汽车专业英语读译教程参考译文-课文C-UNIT13TEXTC
《汽车专业英语读译教程》---UNIT 1 TEXT A
第1单元汽车基础课文A 汽车的基本组成今天的一般汽车含有15000多个相互独立的零件,这些零件必须相互配合才能工作。
这些零件可以被划分为四大类:发动机、车身、底盘和电气设备。
1.发动机发动机是汽车的动力装置。
内燃机是最常见的动力装置,它使燃料在气缸内燃烧,从而获得动力。
发动机有两种类型:汽油机(也叫做点燃式发动机)和柴油机(也叫做压燃式发动机)。
这两种发动机均被称为热机。
燃料的燃烧产生了热量,这将导致气缸内的气体压力的升高,从而带动与变速器相连接的一根轴旋转。
所有的发动机都设有燃料供给系统、排气系统、冷却系统和润滑系统。
汽油机还设有点火系统。
点火系统的作用是提供点燃气缸内的空气-燃油混合气必须的电火花。
当点火开关接通时,电流从12V蓄电池流到点火线圈。
点火线圈将电压提高,以便产生点燃燃料所必须的20000V的高电压。
汽车通过其电气系统提供它所需要的全部电流。
例如,汽车电气系统要为点火系统、喇叭、车灯、加热器和起动机提供电流。
电压的高低由充电系统来维持。
燃料系统贮存液体燃料,并将液体燃料输送给发动机。
燃料贮存在燃油箱内,燃油箱通过燃油管与燃油泵相连。
在燃油泵的作用下,将燃料从燃油箱吸上来,并通过燃油管,穿过滤清器,到达化油器(在这里,燃料与空气进行混合),或者进入燃油喷射系统。
燃料在化油器内、进气歧管内或者就在各个气缸内与空气混合,从而形成了可燃混合气。
冷却系统将多余的热量从发动机上搬走。
发动机燃烧室内的温度约为2000℉(1094℃)。
由于钢铁在大约2500℉(1354℃)时就会熔化,为了防止发动机损坏,必须将这些热量移走。
散热器内充满冷却液,水泵将使这些冷却液反复通过发动机气缸体和气缸盖内的空心薄壁层。
冷却液不停地流过发动机和散热器,从而将发动机的热量散发出去。
也可以通过散热器风扇将热量散发掉,因为风扇能使空气从散热器叶片的狭小缝隙中穿过。
冷却系统还能为乘客舱和车窗除霜器提供热量。
润滑系统对保持发动机平稳运转极为重要。
汽车专业英语课文翻译1
Types of Automobiles汽车的类型The automobile industry is a fast developing industry. Form the later 18th century when the first automobile was put on road, this industry has developed tremendously. Now there are thousands of factories all over the world manufacturing numerous types of automobiles. This industry employs crores of men and women directly and indirectly in allied industries. The automobile engines are also being used in engine powered machines for agriculture, construction and manufacturing processes. Various types of small engines are also being used in lawn movers, power saws, snow removers and similar equipment. The automobile industry is a developing and demanding industry which does not find its end or saturation point. There is a great demand for varied types of automotive products, vehicles and engines. There is also a great demand for trained and experienced persons in this industry for diagnosing motor vehicle troubles, repairing and replacing engines components, transmissions, propeller shafts, differentials, axles, steering system components, brake system components, suspension components, air conditioners, heaters, body and glass work.汽车产业是一个迅速发展的行业。
汽车专业英语翻译
汽车专业英语翻译Unit 1 Automotive BasicsAutomobiles, trucks, and buses are essential forms of transportation. They are complex machines made up of many parts. These parts can be grouped into a number of systems. An understanding of how the system work will help you understand how the automobile works.轿车、卡车和客车是交通运输的重要组成部分。
它们都是由许多部件组成的复杂机器。
这些部件可以归类为汽车的几个组成系统。
了解这些各个小系统是如何工作的将有助于我们理解整个汽车系统是如何工作。
An automobile can be divided into two basic parts: a body and a chassis. The body is the enclosure that houses the engine, passengers, and cargo. It is the part of the automobile that you see. The chassis is that part of the automobile beneath the body.汽车可以分为两个基本部分:车身和底盘。
车身包围发动机、乘客和行,它是汽车你所看到的部分。
而车身以下的部分就是底盘。
An automobile body is a sheet metal shell with windows, doors, a hood, and a trunk deck built into it. It provides a protective covering for the engine, passengers, and cargo. The body is designed to keep passengers safe and comfortable. For example, insulation in the body reduces noise and protects against heat and cold. The body styling provides an attractive, colorful, modern appearance for the vehicle. It is streamlined to lessen wind resistance and to keep the car from swaying at driving speeds.轿车车身是一个钣金件壳体,它上面有车窗、车门、发送机罩和行舱门等部件,它给发动机、乘客和行提供防护。
汽车专业英语全文翻译
汽车工程专业英语全文翻译一当今的汽车一般都由15000多个分散、独立且相互配合的零部件组成..这些零部件主要分为四类:车身、发动机、底盘和电气设备..Body:车身Engine:发动机Brakes:制动器Power train:传动系Steering:转向系Electrical:电器及电子设备Suspension:悬架Layout of a passenger car:乘用车总布置Layout of a commercial vehicle:商用车总布置1.1 车身汽车车身是由车窗、车门、发动机罩和行李箱盖焊接在金属板外壳发动机发动机作为动力装置..最常见的发动机气缸的排列方式称为发动机配置..直列式发动机的汽缸呈一列布置..这个设计创造了一个简单的发动机缸体铸造..在车辆应用中;汽缸数一般是2-6缸;汽缸中心线与水平面垂直..当汽缸数增多时;发动机尺寸和曲轴就成为一个问题..解决这个问题的办法就是采用V形汽缸呈两列布置;且两列气缸之间夹角为V形发动机..这个设计使发动机尺寸和曲轴都变得更短且更坚硬.. 前置发动机纵向安装;既可前轮驱动也可后轮驱动..后置发动机是将发动机安装在后轮后面..发动机可横置或纵置;一般情况下为后轮驱动..1.4 电气系统电气系统为起动机、点火系统、照明灯具、取暖器提供电能..该电平由一个充电电路维护..1.4.1 充电充电系统为所有汽车电子元件提供电能..充电系统主要包括:蓄电池;交流发电机;电压调节器;即通常是交流发电机上不可或缺的;充电警告或指示灯和金属丝连成一个完整电路..蓄电池为起动提供电能;然后发动机工作;交流发电机就为所有的电子元件提供电能..同时也给蓄电池充电即用来使发动机起动..电压调节器有过充保护作用..1.4.2 起动起动系统包括:蓄电池、电缆、起动机、飞轮和换向器..起动时;有两个动作同时运行;该起动机齿轮与飞轮齿圈啮合;并起动电机;然后运行传输到发动机曲轴..起动机电机将起动机安装在发动机缸体上并由电池供电..1.4.3 点火一个基本的点火系统包括:蓄电池、低压电缆、点火线圈、线圈高压电缆、火花塞电缆和火花塞..点火系统提供高强度火花使火花塞点燃燃料室里的液体燃料..火花必须在适当的时候提供;并达到能够使燃料点燃的能量要求..这些能量从蓄电池和交流发电机获得;点火线圈使电压增高..该系统有两个电路;主电路或低压电路点燃火花;次电路或高压电路产生高压并将其分配到火花塞上.. 复习题1. 列出汽车有那几部分组成..2. 根据车身外形车辆常见类型是什么3. 向下移动的冰锥增加汽缸容积和新鲜的通过进气阀开启的空气燃料混合..2.压缩行程向上移动的活塞减少了汽缸内体积和压缩的空气燃料混合物..不久之前;香港贸易发展局是达成共识;火花塞点燃压缩空气燃料的混合物;从而启动了燃烧过程..更高的压缩比意味着更好的燃油利用率..压缩的程度受制于敲限制..3.做功行程火花点火后在火花塞点燃了压缩空气燃料的混合物;作为混合的结果温度升高..在汽缸增加;迫使活塞向下的压力..活塞转让的权力;通过连杆曲轴..4.排气行程向上移动的活塞燃烧排出的气体废气通过公开排气阀..在四冲程过完成后又周期重复..这台发动机有数以百计的其它部分..发动机的主要部件是发动机缸体;发动机头;活塞;连杆;曲轴和阀门..其他部分一起营造系统..这些系统是燃油系统;进气系统;点火系统;冷却系统;润滑系统和排气图2 - 2..这些系统都有一定的作用..这些系统将在后面详细讨论..发动机缸体是发动机的基本框架..所有其他发动机零件要么在其中的位置或固定它..其所持有的气瓶;水套和油画廊图2 - 4..发动机缸体还持有曲轴;那拴到块的底部..还装在凸轮轴块;除却架空凸轮OHC发动机..在大多数汽车;这个部件是由灰铸铁或者一种合金混合物灰铁和其它金属如镍或铬..发动机缸体是铸件..有些气缸体;特别是在小汽车里的那些;都是由铝做成的..这种金属比铁轻得多;然而;铁的耐磨性比铝好..因此;在大多数铝制发动机的气缸活塞;连杆和曲轴2.3.1 曲柄机构和能量活塞由曲柄机构和气缸;连杆组成..这些部件通过气体能量推动;从而引起这些部件产生惯性力..气能产生的力可以再细分为垂直于竖直平面的力Fn;且作用于汽缸壁;和一个推动连杆的力Fs;这个连杆的力;从而引起切向力Ft并作用于曲柄机构;这些能量要求在一起产生扭转和法向力Fr..这气体作用力分为作用角α;支点于连杆的作用角β;和压缩比入:连杆作用力: Fs=Fg/cosβ侧向力 : Fn=Fgtanβ法向力 : Fr=Fgcosα+β/ cosβ切向力 : Ft=Fg sinα+β/ cosβ所以的这些关系代表了一种方法计算各部件的振动.活塞是四个运动周期中一个重要部分;很多活塞都是从铝中提炼出来研制而成的.活塞;通过连杆传递能量来压缩点燃混合气体.这些能力转化为曲柄的动能.这样;圆形的钢圈装入汽缸;用活塞环来密封整个燃烧室.这个称为活塞环..这些用来放活塞环的称为凹槽..一个活塞销放在中间通过一个小孔固定..活塞销的作用是固定活塞于连杆之间的连接;对活塞销起作用的是活塞销凸台..活塞本身;它的环和活塞销一起称为活塞总成..1活塞为了抵抗高温的燃烧室;活塞必须非常坚固;但是也必须轻便;因为它是在气缸内高速运转而上下运动的;活塞内是空的;在顶部是厚的用来传递高温高压的气体动力;底部温度较低所以做成薄的..顶部是活塞头或活塞顶;薄部分是裙部;两节之间的凹槽称为环带..活塞顶可以是平的;凹的;圆顶的或是隐蔽的;在柴油机的燃烧可能形成完全或部分活塞冠;依靠这种方法喷射..所以活塞采用不同的形状..2..活塞环如图2-9所示;活塞环装进接近活塞顶部的环槽..简单来说;活塞环是薄的;是圆形的金属片;适合槽活塞顶部的..现在的发动机;每个活塞有三个活塞环;老式的发动机有四个甚至五个..活塞环装在活塞内表面的凹槽内..活塞环的外表面紧靠着汽缸壁活塞环提供了活塞环于汽缸壁之间的密封;也就是说;只有活塞环接触汽缸壁..顶头两个活塞环是防止气体从汽缸壁漏出的;称为压缩环..最底下的一个是防止汽油飞溅到缸桶而从间隙进入到燃烧室;所以称为油环..表面镀铬的铸铁压缩环一般用于汽车的发动机..镀铬的活塞环提供了光滑;耐磨的表面..在做功行程;燃烧室对压缩环的压力是非常大的..原因是他们朝汽缸壁方向挤开;一些高压的气体进入到活塞环;这样使得活塞环表面充分接触到汽缸壁;燃烧的气体压力使得活塞环底部紧紧地压住活塞凹槽;然而;越高的燃烧的气体压力更加紧紧地把活塞环表面和汽缸壁密封住.. 3..活塞销活塞销是用来连接活塞于连杆的..活塞销装入销孔;装入连杆最顶头的小孔..连杆的顶部应远小于连杆的尾部才能装进曲柄轴颈..小的底部装进活塞的内底部..活塞销通过一边装入活塞销;通过小的连杆一端;然后通过活塞的另一边..这使得连杆稳固地在活塞中间适当的位置..活塞销是是空心的且是高强度的钢制成的..很多销的镀铬的使得更加耐磨..连杆是高强度的钢铸造的;它通过曲柄轴颈传递力和运动从活塞到曲柄销..连杆小的一头是连接活塞销的..轴瓦是用软金属制成的;比如青铜;用来这样合成的..下级的连杆装进曲柄轴颈..这称为大头..这个轴承;是钢背的铅或者是锡壳制成的..这些是一样被用作主要轴承..大端的分离切口往往是单个的;所以它足够小可以从燃烧室中取出.. 连杆由合金钢铸成..曲轴如图2-10所示;连同连杆通过旋转而带动活塞往复运动从而带动汽车行驶..它是由碳钢和低比例的镍合成的主要的曲轴轴颈装进汽缸;大端匹配连杆..在曲轴的后端附加有飞轮;在曲轴的前端有驱动轮对应的正时齿轮;风扇;冷却水和发电机..曲轴的摆幅;i;e;是主要的轴颈和大端中心之间的距离..控制冲程的幅度;冲程是双次进行的;摆动的幅度是活塞从TDC到BDC的距离;反之亦然..单缸的发动机每两次曲轴循环只能提供单一的能量脉冲..能量只能提供四分之一的时间..当超过一个汽缸时它能从曲轴获得流动性的能量..额外的能量被均匀地隔开遍及两个转数或四冲程的一个周期..四缸的一般用于汽车..为了保持曲轴的平衡设置第一和第四的活塞是在TDC..第二和第三的活塞是在BDC每个冲程的间隔是180°;图标的序列显示了各个缸的点火顺序;点火顺序是1-3-4-2;但是这个顺序可以改变为1-2-4-3;如果安装了另外的凸轮轴.. 注意到第四个活塞总是伴随着第一活塞进行的..当第四活塞进气阀完全打开时;第一缸的活塞完全关闭;这是用来调节气门间隙的..表格飞轮有碳钢制成;装在曲轴的后端..同时带动曲轴旋转和离合器..同时传送给变速器;和启动齿圈包围着在四个冲程当中只有一个冲程是做功的所以飞轮只有在这个时间带动曲轴;发动机在这几个不做功的冲程转动..平衡器和减震器是用来保持发动机曲轴正常缓冲的..比如每个燃烧室燃烧;它能加快曲轴旋转..轴的惯性它稍稍随后;这样在曲轴上起扭转作用..连续扭转震动引起的频率不同于发动机的转速和发动机缸数..减震器减少他们的振动..减震器主要由轮毂和惯性环组成..惯性环是结合轮毂通过弹性插入的..惯性环转动是和曲轴密切相关的在燃烧室内;然而抑制其扭转;并通过曲轴控制犯低级转速..一些减震器是由两个惯性环和而且是不同的尺寸从而更好地控制其振动..使用了一段时间后;弹性体会恶化或连接件可以不要..致使减震器失效或是引起自身振动.. 损坏的必须得替换下来..减震器的设计要结合轮毂的密封轴颈..在轮毂里密封凹槽;造成石油泄漏..袖套修理可以恢复减震器如果是在良好的条件下..轮毂在一定条件下可以维修来调节衬套..2.6.1 汽油汽油是从原油中提炼石油..汽油是高度易燃的;这意味着它容易在空气容易燃烧..汽油容易蒸发..这种特性被称为波动;是重要的..但是;它不能太容易挥发;否则将转向油箱内的蒸汽..管内的燃料;燃料蒸气可能阻止液体汽油流..这就是所谓的蒸气锁..在燃料蒸气锁普遍在暴露于高温线泵的进口侧..汽油的燃烧;随其质量和添加剂比例混合的..汽油的燃烧方式在室燃烧是很重要的.增加燃烧室中的燃料混合物点火前的压力;有助于提高发动机功率..这是通过压缩到一个较小的燃料混合物体积..高压缩比;不仅有利于推力;而且也给更多的有效的动力..但更进一步的压缩比起来;敲倾向增加..辛烷值是对汽油的抗爆性的质量或在燃烧过程中能够抵抗爆炸的认定..有时被称为爆震敲质量或能力抵御爆炸..爆轰;有时也被称为敲门;作为燃料的燃烧空气的混合物;由于温度过高;在燃烧室内的压力条件的最后一个部分失控爆炸的定义..由于爆炸产生的压力波冲击;因此产生敲缸声;燃料燃烧和空气的混合物的扩张;导致丧失权力;局部温度过高;如果足够严重;引擎损害..有两种常用的汽油辛烷值测定的的方法马达法和研究方法..两者都使用的实验室相同的类型单缸发动机来做实验;这是一个头部和一个变量来表示敲缸爆震强度装置..作为燃料使用;发动机压缩比和空气燃料混合料试验样品进行了调整;试验出爆震强度..两个主要标准参考燃料;正庚烷和异辛烷;任意分配0和10辛烷值;然后分别是混合产生测试样品相同的爆震强度..因此百分比异辛烷的混合被认为是测试样品辛烷值;因此;如果相应的参考配方是由15%正庚烷和85%异辛烷;测试样品的额定电机向上或85研究法辛烷值;依据测试的一种方法..2.6.2完全燃烧汽油;是在理想条件下汽油在混合气中完全燃烧汽油所需要空气和汽油是15比1..这意味着1公斤汽油混合15公斤空气..汽油完全燃烧所需的空气被称为化学正确的混合物.. 15:1的比例适用于汽油;其他燃料有不同的比率.为了表示更实际;空气燃料混合物提供给空气燃料比14.7:1气缸偏离理论上完全燃烧所需;多余的空气因子R已被选定引擎:=空气质量提供/理论要求R为1 空气质量提供相应数额的理论的必要..<“1 空气或缺乏丰富的混合物..增加电力的射程R = 0.85 0.95输出结果..> 1.3 该混合物是如此精简的点火更长发生..精益失火超限.. = 0.95 0.85 火花点火发动机开发在5% 15%空气不足的最大功率.. = 1.1 1.2 发生在最大的燃油经济性高达20%左右的过剩空气..为R≈1.0 这种过剩空气系数允许与化学计量比空转..= 0.85 0.75 良好的转换发生15% 25%的空气不足..转型是指从一个给定的负载范围在实践中;过剩空气因素的R = 0.9 1.1已被证明是最实用的..在一定的操作条件下;燃料需求不同的混合模式于基本注入燃料的数量大于干预必需的. 冷启动在冷启动时;空气燃料混合物的发动机制定的加浓了..这是由于在起动速度低如果混合物燃油与空气粒子流动速度;并以最小的燃油蒸发和汽缸壁和进气口;在低温下润湿燃料..为了弥补这些现象;从而促进ID的冷发动机;注入更多的燃料才更容易起动..1.后启动阶段在低温起动后;必须加浓的一段短时期的混合物;以补偿较浠混合气的形成和摄入量与燃料缸..此外;在高扭矩;为更好的油门响应更加丰富的混合物时;加速从闲置的结果..2.热机预热阶段遵循冷启动阶段..该发动机的燃料需要;因为凝结一些仍然在寒冷的汽缸壁的热身阶段额外的燃料..在低温时;混合物的形成是由于较浓的大型燃料液滴的加入;由于与拟定的发动机在空气中混合燃料效率下降..其结果是;在进气阀门和进气歧管;只有在较高温度下燃油蒸发浓缩.. 上述因素均随温度降低必要的加浓的混合物.3.加速度如果油门突然被打开;空气燃料混合物瞬间倾斜过;以及混合浓缩短期在部分负荷运行;实现最大的燃油经济性和排放值是观察的关键因素.. 5.全负荷该引擎提供了在满负荷最大功率;当空气燃料混合比;必须加以丰富;在部分负荷..这种丰富依赖于发动机转速和提供最大的在整个发动机转速范围内尽可能的扭矩..这也确保在满负荷运行最佳燃油经济性的数字..6.怠速除了发动机的效率;发动机怠速主要决定于闲置的燃料消耗;在发动机冷高摩阻力;必须通过提高空气燃油混合输入克服..为了实现平稳运行在空闲;空闲速度控制怠速提高..这也导致了更快速热身的发动机..闭环闲置速度控制功能可以防止怠速过高..该混合物的数量相对应维持在有关的负载如冷发动机;并增加摩擦怠速所需要的数量..它还允许一个没有长期闲置的调整不断废气排放值..闭环闲置速度控制还部分地弥补在发动机老化带来的变化;并确保稳定的发动机整个使用寿命空转..7.空载减速时切断燃油降低燃油消耗不仅是长下坡运行和制动过程中;而且在城市交通..由于没有燃料完全燃烧;减少废气排放..8.发动机限速当发动机转速达到预设;教统会抑制燃油喷射脉冲..9..的空气燃料混合物在高海拔适应在高海拔地区的空气密度低就必须更精简的空气燃料混合物..在高海拔地区;由于较低的空气密度;容积流量的空气流量传感器对应一个较低的空气质量流量测量..这个错误可以弥补纠正的燃料数量..过度富集是可以避免的;因此;过多的燃料消耗..正如图2 - 20所示;燃料系统有一个油箱;油管;燃油泵;燃油滤清器和化油器..这零部件商店汽油;并提供给需要的化油器..简而言之;油箱储存汽油..行携带的燃料从油箱的燃料化油器..移动汽油燃油泵从油箱的燃料;并通过线化油器..燃料过滤器除去杂质的汽油..然后;化油器发送燃料的空气和汽油的混合物 - 进入燃烧室..1..燃油泵大多数车今天使用一个机械式燃油泵..这种燃料泵出了汽油;并通过油管向化油器或喷射系统..在大多数汽车;泵安装在发动机缸体..有些汽车电动燃油泵有一个..该泵安装在皮卡与燃料和燃料轨;发送单元油箱..对机械燃油泵操作取决于对凸轮轴叶..作者:爱在旋转移动泵摇臂..泵内;可以灵活的隔膜通过膜片弹簧摇臂;拉杆和链接..如图所示;燃油泵也有一个入口和燃料出口..由于凸轮轴上的旋转叶;横膈膜上下移动内部的引擎..隔膜的吸向下运动从进入泵油箱..隔膜向上运动推到了化油器;从泵的燃料..2..化油器化油器提供燃料比例的空气量流经喉管..当你在加速器踏板时;扩大开放节流阀吸引更多的空气通过化油器..化油器提供这取决于许多因素更丰富或更精简的混合物:发动机转速;负荷;温度;节气门位置..为了满足复杂的要求;一化油器是一个非常复杂的设备与许多内部通道及零部件.1喉管汽车化油器的设计是由喉管..喉管简直是气道狭窄的部分..空气通过化油器的喉咙;因为它移动的速度通过这个狭窄通道的旅行..通过建立合资企业增加的空气速度在喷嘴打开一个低压区..推动在一个大气压下水库内燃料的化油器浮子室称为..燃料是强行通过一根管子到空气流..2浮子室浮子室是一个储存和供应燃料的化油器水库..由于发动机使用的燃料;它会自动浮子室补充..浮动室内乐作品在同一作为一个抽水马桶水箱控股的基本原则..阿浮有赖于在水库燃料的顶部..作为燃料使用时;浮球液位下降..当浮动滴;一针阀打开..开放式针形阀允许从燃料的燃料泵入化油器的浮子室流..当商会是满了;针形阀是向上推;并关闭燃油进口..3测量燃油浮子室之间的压差和造成的燃料流..然而;为了维持适当的空气燃料比;化油器必须仅提供适量的燃料..为此;主放电管有一个小孔称为喷射或主射流..这允许燃料进入气流..在大多数情况下;这个小口子浮子室是在主放油管的末端..在那里;它的体积小燃油流量限制..4需要冷启动安排切断阀通过一个手段扼杀供气提供了丰富的混合物约8:1;并提供了一个轻松的粒子蒸发足够的引擎..5慢速贯穿化油器的空气量过小的时候;发动机只运行缓慢产生非常小的扼流圈抑郁症..这意味着太少将提供燃料和发动机将停止..缓慢运行的系统已经在这个区域里存在着抑郁症的高当发动机空转的电源插座..调节螺钉控制系统运行缓慢;一个螺丝设置空转速度运行缓慢等使混合物是让发动机转速平稳.. 6油门机制机制的油门控制空气燃料混合物流动..油门有几个;包括油门轴和节流板的一部分..通过打开和关闭;节气门控制的空气进入发动机燃料混合物流动..在诸如开放更多的空气流动;少的板关闭的气流..这些变化也气流控制汽油流..增加气流意味着更大的压力下降;从而更多的燃料流..气流减少意味着减少压降和流量较少的燃料..该议案的节流轴转动油门板..油门轴电缆连接到油门;反过来;连接到车内的油门踏板..司机控制空气燃料混合物踏板流动..2.6.5 莫特郎尼克点火和燃油喷射系统化油器将准确的空气燃料混合气发送到发动机..然而;并非所有的汽车都有化油器..许多现代汽车是用燃油喷射系统图2 - 22..燃油喷射系统与化油器式有许多优势..例如;它们能提供更多的精确控制..它们能够更好地匹配空燃比在不断变化的发动机状态..它们还提供更好的经济性和排放控制..此外;燃油喷射系统不需要化油器多余的那部分..该系统是一个莫特郎尼克发动机管理系统;包括控制单元ECU;它执行至少两个基本功能点火和喷油;但可能包含其他子系统需要改进的发动机控制1..测量值的检测气缸内的燃烧过程不仅受混合气和空气燃料比的影响;而且还受点火提前点火和点火火花的能源影响..一个优化的引擎控制;因此必须控制在整个喷射时刻的空气燃料比R A即喷入的燃油量;以及点火提前角α和持续角B..影响燃烧过程中的主要参数检测为测量值和一起处理瞬间发动机运行工况点火和喷射的最佳时机的计算..2..工作变量/传感器发动机转速和负荷是主要的工作变量..由于特定的点火提前角和精确的喷射时间对应于每个发动机的转速/负载地图点;重要的是所有的变量;其中涉及到同一个点都在相同的速度/负载面积计算..这不仅是可能的;如果点火提前和喷射时间以同样的速度和负载值发动机转速检测只有一次使用相同的传感器计算..这就避免了统计误差;可导致不同的负载传感器设备公差;例如;..而一个略有杆负荷范围不同的分配限制敲到发动机爆震的易感性增加..清除点火时间角和注射时间分配是由莫特郎尼克系统提供动力;即使在发动机运行条件下;3..莫特郎尼克系统该莫特郎尼克系统包括一系列子系统;两个基本子系统点火和喷油..综合后的系统更加灵活;可实现比相应的各个系统的功能更多..莫特郎尼克系统的重要特点是其作为一个最子功能所需的大量可自由编程实现地图..废气再循环EGR的功能至今尚未在欧洲使用;因此提供一种替代系统的唯一..控制系统的lambda只能算是今天;如果配合使用为减少尾统开环控制功能以及一个扩展的系统与闭环功能结合敲和lambda控制在管理系统气。
汽车专业英语全书翻译
1.These parts can be grouped into four major categories; body, engine, chassis and electrical system.2.The internal combustion engine is most common; this obtains its power by burning a liquid fuel inside the engine cylinder.3.The chassis includes the power train, steering, suspension, and braking systems.4. A power train can include a clutch for manual transmission or a torque converter for automatic transmission, a transmission, a drive shaft, final driveand differential gears and driving axles.5.Basic types are: leaf springs, coil springs and torsion bars.6. A basic ignition system consists of the battery, low-lension cables, the ignition coil, distributor, coil high-tension cable, spark plug cables and sparkplugs.7.The operating strokes are: induction stroke, compression stroke, power stroke, exhaust stroke.8.The major parts of engine are engine block, engine heads, pistons, connecting rods, crankshaft and valves.9.These systems are the fuel system, intake system, ignition system, cooling system, lubrication system and exhaust system.10.The dry clutch mechanism includes three basic parts: driving member, driven member and operating members.11.The spur gears are mounted on four shafts: primary shaft (input shaft), layshaft (countershaft), mainshaft, and reverse idler shaft.12.The three types of braking systems are in use today: service braking system, parking braking system and additional retarding-braking system.13.It has five basic parts: the receiver, expansion valve, evaporator, compressor, and condenser.14.The three normally adjustable angles are caster, camber, and toe.段落一.Elements of the Power TrainThe elements of the power train must meet the following requirements;1)enable driving away,2)convert torque and speed,3)enable different directions of rotation for driving forward and backward,4)transmit tractive and pushing forces,5)permit different rotational speeds of the drive wheels when cornering,6)guarantee optimum operation of the engine (or electric motor ) in terms of fuel consumption and exhaust emissions.Standstill, driving-away and power interruption are made possible by operation the clutch .During driving away, the clutch slips and bridges the difference in rotational speed between engine and power train. When different operating conditions call for a shift of gear, the clutch separates the power train during shifting.Engine torque and engine speed are converted in the transmission in accordance with the tractive-power demand of the vehicle. The transmission design is influenced by the position of the engine and driven axle. Overall conversion takes place usually in a manually shifted transmission with variable transmission ratios and in a final drive with a constant transmission ratio. Nowadays, positive-locking transmissions with toothed gears as the most important elements are of even greater significance than non-positive friction-type transmissions.Two types of toothed-gear transmission are predominant: spur-gear transmissions of the countershaft type as manually shifted transmissions, and planetary-gear transmissions as power-shift transmissions. In addition, transmissions permit the different directions of rotation required for driving forward and backward.Final drive turns the drive through 90°and reduces the speed of the drive by a set amount to the vehicle.The differential provides for the equalization of the different axle and wheel speeds when cornering and for uniform distribution of the drive torque.二.The Hydrodynamic Coupling1. Hydrodynamic CouplingConventionally, the hydrodynamic coupling, also known as the Fötttinger coupling, has an impeller and a turbine wheel with vanes that usually extend in the radial direction. The impeller is often expanded to form a housing which surrounds the turbine. Since, due to the absence of an inner ring, there is no possibility of diverting the oil flow, the turbine torque is equal to the pump torque;公式Therefore 公式The index number depends on the design, the vane angle and the degree of filling of the coupling. The main working area of an hydrodynamic coupling is at v=0.9.2. Hydrodynamic ConverterThe hydrodynamic converter, also known as the Trilok or Fötttinger converter, is capable of operating in two phases: with torque increase in the first phase, and as a hydrodynamic coupling in the second phase. The usual design has three impellers:1) The pump, which is connected to the engine, acts like a centrifugal pump to produce the flow energy of a fluid.2) The turbine, which is connected to the transmission input, converts the flow energy back into mechanical energy.3) The reactor