.三角形的中位线平行于三角形的一边,且等于这边的一半.2.平行线间的距离.二、检查预习、自主学习①三角形中位线:连结三角形两边中点的线段叫做三角形中位线.②三角形中位线定理:三角形中位线______于三角形第三边,且等于它的_____. 三、自主探究1.例4 如课本P88页图,点D 、E 分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE =21BC .提示:通过三角形全等,把要证明的内容转化到一个平行平行四边FF形中,利用平行四边形的性质使问题得到解决.用两种方法证明,图形如右图.2.阅读P89页课文,理解平行线间的距离与证明过程,并讨论、证明:夹在两条平行线间的平行线段相等.四、点拨升华、当堂达标1.将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?2.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.(可以用多种方法证明.)3.完成习题19.1中7,8题.7题,重点根据平行关系找所有的平行四边形,再找线段之间的关系.8题,重点展示运用了什么定理.五、布置预习预习习题19.1中的剩余题目,书面完成6题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.能灵活运用平行四边形的五种判定方法.2.体会平行四边形在生活中的应用.【导学重点】做练习.【导学难点】平行四边形的五种判定方法的灵活运用.【学法指导】小组讨论.【课前准备】平行四边形的判定方法.【导学流程】一、呈现目标、明确任务能灵活运用平行四边形的五种判定方法.二、检查预习、自主学习展示预习成果.重点说说每题的思路. 三、教师引导例:如图,在□ABCD 中,已知∠BAE =∠FCD . 求证:(1)∠FAE =∠FCE ,∠AFC =∠AEC .(2)四边形AECF 为平行四边形. 四、问题导学、展示交流讨论完成习题19.1中6,9,10,13题. 6题,重点证明四边形EBFD 是平行四边形. 9题,要先判定四边形ABCD 是平行四边形. 五、点拨升华、当堂达标 口头证明第11题,或让学生讲解. 六、布置预习1.讨论14题.2.预习矩形,完成练习1,2题. 【教后反思】矩形(1)主备人: 初审人: 终审人:【导学目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 【导学重点】矩形的性质. 【导学难点】矩形的性质的灵活应用. 【学法指导】类比延伸、自主学习. 【课前准备】找些矩形的物体,认识矩形. 【导学流程】一、呈现目标、明确任务1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 二、检查预习、自主学习 1. 平行四边形的特征 如图,在□ABCD 中,①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD =②∵四边形ABCD 是平行四边形∴∠A=∠,∠B=∠③∵四边形ABCD是平行四边形∴AO= = ,BO= = .三、教师引导什么是矩形?举一些例子.四、互动探究1.探究在平行四边形的活动框架上,用橡皮筋做出两条对角线,通过∠α的变化,改变这个平行四边形的的形状,两条对角线的长度怎样变化?当∠α变为直角时,平行四边形成为一个矩形,这时它的其他内角是什么样的角?对角线的长度有什么关系?2.阅读P95页课文,理解定理:直角三角形斜边上的中线等于斜边的一半.五、点拨升华、当堂达标1.已知:矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.2.已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.3.完成练习3题.4.完成习题19.2中1,2题.六、布置预习预习下一节,弄懂两个判定,完成练习2题.【教后反思】矩形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【导学重点】矩形的判定.【导学难点】矩形的判定及性质的综合应用.【学法指导】类比延伸、自主探究.【课前准备】尝试判定矩形.【导学流程】一、呈现目标、明确任务 1.掌握矩形的判定方法.2.能运用矩形的判定方法解决有关问题. 二、检查预习、自主学习1.矩形的判定,课本中讲到了哪几种?2.证明:对角线相等的平行四边形是矩形. 三、教师引导1.下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形; (2)有四个角是直角的四边形是矩形; (3)四个角都相等的四边形是矩形; (4)对角线相等的四边形是矩形;(5)对角线相等且互相垂直的四边形是矩形; (6)对角线互相平分且相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形; (8)一组邻边垂直,一组对边平行且相等的四边形是矩形; (9)两组对边分别平行,且对角线相等的四边形是矩形. 2.完成练习2题.四、问题导学、展示交流如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 上的一点,且AE =BF =CG =DH .求证:四边形EFGH 是矩形. 五、点拨升华、当堂达标1.完成习题19.2中3,4题.2.如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2,它是一个矩形吗?为什么? 六、布置预习预习《配套练习》“特殊的平行四边形(1)(2)”中选择填空题.【教后反思】菱形(1)主备人: 初审人: 终审人:【导学目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算. 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力. 【导学重点】DCBA菱形的性质1、2.【导学难点】菱形的性质及菱形知识的综合应用.【学法指导】类比、延伸.【课前准备】搜集实物理解菱形.【导学流程】一、呈现目标、明确任务1.了解菱形与平行四边形的关系.2.初步认识菱形的特征.二、检查预习、自主学习1.什么是菱形?2.根据探究结果,说说菱形有哪些性质.三、教师引导讨论:知道菱形的两条对角线的长,能求出它的面积吗?试试看.四、问题导学、展示交流讨论课本P98页例2(题略).