2--整式的乘法公式的几何解释

合集下载

整式的概念。-概述说明以及解释

整式的概念。-概述说明以及解释

整式的概念。

-概述说明以及解释1.引言1.1 概述整式是代数学中的重要概念之一,它在数学运算中具有广泛的应用。

在我们日常的数学学习和解决实际问题时,经常需要对各种数学式进行化简、运算和因式分解等操作。

而这些式子往往可以被统一地称为整式。

整式由常数、变量及其乘积与幂的加减运算组成。

常数可以是整数、有理数或者无理数,而变量则代表某个未知数。

整式具有形式简单、易于计算的特点,在代数学的研究和实际应用中有着广泛的使用。

在整式的定义中,值得注意的是整式中的变量可以是一元的,即只有一个未知数,也可以是多元的,即包含多个未知数。

整式在具体的问题中可以表示各种关系和规律,如数学模型、物理方程、经济公式等,可以帮助我们分析和解决实际问题。

整式的基本运算包括加法、减法、乘法和乘方等。

通过对整式的加减运算,可以将相同次幂项的系数相加,从而得到一个新的整式。

在乘法运算中,可以对整式中的每一项进行乘法运算,并将结果相加,得到一个新的整式。

整式的乘方运算是将整式自身乘以自身若干次,得到一个新的整式。

整式的化简与因式分解是整式运算的重要内容。

化简就是将一个复杂的整式通过合并同类项、提取公因子等运算,简化为一个更简单的整式的过程。

而因式分解则是将一个整式分解为乘积的形式,使得每个因子都是最简单的整式。

化简和因式分解的过程常常需要运用代数运算中的基本法则和公式,通过合适的变换和操作,将整式变得更加简洁和易于处理。

总结而言,整式是代数学中的重要概念,它由常数、变量及其乘积与幂的加减运算组成。

整式的定义和基本运算为我们解决各种数学问题提供了有效的工具和方法。

通过整式的化简与因式分解,我们可以将复杂的整式简化为更加简洁的形式,从而更好地理解和应用数学。

整式在代数学的研究以及各个领域的实际应用中具有重要的地位和作用。

文章结构部分的内容如下:1.2 文章结构本文将按照以下结构进行阐述整式的概念:1. 引言:在这一部分,将对整式的概念进行简要的概述,引入整式的基本概念和重要性。

七年级整式知识点总结归纳

七年级整式知识点总结归纳

七年级整式知识点总结归纳整式是代数学中非常重要的一种形式,是由一些常数和变量以及运算符号组成的多项式。

它是整体式子的表示,可以表示出一些非常重要的代数关系,是许多数学问题的关键。

在七年级的数学知识点中,整式的概念和应用非常重要,下面将对七年级整式进行总结归纳。

一、整式的基本概念整式是由常数、变量及其系数,以及加、减、乘、幂运算组成的多项式。

它有以下几个基本要素:1. 项:整式中加、减的单元就是项,由变量及其次数和常数乘积组成。

2. 单项式:只含有一个项的整式,也就是kx^n这样的式子,其中k是常数,x是变量,n是整数。

3. 多项式:由若干个单项式相加或相减得到的式子,也就是整数加减的组合。

4. 次数:整式中所有单项式中次数最高的那个就是整式的次数,只有多项式才有次数。

二、整式的基本性质整式有以下几个基本性质:1. 加法交换律和结合律:整式加法满足交换律和结合律,也就是说,不管多项式中各项的顺序如何,整式的值都一样。

2. 乘法交换律和结合律:整式乘法满足交换律和结合律,也就是说,不管整式中各项的顺序如何,整式的值都一样。

3. 同类项的加减:同类项指的是变量相同且次数相同的单项式,可以通过合并同类项来简化整式。

4. 因式分解:整式可以通过因式分解来化简,使得整式的阶数降低,计算更加简便。

三、整式的应用整式在数学中有很多重要应用,如下:1. 代数方程的解:代数方程可以通过变形将其变为整式形式,从而求解。

2. 几何问题的解:整式可以表示几何实体的属性,如面积、体积等,从而解决几何问题。

3. 理论分析:整式可以表示出很多复杂的代数关系,对理论的分析和研究提供了基础。

四、整式的乘法公式整式的乘法也有一些非常实用的公式,如下:1. (a+b)^2=a^2+2ab+b^22. (a-b)^2=a^2-2ab+b^23. (a+b)(a-b)=a^2-b^24. (a+b)^3=a^3+3a^2b+3ab^2+b^35. (a-b)^3=a^3-3a^2b+3ab^2-b^36. a^2-b^2=(a+b)(a-b)以上这些公式,在解决代数问题的时候会非常有用。

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点

湘教版七年级数学下册第二章--整式的乘法知识点(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。

a n a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。

(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。

例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。

a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。

(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方) 例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。

(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图 1 图2A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C .5D .64.下列各式中,与(1-a)(-a -1)相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+15.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =-1,q =6C .p =1,q =-6D .p =5,q =-66.(-x +y)( )=x 2-y 2,其中括号内的是( )A .-x -yB .-x +yC .x -yD .x +y7.一个长方体的长、宽、高分别是3a -4、2a 、a ,它的体积等于( )A .3a 3-4a 2B .a 2C .6a 3-8aD .6a 3-8a 28.已知a =814,b =275,c =97,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a 二、填空题(每小题4分,共16分)9.若a x =2,a y =3,则a 2x +y=________.10.计算:3m 2·(-2mn 2)2=________.11.(福州中考)已知有理数a ,b 满足a +b =2,a -b =5,则(a +b)3·(a -b)3的值是________.12.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________. 三、解答题(共60分) 13.(12分)计算:(1)(-2a 2b)3+8(a 2)2·(-a)2·(-b)3; (2)a(a +4b)-(a +2b)(a -2b)-4ab ; (3)(2x -3y +1)(2x +3y -1).14.(8分)已知a +b =1,ab =-6,求下列各式的值.(1)a 2+b 2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2; (2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪1234=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像. (1)用含a 、b 的代数式表示绿化面积并化简; (2)求出当a =5米,b =2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x +a)(3x +b).小华把第一个多项式中的“a”抄成了-a ,得到结果为6x 2+11x -10;小明把第二个多项式中的3x 抄成了x ,得到结果为2x 2-9x +10.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 2.6 3.C 4.B 5.A 6.②④ 7.D 8.49.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 10.C 11.C 整合集训1.B 2.A 3.B 4.A 5.C 6.A 7.D 8.A 9.12 10.12m 4n 411.1 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =2.5. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。