between turbine and pump diverts the flow of the fluid.Thus, the torque output is higher than the pump torque input from the engine. The torque increaseμμ=Mt/Mp is all the higher, the greater the speed difference (slip)between the pump and turbine. Withυ=0, i.e. with the turbine braked to a standstill (stall point, drive-away point), torque conversion reaches its maximum value and falls virtually linearly with rising turbine speed to a torque ratio of 1:1 at the coupling point. Above the coupling point, the reactor, which is supported on the housing by a one-way clutch, runs, torque-free, in the flow. Thus, the converter is now a clutch without torque conversion.For automobiles, the vane geometries are such that, at the drive-away point, the maximum torque increase μA is between 2 and 2.5. The hydraulic efficiencyηhydr=υμis similar in the conversion range to the speed ratioμand reaches values around 97% at high speed.Fluid couplings form the input element of automatic transmissions (in conjunction with planetary-gear trains, clutches, brakes and one-way clutches) and also of manually shifted transmissions in the form converter and clutch unit.三.Constant-mesh TransmissionFig.3-6 illustrates the flow of torque through a typical constant-mesh transmission. This type uses helical or double helical gears which are always in mesh. The mainshaft gear wheels are mounted on bearings and when a gear is required the mainshaft gear is locked to the shaft by a dog clutch.Although the mechanical efficiency is lower the helical gears are quieter and any damage resulting from a bad gear change occurs to the dog teeth instead of the actual gear teeth.元素的力量训练动力传动的要素必须符合下列要求;1)使开车逃走,2)把转矩和速度,3)使不同方向的旋转带动向前和向后,四)推进传送叶轮力量,5)允许不同转速时的驱动轮转弯时,六)保证了优化运行的引擎(或电机)从油耗和尾气排放。
汽车专业英语读译教程 (梁桂航 第3版 ) 习题与答案TEXT B
汽车专业英语读译教程(第3版)TEXT B课后练习题(EXERCISES)参考答案UNIT 1 AUTOMOTIVE BASICSTEXT B Automobile's History/ ・ Translate the following English names of car makers into Chinese:1.General Motors Corporation 通用汽车公司2.Ford Motor Co.福特汽车公司3.Chrysler Motors Corporation 克莱斯勒汽车公司4.Toyota Motor Corporation 丰田汽车公司5.Nissan Motor Co. Ltd.日产汽车公司6.Honda Motor Co. Ltd.本田汽车公司7.Mitsubishi Motors Corporation 三菱汽车公司8.Mercedes-Benz AG梅赛德斯-奔驰汽车公司9.BMW AG宝马汽车公司10.Volkswagen AG群众汽车公司11.Audi AG奥迪汽车公司12.Suzuki Motor Corporation 铃木汽车公司13.Isuzu Motors Ltd.五十铃汽车公司14.Mazda Motor Corporation 马自达汽车公司15.Volvo Car Corporation 沃尔沃轿车公司16.Volvo Bus Corporation 沃尔沃巴士公司17.Porsche AG保时捷汽车公司//. Translate the following English names of cars into Chinese:1.Chevrolet Corvette; Buick Century; Cadillac Deville 雪佛兰克尔维特;别克世纪;凯迪拉克德维尔2.Ford Mustang; Ford Mendeo; Lincoln Town Car 福特野马;福特蒙迪欧;林肯城市3.Dodge Caravan; Jeep Grand Cherokee; New Yorker 道奇捷龙;吉普大切诺基;纽约人ndcruiser; Camry; Crown; Lexus陆地巡洋舰;凯美瑞;皇冠;雷克萨斯1.What are the advantages of continuously variable transmission?Because there are no gears to tie a given road speed directly to a given engine speed, the CVT can vary the engine speed as needed to access maximum power as well as maximum fuel efficiency. This allows the CVT to provide quicker acceleration than a conventional automatic or manual transmission while delivering superior fuel economy.2.What are the main components of automated manual transmission?Transmission control ECU, clutch activator, transmission actuator, operators, and sensorsII. Translate the following paragraph into Chinese :The basic technical criteria for continuously variable transmissions are size, weight, transmission-ratio range, transfer efficiency, noise emissions and installation possibilities. With regard to these aspects, mechanical continuously variable transmissions, in the form of chain-driven transmission, have provided the best results so far.评判无级变速器的基本技术标准是尺寸、重量、传动比范围、传动效率、噪声排放和安装可能性。
《汽车专业英语读译教程》--20-U11TC
steering axis inclination
toe-out on turns tipping effect thrust angle wheel tracking dog tracking eccentric cam
转向轴线内倾角
转Hale Waihona Puke 负前束 侧倾效应 推力角,推力线 (前轮与后轮)同辙行驶 蛇形行驶 偏心凸轮
scraping scrubbing imaginary deviation
['skreipiŋ]
n.刮, 擦
[skrʌbiŋ]
n.洗擦, 擦净
[i'mæ ʤinəri] a.假想的, 想象的, 虚构的
[ֽdi:vi'ei∫ən] n.背离,偏离
chisel
['t∫izl]
eccentric [ik'sentrik]
159 Adjustable front wheel settings on most modern vehicles are caster, camber, and toe. Nonadjustable settings are steering axis inclination and toe-out on turns. Rear wheel settings that can be made on many modern vehicles are camber and toe. Modern practice is to check both front and rear wheel alignment. Note that the various alignment angles are all related. A change in one can alter the others. Alignment Measurement Values 14 All alignment values, except for toe, are measured in degrees. Toe is measured in fractions of an inch or millimeters. Caster 15 Positive caster tends to force the wheels to travel in a straight ahead position. It also assists in recovery (wheels turning back to straight ahead position) after making a turn. On late model cars, there is often little or no positive caster. Positive caster makes it more difficult to turn the wheels from the straight ahead position than when no caster angle is present [1].
汽车专业英语 教案Unit 13Vehicle maintenance
翻译:如果没有一个合适的催化转换器,你的汽车将会熄火,并且由于不可避免的发动 机故障而无法驾驶。
substantially runout
delaminating
mounting
sidewall decent bang-on
inations
hamm r
verily cosmetic corrosion lamentation adhesive-backed rejoicing
grease alignment maintenance
翻译:通过以下简单的步骤和一些基本的维护,你可以显著减少你的汽车释放的有害气 体量。
This causes the car to burn more gasoline, which in turn increases the amount of exhaust fumes released into the air.
['spɪndl]
[bɔr]
[kon]
['kɑmpɛnset] [ɪn'ɛvɪtəbl] [daɪ'næmɪkli] ['swæpiŋ]
[,mæθə'mætɪkl] [ə'sʌmpʃən]
n. 均衡;等量化 adj. 均衡的 v. 使…相等;使…均衡(equalize 的 ing 形式) n. [物] 旋转;暴跌;尖硬纤维(spin 的复数) v. [物] 旋转(spin 的三单形式);纺;编造;疾驰 vt. 减去;扣掉 n. 不平衡;不安定 n. 板层;厚度;积层数(ply 的复数) v. 使胶合;弯(ply 的三单形式) n. 偏差;误差;背离 adj. [力] 离心的;远中的 n. 离心机;转筒 vi. 意气扬扬地走;笨拙地行进 n. 笨拙的人 adv. 手动地;用手 adv. 真诚地,坦白地 n. 轴;纺锤,锭子;细长的人或物 adj. 锭子的,锭子似的;细长的 vt. 装锭子于 vi. 长得细长,变细长 vi. 钻孔 vt. 钻孔;使烦扰 n. 孔;令人讨厌的人 n. (Bore)人名;(法)博尔;(塞、马里)博雷 n. 圆锥体,圆锥形;[植] 球果 vt. 使成锥形 n. (Cone)人名;(英)科恩;(罗)科内;(塞)措内 vi. 补偿,赔偿;抵消 vt. 补偿,赔偿;付报酬 adj. 必然的,不可避免的 adv. 动态地;充满活力地;不断变化地 n. 交换;调动 v. 交换(swap 的 ing 形式) adj. 数学的,数学上的;精确的 n. 假定,设想(assumption 复数形式)
汽车专业英语原文翻译
第一单元发动机分类及工作原理课文A发动机的分类所有的汽车发动机都是内燃机(ICE),就是将燃油在气缸内进行燃烧,并将燃烧产生的膨胀压力转变成转动力,用来驱动汽车。
所以说,发动机是动力源, 并被认为是汽车的心脏。
汽车发动机根据工作方式分为往复式发动机和转子发动机:报据发动机燃烧的燃料分为汽油机和柴油机:根据发动机的气缸数量和气缸排列方式分为直列发动机、V型发动机、对置式发动机和W型发动机。
往复式发动机和转子发动机往复式发动机也称为活塞式发动机。
该发动机采用一个或多个活塞在气缸内上下运动或前后运动,将压力转变为转动动能传递给汽车驱动轮(见图1-1)。
往复式发动机广泛应用现代汽车上。
转子发动机是于1954年研发出来的。
如图1-2所示,在该发动机中,有个三角形的转子在燃烧室内旋转。
膨胀气体使转子旋转,产生动力并排出废气。
转子发动机没有活塞和气门等往复部件。
转子发动机产生马力大、无振动,但其燃油消耗比往复式发动机要高。
汽油机和柴油机汽油机以汽油作为燃料。
采用火花塞点燃缸内的可燃混合气,产生动力使汽车行驶,如图1-3a所示。
汽油机也称为火花点燃式发动机。
该发动机的特点是转速高,运行平顺,结构简单,重量轻,成本低。
几乎所有轿车都采用汽油机。
柴油机以柴油作为燃料。
该发动机的工作原理足通过压缩缸内的空气使其升温,冉使喷油嘴喷入的柴油燃烧,产生动力驱动汽车(见图1-3b),所以也称为压燃式发动机。
柴油机要比汽油机的动力更强劲,燃油经济性更好。
常见于所有的大型货车、客车和部分轿车上。
直列发动机,V型发动机,水平对置式发动机,W型发动机通过气缸数最和气缸排列方式可以识别发动机结构。
当今所有的紧凑型轿车都配有4缸发动机,一些中型级轿车配有6缸发动机,大型轿车配有8缸或12缸发动机。
在多气缸发动机上,气缸通常以四种排列方式中的一种排列,有:直列式、V型、水平对置式和W型。
直列式发动机中的气缸按直线排列,采用一个气缸蓝。
几乎所有4缸发动机都采用该种排列(兄阁1-4)。
汽车专业英语翻译
Brushless DC Motor SystemsIn recent years the number of drive systems available to designers has increased considerably. The advent and increasing use of stepper motors, inverter-fed ac machines,switched reluctance motors and brushless machines have all addressed particular applications and in some cases these application areas overlap. The correct choice of a drive system for a particular application depends not only upon the speed and torque requirements but also on performance, response, complexity and cost constraints.The brushless DC motor (BDCM) system is emerging as one of the most useful drive options for a wide range of applications ranging from small, low power fans and disc drives, through medium size domestic appliance motors and up to larger industrial and aviational robotic and servo drives.This section will review the theory and operation of brushless DC motors and describe some of the considerations to be made when designing BDCM drive systems using PowerMOS devices as the main inverter switches.BackgroundThe principal advantage of a conventional DC machinecompared to an AC machine is the ease with which a DC motor can be controlled to give variable speed operation, including direction reversal and regenerative braking capability. The main disadvantage of a DC machine is that the carbon brushes of a DC motor generate dust and also require maintenance and eventual replacement. The RFI generated by the brushgear of a DC motor can be quite large and, in certain environments, the sparks themselves can be unwelcome or hazardous. The brushless DC motor was developed to achieve the performance of a conventionalDC machine without the problems associated with its brushes. The principal advantages of the BDCM system are:• Long life and high reliability• High efficiency• Operation at high speeds and over a wide speed range • Peak torque capability from standstill up to high speeds • Simple rugged rotor construction•Operation in vacuum or in explosive or hazardous environments• Elimination of RFI due to brush commutationDC motor configurationsIn a conventional DC motor the field energy is provided byeither a permanent magnet or a field winding. Both of these arrangements involve quite large, bulky arrangements for the field. In the case of wound field DC motors this is due to large number of turns needed to generate the required electromagnetic field in the airgap of the machine. In the case of permanent magnet DC machines the low energy density of traditional permanent magnet materials means that large magnets are required in order to give reasonable airgap fluxes and avoid demagnetisation. If either of these two options are used with the field excitation on the rotor of the machine then the inertia and weight of the rotor make the machine impractical in terms of its size and dynamic Response.AconventionalDCmachine has alarge number of armature coils on the rotor. Each coil is connected to one segment of a commutator ring. The brushes, mounted on the stator, connect successive commutator segments, and hence armature coils, to the externalDCcircuitas the motormoves forward. This is necessary to maintain maximum motor torque at all times. The brush/commutator assembly is, in effect, a rotating mechanical changeover switch which controls the direction and flow of current into the armature windings.In a BDCM the switching of current to the armature coils is carried out statically and electronically rather than mechanically. The power switches are arranged in an inverter bridge configuration in order to achieve bidirectional current flow in the armature coils, i.e. two power switches per coil. It is not possible to have a large number of armature coils, as is the case for a conventional DC motor because this would require a large number of switching devices and hence be difficult to control and expensive.An acceptable compromise is to have only three armature coils and hence six power switches. Reducing the number of armature coils means that the motor is more prone to developing ripple torque in addition to the required DC torque. This problem can be eliminated by good design of the motor. The armature of a three coil brushless DC machine in fact looks similar to the stator of a three phase AC machine and the term ’phase’ is more commonly used to describe these three separate coils.The development of brushless DC machines has made possible by developments in two other technologies: namely those of permanent magnet materials and power semiconductor switches.Permanent magnet materialsTraditional permanent magnet materials, such as AlNiCo magnets and ferrite magnets, are limited either by their low remanence giving rise to a low airgap flux density in electrical machines, or by their susceptibility to demagnetisation in the presence of high electric fields. However in recent years several new permanent magnet materials have been developed which have much higher remanent flux densities, and hence airgap flux densities, and high coercivities, making them resistant to demagnetisation under normal operating conditions. Amongst these materials, called ’rare earth’ magnets, Samarium Cobalt (SmCo5 and Sm2Co17) and Neodymium- -Iron-Boron (Nd-Fe-B) are the most common. These materials, although still quite expensive, give vastly superior performance as the field excitation for a brushless Machine.Due to the increased energy density of rare earth magnets the amount of magnet material required by the application is greatly reduced. The magnet volume using rare earths is small enough that it is feasible to have the permanent magnet field on the rotor of the machine instead of on thestator. The gives a low inertia, high torque motor capable of high performance operation. This resulting motor design, with the armature on the stator and the field on the rotor and shown in Fig.1, can be considered as a conventional DC motor turned ’inside out.’Power electronic switchesFor the ’inside out’ BDCM is it still necessary to switch the armature current into successive armature coils as the rotor advances. As the coils are now on the stator of the machine the need for a commutator and brushgear assembly has disappeared. The development of high voltage and high current power switches, initially thyristors, bipolar power transistors and Darlingtons, but more recently MOSFETs, FREDFETs, SensorFETs and IGBTs, has meant that motors of quite large powers can be controlled electronically, giving a feasible BDCM system. The question of appropriate device selection for brushless DC drives will be considered later.System description (Fig.2)DC power supplyThe fixedDCvoltage is derived from either a battery supply, low voltage power supply or from a rectified mains input. The input voltage may be 12V or 24V as used in many automotive applications, 12V-48V for applications such as disc drives or tape drives, or 150V-550V for single-phase or three-phase mains-fed applications such as domestic appliances or industrial servo drives or machine tools. InverterThe inverter bridge is the main power conversion stage and it is the switching sequence of the power devices which controls the direction, speed and torque delivered by the motor. The power switches can be either bipolar devices or, more commonly, PowerMOS devices. Mixed device inverters, for example systems using pnp Darlingtons as the high side power switches andMOSFETsas the low sideswitches, are also possible. The freewheel diodes in each inverter leg may be internal to the main power switches as in the case of FREDFETs or may be separate discrete devices in the case of standard MOSFETs or IGBTs. Detailed considerations of inverter design, gate drive design and layout have been considered in separate articles.The inverter switching speed may be in the range 3kHz to 20kHz and above. For many applications operation at ultrasonic switching speeds (>15-20kHz) is required in order to reduce system noise and vibration, reduce the amplitude of the switching frequency currents and to eliminate switching harmonic pulsations in the motor. Because of the high switching speed capability of PowerMOS devices they are often the most suitable device for BDCM inverters.The first choice for the inverter devices might appear to be one with an N-channel MOSFET for the bottom device ineach inverter leg and a P-channel device in the top half of each leg. The disadvantage of P-channel devices is that they require around three times more silicon area than equivalent N-channel MOSFETsto achieve the same value of RDS(ON). This makes P-channel devices uncompetitively expensive for many applications. However, using N-channel devices for both the top and bottom switches in an inverter leg means that some sort of floating drive is required for the upper device. Transformer coupled or optically coupled gate driver stages are required, or alternatively, circuits such as the bootstrap circuit shown in Fig.3 can be used to provide the drive for the top device. In the circuit of Fig.3 the bootstrap capacitor is charged up via the diode Devery time the bottom MOSFET is on. When this device turns off the capacitor remains charged up to the gate supply voltage as D is now reverse biassed. When a turn-on pulse is applied for the upper MOSFET the bootstrap capacitor provides the necessary gate source voltage to turn the device on.MotorA two pole BDCM with the field magnets mounted on the surface of the rotor and with a conventional statorassembly was shown in Fig.1. Machines having higher numbers of poles are often used depending upon the application requirements for motor size, rotor speed and inverter frequency. Alternative motor designs, such as disc motors or interior magnet rotor machines, are also used for some applications. The motor phases are usually connected in a star configuration as shown in Fig.2. Rotor position sensors are required in order to control the switching sequence of the inverter devices. The usual arrangement has three Hall effect sensors, separated by either 60° or 120°, mounted on the stator surface close to the airgap of the machine. As the rotor advances the switching signals from these Hall Effect