这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.五、点拨升华、当堂达标1.完成练习2题.2.完成习题19.2中5,6题.3.如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形.六、布置预习1.预习下一节,弄懂菱形的判定,完成练习1题.2. 完成《配套练习》“特殊的平行四边形(3)”中选择填空题.【教后反思】菱形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.AB 【导学重点】菱形的两个判定方法. 【导学难点】判定方法的证明方法及运用. 【学法指导】类比延伸 自主探索. 【课前准备】查阅资料理解菱形的判定方法. 【导学流程】一、呈现目标、明确任务 1.菱形的判定. 2.解决问题.二、检查预习、自主学习 全班展示练习1的预习成果.三、互动探究1.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?2.怎样画一个菱形呢?四、问题导学、展示交流菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形,(2)两条对角线互相垂直.通过教材P99下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、点拨升华、当堂达标1.已知:如图□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.2.如图,在□ABCD 中,对角线AC 平分∠DAB ,这个四边形是菱形吗?简述理由.3.如下图,O 是矩形ABCD 对角线的交点,DE //AC ,CE //BD ,试说明四边形OCED 是菱形.3.如上页图,△ABC 的平分线AD被EF 垂直平分,且E 、F 分别在AB 、AC 上,四边形AEDF 是菱形吗?为什么?EDA A4.如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.六、布置预习预习下一节,弄懂正方形的所有判定定理,完成《配套练习》“特殊的平行四边形(4)”中选择填空题.正方形主备人:初审人:终审人:【导学目标】1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.【导学重点】正方形的定义及正方形与平行四边形、矩形、菱形的联系.【导学难点】正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.【学法指导】类比延伸.【课前准备】查资料理解正方形,找实物帮助理解.【导学流程】一、呈现目标、明确任务了解正方形与平行四边形的关系;认识正方形的特征.二、检查预习、自主学习1、正方形的定义:矩形是的平行四边形,菱形是平行四边形,而有一个角是直角,且有一组邻边相等的是正方形.2、正方形的性质:(在旁边空白处画一个正方形,并能过观察或度量归纳正方形的特征)(1)边:.(2)角:.(3)对角线:.三、教师引导做一做并讨论:用一张长方形的纸片(如图所示)折出一个正方形.如果一一块木板呢?四、问题导学、展示交流①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?五、点拨升华、当堂达标1.例4 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.2.已知:正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG 交OA于F.求证:OE=OF.3.如图,以等边△ABC的边AC为一边,向外作正方形ACDE,试说明∠DBE=30°.4. △ABC中,∠ACB=90°,CD平分∠ACB,DE⊥B C,DF⊥AC,垂足分别为E、F.求证:四边形CFDE是正方形.六、布置预习预习习题19.2中剩余题目,书面完成13题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.熟练掌握平行四边形、矩形、菱形、正方形的性质.2.熟练掌握平行四边形、矩形、菱形、正方形的判定. 【导学重点】做练习.【导学难点】灵活运用特殊平行四边形的性质和判定解决问题.【学法指导】类比、联想.【课前准备】特殊平行四边形的性质和判定.【导学流程】一、呈现目标、明确任务运用特殊平行四边形的性质和判定解决问题.二、检查预习、自主学习展示预习成果,可由学生讲解.三、教师引导判断下列命题是真命题还是假命题?假命题请举出反例.(1)四条边相等且四个角也相等的四边形是正方形;E(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;四、问题导学、展示交流在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.五、点拨升华、当堂达标讨论习题19.2中8—12题.8题,可以考虑四角,为此可以考虑剪掉的形状和剩余的外围形状.9题,先按比例求角的大小.10题,可以考虑所有边长,也可以同时考虑边和角.六、布置预习1.小组讨论剩余题目.2.预习梯形,弄懂性质,完成练习1题.【教后反思】梯形(1)主备人:初审人:终审人:【导学目标】1.探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.2.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.【导学重点】等腰梯形的性质及其应用.【导学难点】解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线). 【学法指导】类比延伸.【课前准备】查资料理解梯形.【导学流程】一、呈现目标、明确任务能够运用梯形的有关概念和性质进行有关问题的论证和计算.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题.二、检查预习、自主学习1.梯形: 的四边形叫做梯形. 3.等腰梯形:两腰______的梯形是等腰梯形. 3.直角梯形:有一个角是_______的梯形是直角梯形. 三、教师引导右图中,有你熟悉的图形吗?它们有什么共同的特点? 一组对边平行而另一组对边不平行的四边形叫做梯形. 这里,梯形与平行四边形的区别和联系;上、下底的概念是由底的长短来定义的,而并不是指位置来说的.四、问题导学、展示交流1.等腰梯形是轴对称图形吗?对称轴在哪里?