八年级数学下册《5.4 分式方程》教案3 (新版)北师大版
北师大版数学八年级下册5.4《分式方程》教学设计1
北师大版数学八年级下册5.4《分式方程》教学设计1一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上学习的。
本节课主要让学生掌握分式方程的定义、解法以及应用。
通过本节课的学习,学生能够理解和掌握分式方程的概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式运算有一定的了解。
但部分学生对分式的理解不够深入,解题思路不够清晰,需要在解题过程中进行引导。
此外,学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,需要通过实例进行启发。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用到实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.分式方程的定义及解法。
2.将分式方程应用到实际问题中。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的学习材料,如教材、课件、练习题等。
2.准备实际问题案例,用于引导学生应用分式方程解决实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解分式方程的定义,演示解法,让学生理解并掌握分式方程的基本知识。
3.操练(10分钟)让学生独立解决一些简单的分式方程,检验学生对知识点的掌握情况。
4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和辅导,使学生进一步巩固知识点。
5.拓展(10分钟)让学生尝试解决一些较复杂的分式方程,提高学生的解题能力。
6.小结(5分钟)总结本节课所学内容,强调分式方程的解法和应用。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
8.板书(5分钟)整理本节课的主要知识点和解题方法,方便学生复习。
北师大版八年级数学下册54.《分式方程》教学设计
3.强化学生的问题意识,引导学生善于发现、提出和解决问题。
4.突出学生的主体地位,教师扮演引导者、组织者和合作者的角色,促进师生互动、生生互动。
5.注重培养学生的综合素质,将分式方程知识与实际生活相结合,提高学生的应用能力。
四、教学内容与过程
4.小组成果展示:每组选派一名代表进行成果展示,分享解题过程和经验。
(四)课堂练习
1.练习题设计:设计难易程度不同的练习题,涵盖分式方程的各种类型,使学生在练习中巩固所学知识。
2.学生独立完成:要求学生在规定时间内独立完成练习题,提高学生的解题能力。
3.解题指导:针对学生练习中出现的共性问题,进行集中讲解,帮助学生突破难点。
(一)导入新课
1.教学活动设计:以学生熟悉的生活场景为背景,提出一个关于速度的问题。例如:“小明和小华同时从同一地点出发,小明以4千米/小时的速度跑步,小华以5千米/小时的速度骑自行车,问他们分别在多长时间后相遇?”
2.引导学生思考:这个问题中涉及到哪些数学知识?能否用我们学过的方程来解决这个问题?
7.课后作业与反思:布置适量的课后作业,要求学生独立完成,并进行自我反思,总结解题过程中的优点和不足。
8.教学评价:采用多元化评价方式,关注学生的知识掌握程度、解题能力、合作意识等方面,全面评估学生的学习效果。
在教学过程中,教师应注重以下方面:
1.关注学生个体差异,因材施教,使每位学生都能在原有基础上得到提高。
4.布置课后作业:布置适量的课后作业,要求学生独立完成,并进行自我反思。
五、作业布置
为了巩固学生对分式方程知识的掌握,培养其运用所学解决实际问题的能力,特布置以下作业:
北师大版八年级下册数学教案设计:5.4分式方程
《分式方程(二)》教学设计教学目标(1)经历探索分式方程解法的过程,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径,了解解分式方程的一般步骤,使学生进一步体会数学思想中的“转化”思想.(2)经历探究增根产生的原因的过程,使学生理解解分式方程时,可能出现增根,方程无解的原因,明确分式方程验根的必要性,并掌握解分式方程的验根方法,培养学生的逻辑分析能力.教学重点:探索解分式方程的步骤,熟练掌握分式方程的解法;体会解分式方程验根的必要性.教学难点:如何将分式方程转化为整式方程;理解解分式方程时可能无解的原因,明确分式方程验根的必要性.教学过程(一)复习回顾1.请写出214x -与42-x x 的最简公分母. 2.解一元一次方程 21134x x +-= 3.什么叫做分式方程?它有哪些特点?如何解分式方程呢?师生行为:学生回顾最简公分母、一元一次方程的解法以及已学分式方程相关知识;教师点拨去分母,为下一步解分式方程做准备;提醒学生注意解一元一次方程每一步易犯的错误,尤其是去分母时每一项都要乘以最简公分母,不能漏乘,同时还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.设计目的:回顾最简公分母,解一元一次方程的解法,做好新知学习的铺垫.由于本节课的内容是紧接在分式的运算之后,多数学生在解分式方程时会对方程进行通分,所以着重复习去分母的步骤以及提醒漏乘现象,为学生过渡到分式方程去分母打下基础.(二)探究新知活动一:自主探索例1.类比上述方法,大胆尝试解分式方程:xx 321=- 师生行为:学生自主探索或互相讨论完成,老师巡视学生完成情况;有些学生可能会采用交叉法,也有些学生可能采用去分母,甚至有些学生可能受刚学习的分式加减法的影响进行通分,对于学生可能出现的几种典型的解法用多媒体展示台展示,让同学讨论,得出较好的解法,引导学生体会解分式方程的关键是把分式方程转化为整式方程.教师在活动中关注:(1) 学生能否观察出分式方程与整式方程的区别.(2) 学生是否有利用“转化思想”解决问题的意识.(3) 学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法.(4) 引导学生检验刚才求得的解是否是原方程的解.设计目的:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所得结果的合理性,培养学生的发散思维.通过教师对例题讲解,让学生初步体会解分式方程的一般步骤,了解解分式方程的关键是把分式方程转化为整式方程.练习:解分式方程(1)xx 413=- (2)1-2321x x =+ 师生行为:学生独立求解,老师巡视学生完成情况,对有困难度的学生给予帮助.对学生不同的解法或学生解题中一些错误的做法在多媒体上展示.设计目的:通过一组练习题,让学生熟练解简单的分式方程.活动二:深入探究例2.解分式方程:22121--=--xx x 师生行为:学生独立求解,解得2=x .教师提出问题:(1)你认为2x =是原方程的根?(2)例1和例2两个方程中,为什么例1去分母后所得整式方程的解3=x 是它的解,而例2去分母所得整式方程的解2x =却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解,我们称它为原方程的增根)(4)探究:如何检验分式方程的解?①直接代入原方程(计算量大,很少用) ②间接代入最简公分母(常用检验方法)设计目的:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性.学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实,突出本节课重点.在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.以此让学生领会这一类题目的解法.同时强调不要漏乘.活动三:规范解法例3.解方程 )1(516++=+x x x x 师生行为:学生独立解题,其中一名学生上黑板完成,教师巡视,并对个别有困难的学生进行指导,等学生完成后,师生共同讲评,规范解题过程.设计目的:经历前两个活动后,再次让学生解分式方程,规范解题步骤,同时为下一个归纳解分式方程的步骤的活动积累经验.活动四:探究归纳解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?师生行为:师生共同分析交流归纳总结.解分式方程的基本思路是:分式方程通过去分母转化成整式方程.设计目的:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。
八年级数学下册5.4.3分式方程教案(新版)北师大版(1)【精品教案】
第五章分式与分式方程5.4.3 分式方程【教学内容】列出分式方程解决简单的应用题【教学目标】知识与技能经历将实际问题中的等量关系用分式方程表示的过程;掌握列分式方程解应用题的一般步骤;会列出分式方程解决简单的应用题,提高学生的分析问题、解决问题的能力和应用意识;过程与方法提高学生的分析问题、解决问题的能力和应用意识;对所求出的分式方程的根进行检验的思想的重视情感、态度与价值观让学生经历操作、实验、发现、确认等数学活动,体会数学观点,培养学生的数学意识。
【教学重难点】重点:列出分式方程解决简单的应用题难点:对所求出的分式方程的根进行检验的思想的重视【导学过程】【知识回顾】列方程解应用题的一般步骤【情景导入】1、列分式方程解应用题的一般步骤:(1):审清题意;(2):设未知数;(3):找出等量关系;(4):列出分式方程;(5):解这个分式方程;(6):检验,既要验证根是否是所列分式方程的根,又要检验根是否符合题意;(7):写出答案。
2、列分式方程解应用题与列一元一次方程解应用题的区别:列分式方程解应用题时要注意,既要验证求出的未知数的值是否是所列分式方程的根,又要检验根是否。
【新知探究】探究一、甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲、乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?解题方案:解:设甲每天加工x个玩具,则乙每天加工()个玩具,①甲加工90个玩具所用的时间为_______,乙加工120个玩具所用的时间为_______;②根据题意,列出相应方程__________________;③解这个方程得___________;④检验: ____________;⑤答:甲每天加工________个玩具,乙每天加工_________个玩具。
探究二、例3 某市从今年1月1日起调整居民用水价格,每立方米水费上涨31.小丽家去年12月的水费是15元,而今年7月的水费则是30元。
北师大版八年级下册数学5.4 分式方程教案设计
5.4.2 分式方程
教学目标:
1.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;
2.经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
教学重点:
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
教学难点:明确分式方程验根的必要性.