本章的主要内容是整式的乘除运算、乘法公式以及因式分解。

本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。

本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。

其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。

在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。

首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。

在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。

15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。

《整式》 知识清单

《整式》 知识清单

《整式》知识清单一、整式的概念整式是代数式的一部分,在数学中有着重要的地位。

单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

比如 5,a,3x 等都是单项式。

单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如,单项式 3x²的系数是 3,次数是 2。

多项式:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式 2x²+ 3x 1 有三项,分别是 2x²,3x,-1,其中-1 是常数项,次数最高项是 2x²,次数为2,所以这个多项式是二次三项式。

整式:单项式和多项式统称为整式。

二、整式的加减整式加减的实质就是合并同类项。

同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,2x²y 和 5x²y 是同类项,3 和-5是同类项。

合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如,3x + 2x = 5x,4y² 2y²= 2y²。

去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。

例如:a +(b c) = a + b c ,a (b c) = a b + c 。

整式加减的一般步骤:(1)如果有括号,先去括号;(2)如果有同类项,再合并同类项。

三、整式的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。

即:a^m × a^n = a^(m +n) (m、n 都是正整数)例如:2³ × 2²= 2^(3 + 2) = 2^5 。

乘法公式ppt课件

乘法公式ppt课件

感悟新知
(2)几何图形证明法(数形结合思想)
知2-讲
图14.2-2 ①:大正方形的面积为(a+b)2=a2+b2+2ab;
图14.2-2 ②:左下角正方形的面积为(a-b)2=a2-2ab+b2.
感悟新知
知2-讲
3. 完全平方公式的几种常见变形
(1)a2+b2=(a+b)2-2ab=(a-b)2+2ab;
原式=x2-4xy+4y2;
(4)(-2xy-1)2.
原式=4x2y2+4xy+1.
感悟新知
知2-练


2
例 4 计算:(1)999 ;(2) .
解题秘方:将原数转化成符合完全平方公式的形式,再
利用完全平方公式展开计算即可.
感悟新知
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
(2)(a+b)2=(a-b)2+4ab;
(3)(a-b)2=(a+b)2-4ab;
(4)(a+b)2+(a-b)2=2(a2+b2);
(5)(a+b)2-(a-b)2=4ab;
感悟新知
知2-讲


2
2
2
(6)ab= [(a+b) -(a +b )]=


[(a+b)2-(a-b)2];
(7)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
公式进行计算.
感悟新知
知2-练
(1)(x+7y)2;
解:(x+7y)2=x2+2·x·(7y)+(7y)2
括号不能漏掉.
=x2+14xy+49y2;
(2)(-4a+5b)2;
(-4a+5b)2 =(5b-4a)2

高中数学乘法公式笔记

高中数学乘法公式笔记

高中数学乘法公式笔记在高中数学中,乘法是一种非常基础且重要的运算方式,涉及到许多常见的乘法公式。

熟练掌握这些乘法公式不仅可以帮助我们更快更准确地计算问题,还能在解题时提高效率。

本文将为大家整理一些高中数学乘法公式的笔记,希望能够帮助大家更好地理解和运用。

一、整式乘法公式1. 二项式乘法公式:$(a + b)^2 = a^2 + 2ab + b^2$这个公式是最常见的整式乘法公式,利用它可以高效地计算两个二项式的乘积,简化计算过程。

2. 多项式乘法公式:$(a + b)(c + d) = ac + ad + bc + bd$对于多项式的乘法运算,应用分配律可以得到以上公式,同样是非常实用的乘法公式。

3. 完全平方公式:$a^2 - b^2 = (a + b)(a - b)$完全平方公式可以帮助我们快速分解二次差的形式,简化计算步骤,是乘法中常用的工具。

二、小数乘法规则1. 小数乘法:小数之间的乘法运算需要注意位数对齐,先不考虑小数点,按照整数乘法的方法进行计算,最后确定小数点的位置。

2. 科学计数法乘法:对于科学计数法形式的乘法,先计算系数的乘积,然后将指数相加得到最终结果。

三、分数乘法运算1. 分数乘法:分数之间的乘法运算可以将分子与分子相乘,分母与分母相乘,然后进行约分得到最简形式的结果。

2. 乘法倒数:两个互为倒数的数相乘等于1,即$\frac{1}{a} \times a = 1$,这一性质在分数乘法中经常会被应用到。

四、向量乘法公式1. 数量积公式:$\vec{A} \cdot \vec{B} = |\vec{A}||\vec{B}|\cos\theta$向量的数量积是一个重要的概念,在物理学和几何学中有广泛的应用,利用上述公式可以计算向量间的数量积。

2. 叉乘公式:$\vec{A} \times \vec{B} = |\vec{A}||\vec{B}|\sin \theta \vec{n}$叉乘是向量的另一种乘法运算,结果是一个新的向量,方向由右手定则确定,这个公式描述了叉乘的计算方法。

整式的乘法乘法公式

整式的乘法乘法公式
确定运算顺序
先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。

复习教案-初二-整式的乘法与因式分解(学生版)

复习教案-初二-整式的乘法与因式分解(学生版)

3.若(x+2)是多项式4x2+5x+m的一个因式,则m等于()A.–6 B.6 C.–9 D.9三、课堂练习1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(),A.25 B.20 C.15 D.103.已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥04.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是.}5.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=.6.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.7.已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=.8.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为.9.已知2x2﹣ax﹣2=0,则下列结论中正确的是.①其中x的值不可能为0;②当x=2时,;③若a=1时,;④若a=2时,x3﹣4x2+2x=﹣3.10.设n为整数,则(2n+1)2﹣一定能被()—A.2整除B.4整除C.6整除D.8整除11.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和6712.对于算式20183﹣2018,下列说法错误的是()A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除;13.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.14.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.:15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是三角形.16.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,则△ABC的形状是三角形.17.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,》例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)所得结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=.【18.阅读理解。