有那些相等的线段?2. 梯形ABCD 中,AB =DC ,则梯形ABCD 的四个内角之间存在什么关系?借助右图说明理则由.3.例1课本P107页,题略.4.如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,AD =6cm ,BC =15cm .求CD 的长.可按照右图添加辅助线. 五、点拨升华、当堂达标1.完成练习2题.2.完成《配套练习》“梯形(1)”中选择填空题. 六、布置预习预习本节剩余内容,弄懂梯形的判定,完成练习3题.梯形(2)主备人: 初审人: 终审人:【导学目标】1.掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法及其证明. 2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【导学重点】找实物,查资料理掌握等腰梯形的判定方法并能运用. 【导学难点】添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【学法指导】等腰梯形判定方法的运用. 【课前准备】类比延伸解梯形.CEF【导学流程】一、呈现目标、明确任务梯形的判定.二、检查预习、自主学习1.等腰梯形是的对称轴有___条.2.已知:梯形ABCD中,AB=DC,则梯形ABCD的四个内角之间存在什么关系?请说明理由.3.在图中画出等腰梯形的对角线AC与BD,请问AC与BD之间存在什么关系?你能说明理由吗?4.展示预习成果.三、教师引导前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?命题:同一底上的两个角相等的梯形是等腰梯形.这个命题是否成立?怎样证明?四、问题导学、展示交流自学课本P108页的例2.五、点拨升华、当堂达标1.证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.2.完成习题19.3中1—4题.六、布置预习1.预习习题19.3中剩余题目,书面完成2题.2.完成《配套练习》“梯形(2)”中选择填空题.【教后反思】练习课主备人:初审人:终审人:【导学目标】复习梯形的性质和判定.【导学重点】做练习.【导学难点】灵活运用所学知识解决问题.【学法指导】类比、推理.【课前准备】梯形的性质和判定. 【导学流程】一、呈现目标、明确任务 复习梯形的性质和判定.二、检查预习、自主学习展示预习成果,重点说说解题思路. 三、问题导学、展示交流 1.如图,在梯形ABCD 中,若△AOB ,△COD 是等腰三角形,则梯形ABCD (填“是”或“不是”)等腰梯形,理由是: . 2.如图,△ABC 中,AB =AC ,DE ∥BC .则四边形DBCE ,(填“是”或“不是”)等腰梯形,理由是: .3.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,BC =BD ,∠A =120°,则 ∠ABC =∠C =∠ADC = .4.如图,在梯形ABCD 中,BC ∥AD ,DE ∥AB ,DE =DC ,∠A =100°,试求梯形其他三个内角的度数,请问此时ABCD 为等腰梯形吗?说说你的理由.四、点拨升华、当堂达标讨论习题19.3中5—8题. 五、布置预习1.讨论剩余题目,重点完成9题.2.预习P117页“中点四边形”,任选一图形进行证明. 【教后反思】中点四边形及梯形的中位线主备人: 初审人: 终审人:【导学目标】1.在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素.2.理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学重点】理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学难点】在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素. 【学法指导】BC。
八年级数学:平行四边形的性质导学案
八年级数学:平行四边形的性质导学案下面是查字典数学网为您推荐的平行四边形的性质导学案,希望能给您带来帮助。
平行四边形的性质导学案【学习目标】:1.平行四边形性质(对角线互相平分)2.平行线之间的距离定义及性质【新课探究】:活动一:如图,□ABCD的两条对角线AC、BD相交于点O.(1)图中有哪些三角形是全等的?有哪些线段是相等的?(2)想办法验证你的猜想?(3)平行四边形的性质:平行四边形的对角线几何语言:∵四边形ABCD是平行四边形(已知)AO= = AC,BO= = BD( )活动二:如图,直线∥ ,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.(1) 线段AC,BD有怎样的位置关系?(2) 比较线段AC,BD的长短.(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。
平行线之间的垂线段处处.【知识应用】:1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC= ,BD=2.如图,四边形ABCD是平行四边形,DBAD,求BC,CD 及OB,OA的长.3. 已知□A BCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是【当堂反馈(小测)】:1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知ODA=90,OA=6cm,OB=3cm ,求AD、AC的长3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm, (x-4)cm,16cm,这个平行四边形的周长是多少?【巩固提升】:1.平行四边形的两条对角线2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC= ,BD=3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是4、下列性质中,平行四边形不一定具备的是( )A、对角互补B、邻角互补C、对角相等D、内角和是3605、下列说法中,不正确的是( )A、平行四边形的对角线相等B、平行四边形的对边相等C、平行四边形的对角线互相平分D、平行四边形的对角相等6、如图,在□ABCD中,,已知BAC=90,OB=8cm,OA=4cm ,求AB、BC的长7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35 cm,求AC+BD 的长。