教学过程:
教学补充 一、复习引入:
同学们你认识下面的方程吗? 会对它们求解吗?
3x -2y = 6
2x + y = 8
6
22213--=-x x
二、讲授新课
解方程6
22213--=-x x 解:方程两边都乘以6,得 6*)622(6*213--=-x x
3(3x-1)=12-(x-2)
解这个方程,得x=
1017 仿上例完成 例1.解方程:452600480=-x
x 解:方程两边都乘以2x ,得x x x
x 2*452)2600480(=- 960-600=90 x
解这个方程,得x = 4
检验:将x=4代入原方程,得 左边=45=右边
所以,x=4是原方程的根。
解分式的关键:把分式方程化为整式方程。
()x x -=-11432{
3129+=x x。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)的内容包括分式方程的定义、性质和列分式方程的方法。
本节课内容是在学生已经掌握了分式的概念、性质、运算的基础上进行的,是初中数学的重要内容,也是解决实际问题的重要工具。
分式方程在实际生活中的应用非常广泛,如解决利润问题、浓度问题等。
通过本节课的学习,使学生掌握分式方程的基本概念和列方程的方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算,具备了一定的数学基础。
但是,对于分式方程的概念和列方程的方法,学生可能还比较陌生,需要通过实例来理解和掌握。
此外,学生可能对解决实际问题中的方程有一定的恐惧心理,需要教师通过引导和鼓励来激发学生的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握分式方程的定义、性质,学会列分式方程的方法。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:分式方程的定义、性质和列分式方程的方法。
2.难点:理解分式方程的实际意义,学会解决实际问题。
五. 教学方法1.自主学习:引导学生通过自主学习,掌握分式方程的基本概念和性质。
2.合作交流:学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
3.实例分析:通过具体的实例,使学生理解和掌握分式方程的列法。
4.实践操作:让学生亲自动手解方程,提高学生的操作能力。
六. 教学准备1.课件:制作课件,展示分式方程的定义、性质和列方程的方法。
2.实例:准备一些实际问题,用于引导学生解决实际问题。
3.练习题:准备一些练习题,用于巩固学生对分式方程的理解和掌握。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如利润问题、浓度问题等,引导学生思考如何用数学方法解决这些问题。
最新八年级数学下册 第5章 分式与分式方程 第4节 分式方程(三)教案(新版)北师大版[复习必备]
最新八年级数学下册第5章分式与分式方程第4节分式方程(三)教案(新版)北师大版[复习必备]----bc7bde2c-6eb4-11ec-a66e-7cb59b590d7d最新八年级数学下册第5章分式与分式方程第4节分式方程(三)教案(新版)北师大版[复习必备]新教育部编制的初中试题选4.分式方程学科知识和技能:(1)能够用分数阶方程表达实际问题中的等价关系,体验分数阶方程的模型函数。
教学(2)体验“实际问题-分数阶方程模型-求解-解释解的合理性”的过程。
数学能力:目标(1)学习从一个实例中推断,进一步提高分析和解决问题的能力。
标准(2)提高学生的阅读理解能力,多角度思考问题,注重测试和解释结果的合理性。
重点和难点教学工具教学环节第一环节:回顾新课程指导活动的内容:1通过列出一元一阶方程来解决应用问题的一般步骤是什么?2.制定一个一维一次性方程式,以解决以下应用问题:一名工人原本计划在13小时内生产一批零件。
后来,由于每小时多生产10个零件,他不仅在12小时内完成了任务,而且比原计划多生产了60个零件。
最初计划生产多少零件?本课程设计了七个教学环节:复习-实践-思考-尝试-实践-学生总结-反馈练习,第二课准备,学会从一个实例中推断,进一步提高分析和解决问题的能力。
实际问题中的等价关系可以用分数阶方程表示,体验分数阶方程的模型函数。
4.分数方程式(III)课程类型考试必须做试卷,建议您下载!一新人教部编版小初高中精选试题第二个环节:实践活动内容:解以下分数方程式:120220?十、3x回顾上一课的内容:解分数方程式为本课提供基础链接3:思考活动内容:你能用你学到的知识和方法列出下列应用问题的方程式吗?(1). 自2022次全国第五次铁路提速以来,列车速度提高了26公里/小时,现在从A站到B站的时间比以前减少了1小时。
据了解,a站和B站之间的距离为312公里。
如果提速前的速度为x km/h,请根据问题(2)“华联”商厦的买家在苏州和上海分别以8万元和17.6万元购买了一个品牌的衬衫。
北师大版八年级下册5.4《分式方程》教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或分享物品的情况?”(如分水果、分零食等)这个问题与我们将要学习的分式方程密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式方程的奥秘。
-举例:给出一个实际问题,指导学生如何构建分式方程模型并求解。
2.教学难点
a.分式方程去分母的过程:学生在去分母时容易出错,特别是涉及多项式除法时。
-突破方法:通过具体例题,引导学生理解去分母的原理,强调每一步的运算规则。
b.分式方程的移项与合并同类项:在移项和合并同类项时,学生可能会忽视符号变化,导致错误。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
我也观察到,在实践活动和小组讨论环节,学生们对于分式方程在实际生活中的应用有了更深的理解。他们能够将所学知识应用到解决问题中,这让我感到很欣慰。然而,我也发现有些小组在讨论时,思路不够开阔,容易陷入定式思维。针对这一点,我计划在后续的教学中,设计更多开放性的问题和实践活动,引导学生从不同角度思考问题,提高他们的创新思维能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分母的方程,它是代数方程的一种特殊形式。它在解决实际问题,如比例分配、速度问题等方面有着重要作用。
八年级数学下册 5.4 分式方程导学案3(新版)北师大版
八年级数学下册 5.4 分式方程导学案3(新版)北师大版【学习目标】课标要求:经历探索分式方程应用的过程,会检验根的合理性;目标达成:1、分式方程应用2、会检验根的合理性学习流程:【课前展示】1、解分式方程的一般步骤:2、解方程3、列一元一次方程解应用题的一般步骤【自学导航】1、例1、某单位将沿街的一部分房屋出租、每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9、6万元,第二年为10、2万元、(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?【合作探究】学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神、【展示提升】典例分析知识迁移1、例2、某市从今年1月1日起调整居民用水价格,每立方米水费上涨、小丽家去年12月份的水费是15 元,而今7月份的水费则是30 元、已知小丽家今年7月份的用水量比去年12月份的用水量多5 ,求该市今年居民用水的价格、【强化训练】1、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书、科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少1 本、这种科普书和这种文学书的价格各是多少?2、某商店销售一批服装,每件售价150元,可获利25%。
求这种服装的成本、3。
甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米【归纳总结】1、分式方程应用2、会检验根的合理性【教学反思】本节课循序渐进,合理设计教学问题系列,有效组织教学活动,既发挥教师的主导作用,又体现学生的主体地位,较好地完成了教学目标、教学中应结合具体的数学内容采用想“问题情境-建立模型-解释、应用与拓展”的模式展开,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心、在教学形式上采用学生口述、互评等多种方法,激活学生的思维,营造良好的课堂氛围、。