latches are decoded into rotor position information in order to determine the inverter firing pattern. In order to minimise torque ripple the emf induced in each motor phase winding must be constant during all instants in time when that phase is conducting current. Any variation in a motor phase emf whilst it is energised results in a corresponding variation in the torque developed by that phase. The so-called ’trapezoidal emf’motor, shown in Fig.4, has a constant induced emf for 120°and so is a practical motor design which gives optimumperformance in a BDCM system.ControllerTheinverter is controlled in order to limit the device currents, and hence control the motor torque, and to set the direction and speed of rotation of the motor. The average ouput torque is determined by the average current in each phase when energised. As the motor current is equal to the DC link current (Fig.2) then the output torque is proportional to the DC input current, as in a conventional DC motor. The motor speed is synchronous with the applied voltage waveforms and so is controlled by setting the frequency of the inverter switching sequence. Rotor position feedback signal are derived from the Hall effect devices as discussed earlier or from optotransducers with a slotted disc arrangement mounted on the rotor shaft. It is also possible to sense rotor position by monitoring the emfs in the motor phase windings but this is somewhat more complex. In some applications the Hall effect sensor outputs can be used to provide a signal which is proportional to the motor speed. This signal can be used in a closed loop controller if required.The controller also requires a current feedback signal. Usually this is taken from the DC link of the inverter as shown in the Fig.2. The current is controlled using either PWM techniques or hysteresis type of control. A current reference command is compared with the current feedback signal and then used to determine the switching signal to the main power devices. Additional controller functions include undervoltage protection, thermal protection and current ripple limit controls, error amplifier inputs for incorporation in closed loop servos and microprocessor compatible inputs.Several IC manufacturers offer dedicated ICs providing allthe functions for PWMcontrol of brushless DC motors. The Philips version of the NE5570 CMOS controller is one such device which can be used for three phase BDCM systems using a serial data input command from a microprocessor controller. This device contains the PWM comparator and oscillator, dynamic current loop controller and output pre-drivers suitable for a MOSFET power stage. Its operation is described more fully in Philips Application Note AN1281.Brushless DC motor operationThe operation of a BDCM system can be explained with reference to Fig.5. At any instant in time the rotor position is known by the output states of the three airgap mounted Hall effect devices.Theoutput state of oneHall effect device switches for every 60° of rotation, thus defining six conduction zones as shown in the figure. The switching of the inverter devices is arranged to give symmetrical 120°intervals of positive and negative constant current in each motor phase winding. The position of the sensors and controller logic ensures that the applied currents are in phase with the motor emfs in order to give maximum motor torque at all times.Referring to Figures 2 and 5, during the first 60°conduction zone switches S1 and S4 are on and the current flows through the ’A’ and ’B’ phase windings. The ’C’ phase is inactive during this interval. At the end of this 60° conduction zone one of the Hall effect devices changes state and so switchS4 turns offand S6 turns on.Theswitching sequence continues as the motor advances. At any instant in time two motor phases are energised and one motor phase is off. Themotor phase current waveforms are described as being ’quasi-square’ in shape. The motor windings are energised for two thirds of the total time and the maximum switch duty cycle ratio is one third.The other function of the controller is to maintain the motor phase currents at their desired constant value for each 120° interval that a particular phase is energised. The precise method of current limiting depends upon the controller algorithm. In order to limit the current to its desired value either one or both of the conducting devices are switched off thus allowing the motor current to freewheel through the bridge leg diodes. The current is limited by controlling the switch duty cycle to ensure that device current ratings and the motor current rating are notexceeded, especially during start-up conditions or low speed operation. The amount of current ripple is controlled by the switching frequency of a PWM waveform or by the width of a hysteresis band.Power Semiconductor switches forBrushless DC motorsPhilips Semiconductors produce a range of power semiconductor devices suitable for use in BDCM systems. The include transistors, MOSFETs, FREDFETs, Logic Level MOSFETs (L2FETs) and IGBTs. These devices are available in a variety of current and voltage ratings and a range of packages, to suit individual applications.FREDFETsFor higher voltage applications the FREDFET is an appropriate device for the inverter switches in a brushless DC drive. The FREDFET is a PowerMOS device where the characteristics of the MOSFET intrinsic diode have been upgraded to those of a discrete fast recovery diode. Thus the FREDFET is ideally suited to bridge circuits such as that shown in Fig.2 where the recovery properties of the bridge diodes significantly affect the switching performance of the circuit. Fig.6 shows a conventionalMOSFET inverter bridge circuit, where the MOSFETs intrinsic diode is disabled by a series Schottky diode. A discrete antiparallel FRED carries the motor freewheeling current. Using the FREDFET reduces the component count and circuit layout complexity considerably.L2FETsFor many lower voltage applications logic level FETs (L2FETs) can be used to interface the power circuit with standard TTL or CMOS drive circuits without the need for level shifting stages. L2FETs require gate source voltage of only 5V to be fully turned on and typically have VGS(th) = 1-2V. Using Philips L2FETs in BDCM applications such as tape or disc drives where the MOSFETs are driven directly by a controller IC produces an efficient overall designwith the minimum of gate drive components.IGBTsIGBTs are especially suited to higher power applications wherethe conduction losses of aMOSFETbegin to become prohibitive. The IGBT is a power transistor which uses a combination of both bipolar and MOS technologies to give a device which has low on-state losses and is easy to drive. The IGBT is finding applications in mains-fed domestic and industrial drive markets. By careful design of the device characteristics the switching losses of an IGBT can be minimised without adversely affecting the conduction losses of the device too severely. Operation of BDCM inverters is possible at switching speeds of up to 20kHz using IGBTs.Device selectionThe first selection criterion for an inverter device is the voltage rating. Philips PowerMOS devices have excellent avalanche ruggedness capability and so are able to survive transient overvoltages which may occur in the inverter circuit. This gives the circuit designer the freedom to choose appropriately rated devices for the application without suffering from the extra device conduction losseswhich occur when using higher voltage grade devices. In noisy environments or where sustained overvoltages occur then some external protection circuitry will usually be required.For low voltage and automotive applications 60V devices may be adequate. For mains-fed applications then the DC link voltage is fixed by the external mains supply. A 240V supply will, depending on the DC link filtering arrangement, give a link voltage of around 330V. Using 450V or 500V MOSFETs will allow sufficient margin for transient overvoltages to be well within the device capability. The current rating of a device is determined by the worst case conditions that the device will experience. These will occur during start-up, overload or stall conditions and should be limited by the BDCM controller. Short circuit protection must be provided by using appropriate fusing or overcurrent trip circuitry.In addition to the normal motor currents the inverter devices will experience additional currents due to diode reverse recovery effects. The magnitude of these overcurrents will depend on the properties of the freewheel diodes and on the switching rates used in the circuit.Turn-on overcurrents can often be greater than twice the normal load current.The peak to average current capability of MOSFETs is very good (typically 3 to 4) and so they are able to carry overcurrents for short periods of time without damage. For high power applications PowerMOS devices can easily be parallelled to give the required current ratings providing the circuit is suitably arranged in order to ensure good current sharing under both dynamic and static conditions. ConclusionsThe brushless DC motor has already become an important drive configuration for many applications across a wide range of powers and speeds. The ease of control and excellent performance of the brushless DC motors will ensure that the number of applications using them will continue to grow for the foreseeable future. The Philips range of PowerMOS devices which includes MOSFETs, FREDFETs, L2FETs and IGBTs are particularly suited for use in inverter circuits for motor controllers due to their low loss characteristics, excellent switching performance and ruggedness.。
铁道车辆专业英语课文翻译
枕木sleeper轨枕crossing平交道口multiple unti动车组high-speed railways高速铁路maglev磁力悬浮火车centrifugal force 离心力emergency brake handle 紧急制动手柄metro地铁light rail轻轨铁路commuter train通勤车tanker罐车operation 运转操作infrastructure下部构造platform站台EMU电力牵引动车组DMU内燃牵引动车组cushioning减震缓冲electricity-air control 电空控制antiskid防滑装置bolster枕rotational resistance回转阻hunting蛇行narrow-gauge窄轨bolster springs摇枕弹簧damper减震器阻尼器longitudinalanti-yawing dampers纵向抗蛇行减震器disc brakes 盘形制动traction transfer device 牵引装置wheel tread brakes踏面制动tread gradient踏面斜self-steering自导向V ehicle Suspension车辆悬挂cushion system缓冲装置vertical movement垂向振动primary suspension一系悬挂装secondary suspension 二系悬挂装置车钩coupler摇枕bolster乘务员crew轴箱axlebox棚车boxcar封闭车housing car保温refrigerator car牲畜车stock car漏斗车hopper罐车tank car集装箱container车体carboy复合车combine car邮政车railway post office圆顶车dome转向架bogie瞭望车observation car缓冲器draft gear行李车baggage car卧铺车sleeping car旁承side bearer制动缸brake cylinder侧梁side beams横梁cross beamscrosstie敞车gondola 英译汉1.The basic design of apassenger car hasn”t changed muchsince the middle of the 19thcentury,but there are severaldifferent passenger car types inservice around the world.2.自19世纪中期以来,客车的基本设计没有发生多大改变,但仍有不同形式的客车在全世界范围内使用。
车专业英语Unit 1-Passage C
• It was headqy in the northeast of China.
• The founder Rao Bin, the first general manager of FAW, was called “the father of China’s auto” .
• With the reform and opening up at the end of the 20th century, China FAW has got rapid development.
• It has developed a strong cooperation with foreign counterparts and set up two major joint ventures, FAW-Volkswagen and FAW-Toyota.
Unit One Classification of Engines and Their Operating Principles
Passage C Automobile Culture
China FAW History
• FAW, short for First Automobile Works, is the largest automaker in China.
people could not make vehicles. • In 1958, FAW started producing passenger cars—
luxury sedans Hongqi (that means Red Flag), which were the first domestic production of Chinese cars. • So FAW is called the cradle of China’s automobile industry.