八年级《平行四边形的性质》导学案
八年级数学 SX—17—08——016《平行四边形的性质》导学案编写人:审核人:编写时间:姓名: 班级: 组别: 组名:【学习目标】1、学习平行四边形的定义,掌握平行四边形的性质,并能进行有关的论证。
2、理解平行四边形中心对称的特征,能综合运用性质解决有关计算问题。
【重点难点】重点:能应用平行四边形的定义及性质进行有关的论证和计算。
难点:能用规范、简明的几何语言对平行四边形的性质进行表述和论证。
【知识链接】2.三角形全等的五种判断方法。
3.多边形的内角和定理。
【学习过程】请先阅读课本P83—86的内容,尝试完成下面问题。
知识点一:平行四边形的定义及性质。
问题1、平行四边形是我们常见的图形,什么叫平行四边形?问题2、平行四边形的对角相等吗?对边相等吗?请你先画出图形,写出已知、求证,并验证。
问题3、以平行四边形为例说明什么是中心对称图形?(阅读课本P85探究)请你结合右图利用三角形的全等来证明:“平行四边形的对角线互相平分”,这条性质。
知识点二:平行四边形性质的应用问题1、如图,在中,AB=10,AD=8,AC⊥BC,求BC,CD,AC,OA的长及面积。
问题2、如图,已知的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交点E、F。
求证:OE=OF【基础达标】(A级)1、已知平行四边形相邻两角度数之比为3:2,则这个平行四边形四个内角的度数分别是 。
(B 级)2、已知在平行四边形ABCD 中,AB=6cm ,AB 的长是平行四边形ABCD 周长的163,则BC=(C 级)3、已知在平行四边形ABCD 中,AC 与BD 相交于点O ,且两条对角线长的和为36cm ,AB 的长为5cm ,则△OCD 的周长为 。
(C 级)4、如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A 、4cmB 、6cmC 、8cmD 、10(D 级)5、如图,已知平行四边形 ABCD 中,E 为AD 中点,CE 交BA 的延长线于点F 。
平行四边形性质导学案
19.1 平行四边形及其性质(1)导学案学习目标:1.使学生掌握平行四边形的概念及性质定理,并能运用这些知识进行有关的证明或计算.2.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想;通过推导平行四边形的性质定理的过程,培养学生的推理、论证能力和逻辑思维能力.3.通过要求学生书写规范,培养学生科学严谨的学风;渗透几何方法美和几何语言美及图形内在美和结构美.学习重点:平行四边形性质定理的应用学习难点:在计算或证明中应用平行四边形概念、性质的知识.疑点及解决办法:注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系.教学过程:一、自主预习,引入新课。
1、平行四边形是我们常见的图形,庭院的竹篱笆、载重汽车的防护栏、小区的伸缩门等,都是平行四边形的形象。
你能再举出一些例子吗?2、平行四边形的定义:有___________分别_________的_________叫做平行四边形,用符号________表示。
如右图,平行四边形ABCD记作。
3、如右图,由平行四边形的定义,我们知道平行四边形的两组对边分别平行,用符号语言表示为:∵∴二、合作交流,探究性质1、提出问题:平行四边形还有什么性质呢?2、探究:(1)根据定义画一个平行四边形,观察除了“两组对边分别平行”外,它的边、角之间还有什么关系?(2)度量一下,是不是和你的猜想一致?(3)平行四边形具有以下性质:平行四边形的对边____________;平行四边形的对角____________。
(4)你能证明你发现的上述结论吗?(提示:连接对角线把未知问题转化为已知的三角形全等问题)已知:求证:证明:(5)结合上图,用符号语言表示上述性质为:平行四边形的对边相等平行四边形的对角相等∵∵∴∴三、典型例题,初步应用如右图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三边的长各是多少?AB C DAB CD(图3)四、课堂练习,熟练性质1、 ABCD 中,AB=5, BC=3, 则它的周长为_________。
四边形导学案(精品学案)
19.1.1平行四边形的性质.1执笔:李晓萍一.温故知新:1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。
2.如图□ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
二.学习新知:1.自学课本P 83~P 84,填空:平行四边形的性质(1)边:_________________________________________________________ (2)角:_________________________________________________________例:□ABCD 中,如果AB ∥CD ,那么AB =______,BC =______,∠A =______,∠B =______. 2.看例1,完成课本P 84的练习. 三.释疑提高:1.□ABCD 中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.2.□ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长是__________.3.如图,在□ABCD 中,M 、N 是对角线BD 上的两点,BN=DM ,请判断AM 与CN 有怎样的数量关系,并说明理由.它们的位置关系如何呢?NMDB A4.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60°,BE =2cm ,DF =3cm ,求□ABCD 的周长和面积. 若问题改为CF =2cm ,CE =3cm ,求□ABCD 的周长和面积.FE DCB A5.□ABCD 中,E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.FED CB A四.小结归纳:五.巩固检测1.课本P90—1、22.