北师大版数学八下5.4 分式方程(三) 教案
北师大版数学八年级下册第五章分式与分式方程4.分式方程(3)总体说明本节是本章的第4小节,共三课时,这是第三课时.本节课主要让学生经历“实际问题——建立分式方程模型——求解——检验”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.教学中设置丰富的实例,关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并用分式方程表示,能否表达自己解决问题的过程.一、学情分析应用题的解答对学生来说始终是一个难点.这些问题,要么背景鲜活,学生缺少对问题的最基本的感性认识,解答时比较茫然;要么文字繁多,学生阅读理解起来很费劲,容易造成视觉上的疲劳;要么数量关系复杂,隐蔽性较强,学生不知从哪里下手.初中生解决应用题困难的原因主要表现在以下三方面:第一,生活经验匮乏;第二,阅读和理解文字的能力欠缺;第三,分析问题的方法和技巧欠缺.学生的知识技能基础:前两节课,学生认识了分式方程这样的数学模型,并且学会解分式方程,为本节课用分式方程解决生活中的实际问题打下了基础.学生活动经验基础:在本节第一课时学生经历了用分式方程来刻画现实世界问题的过程,也经历了探索解分式方程的过程,获得了一些数学活动经验和体验,同时在以前学习了列一元一次方程、二元一次方程组解应用题,为本节分式方程的应用打下了基础.二、教学任务分析学生在学习了分式方程以及分式方程的解法并能熟练地解方程之后,如何将这些技能应用于现实生活当中,也就是将生活中某些问题模型化,本节课安排了《分式方程》的第三课时,旨在培养学生的应用意识和解决实际问题的能力.教学目标:知识与技能1.用分式方程的数学模型反映现实情况中的实际问题;2.用分式方程来解决现实情境中的问题;3.会检验解的合理性.过程与方法1.经历“实际问题情境——建立分式方程模型——求解——检验”的过程,发展抽象概括、分析问题和解决问题的能力,增强学生学数学、用数学的意识.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型. 情感、态度与价值观1.通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱.2.培养学生的创新精神,从中获得成功的体验.教学重点1.审明题意,寻找等量关系,将实际问题转化为分式方程的数学模型.2.根据实际意义检验解的合理性.教学难点多角度分析问题,确立等量关系,列出正确的分式方程.教学策略着力引导---主动参与---有效建构.三、教学过程分析第一环节 复习回顾活动内容:1.解分式方程的一般步骤有哪些?2.解方程 214111x x x +-=--. 3.列一元一次方程解应用题的一般步骤有哪些?活动目的:回顾上节课知识,检查学生掌握情况,复习列一元一次方程解应用题的一般步骤,引出新问题.注意事项:注意学生解分式方程书写的规范性,引导学生回忆列一元一次方程解应用题的一般步骤.第二环节 探究新知活动内容:某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?活动目的:引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.注意事项:引导学生按“审---写(设---列---解---验---答)”的步骤解决问题. 第三环节 小试牛刀活动内容:例 某市从今年1月1日起调整居民用水价格, 每立方米水费上涨13.小丽家去年12月份的水费是 15 元,而今7月份的水费则是30 元.已知小丽家今年7月份的用水量比去年12月份的用水量多53m ,求该市今年居民用水的价格.活动目的:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识注意事项:引导学生按“审---写(设---列---解---验---答)”的步骤解决问题.强调验根的必要性.第四环节 感悟升华活动内容:列分式方程解应用题的一般步骤是什么?活动目的:使学生明确列分式方程解应用题的一般步骤,及每一步应注意的问题. 注意事项:让学生类比列一元一次方程解应用题的一般步骤总结出列分式方程解应用题的一般步骤.强调两次验根的重要性.第五环节 巩固练习活动内容:1.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数想等,若设甲班每天植树x 棵,则根据题意列出的方程是( ) 8070A 5.x x =-8070B 5.x x =+8070C 5.x x =+8070D 5.x x =-2.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少1 本.这种科普书和这种文学书的价格各是多少?活动目的:使学生体会丰富的实例,巩固用分式方程解决实际问题的技巧.注意事项:要求学生按“审---写(设---列---解---验---答)”的步骤解决问题.强调验根的必要性.第六环节 自我小结活动内容:1.内容小结今天这节课大家有什么收获?你学到了哪些知识?2.方法归纳本节课的学习过程中,你有什么感想?活动目的:通过学生的回顾与反思,强化学生对利用列分式方程解应用题的理解,发展学生的观察能力和逆向思维能力.注意事项:引导学生回顾自己的学习过程,畅所欲言,只要有道理教师就应给予肯定,同时提高学生语言组织能力和反思概括能力.课后作业:必做题:习题5.9 第 1、2题;选做题:习题5.9 第3题.拓展思考题:已知,关于x 的方程432212-=++-x x k x 无解,求k 的值. 板书设计:5.4 分式方程(3)列分式方程解应用题的一般步骤: 例题解析引例分析 学生演练 四、教学设计反思本节课循序渐进,合理设计教学问题系列,有效组织教学活动,既发挥教师的主导作用,又体现学生的主体地位,较好地完成了教学目标.教学中应结合具体的数学内容采用“问题情境-建立模型-解释、应用与拓展”的模式展开,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心.在教学形式上采用学生口述、互评等多种方法,激活学生的思维,营造良好的课堂氛围.。
八年级数学下册 5.4.3 分式方程教案 (新版)北师大版
课题:5.4.3分式方程教学目标:1.能运用列表法将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历“实际问题-分式方程模型-解分式方程-检验合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.教学重点与难点:重点:1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系,寻求不同的解决问题的方法.课前准备:多媒体课件.教学过程:一、温故知新,引入新课(投影问题)1.解分式方程的步骤?2.解下列分式方程:214111x x x +-=--. 3.列一元一次方程解应用题的一般步骤有哪些?处理方式:教师利用多媒体展示,学生独立思考、交流,学生小组间竞争抢答.找两名学生口述第1题和第3题过程,再找两名学生板演第2题,其他学生在下面做题,教师巡视,然后由学生纠错,并强调注意事项;教师多媒体展示结果.1.(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.省略.3.(1)审;(2)设;(3)列;(4)解;(5)答.你能用所学过的知识和方法为下列应用题列出方程吗?做一做:(投影)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)这两年每间房屋的租金各是多少?处理方式:学生先独立阅读解答,然后互相交流.教师顺利引出课题.【教师板书课题——5.4 分式(3)】设计意图:回顾解分式方程的步骤、解有关分式方程及列一元一次方程解应用题的一般步骤和列分式方程解有关应用题,引出新问题.二、合作探究,获取新知做一做:(投影)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)这两年每间房屋的租金各是多少?处理方式:学生先独立阅读解答,然后互相交流.选代表回答,合理即可,教师投影.(1)等量关系:①第二年每间房屋的租金=第一年每间房屋的租金+500元.还有一个等量关系:②第一年租出的房屋间数=第二年租出的房屋的间数.③出租房屋间数=(所有出租房屋的租金)÷(每间房屋的租金)(2)①求出租的房屋总间数;②分别求两年每间房屋的租金.