汽车专业英语翻译综合
第一章汽车总论1)Today’s average car contains more than 15,000 separate, individual parts that must worktogether. These parts can be grouped into four major categories: body, engine, chassis and electrical equipment 。
P1现在的车辆一般都由15000多个分散、独立且相互配合的零部件组成。
这些零部件主要分为四类:车身、发动机、底盘和电气设备。
2)The engine acts as the power unit. The internal combustion engine is most common: thisobtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine: gasoline (also called a spark-ignition engine) and diesel (also called a compression-ignition engine). Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the power train. P3发动机作为动力设备,常见的类型是内燃机,其原理是通过发动机缸内的液体燃料燃烧而产生能量。
《汽车专业英语读译教程》---UNIT 12 TEXT A
第12单元车身电气系统课文A 乘员辅助约束保护系统1.系统工作原理乘员辅助约束保护系统(SRS)的设计目的是与座椅安全带配合工作,从而进一步防止与另一个物体正面碰撞期间导致的人员伤害。
SRS采用了安全气囊模块、前碰撞传感器、时钟弹簧和诊断模块。
在蓄电池电缆连接的情况下,SRS系统获得蓄电池的电压,从而监视前碰撞传感器和用于碰撞信息确认的保险传感器。
当汽车碰撞到一个物体(如黍、墙壁、其它车辆等)或被一个物体撞击时,前碰撞传感器和保险传感器便将脉冲信号传送给诊断模块,诊断模块确定碰撞力的大小和方向。
依据这个信息,诊断模块确定是否张开气囊。
当碰撞力等于以10~15mile/h(16~24km/h)的速度撞向一堵砖墙时的撞击力时,安全气囊充气开始。
安全气囊的充气系统(图12-1)使叠氮化钠(NaN3)与硝酸钾(KNO3)反应,产生氮气。
氮气快速充入安全气囊。
2.系统组成1)控制模块安全气囊控制模块即SRS ECU是系统中最明显的部件之一,其内装有安全气囊保险传感器和储能电容器。
该模块安装在客厢通道地板盘上中央控制台的前方。
有些保险传感器位于控制模块内。
保险传感器提供了碰撞确认功能,但却不能确定碰撞的严重程度。
控制模块监视系统,以便确定系统的准备就绪的状况。
控制模块将存储足够的能量,以便在蓄电池电缆连接脱开后的2分钟内,能将安全气囊张开。
控制模块内含有车载诊断电路,从而在故障发生后,将仪表板上的安全气囊(AIR BAG)警告灯点亮。
每当汽车起动时,将用几秒钟的时间对该警告设备进行检测。
2)正面碰撞传感器按照功能来分,正面碰撞传感器有两种类型:前碰撞传感器和保险传感器。
前碰撞传感器位于乘客室前面的各种位置上。
有些位于翼子板内侧,有些位于车颈板上,有些位于散热器前方的支架上。
后传感器也叫做保险传感器,因为它们的功能是确定是否已经发生碰撞。
由于制造厂家的不同,后保险传感器位于乘客室内的各种不同位置上。
有些与控制模块(诊断模块)制成一体。
最新汽车专业英语原文及翻译
obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine: gasoline (also called a spark-ignition engine) and diesel (also called a compression-ignition engine). Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the power train. 发动机作为动力设备,常见的类型是内燃机,其原理是通过发动机缸内的液体燃料燃烧而产 生能量。发动机可分为两类:汽油机(点燃式)和柴油机(压燃式),都属于热力发动机。 燃料燃烧产生热量使缸内气体气压上升,从而产生能量,驱动与动力传动系相连接的轴旋转。 The way engine cylinders are arranged is called engine configuration. In-line engines have the cylinders in a line. This design creates a simply cast engine block. In vehicle applications, the number of cylinders is normally from 2 up to 6. Usually, the cylinders are vertical. As the number of the cylinders increase, the length of the block and crankshaft can become a problem. One way to avoid this is with a V configuration. This design makes the engines block and crankshaft shorter and more rigid. 发动机的布置即发动机气缸的排列方式。 发动机缸体按直线排列的即直列式,这种布置使 得发动机缸体结构简单。汽车发动机一般为 2~6 缸,通常气缸是垂直放置的,但气缸数量的 增加会导致缸体和曲轴的长度过大,解决问题的措施之一就是采用 V 型布置,这种布置方 式可以使发动机缸体和曲轴长度尺寸更短,从而大大增加刚度。 An engine located at the front can be mounted longitudinally and can drive either the front or the rear wheels. Rear engine vehicles have the engine mounted behind the rear wheels. The engine can be transverse or longitudinal and usually drives the rear wheels only. 前置发动机可以纵向布置,能够驱动前轮或后轮。后置发动机布置在后轮后侧,发动机即可 纵向布置又可横向布置,一般只能驱动后轮。 1.3 chassis 底盘 the chassis is an assembly of those systems that are the major operating parts of a vehicle.the chassis includes the power train,steering,suspension,and braking systems. 底盘由汽车的主要操作系统组装而成。包括传动系、行驶系、转向系和制动系四部分。 1)Powertrain system conveys the drive to the wheels.传动系-将驱动力传递到车轮。 2)Steering system controls the direction of movement.转向系-控制汽车的行驶方向。 3)Suspension and wheels absorbs the road shocks.悬挂系-吸收路面震动 4)Brake slows down the vehicle.制动系-使汽车减速缓行。 1.3.1 power train system 动力传动系统 The power train transfers turning effort from the engine to the driving wheels.a power train ca n include a clutch manual transmission or a torque converter for automatic transmission, a dr ive shaft, final drive and differential gears and driving axles. Alternatively,a transaxle may be use d. A transaxle is a self-contained unit with a transmission, final drive gears and differential locate d in one casing. 传动系把发动机输出的扭矩传递给驱动轮。传动系包括离合器(对应机械变速器)或液力变 矩器(对应液力自动变速器)、变速器、驱动轴、主减速器、差速器和驱动桥。另外有些传 动系采用由变速器、主减速器和差速器组成的一体式的变速驱动桥。(或者采用一个独立的 变速驱动桥,即变速器……在同一个箱体内。) A vehicle with a manual transmission uses a clutch to engage and disengage the engine from the power train. Engine torque is transmitted through the clutch to the transmission or transaxle.the transmission contains sets of gears that increase or decrease the torque before it is transmitted
《新编汽车专业英语(第3版)》Unit 3-Passage C
• The combination gives the logo a pretty sight.
• In addition to Ford and Lincoln brands, Ford Motor Company owns other brands such as Mercury, Aston Martin and Jaguar and so on.
• At the beginning of the 21th century, Ford had cooperation with China Changan Automobile Group (CCAG) and founded a joint venture in Chongqing, China, called Changan Ford Automobile Co.Ltd.
Unit Three Engine Systems
Passage C Automobile Culture
• Ford History • Ford Motor Company is one of the largestauto
manufacturers in the world. • Henry Ford was the founder who established the Ford
• In 2003, Ford Fiesta was produced to celebrate Ford’s 100tgo is known as Centennial Blue Oval.
汽车专业英语读译教程(3版) 参考译文UNIT 14 TEXT B
第14单元课文B自动驾驶汽车自动驾驶始于20 I世纪80年代。
现在这些早期成果的某些应用一经以汽车驾驶辅助系统的形式实现了产业化。
在车道保持辅助系统(LKAS)中,车道检测用于为驾驶员提供车道偏离警告(LDW)和增强驾驶员的方向控制。
自适应巡航控制系统(ACC)对前方行驶的车辆进行检测和跟踪,以保持平安舒适的行驶距离。
最近,出现了♦种预碰撞系统,如果驾驶员反响太慢,这种系统会触发全功率制动,以减少损失。
与此同时,对自动驾驶汽车的研究重点已经从最初研究的高速公路上遇到的结构良好的环境转变为非结构的环境,如城市交通或越野场景。
图14-7 DARPA城市挑战队参赛的汽车所有自动驾驶汽车共有三个要素:感知环境和自身运动的传感器、车载计算机和用于车辆控制的执行器。
图14.7显示了DARPA城市挑战队三辆车上使用的激光雷达、摄像机和全球定位系统(GPS)天线。
对于环境感知,使用了基于图像的传感器,如单FI和立体相机(单色和彩色)、以及距离感测设备,如雷达和激光雷达。
高清晰度的Velodyne威力登激光雷达具有360°、三维视图和丰富的点云,是专为自动驾驶汽车设计的、并在许多系统中使用。
另外雷达传感器还能够直接确定物体的相对速度。
为评估车辆的移动,需要包括来自里程表和惯性传感器的测量值,当然主要由GPS的全球位置测量提供支持。
车辆上的所有分布式或集中式处理必须具有实时能力。
这是车辆控制算法和系统平安检查的重要前提。
执行器是构成控制回路所必需的局部,例如用于方向盘、制动器或油门控制的执行器。
对车辆局部环境的感知能力是自动驾驶领域的主要挑战之一。
光照或颜色等环境条件是永久变化的,需要考虑场景中的许多静态和动态对象。
自我运动补偿作为感知和控制模块的先决条件,需要对车辆的移动进行良好的评估。
特别是当车辆快速行驶或在非平坦地形上行驶时,会发生沿纵向和横向轴的相关旋转。
对于不是在一个唯一时间戳进行的测量,在所有测量中补偿车辆的自我运动变得非常重要。
汽车专业英语读译教程(3版) 参考译文UNIT 9 TEXT C
UNIT 10 TEXT C自动变速器维修提示1.电路故障导致应急运行常见的电路故障有电缆断开、电磁开关阀故障、无传感器信号、变速器电子控制失灵。
发生电路故障时,汽车只能在变速杆D位情况下的某个档位(如2档)和R位(倒档)继续行驶。
像变速杆互锁这样的平安功能如果必要的话可不再起作用。
在重新起动后,不可能进行选择变速杆位置的操作。
这些故障信息被储存在自诊断系统中,并且在完成维修后必须将其删除。
2,机械液压故障导致应急运行(变速器电子控制良好)机械液压故障主要有多盘离合器因压力过低而打滑、多盘离合器磨损。
打滑是根据与发动机的转速差识别的,例如,如果转速差超过3%,那么被认为打滑。
被检测为良好的档位继续被选用。
倒档可以被接合。
变速杆互锁能起作用。
故障在重新起动时被重置。
有些汽车制造商没有将这些故障储存在ECU自诊断系统中。
3.故障车的牵引当牵引带有自动变速器的汽车时,必须严格遵循制造商的说明。
因为液压泵没有被驱动,因而变速器得不到足够的润滑。
变速杆必须置于N位。
在具有电磁控制驻车锁止装置的汽车上,必须用机械的方式将驻车锁止松开。
牵引车速一般应<50km/h,牵引距离W50km。
4.故障诊断为了能对变速器故障进行平安地诊断,必须在拆下变速器之前进行以下检查:1)变速器的液位。
液位过高会导致换档过硬和泄漏的可能。
液位过低会导致摩擦连接不充分,从而导致换档点移动。
应确保加注正确牌号和等级的自动变速器液(ATF)。
2)变速器液的质量。
变速器液有烧焦气味说明多片式离合器或制动带磨损。
3)用检测仪检查自诊断系统。
4)改变变速杆位置、负荷和车速,重新检查升档点和降档点。
5)检查变速杆的位置。
6)对旧自动变速器应检查节气门拉索的调整。
7)检查系统油压。
8)根据需要,检查换档阀壳中的滤网是否赃污。
9)检查失速转速。
进行该项检查时,必须严格按照制造商的说明。
因为过度的油液升温会使变速器出现损坏(如泄漏,离合器磨损)的危险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13单元
课文C 车载诊断(OBD)
1.第一代OBD系统
第一代OBD系统监视燃油计量和发动机的所有的主要传感器,监视系统是否存在短路、断路,以及在某些情况下监视传感器的输入是否在正常范围。
在检测这些基本参数之外的故障方面,OBD系统的能力是有限的。
故障指示灯(MIL)用来告诉驾驶员系统出现错误。
只要存在故障,该灯将会保持点亮状态。
但是,如果为间断性故障,或者自行恢复正常,MIL就会熄灭。
在MIL点亮之后, OBD 系统就会生产一个故障码,并将其存储在长期存储器,而不管故障码是由一种硬故障还是由一种断续性故障所引起。
这些早期的系统并不存储关于故障指示灯初次点亮之后经过了多少个循环,或者故障是否为断续性故障这样的信息。
这些故障码(DTC)会被存储在ECM存储器中,而不管故障是一种持续性的硬故障还是一种软(断续的)故障。
切断ECM的电源,故障码便会被清除。
这些早期的系统中有一些可以利用诊断仪进行访问,从而提供串行数据流。
另有一些系统通过激活MIL,使其按一定规律闪烁,来显示故障码,并且需要使用端子测试来确定传感器的工作情况。
这些非标准故障码(每个制造厂家均有自己的故障码和系统编号方法)区别不同的故障状况,因而技师必须参考诊断表或故障树,并常常需要使用诊断接线盒来进行端子测试。
尽管OBD处在一个良好的开创时期,但是它还存在许多缺点。
第一代OBD系统的主要缺点之一是在术语和故障码识别方面缺乏标准化。
当命名电控部件和系统时,各个厂家都可能使用它们自己的规定术语。
第一代系统只能提供有限的空燃比监测能力。
很少使用对系统功能的合理性检查。
故障码的提取方法在不同厂家之间有很大不同,很少在不同的系统之间采用相同的方法。
故障码常常局限在与电流有关的短路或断路故障。
故障码的数目也有限,并且每个制造厂家都有它自己的规定的故障代码,不同制造厂家之间都不相同。
此外,一旦系统故障自行消除,MIL也将熄灭。
在断续性故障引起了MIL断续点亮时,往往不会明显影响运行性能,因此有些车主就学会忽视MIL的闪亮,这样也就忽略了让排放控制故障得到修理的设计意图。
制造厂家仅使用了有限的串行数据流来实现诊断仪的通信,诊断仪的访问内容以及数据通信连接器(DLC)的设计和位置均由制造厂家规定。
故障码还需用手工方法从存储器内擦除掉,即拆下通往ECM的电源接线。
在1996年款车型以前的车辆上,排气尾管检测仍然是确定排放系统需修项目的一种最可靠的方法。
2.第二代车载诊断系统
加利福尼亚进一步明确了对1994年开始销往该州的车辆的排放控制法规,该法规被称为第二代车载诊断(OBDⅡ)。
1990年的《清洁大气法》(CAA)要求,在美国销售的汽车上应装有计算机控制的OBD诊断装置。
紧接着,联邦环境保护局(EPA)从1996款车型开始强制执行OBDⅡ的更加严格的要求,并适用于所有的在美国销售的含进口和国产的汽油机轿车和轻型货车。
此外,到1999年,所有的机动车都必须执行OBDⅡ标准。
汽车工程师学会(SAE)已经规定了实施OBDⅡ系统的标准并推荐了操作规程。
SAE的全体委员是由来自汽车制造厂家、执法机构、工具制造厂家的工业代表以及全世界的代表组成。
CAA还要求各州将OBD系统检查包含在所有的法定的I/M制度中。
即使对排放控制系统进行了改进,汽车也仍然是一种主要的空气污染源。
汽车排放的一氧化碳占总排放量的77%,氮氧化物占总排放量44%,这种高的氮氧化物排放会促成地表臭氧和光化学烟雾的形成。
OBDⅡ的目标有三个。
一是降低因为排放控制部件发生故障而引起的高排放值;二是在故障发生时将其检测出来,并通知驾驶员。
三是改进故障诊断与维修方法。
再也不必学习各个生产厂家所研制的新的诊断系统。
基本前提是让诊断技师能够使用同样的诊断设备来诊断任何车辆。
只要制造厂家提供所要求的OBDⅡ特别的装置,它们仍然能够将专用诊断工具的附加诊断功能引入到它们的系统中。
与早期的OBD系统相比,OBDⅡ系统有许多改进。
在动力控制模块(PCM)检测到一种能引起汽车排放值超过汽车排放标准的1.5倍(高50%)的故障时,作为一种车载诊断排放监视系统的OBDⅡ系统就会通知驾驶员。
排放控制系统发生的故障往往尚未引起排放值的增加便被检测出来。
此外,为了防止催化转换器损坏,OBDⅡ系统还能使MIL点亮。
OBDⅡ要求各个汽车制造厂家有更多的标准化内容。
SAE规定了标准的具体要求和制造厂家必须遵守的作法。
这些具体要求有:
1)16端子通用型OBD数据通信连接器(DLC)(图3-7)适用于所有制造厂家,端子功能和位置符合SAE标准J1962要求。
2)工业标准通信串行数据通信协议SAE标准J1850、ISO9141-2和ISO14230-4介绍了制造厂家在开发和设计OBD软件时可以使用的各种通信协议和信息格式。
·标准共同协议(SCP)(福特);
·控制器局域网(CAN);
·串行通信接口(SCI)(戴姆勒-克莱斯勒)。
3)通用诊断仪接口按照SAE标准J1978设计。
对所有的厂牌和型号的汽车,基本的串行数据流和诊断测试模式都符合SAE标准J1979。
一种满足SAE标准J1978的通用诊断仪能够提取所有的符合OBDⅡ标准的车辆上的数据和P0XX故障码。
一种符合OBDⅡ标准的诊断仪能自动识别与车辆进行通信所必须的全部信息。
诊断仪的操作人员不需要将车辆厂牌、车型、年款和动力装置这样的信息输入诊断工具。
此外,诊断仪还将自动检测和显示下列内容:·使用的通信协议;
·诊断数据参数;
·设置故障码时捕捉到的冻结帧数据(停帧数据);
·故障码;
·清除故障码、冻结数据的能力,从PCM计算机存储器中清除自适应存储器的能力;
·氧传感器监测结果;
·连续和非连续监控器;
·OBDⅡ准备就绪测试状态;
·车辆支持的特种测试。
4)车辆识别号(VIN)必须自动传送给诊断仪。
5)增强诊断检测模式要符合SAE标准J2190的要求。
6)制造厂家要按照SAE J2008的规定,提供OBDⅡ电子维修信息读取和标准化数据格式。
7)标准的故障码代号编制方法和通用故障码表均应符合SAE标准J2012的要求。
8)使用一种标准型诊断仪必须能将存储的故障码从PCM存储器中擦除。
9)如果检测到一种能够使汽车的排放值比汽车排放标准值高出50%的故障,应在存储器中设置一个故障码。
10)当出现一种排放故障时,应记录并存储当时的异常工作状况的快照。
11)按照SAE标准J1930,使电子控制系统部件名称和缩写实现标准化。
12)对所有的排放控制系统部件和系统进行实际监视,因为如果它们失效的话将导致排放值的增加。
装有OBDⅡ系统,就可能让一辆汽车通过排气尾管排放检测,但却不能通过OBD检测。
这是因为OBDⅡ系统监视着传感器和系统的工作情况,因而在尚未达到过高的排放值时,OBD Ⅱ系统就会发现系统部件出现故障。
另一方面的原因是,催化转换器能够降低排气尾管的排放值。
目前的OBDⅡ系统不仅监视发动机控制系统,而且还监视蒸发排放控制系统(如汽油箱盖密封失效)。
MIL就是一种对即将来临的排放故障的早期警告装置。
OBDⅡ排放控制系统的部件和连接器的寿命,按照EPA Tier 1标准(1995年及以后)的要求为10年或100000英里(160927 km),按照EPA Tier 2标准(2004年)的要求为120000英里(193112 km)。
美国现在要求,所有销售的新车都要有通过联邦试验程序(FTP)检测的证明。
联邦试验程序是1972年制定的,它根据联邦政府法规规定了最大排放值,并对废气采用定容取样。
FTP是由汽车生产厂家进行的的一系列测试项目。
只有通过FTP测试的车辆,才可以在美国销售。
该测试模拟各种各样的行车条件和驾驶员驾驶风格。
进行FTP测试时,经过专门训练的驾驶员在试验测功机上,在模拟真实道路的受力条件的情况下,驾驶新车型的样车。
FTP 的修订版与2004年生效,此修订版模拟两种更加严酷的真实驾驶条件,一种为逐渐加速期间控制排放提供条件,另一种为高速行驶(最高达80 mile/h)期间控制排放提供条件。
车主或修理机构将车辆认证的结构胡乱改动或者变更为未经认证的结构,是违反政府法律的行为。
安装未经认证的计算机芯片,或者拆掉催化转换器而在排气系统中换装一段直管就是胡乱改装的例子。
CAA还规定了1995年开始生产的汽车的排放担保项目,对催化转换器和其他的主要排放控制部件(PCM)的担保期规定为8年或80000 mile(128748 km)。
其他的排放控制部件的担保期为24个月,或者24000 mile(38624 km)。
查阅车主手册,便可找到规定的担保期和担保的范围。
属于担保项目的修理工作只能由汽车生产厂家授权的维修厂家来进行。
按照EPA的规定,一个修理厂家没有获得汽车生产厂家的排放担保修理的授权,那么,这个修理厂家就没有义务通知客户,他的故障部件属于生产厂家的担保范围。
当然,维修厂家会善意地通知他的客户。