课堂作业19.1.1平行四边形性质119.1.1平行四边形的性质.2执笔:李晓萍一.温故知新:1.平行四边形的定义是:_______________________________________________.2.所学平行四边形的性质有:平行四边形的对边______________,平行四边形的对角______________.3.如图,在□ABCD 中,BC=2AB ,M 是AD 的中点,则∠BMC =___________. 二.学习新知:1.自学课本P 85~86内容,填空:平行四边形的又一个性质是:______________________________,当图形中没有平行四边形的对角线时,往往需作出对角线. 由此得到平行四边形的性质有:(1)边:_____________ (2)角:_____________ (3)对角线:_____________ 2.看例2,完成课本P 86的练习. 三.释疑提高:1.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.5. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .FE D CBA6.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.DCBA四.小结归纳:五.巩固检测1.作业精编19.1.12.课堂作业19.1.1平行四边形性质2M D C B A O DCB A19.1.2平行四边形的判定自学路线图1一.温故知新1.如图在平行四边形ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .2.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,已知AE =4,AF =6,□ABCD 的周长为40,试求□ABCD 的面积。
平行四边形性质导学案
编号:SX-11-02-0 班级: 学生姓名: 第 页《平行四边形性质》导学案 【学习目标】:知识目标要求理解平行四边形的有关概念;探索并掌握平行四边形的对边相等,对角相等等性质.能力训练要求1. 动手操作实践的过程中,探索发现平行四边形的性质.2. 知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想.3. 通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力. 情感与价值观要求1. 探索平行四边形性质的过程中,感受几何图形中呈现的数学美.2. 在进行探索的活动过程中发展学生的探究意识,养成合作交流的学习习惯. 【重点难点】:探索平行四边形的性质. 平行四边形性质的理解与应用. 【学习过程】: 【基础知识】1.平行四边形的定义: 做平行四边形2.平行四边形的性质:在□ABCD 中,AC 与BD 相交于O 点. 则: ①平行线有:AB ∥ , AD ∥ 。
②相等的线段有:AB= ,AD= ,AO= ,OD= . ③相等的角有:∠BAD= ,∠ABC= .④全等三角形:△ABC ≌ ,△AOB ≌ ,△BCD ≌ ,△BOC ≌ 【A 层题】1.在□ABCD 中,AB =3,BC =4,则□ABCD 的周长等于_______.2.ABCD 中,若∠A ∶∠B =1∶3,那么∠A =____,∠B =_____,∠C =_____,∠D =_____.3.已知□ABCD 中,∠B =70°,则∠A =______,∠C =______,∠D =______. 4平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定 5.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶16.在□ABCD 中,∠A 、∠B 的度数之比为5∶4,则∠C 等于( )A.60°B.80°C.100°D.120°7..如图,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32°(7题)8.如图:在□ ABCD 中,已知∠B+∠D=100°,求∠A ,∠B,∠C,∠D的度数。
平行四边形性质(第2课时)导学案 (修改版)
课题:平行四边形及其性质(导学案)(第2课时)班级: 姓名: 一、学习目标:1.理解平行四边形 对称的特征,掌握平行四边形对角线互相 的性质.2.能综合运用平行四边形的性质解决平行四边形的有关 和证明.3.培养学生的 推理 论证能力和逻辑 思维 能力. 二、重点、难点:(1) 重点:平行四边形对角线互相 的性质,以及性质的应用. (2) 难点:综合运用平行四边形的性质进行有关的论证和计算. 三、学法指导:本节课将通过“演示—思考—探究--讨论—归纳—应用--展示”来完成学习任务。
四、导学过程:(一),温故知新: 1.复习提问:(1) 的四边形是平行四边形。
四边形与平行四边形的关系是 。
(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等. (二)、课堂展示:(探索平行四边形的性质及其证明)请学生在纸上画两个全等的ABCD 和EFGH ,并连接对角线AC 、BD 和EG 、 ,设它们分别交于点O .把这两个平行四边形重叠在一起,在点O 处钉一个图钉,将ABCD 绕点O 旋转︒180,观察它还和EFGH 重合吗?(填重合 或不重合)进一步,我们还能发现平行四边形的对角线有性质是 (用文字说明)结论:(1)平行四边形是 对称图形,两条对角线的交点是 ; (2)平行四边形的对角线互相 .用符号语言表示为:如图在EFGH 中EG 、HF 交与O 点∴OH= ,GO= . 3.性质的证明:已知:如图: ABCD 的对角线AC 、BD 相交于点O. 求证:OA=OC ,OB=OD. 总结:由此得到平行四边形的性质有:(1)边:___________(2)角:____________ (3)对角线:________ (三)、例题分析:例1已知四边形ABCD 是平行四边形,AB =10,AD =8,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.例2 已知:如图4-21, ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.请你利用图(b )来证明。
部编人教版数学八年级下册《平行四边形的性质(一)》优秀导学案
五、课堂小测(约 5 分钟) 1.已知:
ABCD 中,∠A=100°,你能求出其他各角的
度数吗?说说你的理由. 2.如图,四边形 ABCD 是平行四边形, 则: 1)∠ADC= ∠BCD= 2)边 AB= , ; ; ;
BC =
$18.1.1 平行四边形的性质(一)导学案学习活动 3.求如图所示的源自行四边形 ABCD 的面积. 设计意图
同伴互助 答疑解惑
示使学生学会用文字语言、图形 语言、符号语言来描述。
A
设计意图
$18.1.1 平行四边形的性质(一)导学案
学习活动 ◆如图,平行四边形 ABCD,记作 ABCD , ◆根据定义画出平行四边形,得到图形语言 ◆还可以用符号语言来描述平行四边形的定义: AB//CD AD//BC
四边形 ABCD 是平行四边形
A
1
4
D
2 3
B
C
◆分析:解决四边形问题的常用方法:转化为三角形的问 题。
$18.1.1 平行四边形的性质(一)导学案
学习活动 ◆证明方法(运用投影) :略 (7)平行四边形性质的几何表述: ∵四边形 ABCD 是平行四边形, ∴①AB=CD,AD=BC ∴②∠A=∠C ∠B=∠D 四、归纳总结巩固新知(约 15 分钟) 1、知识点的归纳总结: (1)定义:有两组对边分别平行的四边形叫做平行四边形 (2)两条平行线中,一条直线上的任意一点到另一条直线 设计意图
(6)探索平行四边形的性质 ◆由定义可知平行四边形的对边平行 ◆质疑:平行四边形除以上性质外还有其他性质吗?鼓励 学生大胆猜想(提示:请学生仿照三角形的学习方法从边 和角去探索) 第一步:猜想边和角之间的数量关系(对边相等,对角相 等) 第二步:小组合作学习探索:让各组学生画平行四边形, 用测量、旋转、平移、推理等方法验证上面的猜想. ◆小组汇报发现: 平行四边形的对边相等 平行四边形的对角相等 ◆推理: (如何证明上述结 论?) 已知: □ABCD 求证:①AB=DC AD=BC ②∠A=∠C ∠B=∠D
19.1.1导学案
重
点
会用平行四边形的性质解决简单问题,并能进行有关的论证.
难
点
探索平行四边形的有关概念和性质,经历数学建模过程,培养学生的动手能力、观察能力及推理能力。
学习ቤተ መጻሕፍቲ ባይዱ法
自主学习和合作探究
温故知新:
1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。
四.小结归纳:平行四边形性质:1.
2
五.巩固检测
1.课本P90—1、2
2练习册平行四边形性质(1)
导学案设计
题目
19.1.1平行四边形的性质.1
总课时
1
学校
星火一中
教者
杨玉杰
年级
八年
学科
数学
设计来源
自我设计
教学时间
学
习
目
标
知识技能
理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
过程方法
探索平行四边形的有关概念和性质,经历数学建模过程,培养学生的动手能力、观察能力及推理能力。
情感态度价值观
证明:
(2)角:_________________________________________________________
证明:
2.看例1,完成课本P84的练习.
三.释疑提高:
1.□ABCD中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.
2.□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长是__________.
2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
初二数学:平行四边形的性质导学案
初二数学:平行四边形的性质导学案下面是查字典数学网为您举荐的平行四边形的性质导学案,期望能给您带来关心。
平行四边形的性质导学案【学习目标】:1.平行四边形性质(对角线互相平分)2.平行线之间的距离定义及性质【新课探究】:活动一:如图,□ABCD的两条对角线AC、BD相交于点O.(1)图中有哪些三角形是全等的?有哪些线段是相等的?(2)想方法验证你的猜想?(3)平行四边形的性质:平行四边形的对角线几何语言:∵四边形ABCD是平行四边形(已知)AO= = AC,BO= = BD( )活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.(1) 线段AC,BD有如何样的位置关系?(2) 比较线段AC,BD的长短.(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,那个距离称为平行线之间的距离。
平行线之间的垂线段处处.【知识应用】:1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC= ,BD=2.如图,四边形ABCD是平行四边形,DBAD,求BC,CD及OB,OA 的长.3. 已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是【当堂反馈(小测)】:1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知ODA=90,OA=6cm,OB=3cm ,求AD、AC的长3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+ 3)cm, (x-4)cm,16cm,那个平行四边形的周长是多少?【巩固提升】:1.平行四边形的两条对角线2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC= ,BD=3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是4、下列性质中,平行四边形不一定具备的是( )A、对角互补B、邻角互补C、对角相等D、内角和是3605、下列说法中,不正确的是( )A、平行四边形的对角线相等B、平行四边形的对边相等C、平行四边形的对角线互相平分D、平行四边形的对角相等6、如图,在□ABCD中,,已知BAC=90,OB=8cm,OA=4cm ,求AB、BC的长7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35 cm,求AC+BD的长。
(2021年整理)19.1.1平行四边形的性质2导学案
19.1.1平行四边形的性质2导学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(19.1.1平行四边形的性质2导学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为19.1.1平行四边形的性质2导学案的全部内容。