冀教版七年级下册数学精品教学课件 第八章 整式的乘法 乘法公式 第2课时 完全平方公式 (2)

冀教版七年级下册数学精品教学课件 第八章 整式的乘法 乘法公式 第2课时 完全平方公式 (2)
b有什么关系?它的符号与什么有关?
想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 (2)(x -y)2 =x2 -y2
×
(x +y)2 =x2+2xy +y2
×
(x -y)2 =x2 -2xy +y2
(3) (-x +y)2 =x2+2xy +y2 × (-x +y)2 =x2 -2xy +y2 (4) (2x+y)2 =4x2 +2xy +y2 × (2x +y)2 =4x2+4xy +y2
a2-ab+b2=a2+b2-ab=37-(-6)=43. 7.已知x+y=8,x-y=4,求xy. 解:∵x+y=8, ∴(x+y)2=64,即x2+y2+2xy=64①;
∵x-y=4, ∴(x-y)2=16,即x2+y2-2xy=16②; 由①-②得 4xy=48 ∴xy=12.
课堂小结
法则
完全平方 注 意 公式
=1002-400+4-1002+1=-395; (2)原式=20162-2×2016×2015+20152
=(2016-2015)2=1.
例3 已知x-y=6,xy=-8.求: (1) x2+y2的值; (2)(x+y)2的值. 解:(1)∵x-y=6,xy=-8,
(x-y)2=x2+y2-2xy, ∴x2+y2=(x-y)2+2xy
(2) 992. 992 = (100 –1)2
=13;1
=10404.
=9801.
方法总结:运用完全平方公式进行简便计算,要熟 记完全平方公式的特征,将原式转化为能利用完全 平方公式的形式.

整式及其加减的运算的知识结构

整式及其加减的运算的知识结构

《整式及其加减的运算》知识结构一、整式1、单项式:只含有数字与字母的乘积的代数式叫做单项式.注意:①定义中的“积”是对数与字母而言的,只能是乘法或乘方运算,而不能是加、减、除等其他运算. 如22+ab ,32y x -,m n 2等都不是单项式.②单独的一个数或一个字母也是单项式.(1) 单项数的次数:一个单项数中,所有字母的指数的和叫做这个单项数的次数.注意:①计算单项数的次数时,不要漏掉字母的指数为1的指数. 如单项数532bc a 的次数是字母c b a 、、的指数和,即9513=++,而不是字母c a 、的指数和853=+②切勿加上系数中的指数. 如单项数4233y x -的次数是6,而不是9.(2) 单项式的系数:单项式中的数字因数叫做这个单项式的系数.注意:①单项式的系数包括其前面的符号;②只含有字母因数的单项式,其的系数是1或 1-.也就是说,系数是1或 1-时,常省略不写.2、多项式:几个单项式的和叫做多项式.其含义有:①必须由单项式组成;②体现和的运算法则.(1)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.注意:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式12324++y x 的次数是4,而不是624=+.(2)多项式的项:是指在多项式中,每个单项式叫做多项式的项.其中不含字母的项叫做常数项.注意: 多项式的项包括它前面的性质符号.3、整式:单项式与多项式统称为整式.注意:分母中含有字母的代数式是分式二、幂的运算性质对于幂的运算性质,(一)、要弄清运算性质的由来,(二)、要熟悉推导过程,明确各个性质的条件和结论;(三)、要学会公式的逆运用。

性 质条件 结 论 说明 n m n m a a a +=⋅ 幂的乘法,底数相同,指数为正整数 底数不变,指数相加 由乘法运算降为加法运算(指数相加)()m n n m a a = 幂的乘方,指数为正整数 底数不变,指数相乘 由乘方运算降为乘法 运算(指数相乘) ()n n n b a ab = 积的乘方,指数为正整数 分别乘方, 将幂相乘 由乘方运算降为乘法运算(幂相乘)nmnm aaa-=÷幂的除法底数相同,指数为正整数,且nm>底数不变,指数相减由除法运算降为减法运算(指数相减)01a=(0a≠)a-n=na1( a≠0,n为正整数)任何非零数的0次幂都等于零任何不为零的-n(n为正整数)次幂等于这个数n次幂的倒数在学习和运用这些性质时,一要注意符号问题,二要与整式的有关概念及整式的加碱运算相联系,三要注意各个性质的逆向运用及综合运用。

《整式及其运算 》课件

《整式及其运算 》课件
《整式及其运算》ppt课件

CONTENCT

• 整式的概念 • 整式的乘法 • 整式的除法 • 整式的混合运算 • 整式的简化 • 整式
02
01
03
整式是由常数、变量、加、减、乘、乘方等基本运算 组成的代数式。 整式中不含除法运算或开方运算。
整式可以看作是多项式的特殊情况。
多项式乘多项式
总结词
分别相乘,合并同类项
详细描述
多项式与多项式相乘时,需要将每个多项式的每一项分别相乘,然后合并同类项 。例如,$(x^2 + x) times (x + 1) = x^3 + x^2 + x^2 + x = x^3 + 2x^2 + x$。
乘法公式
总结词
利用公式简化计算
详细描述
整式可以用来解决实际问题,例如计 算路程、时间、速度等,有助于解决 实际问题。
THANK YOU
感谢聆听
整式的分类
单项式
只包含一个项的整式,例如:5x 、6y等。
多项式
包含多个项的整式,例如:x^2 3x + 2、xy - 2y等。
整式的加减法
01
同类项是指具有相同未知数的项 ,例如:x^2和3x^2是同类项。
02
合并同类项是指将它们的系数相 加减,未知数保持不变,例如: x^2 + 3x^2 = 4x^2。
在几何中的应用
整式在几何中也有着广泛的应用,例如在平面几何和立体几何中 ,整式可以用来表示长度、面积、体积等几何量。
整式可以用来解决几何问题,例如求圆的周长、面积等,有助于 解决实际问题。
在日常生活中的应用
整式在日常生活中也有着广泛的应用 ,例如在物理学中,整式可以用来表 示物理量之间的关系和变化规律。

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

七年级数学拓展第三讲整式的乘法讲义

七年级数学拓展第三讲整式的乘法讲义

第三讲整式的乘法整式的乘法1.乘方知识回顾求多个相同因数的乘积的运算,叫做乘方。

一般地将乘方写做a n ,读作a 的n 次方,也读作a 的n 次幂,其中a 叫做底数,n 叫做指数,乘方的结果叫做幂和数字的乘方运算类似,字母的乘方运算也遵循以下法则(1)同底数幂相乘,底数不变,指数相加,即m n m n a a a+⋅=(2)乘积的幂,等于各因数的幂的乘积,即()n n n a b a b⋅=⋅(3)幂的乘方,底数不变,指数相乘,即()n m mna a =(4)同底数幂相除,底数不变,指数相减,即()m n m n a a am n -÷=>(5)任何不为0的数的0次幂都是“1”,即a 0=1一般的,我们不用特意强调字母a 、b 的取值范围,但是我们默认它们要使得整个式子有意义,例如上面的(4)、(5)中,都要求a ≠0在整式的乘法运算中,我们主要会用到上面的(1)、(2)、(3)2.单项式乘以单项式(1)系数相乘作为积的系数;(2)相同字母的因式相乘,应用同底数幂的运算法则底数不变,指数相加;(3)只在一个单项式里含有的字母,连同它的指数也作为积的一项例如:()()()3232525(25)10x x y x x y x y⨯=⨯⨯⋅⨯=注意:单项式与单项式的乘积仍然是单项式3.单项式乘以多项式利用乘法分配律,用单项式分别去乘多项式的每一项,转化为单项式与单项式相乘的形式,再把得到的所有乘积相加例如:()()()2323253235232(5)610a a ab a a a ab a a b ⎡⎤⨯-=⋅+⋅-=-⎣⎦4.多项式乘以多项式先把其中一个多项式看作整体,用它去乘另一个多项式的每一项,利用分配律拆开括号。

此时括号由两个减少为一个。

再利用单项式乘以多项式的方法,将所有括号拆开,最后将所有项加起来例如:注意:把所有括号展开后,最后一定要记得合并同类项例1.计算:()()54232233232224(1)(2)3()3(3)(4)m n m n a a x xy z ⋅⨯⨯-⨯⎡⎤⎢⎥⎣⎦()()()()()()()()232222432322322(1)371(2)2(3)354(4)332ax a xy mn mnx a b a bc ac a b ab a b ⋅---⋅-⋅--⋅-⋅-例3.计算:()()()232222(1)(4)3211(2)8742(3)()25(4)7834xy x xy x x x x y xy a ab b b a b +-⎛⎫--+ ⎪⎝⎭+⎛⎫--++- ⎪⎝⎭()()()()22222222(1)(31)(2)(2)(2)35(3)2(32)(54)1(4)4(32)2(5)2326(6)(232)23x y a b a b x y x y m n n m n x y z x y z bc ab ac a b c ++--+-⎛⎫++ ⎪⎝⎭++-+++-+例5.计算:(1) (x+2)(y+2)(z+2)(2) (x+1)(y+1)(z+1)(3) (x+7)(y+2)(1-x+xy)(4) (3x+2)(6y+5)(2z+1)一元整式的乘法关于一元整式(只含有一个字母)的乘法,我们可以运用列竖式来运算。

对“整式的乘法与因式分解”单元教学的思考和解析

对“整式的乘法与因式分解”单元教学的思考和解析

对“整式的乘法与因式分解”单元教学的思考和解析整式的乘法与因式分解是代数运算的重要基础,利用它可以解决许多数学问题,而且它又是教科书正文中典型的数学运算案例,对整式的乘法与因式分解教学内容进行合理的整合,并对单元教学进行精心设计,可以集中体现出数学抽象、数学运算这两大核心素养.。

一、单元内容和内容解析(1)单元内容:本章主要包括整式的乘法、乘法公式和因式分解等知识,是基本的代数初步知识,由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,结合课程标准的要求以及教参的建议,可以将单元教学从学生学习的学习方法和认知特点进行整体设计,着重培养学生的数学学科核心素养.。

(2)内容解析:①内容本质.。

使学生正确理解乘法公式和因式分解的意义,认识乘法公式的结构特征以及字母的广泛含义.。

②蕴含的数学思想和方法.。

数形结合:学习整式的乘法和因式分解,我们不仅要能从“数”的角度熟练进行运算,而且要能从“形”的角度理解公式、法则的几何背景,既要学会算法,也要弄清算理真正做到数形结合,融汇贯通;转化思想:在本单元中,要求某些特殊类型的多项式的值,可以借助因式分解将多项式变形后再求解,这样做往往能够简便运算;分类讨论:在涉及完全平方式问题时,由于中间项系数可正可负,所以结果往往有两解,分类讨论是十分重要的数学思想;本章从具体→抽象→具体的认知过程,体现数数学的连贯性和整体性;以实为例,抽象出问题中的数学思想和规律,体现知识的形成和应用过程.。

③多维度关系.。

整式的乘法和因式分解是基本的代数知识,这些知识是在学习了有理数的运算、整式加减、解一元一次方程、实数运算和不等式的基础上引入的,也是进一步学习分式、二次根式、一元二次方程和函数等知识的奠基,同时也是其它理学学科不可或缺的数学工具.。

故而,本章在初中学段占有非常重要的地位.。

④育人价值.。

经历借助拼图解释整式变形的过程,体会几何直观的作用,有助于学生从几何角度认识并理解代数的含义.。

乘法公式教材分析

乘法公式教材分析

乘法公式教材分析一、教材内容的外部知识结构分析乘法公式是在学习了有理数运算、简单的代数式、一次方程及不等式、整式的加减运算及整式的乘法运算等知识的基础上,在学生已经掌握了单项式乘法、多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。

它的推导是初中代数中运用推理方法进行代数式恒等变形的开端。

对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且还为以后的因式分解、分式的化简与运算、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础。

它是构建学生有价值的数学知识体系并形成相应数学技能的重要内容,它是让学生感悟化归等思想,感受数学的再创造性的好教材。

因此乘法公式十分重要。

二、教材内容的内部知识结构分析(一)知识点:平方差公式、完全平方公式、添括号法则(二)内部知识结构图:三、教材内容的具体分析(一)探究分析计算下列多项式的积,你能发现什么规律?(1) (x+1)(x-1) = -------;(2) (m+2)(m-2) = --------;(3) (2x+1)(2x-1) = --------。

1、探究目的让学生自己观察、发现、推理、归纳出一般形式,培养学生推理归纳能力的同时引出本节课所要讲的平方差公式。

2、探究过程先让学生独立观察、思考,然后再小组讨论,最后汇报结果。

3、探究方法先独立,再合作。

4、探究结论两个数的和与这两个数的差的积,等于这两个数的平方差。

(二)数学命题的分析Ⅰ平方差公式文字语言:两个数的和与这两个数的差的积,等于这两个数的平方差。

这个公式叫做(乘法的)平方差公式。

符号表达式:(a+b)(a-b)= a2 -b2几何意义/图形直观:思考题1、公式的地位作用平方差公式是乘法公式的一种,这一内容属于数学再创造活动的结果,是学生系统学习的第一个公式,也是最基本、用途最广泛的公式之一,它在整式乘法、因式分解、分式运算及其它代数式的变形中起十分重要的作用。

初中数学-:整式的乘除法综合-教师版

初中数学-:整式的乘除法综合-教师版

整式的乘除法综合在整式及其加减运算后,进一步学习整式的乘除,是对整式运算的延展和补充.整式的乘除法的基础是同底数籍的乘法和除法,籍的乘方和积的乘方,单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式等运算.通过这节课的学习,一方面加强对整式乘除运算的进一步理解,另一方面也为后期学习分式的运算奠定基础.P[整式的乘法整式的乘除法1、单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数籍分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按”先乘方、再乘法的顺序进行例如•2xv2 23X2v 4X2v43X2v 12X4v51XA H J //」乂 L |」•\/ .4/'H •c x y u x y *t x y u x y ic x y.2、单项式与多项式相乘法则:单项式与多项式相乘,用单项式乘以多项式的每一项.再把所得的积相加.例如:m a b c=ma mb mc.3、多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.用公式表示为: (m n)(a b) (m n)a (m n)b ma na mb nb .4、同底数籍的除法法则:同底数籍相除,底数不变,指数相减.用式子表不■为:a m a n a m n (m、n都是正整数且m n , a 0).5、规定a0 1 a 0 ; a p $ (a 0 , p是正整数).6、单项式除以单项式的法则:两个单项式相除,把系数、同底数籍分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.7、多项式除以单项式的法则:多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.一、选择题1.下列运算中结果正确的是( ).- - - 一一一 3 _A 336D 224八 2 5 cx x x ; B、3x 2x 5x ; C、x x ; D 、2 2 2x y x y .【难度】★【答案】A【解析】B正确答案为:3x2 2x2 5x2;C正确答案为x23 x6;D正确答案为x y 2x22xy y2 .【总结】本题主要考查对整式的运算法则的理解和运用.2.在下列的计算中正确的是().A 2x 5y 5xy B、a a 2 a2 4G a2 ab a3b 2x 6x 9【答案】C【解析】A的两个单项式不能合并; 正确答案为D正确答案为x 32 x2 6x 9【总结】本题主要考查对整式的运算法则的理解和运用.3.下列运算中正确的是().A 6 c 3 c 2 A、6x 3x 2x B、8x8,2 c 64x 2x2xy xyC、3xy 23x yA 、 abB. abC. D.b【解析】A 正确答案为6x 6 3x 3 2x 3 ;C 正确答案为223xy 3x 3xy ;D 正确答案为x 2y 2 xy 2 1.【总结】本题主要考查对整式的除法则的理解和运用.【总结】本题属于混合运算,计算时注意对相关运算法则的准确运用.5.如果4a 2 3ab M 4a 3b ,那么单项式M 等于().4.计算 4ab 的结果是().A 、4B 、A 2ab【答案】C【解析】原式=a 2 b 22ab a 2 b 2 2ab 4ab4ab 4ab 1【难度】【答案】C【解析】4a 2 3ab a 4a 3b a 4a 3b , /. M a .【总结】本题主要考查对整式的除法则的理解和运用.6.设M 是一个多项式,且M 5 x 2y2x 2y 4 —x ,那么M 等于().32【难度】★★【答案】Cf 皿 士匚 1…2 43 5 2 2 45 23 5 2 104 55 3M 2x y — x -x y 2xy — xy-x-xy— x y -x y2332332【总结】本题主要考查对整式的除法则的理解和运用.645943x y —x y B 、6 3 -y 55 2xy10 4 5 3xy2xy10 4 5i xy2xy7.已知x2 kxy 64y2是一个完全平方式,贝U k的值是().【难度】★★【答案】D【总结】本题主要考查对完全平方公式的理解和运用.8.如下图(1),边长为a 的大正方形中一个边长为b 的小正方形, 小明将图(1)的阴影部分拼成了一个矩形,如图(2).这一过程 可以验证().【解析】图1中,阴影部分的面积为a 2 b 2,图2中,阴影部分为长方形,长为a b ,宽为a b ,A 、8B 、±8C 、16【解析】X 2 kxy 64 y 2 x 2 kxy228y =x 28 xy28yA a 2 b 2 2abB 、a 2 b 2 2ab a b 2 ;G 2a 2 3ab b 22a b a- bDk a 2 b 2 a b a b【难度】★★【答案】D面积为【总结】本题通过图形面积的转化加强对平方差公式的理解.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:b n 2a b ;④ 2am 2an bm bn ,你认为其中正确的有()A、①②B、③④C、①②③ D>①②③④【难度】★★【答案】D【解析】图中①②③④中各个代数中表示图中长方形的面积.【总结】本题主要是通过图形的面积加强对整式乘法的理解.10.已知P — m 1 , Q m2—m (m为任意实数),则P、Q的大小关系15 15Dk不能确B、P Q【难度】★★★【答案】C【解析】Q P m28 —m 7 —m 1 m2m 1 m 1 2 3 015 15 2 4【总结】本题主要考查通过作差法来比较两个数的大小.二、填空题11.若5x 3y 2 0 , I05x 103y .【难度】★【答案】100【解析】;5x 3y 2 0 , 5x 3y 2 , /. 105x 103y=105x3y 102【总结】本题主要考查对同底数籍相除的法则的逆用.12.已知m n 2, mn 2,贝!j 1 m 1 n .【难度】★【答案】-3【解析】1 m 1 n 1 m n mn 1 mn 1 2 2【总结】本题一方面考查整式的乘法,另一方面考查整体代入思想的运用.13.若m2 n2 6 ,且m n 3 ,贝!J m n .【难度】★【答案】2.【解析]•/ m2 n2 m n m n 6 , m n 3 , m n 2 .【总结】本题主要考查对平方差公式的运用.14.方程x 3 2x 5 2x 1 x 8 41 的解是.【难度】★【答案】x 3.【解析】x 3 2x 5 2x 1 x 8 41 ,二2x2 5x 6x 15 2x2 16x x 8 41 ,即16x 48【总结】本题通过利用整式的乘法来进行方程的求解.15.已知x2 5x 1,那么x2 W x【难度】★★【答案】272【解析】x2 5x 1 , x 1 5 . x 125,x xx2二 2 25 . x2 4 27 .x x【总结】当两个数互为倒数时,已知它们的和或者差,都可以利用完全平方公式求出它们的平方和.16.设4x2 2 m 3 x 121是一个完全平方式,贝m=.【难度】【答案】19或-25【解析】•/ 4x2 2 m 3 x 121 2x 2 2 m 3 x 11 2 ,. 2m 3 44 , m为19 或-25 .【总结】本题主要考查对完全平方公式的理解和运用.17.计算2x 3xy 2 x2y ‘的结果是.【难度】★★【答案】18x9y5f础居,c c 223CC22 6 3 . o 9 5I用牛忻1 2x 3xy x y 2x 9x y x y 18x y .【总结】本题主要考查对单项式乘以单项式法则的理解和运用.18.已知5x与一个整式的积是25x2 15x3y 20x4 ,则这个整式= ______________________【难度】★★【答案】5x 3x2y 4x3 .x 3和 x 1 满足 4x 3 9x 2 mx n 0 .【解析】 - 2 3 4 - 2 325x 15x y 20x 5x 5x 3x y 4x .【总结】本题主要考查对整式的除法的法则的理解和运用.19.若一三角形的底为4a 2 [,高为16a 4 2a 2【,则此三角形的面积为2 4【难度】★★★ 【答案】 6 132a16 【解析】 1 4a 2 - 16a 4 2a 2 1 1 64a 6 8a 4 a 2 8a 4 a 2 -32a 6 — 2 2 4 2 816【总结】本题主要是利用整式的乘法来求解几何图形的面积.20.已知x 2 2x 3能整除4x 3 9x 2 mx n,求n\ n 的值.【难度】★★★【答案】m 10, n 3.1【解析】..• 4x39x2mx n x22x 3 A x 3 x 1 A, x 3和x 1 满足4x3 9x2 mx n 0 .4 3 3 93 2 3m n 0 则 』c 』2 c '4191 m n 0 【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.三、简答题21.计算:x2y 2【总结】本题主要考查对整式运算中的相关法则的运用.22.计算:32 2x y 2xy 1m 10 n 3 【解析】原式 =x 2y 2 2xy x 2 y 2 2y 2 2xy . 2x 3y 3(2) 6m 2n 6m 2n 23m 2 3m 2【难度】【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .2 3T角贫*斥】<1、百7^ —2X3V2XV2X3V2X24X6V22xvRx'v32x2L用牛仙1 V 1 / 赛工J —2x y 2xy 2x y 2x4x y 2x y 8x y2x73 73 732x y 4x y 6x y -(2)原式—6m2n 3m26m2n23m23m23m22n 2n2 1 .【总结】本题主要考查对整式运算中的相关法则的运用.23.计算: x25x 6 x 6【难度】★【答案】x 1【解析】x 6 x 1 x 6 x 1 .【总结】本题主要是利用因式分解进行多项式除以多项的计算.24.计算:(1)x 4y 2x 3y (xy) ;(2) 6a b c 3a b c 2a b c .【难度】★【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .【答案】(1) 2x25xy 12y2x y; (2) -1 .【解析】(1)原式—2x23xy 8xy 12y2x y 2x2 5xy 12y2x y;(2)原式=2a3b3c3 2a3b3c31.【总结】本题是整式的混合运算,计算时注意法则的准确运用.25.计算:2 2 2(1) a 2b 1 ; (2) 2x 3x 4x 1 3x 2x 3 ;2 2(3)2a 3b 2a b 2a b ; (4) x y y 2x y 8x 2x【难度】★【答案】(1) a2 4ab 4b2 2a 4b 1 ; (2) x2 2x ;1(3)10b212ab ; (4) §x 4 .【解析】(1)原式=a 2b2 2 a 2b 1 a2 4ab 4b2 2a 4b 1 ;(2)原式=6x38x2 2x 6x39x2 6x3 8x2 2x 6x3 9x2x22x;(3)原式=4a2 9b2 12ab 4a2 b210b2 12ab ;(4)原式=x2y22xy 2xy y28x 2x x2 8x 2x —x 4 .2【总结】本题是整式的混合运算,计算时注意法则的准确运用.26.计算下列各题:(1) m na3m 2namn 5a(2)2 3 2 5xy37xy2 3 3y2 2 3y【难度】 ★★【答案】(1)2mn .a ,(2)3x 3 521 —xy 2y •【解析](1)原式=a mn a 6mn a 5mn a 2mn ;【总结】本题是整式的混合运算,计算时注意法则的准确运用.27.若 3m 6,9n 2 求 32m4n1 的值.【难度】★★【答案】27【解析】32m 4n 132m 34n 3 3m 2 9n 2 3 62 22 3 27 .【总结】本题是对籍的运算的综合运用.(2)原式斗y27xy 32 3 2 23 3 21-y -y -x 3 —xy y .3 3 5 228.解不等式: x 1 x 3 8x x 5 x 5 2【难度】★★【答案】x 52【解析】x2 x 3x 3 8x x2 25 2 ,512x 30 , x 5 .2【总结】本题主要是利用整式的乘法来求解不等式的解集.29.已知:2x 3 0 ,求代数式x x2 x +x25 x 9的值.【难度】★★【答案】0【解析】... 2x 3 0 . •,.原式=x3 x2 5x2 x3 9 4x2 9 (2x 3)(2x 3) 0 .【总结】本题主要是对整体代入思想的运用.30.先化简,再求值:xy 2 xy 2 2x 2y 2 4 xy (其中 X =10, y —).25【难度】★★【答案】z5【解析】原式=x 2y 2 4 2x 2 y 2 4 xy x 2y 2 xy xy .1 2当X =10, y 云时,原式=1025 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准 确运用.【答案】1331.先化简,再求值:2a b 2 a 1 ba 1b a 1 2 其中 a - , b 2 .2【解析】原式=4a2 b2 4ab a 1 2 b2 a 1 2 4a2 2b2 4ab)2当 a ! , b 2 时,原式=4 1 2 2 2 4 1 2 13.【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.32.先化简,再求值:a -b 2 b a -b ,其中a 2 , b -.2【难度】★★【答案】5【解析】原式=a2 2ab b2 ab b2 a2 ab ,当 a 2 , b ;时,原式=22 2 2 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.33.先化简,再求值: 3x 2 3x 2 5x x 1 2x 1 2,其中x【难度】★★【答案】-8【解析】原式=9x2 4 5x2 5x 4x2 4x 1 9x 5 ,1当x:时,原式=9o 5 8 .3 3【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.2 c3 »34.先化简,再求值:2x y 2x y y 2x ,其中x 2, y 1【难度】★★【答案】5【解析】原式=2x y13 2x y6 2x y 6 2x y ,当x 2,y 1时,原式=2 2 1 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.35. 一个多项式除以x2 2x 3,得商为x 1,余式为2x 5,求这个多项式.【难度】★★【答案】x3 x2 3x 2 .,左刀2 3 2 2 3 2【解初J x22x 3 x 1 2x 5 x3x22x2 2x 3x 3 2x 5 x3x23x 2 . 【总结】本题主要是考查对题目的理解能力.36.