(3)方法一:解:设第一年每间房屋的租金为x元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为96000x间,第二年租出的房间为102000500x+间,根据题意,得96000 x = 102000500 x+解,得x=8000经检验:x=8000是原分式方程的解,也符合题意.x+500=8500(元)所以这两年每间房屋的租金分别为8000元,8500元.方法二:解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为96000x 元,第二年每间房屋的租金为102000x元,根据题意,得 102000x =96000x+500 解这个方程,得x =12经检验x =12是原方程的解,也符合题意.所以每年各有12间房屋出租.所以,102000÷12=8500(元),96000÷12=8000(元)所以这两年每间房屋的租金分别为8000元,8500元.设计意图:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识.学生都能找出所有房屋的总租金和每间房屋的租金以及房屋总数之间的关系式,并能提出解出房屋总数的问题,应用列方程的一般方法解决这个问题,并能多角度思考问题,提出很多不同问题.三、学以致用,解决问题例3 某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.处理方式:审清题意,找出题中的等量关系.小丽家今年7月份的用水量-小丽家去年12月份的用水量=5水费÷用水价格=用水量.解:设去年用水的价格为x 元/m 3,则今年的水价为()+1313x 元/m , 根据题意,得()-=+30155113x x 解这个方程,得.=15x经检验.=15x 是所列方程的根..()⨯+=115123 元/m 3答:该市今年居民用水的价格为2元/m 3.列分式方程解应用题的一般步骤:(投影)处理方式:先引导学生思考这个问题,小组交流,学生回答并相互补充,教师多媒体展示:1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:认真仔细.5.验:有两次检验.6.答:设计意图:老师询问学生家中的每月用水情况,要求学生能关心家庭生活,又得到了节约用水的教育,同时激发学生的学习兴趣.学生根据一个月的总水费等于每一吨水费乘以一个月的用水的总吨数,再根据“小丽家今年7月份的用水量比去年12月份的用水量多5立方米”这一条件,列出等量关系式,从而列出分式方程,有了前面的基础,学生能很快和老师一起完成上述过程.在老师的指导下,老师和学生一起完成“设未知数——分析等量关系——列代数式——列出方程——解方程到验证解的合理性”这一完整过程,并规范书写.随堂练习:1.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,困此他们所买的科普书比所买的文学书少1本,这种科普书和这种文学书的价格各是多少?处理方式:学生自主尝试完成,小组内交流成果,小组组长负责搜集本组组员出现错误情况,利用实物投影展示并及时纠正.最后教师利用课件出示正确解题过程,规范学生解题过程.题中的等量关系有两个:15元钱买的文学书的本数=15元钱买的科普书的本数+1本.科普书的价格=文学书的价格×(1+21) 解:设文学书的价格为x 元,则科普书的价格为(1+21)x 元,那么15元钱可买文学书15x 本,科普书15112x ⎛⎫+ ⎪⎝⎭本.根据题意,得,15x =15112x ⎛⎫+ ⎪⎝⎭+1 解,得x =5经检验x =5是原方程的根,也符合题意,所以(1+21)x =23×5=7.5(元) 故这种文学书和科普书的价格各为5元、7.5元.2.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划成本生产120吨的时间相等,那么适合x 的方程是( )A .1201803x x =+ B.1201803x x += C.1201803x x =+ D.1201803x x=+ 3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为( ) A.101012252x .x +=+. B.101020525..x x -=- C.101020525.x .x -=- D.101020525.x .x-=+ 处理方式:学生自主完成后,选代表说出自己的答案.最后教师利用课件出示正确解题过程.设计意图:练习题密切联系学生生活实际,又关注社会热点问题,学生大部分能将实际问题转化为数学模型,并进行解答,解释解的合理性.使学生体会丰富的实例,乐于接触社会环境中的数学信息,巩固用分式方程解决实际问题的技巧.四、回顾课堂,盘点收获通过本堂课的学习,你学到了那些知识?你学会了哪些数学方法?处理方式:一名学生先进行归纳总结,其余同学进行补充,使本节课的知识真正形成系统.1.列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.2.列分式方程解应用题的一般步骤:1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:认真仔细.5.验:有两次检验.6.答:设计意图:学生都能积极参与活动,感受到数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;课堂小结设计成问题的形式,是为了培养学生自主学习、自主思维的能力.给学生充分的时间相互交流,由学生用自己的语言进行表达,同时通过互相补充修正.通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆.五、快乐套餐,深化提高A 组:1.老张师傅做m 个零件用了一个小时,则他做20个零件需要的小时数是( )A.20mB.20mC.20mD.20+m 2.一项工程,甲独做需m 小时完成,若与乙合作20小时完成,则乙单独完成需要的时间是( )A.2020m m -B.2020m m +C.2020m m -D.2020m m+ 3.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数想等,若设甲班每天植树x 棵,则根据题意列出的方程是( )A.80705x x =- B.80705x x =+ C.80705x x =+ D.80705x x =- B 组: 4.甲做90个机器零件所用的时间与乙做120个机器零件所用的时间相等,又已知平均每小时甲、乙两人一共做了35个零件,求甲、乙每小时各做多少个?5.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:当堂检测,能全面了解学生本节课掌握情况,并最大限度地调动全体学生学习数学的积极性,以便能及时地进行查缺补漏,为下一节课的学习做好准备.六、布置作业,课堂延伸必做题:课本习题5.9 第1、2题.选做题:课本习题5.9 第3题.。
北师大版八年级数学下册优秀教学案例5.4分式方程
3.学生对数学学科的兴趣、自信心及科学态度的培养。
六、教学反思
在教学过程中,要关注学生的个体差异,针对不同学生制定合适的教学策略,使每位学生都能在课堂上得到充分发展。同时,注重培养学生的数学思维,提高学生运用数学知识解决实际问题的能力。在教学评价方面,要关注学生的全面发展,既要关注学生的知识与技能,也要关注过程与方法、情感态度与价值观的培养。不断反思教学,调整教学策略,提高教学质量。
(三)小组合作
1.小组讨论:将学生分成若干小组,针对问题进行讨论,培养学生的团队协作能力和沟通能力。
2.分工合作:在解决分式方程的过程中,让学生分工合作,每个人都有明确的任务,提高工作效率。
3.分享与交流:小组成员将各自的研究成果进行分享,互相学习,共同提高。
(四)反思与评价
1.自我反思:让学生在课后对所学内容进行反思,总结自己的学习心得,发现自身不足,为下一步学习做好准备。
3.实际应用:让学生运用分式方程解决实际问题,培养学生的应用能力。
五、教学拓展
1.开展数学活动:组织数学竞赛、讲座等活动,激发学生学习兴趣,提高学生的数学素养。
2.家庭作业设计:结合学生实际情况,设计富有挑战性的家庭作业,让学生在课后进行思考和探索。
3.学科交叉:与其他学科相结合,如科学、信息技术等,让学生感受到数学的广泛应用。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
Hale Waihona Puke 3.教师评价:教师要对学生的学习情况进行评价,关注学生的知识掌握程度、思维发展水平、情感态度等方面,为下一步教学提供参考。
四、教学实践
1.课堂讲解:结合具体案例,讲解分式方程的解法,引导学生主动思考。
北师大版数学八年级下册5.4《分式方程》教学设计2
北师大版数学八年级下册5.4《分式方程》教学设计2一. 教材分析《分式方程》是北师大版数学八年级下册第5章第4节的内容。
本节课的主要任务是让学生掌握分式方程的解法,理解分式方程的解法在实际问题中的应用。
教材通过引入实际问题,让学生感受分式方程的重要性,进而学习分式方程的解法。
教材内容由浅入深,循序渐进,符合学生的认知规律。
二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和运算。
他们具备了一定的数学基础,能够理解和掌握分式方程的基本概念和解法。
但是,学生对分式方程在实际问题中的应用可能还不够清晰,需要通过实例让学生感受和理解。
三. 教学目标1.知识与技能:学生会解分式方程,理解解分式方程的思路和方法。
2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,提高学习数学的兴趣。
四. 教学重难点1.重点:分式方程的解法。
2.难点:理解分式方程的解法在实际问题中的应用。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考,培养学生的解决问题的能力。
2.案例教学:通过实际问题的引入,让学生感受分式方程的重要性,提高学生的学习兴趣。
3.合作学习:学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示分式方程的解法及实际问题。
2.教学素材:准备一些实际问题,用于引导学生学习分式方程的解法。
3.黑板:用于板书 key points 和解题步骤。
七. 教学过程1.导入(5分钟)教师通过提问,回顾分式的概念和性质,为学生学习分式方程做好铺垫。
2.呈现(10分钟)教师展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
学生通过讨论,发现这些问题可以用分式方程来表示。
3.操练(10分钟)教师引导学生学习分式方程的解法,让学生通过自主学习、合作交流,掌握解分式方程的方法。
教师在这个过程中给予学生适当的指导,帮助学生克服解题过程中的困难。
八年级数学下册 5.4 分式方程的应用(第3课时)教案 (新版)北师大版-(新版)北师大版初中八年级
word分式方程的应用1.掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;(重点)2.用分式方程来解决现实情境中的问题,通过分式方程的应用教学,培养学生数学应用意识.(难点)一、情境导入1.引导学生回顾列方程解应用题的一般步骤.学生积极思考,并交流、讨论总结出:第一步,审清题意;第二步,根据题意设未知数;第三步,列式子并找出等量关系,建立方程;第四步,列方程,并解出答案;第五步,检查方程的解是否符合题意;最后作答.2.提问:分式方程的应用题应该怎么解呢?二、合作探究探究点:列分式方程解决实际问题【类型一】工程问题抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?解析:设甲队单独完成需要x小时,则乙队需要(x+3)小时,根据等量关系“甲工效×2+乙工效×甲队单独完成需要时间=1”列方程.解:设甲队单独完成需要x小时,则乙队需要(x+3)小时.由题意得2x+xx+3xx=6是方程的解.∴x+3=9.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.方法总结:解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工作时间上考虑相等关系.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】行程问题从某某到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的 1.3倍.(1)求普通列车的行驶路程;,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度. 解析:(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的,两数相乘即可;(2)设普通列车的平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.解:(1)根据题意得400×1.3=520(千米). 答:普通列车的行驶路程是520千米; (2)设普通列车的平均速度是x 千米/时,x 千米/时,根据题意得520x -400x=3,解得x=120,经检验x =120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时). 答:高铁的平均速度是300千米/时. 方法总结:解决问题的关键是分析题意,找到关键描述语和合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】 图表信息类问题某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?解析:设排球的单价为x 元,则篮球的单价为(x +60)元,根据“总价÷单价=数量”的关系建立方程.解:设排球的单价为x 元,则篮球的单价为(x +60)元,根据题意,列方程得2000x=3200x +60.解得x ,x =100是原方程的根,当x =100时,x +60=160.答:排球的单价为100元,篮球的单价为160元.方法总结:解答此类问题要结合图表提供的信息,找出相等关系列方程.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 【类型四】 销售盈亏问题佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元? (2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解析:(1)根据第二次购买水果数多20千克,可列出方程,解出即可得出答案;(2)先计算两次购买水果的数量,赚钱情况:销售的水果量×(实际售价-当次进价),两次合计,就可以求得是盈利还是亏损了.解:(1)设第一次购买的单价为x元,x元,根据题意得1452x-1200x=20,解得x=,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9- 6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.在教学方法上,为了充分调动学生学习的积极性,使学生主动愉快地学习,采用启发讲授、合作探究、讲练相结合的教学方式.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生列表分析、找重点语句、探寻等量关系等,使学生充分地动口、动脑,参与教学全过程.。
初中数学北师大版八年级下册《543分式方程(三)》教学设计
课堂小结
1.利用分式方程模型解决实际问题:
问题情境---提出问题---建立分式方程模型---解决问题
2. 列分式方程的一般步骤
1.审:分析题意,找出研究对象,建立等量关系.
2.设:选择恰当的未知数,注意单位.
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方程.
4.解:认真仔细.
5.验:有两次检验.
6.答:注意单位和语言完整.
变式1:小明和同学去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书。科普书的价格比文学书高出一半,他们所买的科普书比文学书少1本。这种科普书和这种文学书的价格各是多少?
2、某质检部门抽取甲、乙两厂相同数量的产品进行质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率比乙厂高5%,求甲厂的合格率。
要给学生一定的思考时间,先让他们自己完成,再小组讨论。
要给学生一定的思考时间,让学生积极投身于问题情景中,努力寻找问题中的所有等量关系。
引导学生按“审---设---列---解---验---答”的步骤解决问题.
拓展提高:
甲乙两地相距50千米,A 骑自行车,B乘汽车,同时从甲城出发去乙城,已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时,还比A 早到2小时,求自行车和汽车的速度.
布置作业:
1、甲种原料与乙种原料的单价比为2︰3,将价值2000元的甲种原料与价值1000元的乙种原料混合后,单价为9元,求甲种原料的单价。
八级数学下册《5.4 分式方程》教案4 (新版)北师大版
《分式方程》第1课时教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.教学重难点教学重点:可化为一元一次方程的分式方程的解法.教学难点:检验分式方程解的原因.教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.(二)新课分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.(三)应用一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,则轮船顺流航行的速度为(20+v )千米/时,逆流航行的速度为(20-v )千米/时,顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用的时间为v-2060小时. 可列方程v +20100=v-2060, 方程两边同乘(20+v )(20-v ),得100(20-v )= 60(20+v ),解得v =5.检验:将v =5代入方程,左边=右边,所以v =5为方程的解.所以水流速度为5千米/时.(四)总结解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.2.解这个方程.3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.第2课时教学目标1.使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2.使学生检验解的原因,知道解分式方程须验根并掌握验根的方法.教学重难点1.了解分式方程必须验根的原因.2.培养学生自主探究的意识,提高学生观察能力和分析能力.教学过程(一)复习引入解方程:思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢?学生活动:小组讨论后总结(二)新课(1)为什么要检验根?在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根).对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,则不是原方程的解.(2)验根的方法:一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.(三)应用例1:解方程32-x =x3 解:方程两边同乘x (x -3),得2x =3x -9;解得x =9,检验:x =9时,x (x -3)≠0,9是原分式方程的解.例2:解方程1-x x -1=)2)(1(3+-x x 解:方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3;化简,得x +2=3;解得x =1,检验:x =1时(x -1)(x +2)=0,1不是原分式方程的解,原分式方程无解.(四)课时小结:解分式方程的一般步骤.第3课时教学目标1.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.2.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.教学重点和难点教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.教学难点:理解解分式方程的基本思想是把分式方程转化成整式方程.教学过程(一)复习提问1.解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么? 在学生讨论的基础上,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v 顺水=v 静水+v 水.v 逆水=v 静水-v 水.(二)新课例1.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快? 分析:甲队一个月完成总工程的31,设乙队如果单独施工1个月能完成总工程的x1,那么甲队半个月完成总工程的61,乙队半个月完成总工程的x 21,两队半个月完成总工程的61+x21. 等量关系为:甲、乙两个工程总量=总工程量,则有31+61+x21=1 例2:从2004年5月起某列列车平均提速v 千米/时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?分析:这里的字母v ,s 表示已知数据,设提速前的平均速度为x 千米/时,则提速前列车行驶s 千米所用的时间为xs 小时,提速后列车的平均速度为(x +v )千米/时,提速后列车行驶(s +50)千米所用的时间为v x s ++50小时. 等量关系:提速前行驶50千米所用的时间=提速后行驶(s +50)千米所用的时间; 列方程得:x s =vx s ++50 (三)小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题,我们要熟悉它们的基本关系式.。
【核心素养】北师大版八年级数学下册5.4第3课时分式方程的应用教案
1. 作业布置:
(1)请同学们完成课后练习题,巩固今天课堂上所学的分式方程解法及其应用。
(2)选取一个实际问题,运用所学的分式方程知识进行解决,并将解题过程和答案写在作业本上。
(3)阅读一篇关于分式方程在实际问题中的应用的文章,并写一篇读后感,分享你的收获和体会。
2. 作业反馈:
(1)我将及时批改同学们的作业,并给出具体的评价和反馈。对于正确完成作业的同学,我会给予肯定和鼓励;对于存在问题的同学,我会指出存在的问题,并给出改进建议。
反思改进措施
一、教学特色创新
1. 实际问题引入:我用了生活实例来引入新课,学生们都很感兴趣,这一点我觉得做得不错。
2. 案例分析法:通过分析具体案例,让学生自己尝试解决问题,这样能更好地让他们理解分式方程的应用。
3. 小组项目学习:让学生们分组解决实际问题,这样既能培养他们的合作意识,也能提高他们解决问题的能力。
4. 组织学生进行小组讨论或研究,分享各自搜集到的分式方程相关资料,相互学习和交流,提高合作能力。
5. 鼓励学生利用课余时间,参加学校或社区举办的数学讲座或活动,拓宽自己的数学视野,提升自己的数学素养。
课后拓展
1. 拓展内容:
(1)阅读材料:《分式方程的应用案例》、《分式方程在实际问题中的应用》等,让学生进一步了解分式方程的实际应用。
学具准备
Xxx
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学方法与策略
1. 针对本节课的教学目标和学生的实际情况,采用讲授法、案例研究和项目导向学习相结合的教学方法。通过教师的讲解,使学生掌握分式方程的解法;通过案例分析,让学生体会分式方程在实际问题中的应用;通过项目学习,培养学生解决实际问题的能力。
八年级数学下册《5.4-分式方程》教案1-(新版)北师大版
《分式方程》第1课时教学目标(一)教学知识点1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义.2.通过观察,归纳分式方程的概念.(二)能力训练要求体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义.(三)情感与价值观要求在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.教学重难点教学重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 教学难点:能根据实际问题中的等量关系列出分式方程.教学过程Ⅰ.创设情境,引入新课[师]在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x 2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1) 我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型.接下来,我们再来看几个这样的例子.Ⅱ.讲授新课列出刻画现实世界的数学模型——方程.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为xkg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程____________.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积.[师]你能找出这一问题的所有等量关系吗?[生]第一块试验田的面积=第二块试验田的面积.(a )[生]还有一个等量关系是:第一块试验田每公顷的产量+3000kg =第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为xkg ,那么第二块试验田每公倾的产量是多少kg 呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg .[生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x 9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程: x 9000+3000=x15000(3) [师]接下来,我们再来看一个问题[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少?这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元.根据题意,可得方程____________.[师]我们先来审题,找到题中的等量关系.[生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c )[生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d )[师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢?[生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]你很棒!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法:设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程:x 300-4=x 2480(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y300人;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y 人,根据题意,利用等量关系(c ),得方程:2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,祝贺他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好.下面我们再来用方程来解决一个几何问题,刻画一个几何模型.如上图,在等腰三角形ABC 中,底边BC =2a ,高AD =h ,求内接正方形PQRS 的边长.[师生共析]由于SPQR 是正方形,SR ∥BC ,AE ⊥SR ,所以AE 是△ASR 的高且ED =SR =正方形SPQR 的边长,△ASR 的高AE 可表示为AD 与正方形边长的差.由SR ∥BC ,可得△ASR ∽△ABC ,于是有:BC SR =ADAE (相似三角形对应高的比等于相似比).所以可设正方形的边长为x ,由BC SR = AD AE 得:a x 2=h x h -.(其中a 、h 为常数)(6) [师]你还能找出图中的相似三角形吗?你还能用它的性质列出方程吗?同学们可以在小组内讨论、交流.[生]从上图中可知SPQR 是正方形,所以RQ ⊥BC ,又因为AD ⊥BC ,所以AD ∥RQ ,△ADC ∽△RQC .可得RQ AD =CQCD . 即RQ AD =RQ CD BC 2121-. 所以,设内接正方形的边长为2x ,根据题意,得x h 2=x a a -.(a 、h 为常数).(7) [师]你们表现得真棒! 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5)a x 2=hx h -.(其中a 、h 为常数) (6) x h 2=xa a -(其中a 、h 是常数) (7) 上面所得到的方程有什么共同特点?[生]不难发现方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.方程(6)是什么方程?[生]方程(6)中,分母不含未知数,它是一元一次方程.Ⅲ.随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x +102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元.解:x 满足的方程是:101×x +102000=200. 2.补充练习某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,则 x x +-8040=41. Ⅳ.课时小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程.第2课时教学目标(一)教学知识点1.解分式方程的一般步骤.2.了解解分式方程验根的必要性.(二)能力训练要求1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.(三)情感与价值观要求1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.教学重难点教学重点:1.解分式方程的一般步骤,熟练掌握分式方程的解决.2.明确解分式方程验根的必要性.教学难点:明确解分式方程验根的必要性.教学过程Ⅰ.提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程213-x +325+x =2-624-x [师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得3(3x -1)+2(5x +2)=6×2-(4x -2).(2)去括号,得9x -3+10x +4=12-4x +2,(3)移项,得9x +10x +4x =12+2+3-4,(4)合并同类项,得23x =13,(5)使x 的系数化为1,两边同除以23,x =2313. Ⅱ.讲解新课,探索分式方程的解法[师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.[例1]解方程:21-x =x3. (1) [生]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?[师]同学们说他的想法可取吗?[生]可取.[师]同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢? [生]乘以分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘以x (x -2),得x (x -2)×21-x =x (x -2)·x3, 化简,得x =3(x -2). (2)我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程.[生]再往下解,我们就可以像解一元一次方程一样,解出x .即x =3x -6(去括号) 2x =6(移项,合并同类项). x =3(x 的系数化为1).[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[生]x =3是由一元一次方程x =3(x -2) (2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解.[师]同学们表现得都很棒!相信同学们也能用同样的方法完成例2的解答.[例2]解方程:x 300-x2480=4 (由学生在练习本上试着完成,然后再共同解答)解:方程两边同乘以2x ,得600-480=8x解这个方程,得x =15检验:将x =15代入原方程,得左边=4,右边=4,左边=右边,所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯. 我这里还有一个题,我们再来一起解决一下(先隐藏小亮的解法)议一议 解方程32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析) [师]我们来看小亮同学的解法:32--x x =x-31-2 解:方程两边同乘以x -3,得2-x =-1-2(x -3)解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解.[师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根.[师]它是去分母后得到的整式方程的根吗?[生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?[生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.[师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.Ⅲ.应用,升华1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 2.回顾,总结想一想解分式方程一般需要经过哪几个步骤?[师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.3.补充练习解分式方程:(1)x 9000=300015000+x ; (2)x h 2=x a a -(a ,h 常数) Ⅳ.课时小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.Ⅴ.活动与探究若关于x 的方程31--x x =932-x m 有增根,则m 的值是____________. 第3课时教学目标(一)教学知识点1.用分式方程的数学模型反映现实情境中的实际问题.2.用分式方程来解决现实情境中的问题.(二)能力训练要求1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力.2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.(三)情感与价值观要求1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.2.培养学生的创新精神,从中获得成功的体验.教学重难点教学重点:1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.教学难点:寻求实际问题中的等量关系,寻求不同的解决问题的方法.教学过程Ⅰ.提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程. 接下来,我们就用分式方程解决生活中实际问题.Ⅱ.讲授新课做一做某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一块来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租? [生]问题也可以是:这两年每年房屋的租金各是多少?[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租? [师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x96000元,第二年每间房屋的租金为x 102000元,根据题意,得x 102000=x96000+500 解这个方程,得x =12经检验x =12是原方程的解,也符合题意. 所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:第一年每间房屋的租金为1296000=8000(元), 第二年每间房屋的租金为12102000=8500(元).[师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x 解,得x =8000x +500=8500(元)经检验:x =8000是原分式方程的解,也符合题意. 所以这两年每间房屋的租金分别为8000元,8500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例3]某自来水公司水费计算办法如下:若每户每月用水不超过5m 3,则每立方米收费1.5元;若每户每月用水超过5m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢? [生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)你们找到题中的等量关系了吗?[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5m 3的水费与超出5m 3部分的水费. [师]下面我们就来用等量关系列出方程.[师生共析]设超出5m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出5m 3的部分水费为(17.5-1.5×5)元,超出5m 3的用水量为x55.15.17⨯-m 3,总用水量为5+x55.15.17⨯-;李家超出5m 3部分的水费为(27.5-1.5×5)元,超出5m 3的用水量为x55.15.27⨯-m 3,总用水量为(5+x55.15.27⨯-)m 3根据等量关系,得x 55.15.17⨯-+5=(x55.15.27⨯-+5)×32解这个方程,得x =2. 经检验x =2是所列方程的根.所以超出5m 3部分的水,每立方米收费2元. Ⅲ.随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少? [师]我们先来找到题中的等量关系. [生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本. 硬皮本的价格=软皮本的价格×(1+21) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题.[生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x)211(15++1解,得x =5经检验x =5是原方程的根,也符合题意,所以(1+21)x =23×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元. Ⅳ.课时小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向. Ⅴ.活动与探究如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km ,王老师家到学校的路程为0.5km ,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?第五章 分式与分式方程5.2 分式的乘除法1.计算a aa a ÷⨯÷1的结果为( )A .1B .aC .a 1D .21a2.2322n m m n m n ÷÷-的结果为( )A .22nm B .32nm - C .4mn -D .n -3.填空22-= ;2(2)-= ;0(2)-= ;02= ;32-= ;3(2)--= ;21()2= ;21()2-= ;2()a b = ;2()ab-= ;322()x y -= ;()3222x y x y --⋅= ;()32222(3)x y x y --÷= ;()=---2322b a ; ()=-3323b a ; ()=--2525b a .4.计算:(1)ax y b byx a 692222-⋅- (2))8(5122y x a xy -÷ (3)aa b a bb a a -÷-222 (4)222244164168x x x x x x ++-÷-+-(5)3196222-+⋅-+-x xx x x x (6).()22224244y x y x y xy x -÷+++(7)344964222-++÷+--x x x x x x (8)()141441222--⋅+÷++-x x x x x x(9)3191961222++⋅--÷+--a a a a a a a (10)()()3233222---⋅b a b a(11)34223x y z ⎛⎫- ⎪⎝⎭(12)2332232a ay xy x ⎛⎫⎛⎫÷- ⎪ ⎪⎝⎭⎝⎭(13)2334232263ab a c c d b b ⎛⎫-⎛⎫÷⋅ ⎪ ⎪-⎝⎭⎝⎭()312a b - (14)()32222a b a b ---。
北师大版八年级下册数学《5.4 第3课时 分式方程的应用》教案
北师大版八年级下册数学《5.4 第3课时分式方程的应用》教案一. 教材分析北师大版八年级下册数学《5.4 第3课时分式方程的应用》这一节主要让学生掌握分式方程的应用,通过解决实际问题,培养学生运用分式方程解决实际问题的能力。
教材通过引入具体问题,让学生理解分式方程在实际问题中的应用,从而提高学生的学习兴趣和积极性。
二. 学情分析学生在学习这一节之前,已经掌握了分式方程的基本知识,能够解简单的一元一次方程和一元二次方程。
但学生在解决实际问题时,可能会对将实际问题转化为分式方程有一定的困难,因此,在教学过程中,需要引导学生正确地将实际问题转化为分式方程,并熟练掌握解分式方程的方法。
三. 教学目标1.知识与技能目标:让学生掌握分式方程的应用,能够将实际问题转化为分式方程,并熟练解分式方程。
2.过程与方法目标:通过解决实际问题,培养学生运用分式方程解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极解决实际问题的态度。
四. 教学重难点1.教学重点:让学生掌握分式方程的应用,能够将实际问题转化为分式方程,并熟练解分式方程。
2.教学难点:如何引导学生将实际问题转化为分式方程,以及解分式方程时的运算技巧。
五. 教学方法采用问题驱动法,通过引入具体问题,引导学生运用已学的分式方程知识解决实际问题。
同时,采用案例分析法,让学生分析实际问题,找出关键信息,从而转化为分式方程。
在解分式方程的过程中,采用引导学生自主探索、合作交流的方式,让学生在解决问题的过程中掌握解题方法。
六. 教学准备1.准备相关实际问题,用于引导学生运用分式方程解决实际问题。
2.准备分式方程的解题方法相关资料,以便在学生遇到困难时给予指导。
七. 教学过程导入(5分钟)教师通过引入一个具体的问题,如“甲、乙两地相距100公里,甲地有一辆汽车以每小时60公里的速度前往乙地,同时,乙地有一辆汽车以每小时80公里的速度前往甲地,问两辆汽车几小时后相遇?”让学生思考如何解决这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式方程》
第1课时
教学目标
1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.
2、培养学生自主探究的意识,提高学生观察能力和分析能力.
教学重难点
教学重点:理解分式方程的意义.
教学难点:会按一般步骤解可化为一元一次方程的分式方程.
教学过程
(一)问题情境导入
问题:轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.
已知水流的速度是3千米/时,求轮船在静水中的速度.
(二)实践与探索1:分式方程的概念:
[分析]:
设轮船在静水中的速度为x千米/时,根据题意,得
方程(1)有何特点?
[概括]方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.
提问:你还能举出一个分式方程的例子吗?
(三)实践与探索2:分式方程的解法
1、思考:怎样解分式方程呢?
为了解决本问题,请同学们先思考并回答以下问题:
1)回顾一下一元一次方程时是怎么去分母的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它转化为整式方程呢?
方程(1)可以解答如下:
方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3).
解这个整式方程,得x=21.
所以轮船在静水中的速度为21千米/时
2、概括.
上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.
3、例1、解方程: =.
解:方程两边同乘以(x2-1),约去分母,得x+1=2.
解这个整式方程,得x=1.事实上,当x=1时,原分式方程左边和右边的分母(x-1)与(x2
-1)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.
4、在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.
5、那么,可能产生“增根”的原因在哪里呢?
6、验根的方法
解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.
如例1中的x=1,代入x2-1=0,可知x=1是原分式方程的增根.
7、有了上面的经验,我们再来完整地解二个分式方程.
例2、解方程:(1)1-= (2)-=
可先放手让学生自主探索,合作学习并进行总结.深入理解.学生尝试解题,并思考产生增根的原因.总结解分式方程的步骤,并真正理解增根.
(四)小结
①、什么是分式方程?举例说明;②、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程.验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.3、解分式方程为什么要进行验根?怎样进行验根?
第2课时
教学目标
1、进一步熟练地解可化为一元一次方程的分式方程.
2、通过分式方程的应用教学,培养学生数学应用意识.
教学重难点
教学重点:让学生学习审明题意设未知数,列分式方程.
教学难点:在不同的实际问题中,设元列分式方程.
教学过程
(一)复习并问题导入
1、复习练习
解下列方程:(1)(2)
2、列方程解应用题的一般步骤?
[概括]这些解题方法与步骤,对于学习分式方程应用题也适用.这节课,我们将学习列分式方程解应用题.讨论后回答.
(二)实践与探索1:列分式方程解应用题
例1某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?[分析]
(1)如何设元?(2)题目中有几个相等关系?(3)怎样列方程?
解:设乙每分钟能输入x名学生的成绩,则甲每分能输入2x名学生的成绩,根据题意得=.
解得x=11.
经检验,x=11是原方程的解.并且x=11,2x=2×11=22,符合题意.
答:甲每分钟能输入22名学生的成绩,乙每分钟能输入11名学生的成绩.
概括:
列分式方程解应用题的一般步骤:
(1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;
(4)解方程,并验根,还要看方程的解是否符合题意;
(5)写出答案(要有单位).
实践与探索2:
例2:A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度.
解析:设大车的速度为2x千米/时,小车的速度为5x千米/时,根据题意得
;解之得x=9,
经检验x=9是原方程的解,
当x=9时,2x=18,5x=45.
答:大车的速度为18千米/时,小车的速度为45千米/时.
练习:
我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度.
(三)小结:
列分式方程与列一元一次方程解应用题的差别是什么?
你能总结一下列分式方程应用题的步骤吗?
第3课时
教学目标
1、使学生能较熟练的列可化为一元一次方程的分式方程解应用题.
2、提高分析问题和解决问题的能力.
教学重难点
教学重点:分析应用题中的数量关系,提高思维能力.
教学难点:使学生能较熟练的列可化为一元一次方程的分式方程解应用题.
教学过程
(一)复习并问题导入
复习练习
1、某农场挖一条960m长的渠道,开工后每天比原计划多挖20m,结果提前4天完成了任务.若设原计划每天挖xm,则根据题意可列出方程()
A.B.
C.D.
2、为了绿化江山,某村计划在荒山上种植1200棵树,原计划每天种x棵,由于邻村的支援,每天比原计划多种了40棵,结果提前了5天完成了任务,则可以列出方程为()A.-=5 B.-=5
C.-=5 D.-=5
(二)创新例题讲解与练习巩固
例1:购一年期债券,到期后本利只获2700元,如果债券年利率12.5%,那么利息是多少元?
解:(1)设利息为x元,则本金为(2700-x)元,依题意列分式方程为:
=12.5%
解此方程得x=300,
经检验x=300为原方程的根.
答:利息为300元.
练习:一组学生乘汽车去春游,预计共需车费120元,后来人数增加了,费用仍不变,这样每人少摊3元,原来这组学生的人数是多少个?
本题是策略问题,应让学生合作交流解法.注意分类讨论思想.合作交流解法
例2:某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算:(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成.
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?
练习:一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以
按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,
(1)这个八年级的学生总数在什么范围内?
(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
(三)小结:
列分式方程解应用题的一般步骤:列方程解应用题注意分析题目中的数量,分清哪些是未知数,哪些是已知数,再找出这些数量间的关系,尽量找出多的数量关系,一般地,其中一个用来设立未知数,另一个用来立方程.。