19。
1.1平行四边形的性质(2)导学案学习目标:1.掌握平行四边形对角线互相平分的性质.2。
能运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.学习重难点:重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的证明和计算.学习过程一、自主学习:1.填空:(1)有两组 分别平行的四边形叫做平行四边形;(2)平行四边形的对边 ,2.填空:(1)如图,∠1是 ABCD 的一个外角, ∠1=38°,则∠2= °,∠A= °,∠B= °,∠D= °.(2)的周长为12,BC=2AB ,则CD= ,AD= 。
二、合作探究1、在本子上画一个平行四边形,并把它表示出来。
2、画出平行四边形的两条对角线。
3、用一张半透明的纸复制你刚才画的平行四边形,并将复制后的平行四边形绕对角线的交点旋转180度,你有什么发现? 1) 2)4。
下面就请同学们自己来完成下面的证明过程。
DA B CD A B CD证明平行四边形的对角线互相平分.中,对角线AC、BD相交于点O,求证:OA=OC,OB=OD.5. 写出平行四边形的所有性质:1) 2)3)三、巩固练习:课本P86练习四、课堂小结:完成《易百分》P50目标梳理五、课后反思:。
平行四边形的性质一导学案教案
平行四边形的性质一导学案教案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】平行四边形的性质(1) 【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等) 【回顾与思考】: 活动一: 准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.(1)你得到了怎样的四边形?与同伴交流一下(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系为什么(3)平行四边形的定义: 的四边形叫做平行四边形.平行四边形 连成的线段叫做对角线如图,四边形ABCD 是平行四边形,记作” ”活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角为什么(2)平行四边形的性质:平行四边形的对边平行四边形的对角 几何语言:∵四边形ABCD 是平行四边形(已知)∴AB= ,BC= ( )∠A = ,∠B = ( )【知识应用】:1. □ABCD 中,AB=3,BC=5,则AD= CD= 。
2. □ABCD 中,∠B=60°,则∠A= ,∠C= ,∠D= 。
3. 如图:四边形ABCD 是平行四边形。
A B C(1)边AB、BC的长度(2)求∠D、∠C度数。
【当堂反馈(小测)】:1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。
6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数【巩固提升】:1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。
平行四边形的性质
19.1.1平行四边形的性质(1)导学案一、学习目标:理解并掌握平行四边形概念和平行四边形对边、对角相等的性质.重点:平行四边形的边角性质及应用.难点:运用平行四边形的性质进行有关的论证和计算.二、自主学习:阅读P83—84页回答下列问题:(学生先自学、后交流,教师给予引导和肯定)1. 说明我们见过的四边形有:___________________________________________2.说明什么是平行四边形及表示方法:____________________________________3.按P83页探究说明进行操作(图画在练习本上)和思考,得到结论是: ___________________________________4.证明命题:“平行四边形的对边相等、对角相等”(注意:把文字命题转化图形语言和符号语言及证明书写过程). 已知:如图ABCD ,(从写已知开始到证明结束全是解题过程)求证:AB =______,CB =______,∠B =∠_______,∠BAD =____________.<分析:作ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形全等即可得到结论.作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题>.证明:连接AC ,∵ AB ∥CD ,AD ∥BC ,∴ ∠1=_______,∠2=_______.又 AC =CA ,∴ △ABC ≌△CDA (_______).∴ AB =_______,CB =_______,∠B =_______.又 ∠1+∠4=∠_______+_______,∴ ∠BAD =∠_______.(学生展示证明过程)5.仔细研读P84页例1,与同学说明例题解题过程每一步的根据.三、(当堂练习:先做后教)6.填空:(1)如图,在ABCD 中,∠A=120°,则 ∠C= °,∠B= °,∠D= °;(2) ABCD 中,AB=5,BC=3,则它的周长= ; (3)如图, ABCD 的周长为36,AB=8,则DC= ,BC= ,AD= .(4)在ABCD 中,∠A= 50,则∠B= 度,∠C= 度,∠D= 度. A B C D(5)如果ABCD中,∠A—∠B=240 ,则∠A= °,∠B= °,∠C= °,∠D= °(6)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.7.如图,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.四、收获和体会:(本节课主要学习了平行四边形的定义及两条性质)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3经过思考,你发现平行四边形都有哪些性质了吗?
4如何理解两条平行线间的距离。
5夹在两条平行线间的平行线段有什么关系?。
6平行四边形是图形,两条对角线的是对称中心;
能力训练:
一选择题:
1在下列图形的性质中,平行四边形不一定具有的是().