已知一个三角形的面积是4a3b 6a2b212ab3, 一边长为2ab ,求该边上的高. 【难度】★★【答案】4a2 6ab 12b2 .224a 6ab 12b .即该边上的高为4a2 6ab 12b2 .,左刀3223 3 2 23【角牛析】2 4a3b 6a2b212ab32ab 8a3b 2ab 12a2b2 2ab 24ab32ab【总结】本题主要是考查对题目的理解能力.37.若3x 2y 10 0无意义,且2x y 5 ,求x,y的值.【难度】★★【答案】x 0, y 5.【解析】由题意可知:3x 2y 10 0.又2x y 5 , x 0 , y 5 .【总结】本题主要考查a0有意义的条件.38.若x2mx 8 x23x n的展开式中不含x2和x3项,求m和n的值.【难度】★★【答案】m 3, n 17.【解析】原式=x4 3x3 nx2 mx3 3mx2 mnx 8x2 24x 8n 4 3 2x m 3 x n 3m 8 x mn 24 x 8n .,展开式中不含x2和x3项,m 3 0 , n 3m 8 0 , m3, n 17.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.39.若a=2005, b=2006, c=2007,求a2 b2 c2 ab bc ac 的值.【难度】★★【答案】3【解析】原式=1 a b2 a c2 c b2 1 6 3.2 2【总结】本题主要是对完全平方公式的综合运用.40.说明代效式(x y)2 x y x y 2y y的值,与y的值无关.【难度】★★【答案】见解析.【解析】原式x2 y2 2xy x2 y22y y 2y2 2xy 2y y y x y x ,. ••此代数式的值与y的值无关.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.41.一个正方形的边长增加3cm,它的面积增加了45cm2.求这个正方形原来的边长.若边长减少3cmi它的面积减少了45cm,这时原来边长是多少呢【难度】★★【答案】6cm 6cm【解析】设原来正方形的边长为x cm则x 3 2 x2 45 ,解得:x 6 .正方形原来的边长为6 cm.设原来正方形的边长为ycm则y 32 y2 45 ,解得:y 6 .正方形原来的边长为6 cm.【总结】本题主要考查整式的乘法在实际问题中的运用.42.如图所示,长方形ABCDT阳光小区”内一块空地,已知AB=2a,BG3b,且E为AB边的中点,CF 1BC ,现打算在阴影部分种植一3片草坪,求这片草坪的面积.【难度】★★【答案】2ab .【解析】1 2a 3b 1 a 2b 2ab .2 2【总结】本题主要考查整式的乘法在实际问题中的运用.43.如图,某市有一块长为3a b米,宽为2a b米的长方形地块,规划部门计划将阴影部分进行绿化, 的面积是多少平方米并求出当a 的绿化面积. 【难度】★★【答案】5a2 3ab; 63.【解析】3a b 2a b a b 2_2_ 2 2 26a23ab 2ab b2a22ab b2_ 2 —5a 3ab .当a 3 , b 2时,原式=5 32 3 3【总结】本题主要考查整式的运算在实际问题中的运用.2 63.44.“光明”中学为了改善校园建设,计划在长方形的校园中间修一个正方形的花坛,预计正方形花坛的边长比场地的长少8米,比它的宽少6米,并且场地的总面积比花坛的面积大104平方米,求长方形的长和宽.【难度】★★★【答案】场地的长为12米,宽为10米.【解析】设正方形的边长为X,则场地的长为X 8米,宽为x 6米.则x 8 x 6 x2 104 ?解得:x 4场地的长为12米,宽为10米.【总结】本题主要考查整式的运算在实际问题中的运用.45.某城市为了鼓励居民节约用水,对白来水用户按如下标准收费:若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2 m元计算.现有一居民本月用水x吨,则应交水费多少元【难度】★★★【答案】见解析.【解析】当x a ,应交水费为am ;当x a ,应交水费为am x a 2m 2mx am .【总结】本题主要考查整式的运算在实际问题中的运用.46.求证:无论x、y为何值,4x2 12x 9y2 3 30y 35的值恒为正.21 1 2n2 n34 2n 1 n 1 〔222 1 3 2 3侦牛忻 1 - 一xyz m -x y z 5x y z , - - -xyz m 一x y z .3 3 9 15【难度】★★★【答案】见解析.v A-i-t r w 2 2 2 2【命军析]•/ 4x 12x 9y 30 y 35= 2x 3 3y+5 1 0,无论x、y为何值,4x2 12x 9y2 30y 35的值恒为正.【总结】本题主要利用配方来说明代数式的正负性.四、解答题1 12n2 n34 2n1n1 口、,甲._.x z 147.U 大口 : - xyz m - x y z 5x yz , F. I「.修钗x、z 7两人E: 2 372 ,3 3求m的值.【难度】★★【答案】玄.5m -1x3y2z3 1x2y2z2 2xz15 9 5..•正整数x、z 满足:2x 3z 1 72 , x 3 , z 1 2 .x 3, z 3, m § 3 3 27 .5 5【总结】本题是整式的混合运算,计算时注意法则的准确运用.48. 已知f x 5 39x 8x 12x2 , g x 5 6 -x64—x9求: f x 3x g x5 2一x的值.57 4一x12【答案】8 3 143 -x x5 30 2 4x【解析】f x 3x g x 5 2 —x189x58x3 12x23x 5x66 4 5—x93x48 2x2 4x33x48x35L108x3 5 143 2 』——x4x .305 2 —x 187 —x12【总结】本题是整式的混合运算,计算时注意法则的准确运用.49.已知关于x的三次多项式除以x2 1时,余式是2x 5 ;除以x2 4时,余式是3x 4,求这个三次多项式.【难度】★★【答案】5x3 3x2 ^x 8.3 3【解析】设关于x的三次多项式为:f (x) ax3 bx2 cx d(a 0),且f (x)除以x2 1与除以x2 4后,所得的商式分别为:ax m与ax n .贝(J ax3bx2cx d x21 (ax m) 2x 5 ①ax3bx2cx d x24 (ax n) 3x 4 ②. ••把x 1代入①可得:a b c d 3 , a b c d 7 .JE x 2 代入②可得:8a 4b 2c d 2 , 8a 4b 2c d 10 .解得:a - , b 3 , c 11 , d 8 .3 3关于x的三次多项式为5x3 3x2 11x 8.3 3【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.50.阅读下列题目的解题过程:已知a、b、c为ABC的三边,且满足2 2 2 2 4 4 二-fx业业匕 "一八c a c b a b ,试判断ABC日勺形状.22 22 4 4用牛. c a c b a bc2(a2b2) (a2b2)(a2b2) (B)c2a2b2(C)ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误请写出该步的代号:(2)错误的原因为:________________________________________________(3)本题正确的结论为:【答案】见解析.【解析】(1) (C);(2)因为a4 b2不能确定能不能为零.(3) AABC为直角三角形或等腰三角形.・ 2 2.2 2.2 2.2• •ca b a b a b 0 .a2 b2或a b或a b . .'a、b、c为ABC的三边,c2a2 b20 或a2 b22 2 .2caba2 b20 .. 3BC为直角三角形或等腰三角形.【总结】本题主要是对等式的基本性质的考查,等式两边同除的数一定不为零.。

整式乘法的几何直观

整式乘法的几何直观

整式乘法的几何直观发布时间:2021-06-03T08:54:48.788Z 来源:《教育学》2021年4月总第246期作者:刘明红[导读] 通过思考、想象、猜想出一些可能的结论和论证思路,提高他们数形结合、辩证思考的能力。

山东省青岛第二实验初级中学266000摘要:本文是整式乘法的单元复习课,旨在让学生利用几何拼图理解记忆所学过的代数公式,让学生充分体会代数运算中“算两次”方法,在活动中渗透数形结合的重要思想,提升学生数学学习的核心素养。

关键词:“算两次” “数形结合” 整式乘法【教材分析】本节课是学生学习了《整式的乘法》之后进行的小专题复习课,旨在引领学生感悟用几何图形直观表示代数等式,体会对同一图形的两种不同表达方式建立恒等式的方法(即“算两次”法),把数学代数式与几何图形紧密地结合起来,发展学生几何直观能力,培养学生的数形结合思想,通过思考、想象、猜想出一些可能的结论和论证思路,提高他们数形结合、辩证思考的能力。

【学情分析】在《整式的乘法》这一章的学习中,有许多法则和公式的推导都用到了几何图形直观解释的方法,学生积累了一定的数学活动经验,这为本节课的学习奠定了基础。

但是学生对几何图形诠释代数等式的学习还待进一步提高,对面积 “算两次”的方法还待进一步的理解和掌握,有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的能力。

【教学目标】1.通过拼图,体会整式乘法的几何直观。

2.用几何图形诠释代数恒等式,感悟发现其中蕴含的规律。

3.体会面积“算两次”的方法,提高学生数形结合的能力。

【教学重点、难点】1.引导学生利用几何图形的面积关系归纳出代数恒等式;体会图形与代数等式之间的关系,归纳出“算两次”的方法。

2. 从具体问题到建立数学模型。

【课前准备】1.学生准备正方形A若干,正方形B若干和长方形C若干,至少选择其中的两个图形,拼出1~2种正方形或长方形,根据图形的面积表示写出对应的代数恒等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法公式的几何解释
——“数形结合”思想
1、边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.
(1)请你分别表示出图1阴影部分的面积S1,图2阴影部分的面积S2
(2)请问以上结果可以验证哪个乘法公式?
2、如图1,边长为(a+b)的正方形,按图2所示分割.请用不同的方法来表示大正方形的面积,从而验证了哪个因式分解公式?
图1图2
3、图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)图②中的阴影部分的面积为;
(2)观察图②请你写出三个代数式2
m n
-、mn之间的等量
()
()
m n
+、2
关系是.
(3)若6
-=.
xy=,则x y
+=-, 2.75
x y
4、如图,现有2张边长为b的正方形纸片,3张长为b、宽为a的长方形纸片和1张边长为a的正方形纸片,试一试,能否将这些纸片拼成一个长方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹)?由此你发现了什么?

5、(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是______(用a、b的代数式表示).
6、如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为______;
(2)观察图2请你写出(a+b)2、(a-b)2、ab之间的等量关系是______ ;
(3)根据(2)中的结论,若x+y=5,x•y=1.25,则x-y=______;(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有发现的等式为:.。

相关文档
最新文档