(A)对角相等(B)对角互补(C)邻角互补(D)内角和是
19.1.平行四边形的性质(导学案)
1
教学目标
知识与技能
1、理解并掌握平行四边形的定义,平行四边形的性质定理.
2、理解两条平行线的距离的概念和平行四边形中心对称的特征
3、培养学生能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
过程与方法
经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。
(1)的结论是否成立,说明你的理由.
课堂小结:
巩固作业:教科书100页4题、5题、6题。
预习先由学生自主完成,完成不了的在课上组内交流。
阐述本节课的学习流程及要求
(课上教师巡视,发现学生存在的问题,针对共性问题,教师可适当点明)
展示课上:给学生分好展示内容
追问:平行四边形的性质是按什么分成几条的?
预见性问题:强调平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.
平行四边形邻角互补
强调:(1)两相交直线无距离可言
(2)与两点的距离、点到直线的距离的区别与联系
巡视,同时注意学生的讲解,
教师随时对讲解不到位的地方加以提示或讲解重点
针对知识点体现明显的地方,或理解不到位的题,要求学生分析出重点,难点,易错点,
追问:
平行四边形的高如何画?其面积公式是什么?
教师整理出一种推导平行四边形性质的范式
几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证
有利于培养学生观察、分析、猜想、归纳知识的自学能力.
展示课上,按照下分的内容组内分析如何讲好自己的任务,才能让同学们尽块明白,报告展现自己和组内的风采
2.如图,在 ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
二填空:
1(1)在 ABCD中,∠A= ,则∠B=度,
∠C=度,∠D=度.
(2)如果 ABCD中,∠A—∠B=240度,
则∠A=度,∠B=度,∠C=度,∠D=度.
情感态度与价值观
培养学生勇于探索的思想意识和严谨的推理能力,及合作交流的习惯,体会几何知识的内涵与实际应用价值。
重点
平行四边形的定义,平行四边形的性质,以及性质的应用.
难点
运用平行四边形的性质进行有关的论证和计算.
教学过程
教学内容
学生活动
教师活动
教学设计
预习知识:
1你知道什么样的四边形是平行四边形吗?
教师适当的说明如何审题,让学生会找问题中的关键字
强调板书及格式
指导订正
适当的引导,启发
重点地方适当讲解
提示,启发
预习以问题引领形式出现,让学生思考,避免知识平移
让学生明确本节课内容
组内解决部分疑难
培养学生分析问题能力和合作精神
通过追问明确平行四边形的性质性质的理解
这几道题是基础知识的应用,意在检查学生掌握的情况,同时师生共同解决共性疑难问题,加深学生的理解和印象
通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识
初步达到演的绎数学论证过程能力
它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答
并算出绿地的面积.
能力提升
1已知:如图(a), ABCD的对角线AC、
BD相交于点O,EF过点O与AB、CD分别
相交于点E、F.
(1)求证:OE=OF,AE=CF,BE=DF.
.
(2)若例1中的条件都不变,将EF转动到
图b的位置,那么(1)的结论是否成立?
若将EF向两方延长与平行四边形的
两对边的延长线分别相交(图c和图d),
3.如图,在 ABCD中,AC为对角线,BE⊥AC,
DF⊥AC,E、F为垂足,求证:BE=DF.
4如图,AD∥BC,AE∥CD,BD平分∠ABC,
求证AB=CE.
5.公园有一片绿地,它的形状是平行四边形,
绿地上要修几条笔直的小路,如图,AB=15cm,
AD=12cm,AC⊥BC,求小路BC,CD,OC的长,
(3)在 ABCD中,若∠A:∠B=2:3,求∠C=,∠D=。
(4)如果 ABCD的周长为28cm,且AB:BC=2∶5,
那么AB=cm,BC=cm,CD=cm,CD=cm.
2.如图, ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,
AC+BD=14cm,则△OBC的周长是_______cm.
3. ABCD一内角的平分线与边相交并把这条边分成 ,
的两条线段,则 ABCD的周长是_____ .
4如图, . ABCD的周长为36 cm,AB=8 cm,BC=;
当∠B=60°时,AD,BC的距离AE=
. ABCD的面积=。
5在 ABCD中,AC=6、BD=4,
则AB的范围是________.
6在 ABCD中,已知AB、BC、CD三条边的
长度分别为(x+3),(x-4)和16,则这个四边形的周长是.
三解答题。
1.在平行四边形中,周长等于48,
(1)已知一边长12,求各边的长。
(2)已知AB=2BC,求各边的长。
(3)已知对角线AC、BD交于点O,△AOD与
△AOB的周长的差是10,求各边的长。
2在平行四边形ABCD中,AE=CF,
求证:AF=CE.
(简单内容可以对答案或不展示)
各组进行展示
学生在展示时如果错了,其他组可以补充讲解
分析题中的重难点,易错点
讲解展示
分析展示,
针对错误地方,可以指导订正
可以组内组外共同进行
由学生完成
反思: