Relaxor Ferroelectric-cross
不同晶粒取向钛酸铋陶瓷的铁电和压电性能
硅酸盐学报· 312 ·2007年不同晶粒取向钛酸铋陶瓷的铁电和压电性能毛翔宇,王伟,王玮,陈小兵(扬州大学物理科学与技术学院,江苏扬州 225002)摘要:用固相烧结工艺制备了不同取向率(I)的Bi4Ti3O12(BTO)多晶陶瓷样品。
在相同的烧结温度(1140℃),BTO样品的I随烧结时间(2~20h)的增加出现了先升高后降低的变化趋势,最大值达89.9%。
样品的铁电和压电性能均与样品的I有关,在a/(b)择优取向的BTO样品的铁电和压电性能都随样品I的升高而改善,其2倍剩余极化强度(P r)和压电系数(d33)分别达到53.4μC/cm2和22.2pC/N;c取向样品的2P r和d33则随着取向率的升高而降低。
关键词:钛酸铋陶瓷;晶粒取向;铁电性能;压电性能中图分类号:TQ174文献标识码:A文章编号:0454–5648(2007)–03–0312–05FERROELECTRIC AND PIEZOELECTRIC PROPERTIES OF BISMUTH TITANATE CERAMIC WITH DIFFERENT ORIENTATION DEGREES OF GRAINMAO Xaingyu,WANG Wei,WANG Wei,CHEN Xiaobing(College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China)Abstract: Several polycrystalline bismuth titanate Bi4Ti3O12(BTO) ceramic samples with different degrees of grain orientation (I) were prepared using the solid state reaction. Under the identical temperature, when the sintering time (2—20h) increases, the I in-creases initially and reaches its maximum value of 89.9% then decreases. The ferro-and piezoelectric properties are dependent on the I. The two times of remanent polarization intensity (P r) and piezoelectric coefficient (d33) of a/(b)-orientation predominant BTO sam-ples increases with the increase of I and the maximum values are 53.4μC/cm2 and 22.2 pC/N, respectively, while the 2P r and d33 de-creases with the increase of I in c-orientation predominant ones.Key words: bismuth titanate ceramic; grain orientation; ferroelectric properties; piezoelectric properties目前,锆钛酸铅(Pb x Zr1–x TaO3,PZT)为基的材料作为压电陶瓷得到了广泛应用[1–4]。
艾司西酞普兰
Robert J. et al.,2004
卓越的抗焦虑疗效
草酸艾司西酞普兰与帕罗西汀抗焦虑比较
疗效比较
不良反应比较
65
* 55.7
78.3
* 62.3
22.6
不良反应停药率(%)
第8周有效者
第24周有效者
草酸艾司西酞普兰10-20mg/d(n=60) 帕罗西汀20-50mg/d(n=61)
6.6
**
Patients relapsing (%)
80
76% relapse/recurrence
70
if remission not achieved
60
Response without 未达到治愈者,复发率76%
remission (n=19) 50
Remission (n=41)*
40
(HAM-D17 7)
对伴有躯 体疾病患 者服用安 全。
缓解患者比例
持续用药显著降低复发风险
草酸艾司西酞普兰长期应用中受试患者缓解比例
86% 81% 76% 72% 65%
46%
0周
8周
16周
28周
40周
治疗时间:315天;病例数:486名;缓解:MADRS≤12分
52周
结论:1.长期治疗未引发新的安全性问题,随用药时间延长,不良事件发生率逐渐下降; 2.长期用药,病情得到持续改善,显著降低复发风险。
治疗谱广:适合各型抑郁症及焦虑症
2002年8月在美国上市,已经成 为抗抑郁的一线药物。
广泛抗抑郁
• 重度抑郁症患者 • 轻度抑郁症患者 • 抑郁与焦虑共病
美国、欧洲批准
• 广泛性焦虑 • 惊恐障碍 • 社交恐惧症
水声换能器及基阵 - 绪论
利用低声速、大应变功能材料:Terfenol-D
Material properties
Terfenol-D
Young's modulus(GPa)
30
Maximum strain(106 )
1500-2000
Energy Density( J / m3 )
14000-25000
Wave speed(m/s)
能量所携带的信息(频率、幅度、相位等)重现.
Input electric signal
Output acoustic signal
Vice versa! Transducer is reciprocal.
水声换能器
Projector/transducer/transmitter (Electric signal → Acoustic signal)
ka 1
High power
Broadband
如何解决这些矛盾?从增加振动位移、辐射阻上入手
利用弯张换能器的位移放大效应
Displacement amplification effect of flextensional transducer
lever
压电堆在长轴方向上的振动位移,通过杠杆效应,在椭圆壳短轴方向放大了数倍
Inverse piezoelectric effect
������ = ������������3
������������3 = ������
1 2
������������������
2
=
������������
Voltage→electric field→strain→displacement→vibration in water→sound radiation
大尺寸PMT-PT单晶生长、结构与电学性能
DOI:10.16185/j.jxatu.edu.cn.2021.04.002http://xb.xatu.edu.cn大尺寸PMT PT单晶生长、结构与电学性能朱乾隆,惠增哲,李晓娟,陈怡菲,龙 伟(西安工业大学材料与化工学院/陕西光电功能材料与器件重点实验室,西安710021)摘 要: 为了探究大尺寸PMT?PT单晶生长、结构与电学性能,本文采用高温溶液法成功生长了大尺寸(7mm×7mm×5mm)钙钛矿型弛豫铁电单晶(1?狓)(Pb(Mg1/3Ta2/3)O3?狓Pb TiO3(PMT狓PT),研究了晶体的成分、结构、介电、压电以及铁电性能。
研究结果表明,所生长晶体的为三方相,组分为PMT?30PT。
室温下晶体居里温度(犜c)约为53℃,压电常数约为犱33=230pC/N。
该晶体在较低的温度下表现出优异的电学性能:介电常数εr=3600,剩余极化强度犘r为25μC·cm-2,矫顽场犈c约为9.8kV·cm-1,拓展了铁电材料在低温环境的应用。
关键词: PMT?PT弛豫铁电晶体;晶体生长;钙钛矿;电学性能中图号: TM221;O782 文献标志码: A文章编号: 1673 9965(2021)04 0397 05犌狉狅狑狋犺,犛狋狉狌犮狋狌狉犲犪狀犱犈犾犲犮狋狉犻犮犪犾犘狉狅狆犲狉狋犻犲狊狅犳犔犪狉犵犲犛犻狕犲犱犘犕犜犘犜犛犻狀犵犾犲犆狉狔狊狋犪犾狊犣犎犝犙犻犪狀犾狅狀犵,犡犐犣犲狀犵狕犺犲,犔犐犡犻犪狅犼狌犪狀,犆犎犈犖犢犻犳犲犻,犔犗犖犌犠犲犻(ShaanxiKeyLaboratoryofPhotoelectricFunctionalMaterialsandDevices,SchoolofMaterialsandChemicalEngineering,Xi’anTechnologicalUniversity,Xi’an710021,China)犃犫狊狋狉犪犮狋: Thestudyaimstoexplorethegrowth,structureandelectricalpropertiesoflarge?sizedPMT?PTsinglecrystals.Therelaxorferroelectricsinglecrystaloflarge?sized(1?狓)(Pb(Mg1/3Ta2/3)O3?狓PbTiO3(PMT狓PT)(7mm×7mm×5mm)withperovskitestructurewasgrownbythefluxmethod.Itscomposite,phasestructure,dielectric,piezoelectricandferroelectricpropertieswereinvestigated.Theresultsshowthatthecompositionoftheas?growncrystalsisPMT?30PTwithrhombohedralstructure.TheCurietemperature(犜c)ofthecrystalisabout53℃,anditspiezoelectricconstant(犱33)isabout230pC/Natroomtemperature.Thecrystalexhibitsexcellentelectricalpropertiesatlowtemperature:thedielectricconstantεr=3600,theremnantpolarizationintensity犘r=25μC·cm-2,andthecoercivefield犈c=9.8kV·cm-1.Theapplicationofferroelectricmaterialsinlow?temperatureenvironmentisexpanded.犓犲狔狑狅狉犱狊: PMT?PTrelaxorferroelectriccrystals;crystalgrowth;perovskite;electricalproperties第41卷第4期2021年8月 西 安 工 业 大 学 学 报JournalofXi’anTechnologicalUniversity Vol.41No.4Aug.2021 收稿日期:2021 05 03基金资助:国家自然科学基金(51472197);陕西省教育厅重点实验室科研计划项目(20JS058)。
专业英语(字母排序版)
专业外语总结(字母顺序版)1、热处理和材料科学与工程四要素关系:材料科学与工程四要素关系:Performance 使用性能组成与结构合成与制备过程Synthesis and processingComposition and structure性质Properties2、材料科学与工程的范围(虚线)及其与基础科学及使用间的关系单词&短语表Aa significant breakthrough Important progress 重要进展。
actuators 制(致)动器、Advanced ceramics 高级陶瓷;先进陶瓷 AFM =原子力显微镜=Atomic Force MicroscopeAgglomerates (or aggregates) and aerogels 凝聚物和气凝胶 Alumina 氧化铝Amorphous 非晶的 Anion 阴离子anisotropic 各向异性的anode阳极axial projection轴投影BBCC=body-centered cubic体心立方Bioceramics生物陶瓷biodegradable adj. 生物所能分解的Biodegradable systems生物可降解系统biodegradable可生物降解的bio-inspired medical prostheses仿生医学人工器官。
biological tagging生物标记biomedical applications生物医学应用。
biomimetic adj. 仿生的biomolecular single-electron devices生物分子的单电子器件Biotechnology生物技术bivalent/divalent二价的。
bulk acoustic waves BAWs体声波Bulk material 体材料CCapacitor电容器carbon Nanotube碳纳米管Catalyst催化剂Cathode 阴极Cation 阳离子Cement水泥; 接合剂ceramic based composites陶瓷基复合材料Ceramic coating 陶瓷涂层Chemical Composition化学成分Chemical reagent化学试剂civil engineering土木工程Cold isostatic pressing(CIPing) 冷等静压compacting equipment压实设备。
铁电材料介绍课件
Pb(B+21/2B+61/2)O3型 Pb(B+31/2B+51/2)O3型 Pb(B+32/3B+61/3)O3型 Pb(B1+41/2B2+41/2)O3型
Pb(Ti1/2Zr1/2)O3, Ba(Ti1/2Zr1/2)O3
PCMP
三:铁电体主要特征与物理属性
1. 2. 3. 4. 5. 6. 自发极化(Spontaneous polarization) 铁电畴 (Ferroelectric domain) 电滞回线(Hysteresis loop) 居里温度(Curie temperature,Tc) 介电反常(Dielectric anomalous) 重要物理效应
A1A2占据A位,满足条件: A位化合价= A1·x1+A2 ·x2=+2价 B1B2占据B位,满足条件: B位化合价= B1·y1+B2 ·y2=+4价
尝试写出一些钙钛矿化合物??
PCMP
PCMP
A位变化形成的化合物:
(A1+2A2+2)TiO3型 (Sr,Ba)TiO3 (Mg,Zn)TiO3 (A+11/2A+31/2)TiO3型 (Na1/2Bi1/2)TiO3 (K1/2Bi1/2)TiO3
ABO3型钙钛矿结构
PCMP
ABO3型钙钛矿晶胞结构
PCMP
形成钙钛矿条件:
离子A、B、C的半径RA、RB、RO满足下列关系才能组成ABO3结构:
t = ( RA + RO ) /( 2 ( RB + RO ))
式中t为容差因子(0.9~1.1范围内), A离子半径约为1.00~1.40Å, B离子半径约为0.45~0.75Å, O氧离子半径为1.32Å。
水声换能器研究现状与发展
Journal of Sensor Technology and Application 传感器技术与应用, 2023, 11(2), 194-201 Published Online March 2023 in Hans. https:///journal/jsta https:///10.12677/jsta.2023.112021水声换能器研究现状与发展吴锐锋,王一博,胡童颖,崔廷放广州海洋地质调查局,广东 广州收稿日期:2023年1月3日;录用日期:2023年3月22日;发布日期:2023年3月31日摘要水声换能器在现代海洋军事与海洋资源开发中有着举足轻重的地位。
本文通过阐述水声换能器功能性材料技术、换能器、水听器技术取得的国内外领先成果和应用现状,最后对我国水声换能器的发展动态谈些认识与展望。
关键词水声换能器,水听器技术,发展动态Progress and Development of Underwater Acoustic TransducerRuifeng Wu, Yibo Wang, Tongying Hu, Tingfang CuiGuangzhou Marine Geological Survey, Guangzhou GuangdongReceived: Jan. 3rd , 2023; accepted: Mar. 22nd , 2023; published: Mar. 31st , 2023AbstractUnderwater acoustic transducer plays a pivotal role in modern marine military and marine re-source development. This paper expounds the leading achievements and application status of un-derwater acoustic transducer functional material technology, transducer and hydrophone tech-nology at home and abroad, then give the development trends of underwater acoustic transducer.KeywordsUnderwater Acoustic Transducer, Hydrophone Technology, Development Trends吴锐锋等Copyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言当今世界各国积极发展海洋军事的战略中不难发现,探测安静型、隐形化目标,发展海洋装备从而加强海上防御能力,都是不可或缺的一部分。
0.9PMN-0.1PT弛豫铁电陶瓷制备及介电性能
0.9PMN-0.1PT弛豫铁电陶瓷制备及介电性能张崇辉;王晓娟;张晓娟;朱长军【摘要】铌镁酸铅-钛酸铅陶瓷由于其优异的性能而有着广泛的应用.采用两步法制备了组分为0.9Pb(Mg2/3Nb1/3)O3-0.1PbTiO3(0.9PMN-0.1PT)的弛豫铁电陶瓷,并对其介电-温度特性和热释电特性等进行了研究.结果表明,0.9PM N-0.1PT 陶瓷介电-温度曲线服从 Uchino和 No-mural改进的居里-外斯定理,表现出很强的介电弛豫特性,介电峰明显宽化,频率色散强烈,峰值温度 Tm 随频率增大向高温移动,弛豫因子达到1.89.热释电流密度曲线平缓,在整个加热范围均有电荷释放,室温时热释电系数达到100 pC · m -2 K -1.%The lead magnesium niobate-lead titanate ceramics are extensively use due to their excellent di-electric properties .The relaxor ferroelectricceramic0.9Pb(Mg2/3Nb1/3)O3-0.1PbTiO3(0.9PMN-0.1PT) was fabricated through two steps method .The dielectric properties ,dielectric constant and loss depend-ent on temperature ,pyroelectric ,were experimentally investigated .The results show that the dielectric constant-temperature curve obey the modified C-W law by Uchino and Nomural .The 0.9PMN-0.1PT ceramic reveal strong dielectric relaxor behavior ,wide dielectric peak ,strong frequency dispersion ,and the peak temperature Tm shift to higher with the frequency increasing ,the relaxor factor is 1 .89 .The py-roelectric curve change slowly and continuously release charges during whole heating process .The pyroe-lectric coefficient is 100pC · m -2 K -1 inroom temperature .【期刊名称】《纺织高校基础科学学报》【年(卷),期】2014(000)003【总页数】4页(P351-354)【关键词】0.9PMN-0.1PT陶瓷;介电常数;热释电【作者】张崇辉;王晓娟;张晓娟;朱长军【作者单位】西安工程大学理学院,陕西西安710048;西安工程大学理学院,陕西西安710048;西安工程大学理学院,陕西西安710048;西安工程大学理学院,陕西西安710048【正文语种】中文【中图分类】O4870 引言以Pb(Mg1/3Nb2/3)O3(简写为PMN)为代表的弛豫铁电体因在压电和介电性能方面有着其他铁电体不可比拟的优异性而备受关注[1-2].PMN的介电温谱表现出强烈的频率依赖和宽化相变,而PbTiO3(简写为PT)则是典型的软模铁电体,室温下为四方(P4mm)铁电相(FE),PMN可以和PT以任意比例形成固溶体(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(记为PMN-PT)陶瓷或单晶,随着PT含量的增加从典型的三方弛豫铁电向四方铁电体过渡,准同型相界在x=0.33附近,准同型相界处的PMN-PT具有极高的压电系数、电致伸缩系数[3].而PMN含量高的PMN-PT,以其高介电常数、相对低的烧结温度和由“弥散相变”(Diffused Phase Transition,简称DPT)引起的较低容温变率,被认为是高密度储能的多层电容器在技术上和经济上理想的候选材料,这类材料的制备和性能研究备受关注.本文采用两步法制备了0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 铌镁酸铅-钛酸铅弛豫铁电陶瓷,并测试了陶瓷的基本介电性能.1 材料制备按照化学组分0.9Pb(Mg2/3Nb1/3)O3-0.1PbTiO3 配料,原料为Nb2O5、MgCO3Mg(OH)2·4H2O、PbO、TiO2,均为分析纯.一般制备当中Mg元素通过氧化镁(MgO)引入,为了增加活性,本文选用碱式碳酸镁(MgCO3Mg (OH)2·4H2O)代替氧化镁,采用铌铁矿预产物合成法,传统的陶瓷烧结工艺,第一步用MgCO3Mg(OH)2·4H2O与Nb2O5 先合成铌酸镁(MgNb2O6),即按式(1)称取 MgCO3Mg(OH)2·4H2O 和2Nb2O5,与无水乙醇混合,湿法球磨5h,80℃烘干,压块,1 100℃煅烧6h,得到纯度大于96%的 MgNb2O6.第二步合成铌镁酸铅-钛酸铅粉体(0.9PMN-0.1PT),即将第一步合成的MgNb2O6与PbO和TiO2按式(2)摩尔比称取,混合加适量无水乙醇湿法球磨5h,80℃烘干,850℃预烧2h,得到钙钛矿结构的0.9PMN-0.1PT.将得到的0.9PMN-0.1PT二次球磨,得到颗粒细小均匀的粉体,加入5%的PVA水溶液粘合剂,造粒,170MPa冷压成型,1 240℃烧结2h成瓷,得到直径为10.5mm的柱状陶瓷棒.将陶瓷棒沿垂直于轴向切割成厚度为0.7mm的薄圆片,两圆面披银,作为电极.电滞回线的测定采用aixACT公司生产的TF ANALYZER 2000型电滞回线测量仪;陶瓷样品的压电常数d33采用中国科学院声学研究所生产的ZJ-3A型准静态d33测量仪进行测量,测量频率为110Hz.介电测量采用计算机控制的HP4284LCR阻抗分析仪,频率范围在0.1kHz~100kHz.2 介电性能测试2.1 电滞回线图1为0.9PMN-0.1PT陶瓷电滞回线,电滞回线是表征铁电体材料的重要手段,能够反映铁电材料基本特点,也是区别不同铁电体的简便方法.如图1所示,表现为“纤细”型电滞回线,正是弛豫铁电体区别于正常铁电体的重要特征之一.一般正常铁电体电滞回线接近“矩形”,剩余极化强度和矫顽场较大,而0.9PMN-0.1PT陶瓷剩余极化强度和矫顽场较小,分别为13.4μC·cm-2和0.56kV·mm-1.当电场从0开始逐渐增大时,样品极化强度也逐渐增大,但并未从0开始增加,而图1可看出极化强度是从-0.34μC·cm-2开始增加,这是由于样品不是原始状态,部分极化,已经有很小的剩余极化强度,并且本次电滞回线测试时样品放置与之前的极化电场相反,如果电滞回线测试时为新鲜样品,则电场从0开始增加时,极化强度也是从0开始,即电滞回线的起点从原点O开始.2.2 介电温度特性介电特性(介电常数和介电损耗)是铁电材料的重要物理性能之一,是铁电体被广泛应用的重要选择依据.介电性能对外界环境条件有强烈的依赖,主要是使用环境中外场,如温度、电场和压力等[4].外场条件发生变化,其介电性能就发生很大变化,是因为铁电体材料作为一类重要的功能材料,在外场作用下,材料内部结构发生了变化[5].测量介电性能在外场下的变化也成为判断外场诱导铁电材料相变的重要手段之一.图1 0.9PMN-0.1PT陶瓷电滞回线图2 0.9MN-0.1PT陶瓷介电温度特性曲线——1kHz;---10kHz;---100kHz图2为0.9PMN-0.1PT陶瓷介电特性随温度变化曲线.左纵坐标为0.9PMN-0.1PT的相对介电常数,右纵坐标为0.9PMN-0.1PT的介电损耗.温度从室温均匀升温至300℃,频率选择1.0kHz,10kHz和100kHz.可见,0.9PMN-0.1PT 陶瓷的介电性能随温度变化很明显.开始升温时,介电常数随温度升高而增加,频率色散很强,继续升温,介电常数开始下降,频率色散消失,3个频率对应的介电常数曲线重合,当温度更高时,介电常数继续下降.介电常数曲线峰在较低的温度时出现,介电峰值ε′m达到1.85×104(1kHz).将介电常数峰值ε′m对应的温度称为峰值温度,记为Tm,峰值温度也强烈依赖于频率,随频率升高,峰值温度Tm向高温移动,介电峰值降低.如图2中的插图所示,1.0kHz,10kHz和100kHz频率对应的介电峰值温度分别为36.1℃,39.3℃和43.1℃,这一特点正是PMN型弛豫铁电体的重要特征之一[6].从室温开始升温,0.9PMN-0.1PT陶瓷介电常数就表现出强的频率色散,这表明0.9PMN-0.1PT陶瓷在室温下的初始态就是弛豫铁电相[7].随着温度升高,微畴数量增加,尺寸减小,介电峰值温度处标志着微畴大量出现.继续升温,开始出现顺电相,随温度升高而逐渐增加.0.9PMN-0.1PT陶瓷由温度诱导的弛豫铁电到顺电相变是一个渐变过程,区别于典型铁电体在一特定温度点全部相变为顺电相,在介电-温度曲线上形成一个尖锐峰,并且介电常数遵循居里-外斯定理[8]:式(3)中C为居里-外斯常数,TC为居里温度,即铁电-顺电相变温度.而0.9PMN-0.1PT陶瓷介电常数变化已经不服从居里-外斯定理,而是在温度高于Tm以上,服从Uchino和Nomural改进的居里-外斯定理:其中γ为弛豫因子,1≤γ≤2,γ=1为铁电体,如钛酸铅PbTiO3(PT),γ=2为典型弛豫铁电体,如纯的Pb(Mg1/3Nb2/3)O3(PMN),随着PT含量的增加,γ值减小.利用式(4)对0.9PMN-0.1PT陶瓷1.0kHz对应的介电常数拟合,得到γ=1.89,同样表明0.9PMN-0.1PT陶瓷弛豫特性较强.0.9PMN-0.1PT陶瓷介电损耗tanδ也明显依赖频率,损耗随温度变化曲线也出现了损耗峰.损耗峰位置随频率增加向高温移动,但是损耗峰比介电峰出现的早,更接近室温,而且损耗峰值随频率增大而增大.当温度继续上升,损耗迅速减小,在介电峰值温度附近达到最小值,几乎接近0.再继续升温,介电损耗仍然很小,几乎不变.直到约230℃,1.0kHz对应的损耗开始增大,这主要是漏导在高温下急剧增大导致.图3 0.9PMN-0.1PT陶瓷热释电曲线2.3 热释电特性所有铁电材料都属于热释电体,热释电谱的测量也是一种表征铁电材料的有效方法,比介电温谱能更敏锐的反映铁电体在温度条件下内部结构发生的变化.另外PMN-PT也因其优异的热释电特性成为热电成像器件的理想材料,被广泛应用于热成像仪、热探测器和热敏测量仪器.图3为0.9PMN-0.1PT陶瓷热释电曲线,放电电流密度随温度变化曲线(J-T).样品在直流电场下充分极化,压电系数d33约为65pC·N-1,置于加热炉内,以3℃·min-1的升温速度从室温均匀加热至150℃,然后停止加热,自然冷却,实时测量样品电荷释放电流.从室温开始加热就有较大的电流,约0.5nA·cm-2,室温热释电系数为100pC·m-2 K-1.随着温度升高,热释电电流密度增加.当温度达到约45℃时,电流密度达到最大值Jm,约1.02nA·cm-2,这一温度与介电峰值温度Tm相吻合.继续升温,J开始逐渐减小,直到150℃仍然有明显的电荷释放.0.9PMN-0.1PT陶瓷的热释电曲线表现为平缓,峰值宽化,在较大的温度范围内均有电荷释放,这也是其本身的介电弛豫特性所决定的.不同于典型铁电体和反铁电/铁电相变陶瓷,这些材料的热释电曲线都是在相变点呈现一极窄的尖锐峰,电荷在相变点瞬间释放[9].铁电体在电场作用下,电偶极子趋于电场方向,电场增大,极性微区合并成铁电畴,铁电畴继续长大,这样在样品两电极间建立了电场,外电场撤除,这种电场仍然能够保持,这一电场又在电极表面从空气中吸附了电荷,吸附电荷屏蔽了内部电场.当温度升高,自由能增加,引起电畴转向和尺寸减小,内部电场减小,电极表面吸附电荷被释放.从0.9PMN-0.1PT陶瓷的热释电曲线可以看出,在升温过程中,内部电畴是一个连续渐变过程,不像典型铁电体在相变点突然发生旋转.就在温度高于Tm很大范围,仍有电荷释放,同样也说明,当温度T>Tm,顺电相逐渐增多,弛豫铁电相逐渐减少.3 结论(1)两步法合成了性能良好的0.9PMN-0.1PT弛豫铁电陶瓷,制备条件以1 100℃合成 MN,850℃预烧,1 240℃烧结为最佳.(2)0.9PMN-0.1PT陶瓷介电常数非常大,具有较强的介电弛豫特性,表现为介电峰宽化的弥散相变(DPT),频率色散明显.(3)室温热释电系数为100pC·m-2 K-1,升温过程连续释放电荷.【相关文献】[1] TANG Yanxue,ZHAO Xiangyong,FENG Xiqi,et al.Pyroelectric properties of[111]-oriented Pb(Mg1/3Nb2/3)O3-Pb-TiO3crystals[J].Appl Phys Lett,2005,86(8):082901(1-3).[2] PRIYA Shashank,RYU Jungho,CROSS L E,et al.Investigation of ferroelectric orthorhombic phase in the Pb(Zn1/3Nb2/3)O3-PbTiO3system[J].Ferroelectrics,2002,274:121-126.[3]许桂生,罗豪甦,王评初,等.新型弛豫型铁电单晶PMNT的铁电与压电性能[J].科学通报,1999,44(20):2157-2161.[4] WAN Q,CHEN C,SHEN Y P.Effects of stress and electric field on the electromechanical properties of Pb(Mg1/3 Nb2/3)O3-0.32PbTiO3single crystals [J].J Appl Phys,2005,98:024103(1-5).[5]江冰,方岱宁.铁电材料的本构关系即相关问题研究进展[J].力学进展,1998,28(4):469-475.[6] ZHAO X,DAI J Y,WANG J,et al.Relaxor ferroelectric characteristics and temperature-dependent domain structure in a(110)-cut(PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25single crystal[J].Physical Review B,2005,72:064114(1-7).[7]樊慧庆,徐卓,张良莹,等.钨青铜结构弛豫型铁电陶瓷Sr0.5Ba0.5Nb2O6的制备及其场致热释电行为[J].科学通报,1996,41(24):2201-2203.[8]钟维烈.铁电物理学[M].北京:科学出版社,2000:3-4.[9] ZHANG Chonghui,XU Zhuo,GAO Junjie,et al.Release charges under external fields of PbLa(Zr,Sn,Ti)O3ceramic[J].Chinese Physics B,2011,20(2):027701(1-3).。
著名铁电物理学家L.E. Cross最新PPT
Dependence ε = f (T) of PbMg1/3Nb2/3O3 monocrystal in frequency range 10-2 ~ 106 c/sec
Dependence 1/ε on (T-T0)2 for PbMg1/3 Nb2/3O3 monocrystal
G. A. Smolensky Proceeding of the second International Meeting on Ferroelectricity Kyoto Japan 1969 Supplement to J. Phys. Soc. Japan 28.58.1970
RELAXOR FERROELECTRIC: PROPER FERROELECTRIC SOLID SOLUTIONS WITH MORPHOTROPIC PHASE BOUNDARIES
Phase diagram for the lead zirconate: lead titanate solid solution
Growth Points in Ferroic Studies
L. Eric Cross Materials Research Institute The Pennsylvania State University University Park, PA 16802 USA
Two areas where exciting things are happening which are of strong interest to:
Evidence for stress induced B19' martensite in the B2 phase of the modified composition
李金华个人简介
主持参与的部分项目 • 高介电栅极有机薄膜晶体管的湿法制备及界面物理研究,国家自然科学基面上项目
(11574075),86.8 万,2016.1-2019.12,主持人。 • 柔性低压高性能晶体管的湿法制备及应用研究,湖北省自然科学杰出青年基金
工作经历
2015 年 12 月至今湖北大学材料科学与工程系; 2012.8-2015.11 香港理工大学应用物理系,博士后研究员; 2008.10-2009.1 香港理工大学应用物理系,助理研究员; 2002.7-2008.9 湖北大学,助教。
获奖 • 卢朝靖、李金华、王世敏、邝安祥,无机功能薄膜的制备、显微结构与生长机制研究,湖
湖北武汉 430062 Email:jinhua_li@ or jinhua_li@ Tel: +86-27-88661729
教育经历:
2009.1-2012.7 香港理工大学应用物理系应用物理专业,博士研究生,导师严锋教授和陈王 丽华教授;
2005.9-2008.6 湖北大学材料科学与工程学院 材料学专业,硕士研究生,导师卢朝靖教授; 1998.9-2002.7 湖北大学物理学与电子技术学院电子科学与技术专业,本科。
(2014CB660809),78 万,2014.10-2016.8,科技部,参法原位制备及激子分离动力学研究,国家自然科学基
金青年项目(11304088), 30 万, 2014.1-2016.12, 参与。 • 医用钛合金骨植入体表面激光合金化 Ag-HA 复合纳米涂层的抗菌及生物相容性研究,国
目,2 万,2017.01-2018.12,主持人。 • 高介电栅极柔性有机薄膜晶体管的制备及性能研究,湖北省教育厅科学技术研究计划重点
铁电陶瓷
铁电陶瓷材料的研究现状学号:1003031018 姓名:杨亚军专业:10无机非摘要:本文论述了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。
这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。
铁电材料是一个比较庞大的家族,当前应用的最好的是陶瓷系列,其已广泛应用于军事和工业领域。
但是由于铅的有毒性及此类铁电陶瓷材料居里温度低、耐疲劳性能差等原因,应用范围受到了限制。
因此开发新一代铁电陶瓷材料己成为凝聚态物理、固体电子学领域最热门的研究课题之一。
关键词:层状电陶瓷;弛豫型铁电陶瓷;反铁电陶瓷;研究1层状铁电陶瓷目前,研究较多、并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅(简称PZT)系列。
此系列的突出优点是剩余极化较大Pr(10~35 μC/cm 2)、热处理温度较低(600℃左右)。
但是随着研究的深入,人们发现,在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题,另外,铅的挥发对人体也有害。
因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。
研究发现:其剩余极化较大,单晶极化强度方向沿 a 或b轴时,(2Pr=58μC/cm2)[1],热稳定性能也比较好(居里温度为520℃)[2],另外,SBTi 陶瓷又是非铅系列材料,是一种比较有前途的铁电陶瓷材料。
但是由于Bi容易挥发,在材料制备和使用过程中容易成铋空位,从而形成氧空位,影响材料的抗疲劳性能和铁电性能。
为了满足实际应用的需要,需要提高和改进该系列材料的铁电性能,因此,国内外研究者在改变制备途径、制备方法以及调整材料的组分等方面作了不少研究。
共生结构铁电材料是利用两种钙钛矿层数只相差一层的Bi系层状钙钛矿结构铁电材料组成。
BLSFs的通式也是:(Bi2O2)2 +(A m-1B m O3m+1)2-,其中A为Bi、Ba、Sr、Nd 等,B为Ti、V、Nb、W 等。
无铅压电陶瓷钛酸铋钠驰豫铁电性
无铅压电陶瓷钛酸铋钠驰豫铁电性张寅【摘要】Sodium Bismuth Titanate Ceramics were synthesized by Metalorganic Decomposition Method (MOD). The result of X - ray diffraction (XRD) patterns showed the samples with good orientation and perovskite structure. We have used dielectric measure- ment and quantity method of 8, 3,and ATm to analysis relaxor behavior of NBT. The result showed that NBT is A -site substituted relaxor ferroelectrics with perovskite structure and complex phase transition process. Morphotropic phase boundary with rhombohed- ral phase and tetragonal phase together exists in a certain temperature range .%金属氧化物沉积法(MOD)成功地制备了Bi1/2Na1/2TiO3(NBT)基无铅压电陶瓷,样品的X射线衍射(XRD)结果显示其具有较好的结晶性,通过介电温度谱和介电弥散性指数8、介电临界指数γ和频率色散度ΔTm对样品的驰豫性质进行了定量研究,结果表明,NBT是一种A位取代的驰豫铁电体,它具有钙钛矿结构,以及极其复杂的相变过程,在一定的温度范围内可以得到三方和四方共存的准同型相界区。
【期刊名称】《齐鲁师范学院学报》【年(卷),期】2012(027)005【总页数】5页(P33-37)【关键词】钛酸铋钠;驰豫铁电体;准同型相界【作者】张寅【作者单位】齐鲁师范学院科研处,山东济南250013【正文语种】中文【中图分类】TM2821 引言钛酸铋钠(NBT)作为一种新型的无铅介电、压电材料备受广泛的重视。
戈尔质子交换膜型号
戈尔质子交换膜是一种用于燃料电池的重要组件,具有良好的电导率和化学稳定性。
在选择戈尔质子交换膜型号时,需要根据应用场景、功率需求、成本等因素进行综合考虑。
以下是一些有关戈尔质子交换膜型号的介绍:首先,戈尔提供多种质子交换膜型号,以满足不同客户的需求。
其中,Gel-Filer Pro 是戈尔常用的燃料电池用质子交换膜之一,具有优异的电导率、化学稳定性和耐久性。
该膜适用于各种燃料电池应用,如轿车、巴士、混合动力车、固定电源等。
此外,戈尔还提供用于固体氧化物燃料电池(SOFC)的Gel-Filer SOFC专用膜,该膜具有更高的离子电导率和渗透性,可提高发电效率。
在选择戈尔质子交换膜型号时,需要考虑以下几个因素:1. 应用场景:不同应用场景对质子交换膜的性能要求不同。
例如,在混合动力车和轿车等小型车辆中,通常使用Gel-Filer Pro膜,而在大型燃料电池系统中,可能需要考虑更高的功率和效率。
2. 功率需求:质子交换膜的功率容量取决于其厚度和渗透性。
在选择戈尔质子交换膜型号时,需要考虑设备的功率需求,以便选择最适合的型号。
3. 成本:在选择戈尔质子交换膜型号时,还需要考虑其成本因素。
不同型号的质子交换膜的成本和制造成本不同,因此在考虑性价比的情况下,选择适合的质子交换膜非常重要。
基于以上因素的综合考虑,在某些情况下,Gel-Filer XPE膜可能是戈尔质子交换膜的一种合适选择。
Gel-Filer XPE膜是一种高性能的燃料电池用质子交换膜,具有优异的电导率、化学稳定性和耐久性。
它适用于各种燃料电池应用,包括小型车辆、固定电源和移动电源等。
此外,Gel-Filer XPE膜还具有更高的离子电导率和渗透性,可以提高发电效率。
总之,在选择戈尔质子交换膜型号时,需要根据具体应用场景、功率需求和成本等因素进行综合考虑。
通过了解戈尔提供的多种质子交换膜型号及其性能特点,可以更好地选择适合的质子交换膜,从而为燃料电池系统的性能和可靠性提供有力保障。
晶体取向的pmnpt材料的杨氏模量和泊松比
晶体取向的pmnpt材料的杨氏模量和泊松比目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 正文2.1 PMNPT材料介绍2.2 晶体结构和取向理论2.3 杨氏模量的测定方法3. 分析与讨论3.1 杨氏模量对晶体取向的影响3.2 泊松比与PMNPT材料性能关系探讨3.3 实验结果分析与解释4. 结论4.1 总结和重点回顾4.2 对于PMNPT材料的未来研究方向建议5. 参考文献引言1.1 背景和意义晶体取向是材料性能研究中的重要因素之一。
通过调控晶体取向,可以改变材料的力学、电学、热学等性能,从而获得更优异的性能。
近年来,PMNPT(铅镁钽铌酸铁钾)材料因其优异的压电和介电性能而备受关注。
然而,在实际应用中,如何进一步提高PMNPT材料的性能仍然是一个挑战。
为了深入了解晶体取向对于PMNPT材料性能的影响,并进一步开发出更高效的制备方法,需要对其杨氏模量和泊松比进行详细研究。
1.2 结构概述PMNPT属于复式钙钛矿结构材料,在晶体结构中存在许多取向。
通过经典固态反应法制备的PMNPT样品通常具有多个取向晶粒,这在很大程度上影响了材料的整体性能。
因此,了解不同取向下PMNPT材料的力学特性对于优化材料制备工艺以及扩展其应用领域非常重要。
1.3 目的本文的目标是研究晶体取向对于PMNPT材料力学性能的影响,特别关注其杨氏模量和泊松比。
通过实验测定和理论分析,我们将探讨不同晶体取向下PMNPT材料的力学行为差异,并深入了解取向与性能之间的关联关系。
此外,我们还将对实验结果进行综合分析,并提出对于PMNPT材料未来研究方向的建议。
注意:该部分内容仅供参考,具体表达可根据实际需求进行修改。
2. 正文2.1 PMNPT材料介绍PMNPT材料是一种铁电单晶材料,由铅镁酸钛(PMNT)和磷酸钛(PT)两种化合物组成。
它具有优异的电学特性和机械性能,因此在多个领域中得到广泛应用。
PMNPT材料具有高响应频率、较低的介电常数和压电系数等特点,因而被广泛用于声纳器件、超声波传感器、并联振动器等领域。
高居里温度铁电单晶PIN-PT的机电性能
第51卷第4期2022年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.51㊀No.4April,2022高居里温度铁电单晶PIN-PT的机电性能刘曼曼1,汪跃群2,熊俊杰1,张文杰1,孔舒燕1,杨晓明1,王祖建1,龙西法1,何㊀超1(1.中国科学院福建物质结构研究所,福州㊀350002;2.中国船舶集团第七一五研究所,杭州㊀310023)摘要:弛豫铁电单晶Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)相较于常用的Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)具有更高的居里温度,在高稳定性㊁高性能的传感器㊁换能器方面具有应用前景㊂本工作采用谐振法研究了[001]方向极化的0.66PIN-0.34PT铁电单晶的全矩阵机电性能参数㊂0.66PIN-0.34PT单晶的三方-四方相变温度(T RT)约为160ħ,居里温度(T C)约为260ħ,室温压电系数d33㊁d31㊁d15分别为1340pC/N㊁-780pC/N㊁321pC/N,介电常数εT33㊁εS33㊁εT11㊁εS11分别为2700㊁905㊁2210㊁1927,机电耦合系数k33㊁k31㊁k15㊁k t分别为87%㊁58%㊁38%㊁61%㊂其纵向压电常数(d33)和纵向机电耦合系数(k33)小于PMN-PT单晶,但是横向压电性能(d31)和剪切压电性能(d15)都略高于PMN-PT单晶㊂另外,研究了机电耦合性能随温度的变化趋势,发现0.66PIN-0.34PT单晶在150ħ以下有较好的温度稳定性㊂关键词:PIN-PT;弛豫铁电单晶;全矩阵参数;压电性能;机电性能;传感器㊀中图分类号:TM22+1;O782㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2022)04-0579-08 Electromechanical Properties of Ferroelectric Single CrystalPIN-PT with High Curie TemperatureLIU Manman1,WANG Yuequn2,XIONG Junjie1,ZHANG Wenjie1,KONG Shuyan1,YANG Xiaoming1,WANG Zujian1,LONG Xifa1,HE Chao1(1.Fujian Institute of Research on the Structure of Matter,Chinese Academy of Science,Fuzhou350002,China;2.Hangzhou Applied Acoustics Research Institute,Hangzhou310023,China) Abstract:Relaxor ferroelectric single crystal Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)has a higher Curie temperature than Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT),which has a prospect in the application of sensors and transducers requiring high stability and high performance.In this work,the full matrix mechanical and electrical properties of[001]-poled0.66PIN-0.34PT ferroelectric single crystal were studied by resonance method.The rhombohedral-tetragonal transformation temperature(T RT) and Curie temperature(T C)of0.66PIN-0.34PT single crystal are160ħand260ħ,respectively.The room temperature piezoelectric coefficients d33,d31and d15of0.66PIN-0.34PT ferroelectric single crystal are1340pC/N,-780pC/N and 321pC/N,respectively.The dielectric constantsεT33,εS33,εT11,εS11are2700,905,2210,1927,respectively.The electromechanical coupling coefficients k33,k31,k15,k t are87%,58%,38%,61%,respectively.The value of piezoelectric constant(d33)and electromechanical coupling coefficient(k33)of0.66PIN-0.34PT single crystal are smaller than those of PMN-PT single crystal,but the transverse piezoelectric properties(d31)and shear piezoelectric properties(d15)are slightly higher than those of PMN-PT single crystal.In addition,the trend of variation in electromechanical coupling performance was studied,and it is found that0.66PIN-0.34PT single crystal has good temperature stability below150ħ.Key words:PIN-PT;relaxor ferroelectric single crystal;full matrix parameter;piezoelectric property;electromechanical property;sensor㊀㊀收稿日期:2022-02-16㊀㊀基金项目:中国科学院重点部署项目(ZDRW-CN-2021-3);福建省工业引导项目(2020H0038)㊀㊀作者简介:刘曼曼(1996 ),女,河南省人,硕士研究生㊂E-mail:liumanman@㊀㊀通信作者:何㊀超,博士,研究员㊂E-mail:hechao@580㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷0㊀引㊀㊀言相比较于传统的锆钛酸铅(PZT)压电陶瓷,弛豫铁电单晶材料由于具有超高的压电系数和机电耦合系数(d33>1500pC/N,k33>90%),在医用超声成像㊁高性能换能器等领域得到了广泛的应用[1-3]㊂弛豫铁电单晶材料常用的体系为Pb(Mg1/3Nb2/3)O3-x PbTiO3(PMN-PT)㊂虽然PMN-PT单晶在准同型相界(MPB)附近表现出优异的压电和机电性能(d33~2000pC/N,k33~90%),但其低的矫顽场(E c=2~3kV/cm)使其容易发生退极化,低的三方-四方相变温度(T RT=65~90ħ)使其应用得到很大限制[4]㊂据之前报道,Pb(In1/2Nb1/2)O3-PbTiO3(PIN-PT)铁电单晶具有较高的矫顽场和较高的相变温度㊂2002年Guo等[5]报道了用坩埚下降法生长PIN-PT单晶,其居里温度为200~218ħ,[001]方向的晶体的室温介电常数㊁压电常数㊁机电耦合系数分别约为4000㊁2000pC/N和92%㊂2003年Yasuda等[6]报道了采用偏光显微镜观察0.72PIN-0.28PT单晶在各向同性相边界附近的复杂畴结构㊂2012年He等[7]报道了利用顶部籽晶法生长的0.655PIN-0.345PT单晶的三方-四方相变温度达到150ħ,居里温度为290ħ㊂2018年Qiao等[8]报道了Mn掺杂对PIN-PT单晶性能的影响㊂2021年Xiong等[9]报道了0.66PIN-0.34PT交流极化的结果㊂虽然PIN-PT拥有比较均衡的性能,但对于其全矩阵机电性能的研究甚少㊂研究PIN-PT铁电单晶的压电性能㊁介电性能㊁弹性常数等全矩阵性能参数对于器件设计和应用推广具有重要的意义[10-12]㊂因此,本工作通过顶部籽晶法生长了0.66PIN-0.34PT单晶,并通过谐振法测试了0.66PIN-0.34PT单晶的全矩阵参数,研究了机电耦合性能的温度稳定性㊂1㊀实㊀㊀验1.1㊀测试原理(1)压电振子的谐振特性将极化处理过的压电晶体制成的压电振子按照图1(a)所示的线路连接,当信号频率从低频缓慢向高频变化时,通过压电振子的电流会随着频率的变化而变化,电流是流经压电振子的电压V和阻抗|Z|的比值㊂当信号频率为f m时,通过压电振子的传输电流达到最大值,其对应的阻抗|Z|即为最小值,把f m称为最小阻抗频率;当信号频率变到另一频率f n时,传输电流出现最小值,其所对应的阻抗|Z|达到最大值,把f n称为最大阻抗频率,阻抗随频率的变化如图1(b)所示[13]㊂图1㊀(a)压电振子接入线路示意图;(b)压电振子阻特性曲线Fig.1㊀(a)Schematic diagram of piezoelectric vibrator access circuit;(b)piezoelectric vibrator resistance characteristic curve (2)压电振子的等效电路图压电振子的等效电路是利用电学网络术语表示压电弹性体的机械振动特性,这样可以把所研究的问题简化㊂压电振子的等效电路表示有很多形式,其中最简单的是LC等效电路,其表现形式如图2所示,它是由L1㊁C1㊁R1串联支路和C0并联支路构成的㊂对于LC电路来说,其阻抗|Z|随着频率的变化而变化㊂在压电振子的串联谐振频率附近,只要选择适当的L1㊁C1㊁R1和C0,通过LC电路的阻抗的绝对值随频率的变化曲线和图1(b)的曲线非常相似㊂当压电振子的动态电阻R1为零时,这时电路导纳绝对值|Y|与频率f的关系如公式(1)所示㊂根据公式(1)可以求出导纳最大时的频率f m(公式(2))和导纳最小时的频率f n(公式(3))㊂根据交流电路理论,串联谐振频率f s(L1C1电路出现谐振)与并联谐振频率f p(整个等效电路出现谐振)时的频㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT 的机电性能581㊀率如公式(4)和(5)所示㊂此外压电振子还有两个特征频率,即谐振频率f r 与反谐振频率f a ,在这两个特征频率下,压电振子的并联导纳为零,压电振子呈现出纯阻抗特性㊂因此当R 1为零时,对于压电振子的六个特征频率有如下关系:f m =f s =f r ,f n =f p =f a ㊂根据谐振频率f r 与反谐振频率f a 可以计算得出其他性能参数㊂Y =2πf C 0(2πf L 1-12πf C 0-12πf C 1)2πf L 1-12πf C 1(1)f m =12π㊀L 1C 1(2)f n =12π㊀L 1C 0C 1C 0+C 1(3)f s =12π㊀L 1C 1(4)f p =12π㊀L 1C 0C 1C 0+C 1(5)图2㊀压电振子等效电路Fig.2㊀Piezoelectric oscillator equivalent circuit 1.2㊀样品制备在本工作中,采用顶部籽晶法得到PIN-PT 单晶,晶体原料配比为0.59PIN-0.41PT 单晶,晶体生长方法见参考文献[14]㊂根据PIN-PT 体系的二元相图推测PIN-PT 晶体的组分应该为0.66PIN-0.34PT [15]㊂通过X 射线衍射仪(MiniFlex 600,Rigaku,Japan)测定晶体结构㊂将晶体进行切割,抛光得到[001]取向尺寸大小为4mm ˑ4mm ˑ0.6mm 的晶片㊂涂上高温银浆,在600ħ下进行退火处理以消除样品加工过程中产生的应力㊂样品退火后,方可对样品进行对应的电学测试㊂使用阻抗分析仪(E4990A,Keysight,USA)测试单晶样品的介电性能㊂压电单晶的全矩阵机电性能参数是指压电材料的介电常数㊁压电常数㊁弹性常数等一系列物理参数各自组成的矩阵㊂其中主要包括恒电位移边界条件下的弹性柔顺系数矩阵s D ij ㊁恒电场边界条件下的弹性柔顺系数矩阵s E ij ㊁恒电位移边界条件下的弹性刚度系数矩阵c D ij ㊁恒电场边界条件下的弹性刚度系数矩阵c E ij ㊁压变应变常数d ij ㊁压变应力常数e ij ㊁压变电压常数g ij ㊁压变刚度常数h ij ㊁介电常数εij /ε0和βij /β0,以及机电耦合系数k ij ㊂压电晶体沿不同方向极化会导致晶体的对称性不同,其全矩阵参数的表现形式也不同㊂本工作主要测试沿[001]方向极化后0.66PIN-0.34PT 铁电单晶的全矩阵参数㊂0.66PIN-0.34PT 铁电单晶具有三方钙钛矿相(3m ),沿[001]方向极化后的晶体具有4mm 点群对称性,共有11个独立的材料常数,包括6个弹性常数,2个介电常数和3个压电常数㊂图3给出了三方钙钛矿相(3m )铁电单晶沿[001]方向极化的弹性刚度系数㊁压电应变常数和介电常数矩阵㊂本实验中主要采用的是谐振法测试[001]极化的0.66PIN-0.34PT 单晶的全矩阵参数,通过制备不同的压电振子得到谐振图谱㊂压电振子尺寸如下:k 33振子为1mm(长)ˑ1mm(宽)ˑ5mm(高);k 31振子为5mm(长)ˑ1.5mm(宽)ˑ0.5mm(高),k t 样品尺寸为5mm(长)ˑ5mm(宽)ˑ0.6mm(高),k 15样品尺寸为0.6mm(长)ˑ3mm(宽)ˑ5mm(高),其中长度方向为[100],宽度为[010],高度为[001]㊂压电振582㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷子的示意图如图4所示,其中阴影部分表示测试电极面㊂电极为银电极,600ħ下烧结10min 而成㊂压电振子的极化条件如下:电场为12kV /cm,极化时间15min,室温㊂k 33㊁k 31和k t 的振子样品测试方向与极化方向均为[001]㊂k 15振子沿着[001]方向极化后,去掉电极,重新沿着[100]方向制备电极测试㊂使用阻抗分析仪(E4990A,Keysight,USA)测试压电振子的谐振阻抗谱图㊂图3㊀三方钙钛矿相(3m )单晶沿[001]方向极化的弹性刚度系数(a)㊁压电应变常数(b)和介电常数(c)矩阵Fig.3㊀Elastic stiffness coefficient (a),piezoelectric strain coefficient (b)and dielectric constant (c)matrix of [001]poled rhombohedral perovskite phase (3m )ferroelectric single crystal图4㊀压电振子取向示意图Fig.4㊀Diagram of piezoelectric vibrators 1.3㊀全矩阵机电性能参数计算压电振子制作完成后,通过阻抗分析仪读出不同振子所对应的反谐振频率f a 和谐振频率f r ㊂通过不同的公式算出相应的参数值,其中Δf 表示f a 和f r 的差值,l 为样品长度,通过阿基米德法得到晶体的密度为8.1kg /cm 3㊂对于k 33振子通过公式(6)~(9)计算出相应的参数值:k 233=π2f r f a tan π2Δf f a ()(6)s D 33=14ρl 2f 2a (7)s E 33=s D 331-k 233(8)d 33=k 33㊀εT 33s E 33(9)对于k 31振子,通过公式(10)~(12)计算出相应的参数值:k 2311-k 231=π2f a f r tan π2Δf f r ()(10)s E 11=14ρl 2f 2r (11)d 31=k 31㊀εT 33s E 11(12)㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT的机电性能583㊀对于k t振子,通过公式(13)~(15)计算出相应的值:k2t=π2f r fa tanπ2Δf fa()(13)c D33=4ρt2f2a(14)c E33=c D33(1-k2t)(15)对于k15振子,通过公式(16)~(19)计算出相应的值:k215=π2f r fa tanπ2Δf fa()(16)c D55=4ρl2f2a(17)c E55=c D55(1-k215)(18)d15=k15㊀εT11s E55(19) 2㊀结果与讨论通过阻抗分析仪测得的各个振子的阻抗图谱如图5所示,结合以上公式可以算出部分全矩阵参数,参数其他值的计算参考文献[16]的计算方法㊂最终得到0.66PIN-0.34PT的全矩阵参数如表1所示㊂相比较于三方相PMN-PT单晶,通过对比可以看出,虽然0.66PIN-0.34PT单晶的纵向压电系数d33(1347pC/N)和机电耦合系数k33(87%)略小于PMN-PT单晶(d33~1660pC/N,k33~92%),但是0.66PIN-0.34PT单晶具有较高的剪切压电性能,其d15能够达到321pC/N,并且其横向机电耦合系数k31达到58%,高于三方相PMN-PT单晶的横向机电耦合系数(k31~47%)[16-17]㊂图5㊀不同振子的共振谱Fig.5㊀Resonance spectra of different vibrators584㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷表1㊀[001]极化的0.66PIN-0.34PT单晶的全矩阵参数Table1㊀Full matrix properties of[001]poled0.66PIN-0.34PT crystalsElastic stiffness constants:C ij/(1010N㊃m-2)C E11C E12C E13C E33C E44C E66C D11C D12C D13C D33C D44C D6611.3112.1910.249.64 5.247.6411.229.1810.7411.468.17 6.68Elastic compliance constants:S ij/(10-12m2㊃N-1)S E11S E12S E13S E33S E44S E66S D11S D12S D13S D33S D44S D66 26.39-11.67-23.2148.9515.7210.0715.54-18.76-8.859.0213.6812.62Piezoelectric constants:e ij/(C㊃m-2);d ij/(10-12C㊃N-1);g ij/(10-3Vm㊃N-1);h ij/(108V㊃m-1) e15e31e33d15d31d33g15g31g33h15h31h33 14.6-6.5318.81321-783134712.40-17.2330.3110.29-11.9029.15Dielectric constants:ε(/ε0);β(10-4/ε0).Electromechanical coupling constants:kεS11εS33εT11εT33βS11βS33βT11βT33k15k31k33k t 192790522102700 3.23 2.29 2.35 2.590.380.580.870.610.66PIN-0.34PT单晶的X射线衍射扫描结果如图6(a)所示,从衍射图可以看出,单晶是纯的三方相钙钛矿结构㊂同时在1000Hz下测试的介电温谱如图6(b)所示㊂从图中可以看出,其三方-四方相变温度T RT为150ħ,居里温度T C为260ħ㊂为了测试0.66PIN-0.34PT单晶的温度稳定性,将极化后的单晶在不同温度下退火2h,降至室温后用准静态法测试其压电系数d33,结果如图7所示㊂当退火温度在150ħ以下, 0.66PIN-0.34PT单晶的d33一直保持在1200pC/N;当退火温度高于150ħ时,0.66PIN-0.34PT单晶的d33明显下降,表明退极化温度和三方-四方相变温度一致㊂图6㊀(a)0.66PIN-0.34PT单晶的X射线粉末衍射图谱;(b)未极化[001]取向0.66PIN-0.34PT单晶的介电温谱(1000Hz) Fig.6㊀(a)Powder XRD patterns of0.66PIN-0.34PT crystals;(b)dielectric temperature spectrum of0.66PIN-0.34PTsingle crystal with unpolarized[001]orientation(1000Hz)图7㊀[001]取向0.66PIN-0.34PT单晶的压电系数d33随退火温度的变化Fig.7㊀Variation of d33of[001]poled0.66PIN-0.34PT crystals as a function of temperature㊀第4期刘曼曼等:高居里温度铁电单晶PIN-PT的机电性能585㊀图8给出了机电耦合系数k15㊁k31㊁k t㊁k33随温度的变化㊂随着温度的升高,剪切机电耦合系数k15迅速从室温的38%增加到150ħ时58%㊂纵向机电耦合系数k33和横向机电耦合系数k31在三方-四方相变温度以前基本保持不变,在相变温度附近急剧减小㊂厚度伸缩机电耦合系数k t随着温度的升高在三方-四方相变温度之前从60%升高到70%㊂因此,0.66PIN-0.34PT单晶机电耦合性能的温度稳定性可达150ħ㊂图8㊀0.66PIN-0.34PT单晶的机电耦合系数k15㊁k31㊁k t㊁k33随温度的变化Fig.8㊀Variation of electromechanical coupling coefficients k15,k31,k t,k33of0.66PIN-0.34PT single crystal as a function of temperature3㊀结㊀㊀论采用顶部籽晶法生长的0.66PIN-0.34PT单晶的三方四方相变温度为150ħ,居里温度为260ħ㊂通过谐振法测试了沿[001]极化的0.66PIN-0.34PT单晶的介电常数㊁压电常数㊁弹性常数等性能参数㊂与三方相PMN-PT单晶相比,0.66PIN-0.34PT单晶的剪切压电系数d15(321pC/N)和横向机电耦合系数k31(58%)有所提高㊂压电和机电耦合性能的温度稳定性研究表明,0.66PIN-0.34PT单晶的压电和机电耦合性能在150ħ以下保持稳定,有利于拓展弛豫铁电单晶温度应用范围㊂参考文献[1]㊀ZHANG S J,LI F,JIANG X N,et al.Advantages and challenges of relaxor-PbTiO3ferroelectric crystals for electroacoustic transducers-a review[J].Progress in Materials Science,2015,68:1-66.[2]㊀SUN E W,CAO W W.Relaxor-based ferroelectric single crystals:growth,domain engineering,characterization and applications[J].Progress inMaterials Science,2014,65:124-210.[3]㊀LI F,LIN D,CHEN Z,et al.Ultrahigh piezoelectricity in ferroelectric ceramics by design[J].Nature Materials,2018,17(4):349-354.[4]㊀戴振国,董胜明,尹振华,等.PMN-PT晶体的生长㊁性质和应用进展[J].人工晶体学报,2005,34(6):1018-1023+1055.DAI Z G,DONG S M,YIN Z H,et al.Progress in the growth,properties and application of PMN-PT crystal[J].Journal of Synthetic Crystals, 2005,34(6):1018-1023+1055(in Chinese).[5]㊀GUO Y P,LUO H S,HE T H,et al.Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3-PbTiO3single crystal grown by themodified Bridgman technique[J].Solid State Communications,2002,123(9):417-420.586㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷[6]㊀YASUDA N,UEMURA N,OHWA H,et al.Domain observation in PIN-PT mixed crystal near a morphotropic phase boundary[J].Journal-Korean Physical Society,2003,42:S1261-S1265.[7]㊀HE C,LI X Z,WANG Z J,et al.Characterization of Pb(In1/2Nb1/2)O3-PbTiO3ferroelectric crystals grown by top-seeded solution growthmethod[J].Journal of Alloys and Compounds,2012,539:17-20.[8]㊀QIAO H M,HE C,WANG Z J,et al.Improved thermal stability of ferro/piezo-electric properties of Mn-doped Pb(In1/2Nb1/2)O3-PbTiO3ceramics[J].Journal of the European Ceramic Society,2018,38(9):3162-3169.[9]㊀XIONG J J,WANG Z J,YANG X M,et al.Optimizing the piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-PbTiO3ferroelectriccrystals via alternating current poling waveform[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2021,68(8): 2775-2780.[10]㊀MA M,XIA S,SONG K X,et al.Temperature dependence of the transverse piezoelectric properties in the[001]-poled0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.33PbTiO3single crystal with alternating current treatment[J].Journal of Applied Physics,2021,129(11):114102.㊀[11]㊀QIAO L,LI Q,QIU C R,et al.Temperature dependence of elastic,piezoelectric,and dielectric matrixes of[001]-poled rhombohedral PIN-PMN-PT single crystals[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2019,66(11):1786-1792. [12]㊀WAN H T,LUO C T,CHANG W Y,et al.Effect of poling temperature on piezoelectric and dielectric properties of0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3single crystals under alternating current poling[J].Applied Physics Letters,2019,114(17):172901.[13]㊀张沛霖,张仲渊.压电测量[M].北京:国防工业出版社,1983.ZHANG P L,ZHANG Z Y.Piezoelectric measurement[M].Beijing:National Defense Industry Press,1983(in Chinese).[14]㊀HE C,WANG Z J,YANG X M,et al.Relaxor-based ferroelectric single crystals grown by top-seeded solution growth method[J].ScientiaSinica Technologica,2017,47(11):1126-1138.[15]㊀AUGIER C,PHAMTHI M,DAMMAK H,et al.Phase diagram of high T c Pb(In1/2Nb1/2)O3-PbTiO3ceramics[J].Journal of the EuropeanCeramic Society,2005,25(12):2429-2432.[16]㊀LIU M M,TANG H Y,ZHANG W J,et plete set of material constants of001-poled0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3single crystalsusing alternating current poling[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2022.DOI:10.1109/TUFFC.2022.3141461.[17]㊀IEEE standard for relaxor-based single crystals for transducer and actuator applications[J].IEEE Std1859-2017,2017:1-25.。
PLZT弛豫铁电体的电卡效应研究
独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本授权书。
本论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:年月日日期:年月日摘要电卡效应制冷技术具有成本低、能量转换率高、应用尺寸小、工作可靠性较高且无环境污染等优点,因而在小尺寸固态制冷器件领域极具发展前景。
现有的电卡材料存在许多不足:聚合物薄膜的电卡转换效率较低,需要极高的外部电场来驱动;电卡纳米薄膜的制备工艺成本较高,且薄膜的体积较小、制冷量较低;块状陶瓷材料的介电击穿场强较低。
以上的问题阻碍了电卡材料的实际生产应用,亟待解决。
Pb1-x La x(Zr y Ti1-y)1-(x/4)O3弛豫铁电体具有较强的极性和较高的电卡转换效率,在电卡效应研究领域备受关注;然而此材料的介电击穿场强较低,强电卡性能对应的环境温度较高,阻碍了其在电卡制冷工程中的应用。
为了解决以上问题,本课题首先采用传统固相烧结法制备Pb(Zr0.65Ti0.35)O3(简称65/35PZT)陶瓷,研究了陶瓷相变对电卡性能的影响;在此基础上,探讨了9%La掺杂制备Pb0.91La0.09(Zr0.65Ti0.35)0.9775O3 (简称9/65/35PLZT)陶瓷对材料电卡性能的影响;最后,本课题还研究了热压烧结工艺对9/65/35PLZT陶瓷电卡性能的影响。
准同型相界附近PMN-PT材料的制备和性能
准同型相界附近PMN-PT材料的制备和性能孙大志【期刊名称】《电子元件与材料》【年(卷),期】2001(020)003【摘要】对铁电菱方(FR)-铁电四方(FT)准同型相界附近的铌镁酸铅(PMN)-钛酸铅(PT)材料制备方法和介电、压电和热释电性能进行了系统的研究:rn在合成(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3时,易出现烧绿石相。
由于MgO的化学活性低,而PbO和Nb2O5的反应活性大大高于MgO,因此在一次性合成PMN-PT材料过程中会形成烧绿石相,得不到纯钙钛矿相,并且导致材料性能下降。
本工作采用二步合成法避免了烧绿石相形成,获得了纯钙钛矿相的PMN-PT粉体。
在极端条件下,将原料MgO、Nb2O5、PbO和TiO2一起熔融,经过一定时间的扩散反应,通过一步反应即可以得到纯钙钛矿结构的PMN-PT材料,证明钙钛矿结构事实上是一种具有低自由能的稳定态。
rnPMN-PT系统存在着一条铁电菱方-铁电四方准同型相界,它的化学组成在PT含量为33%附近。
在准同型相界附近,PMN-PT陶瓷材料具有较好的压电性能,d33可达540 pC/N,kt、kp分别可达0.45和0.62;在准同型相界附近,极化后的(1-x)PMN-xPT陶瓷材料(0.22 < x < 0.35)的介电常数在温度诱导FR-FT相变过程中发生突变;PMN-PT陶瓷材料在FR-FT相变过程中呈现出一个热释电峰,反应了自发极化在相变过程中发生了非线性的变化。
PMN-PT陶瓷材料在FR-FT相变过程中的热释电效应可以用一个半经验公式,即自然指数的负二次幂函数来进行描述。
这种半定量关系的建立为进一步深入研究FR-FT相变的微观机理建立了实验基础。
rn采用Bridgman方法可以大批量生长高性能、大尺寸的PMN-PT单晶。
PMN-PT单晶的压电系数d33可达2 300 pC/N以上,kt可达0.59,远高于同组分的陶瓷材料;PMN-PT单晶的压电性能具有明显的各向异性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5Relaxor FerroelectricsL.E.Cross5.1IntroductionIt is interesting to note that as with almost all initial advances in the study of ferroelectric oxides the impetus for studies of relaxor ferroelectrics stemmed from early work on polycrystalline ceramic systems.In the case of the relaxor ferroelectrics,the advance originated from studies in Professor Smolensky’s group at the Ioffe Institute in Leningrad(now St.Petersburg)on perovskite structure electroceramics of complex composition.Originally classified as fer-roelectrics with diffuse phase transitions,it slowly became clear that the very high dielectric maximum being highly dispersive could not mark a classical ferroelectric phase transition.Now,following studies at Penn State University, the suggested designation as relaxor ferroelectrics has become internationally adopted.The name is nicely compact and does highlight two key features, the combination of massive dielectric relaxation with almost classical lower-temperature ferroelectric response.Over the last20years there has been an explosive growth of interest in the topic.Not surprising perhaps,as relaxor studies combine a focus on materials with properties of very strong practical importance,but underpinned also with challenging fundamental considerations,a nearly ideal mix for current applied research funding.The current,very high level of interest is nicely reflected in a recent excellent review by G.Samara“Ferroelectrics Revisited: Advances in Materials and Physics”[1],which devotes some30%of the text to the topic of relaxor ferroelectrics.In this short chapter,the focus will be upon the relevance of relaxor studies to the basic understanding of elasto-dielectric transducing functions in oxide ferroelectrics.Early realization of the importance of relaxor ferroelectrics for transducing structures came with the exploration of the large,stable electrostrictive strains that could be controlled in lead magnesium niobate(PbMg1/3Nb2/3O3) (PMN):a Smolensky group discovery[2]that has became the prototype for perovskite-structure relaxors.The utility of this ceramic was highlighted132L.E.Crossby the incorporation of PMN-based multilayer actuators to drive remote-controlled tilt mirrors in the replacement wide-field and planetary camera II of the Hubble Space Telescope.These PMN tilt mirrors permitted ground control to makefinal,precise alignment of the corrector optics required to compensate for the original primary mirror problem and bring the Hubble to its present fantastic performance.Relevance of the relaxor ferroelectric studies to the deeper understanding of the strong piezoceramics in the lead zirconate titanate(PZT)family,which still underpin all most important electro-elastic transducer applications,is further clarified by discussion of the relaxor fer-roelectric lead titanate solid solutions which incorporate morphotropic phase boundaries(MPBs),where,unlike the PZTs,respectable single-crystals can be grown and the orientational behavior of the intrinsic elasto-dielectric prop-erties fully studied.5.2Relaxor Ferroelectric CompositionsRelaxor ferroelectric properties occur in a number of perovskite and tungsten-bronze structure compounds and solid solutions.In perovskites,the properties to be described are most often associated with mixed cations of different valen-cies occupying one of the lattice sites in this ABO3structure.Typical examples of A-site substitutions are bismuth strontium titanate,(Bi2/3x Sr1−x)TiO3,and lead lanthanum zirconate titanate,(Pb1−x La2/3x)(Zr y Ti1−y)O3(PLZT),and for the B-site substitution the compounds lead magnesium niobate,(PbMg1/3 Nb2/3)O3(PMN),and lead scandium tantalite,Pb(Sc1/2Ta1/2)O3(PST).It should be noted that in the A-site system x must be above a critical value for the relaxor properties to be manifest.In the tungsten bronze structure,which is much more open than the per-ovskite,aliovalent cations are not necessary,and typical examples are the solid solution barium strontium niobate,(Ba x Sr1−x)Nb2O6,and lead barium niobate.Neither barium nor strontium forms a stable bronze,but in solid solution in the range0.25<x<0.6relaxor properties occur,while in lead barium niobate,Pb1−x Ba x Nb2O6,relaxation is confined to solid solution near the x=0.4composition.From its early discovery and because of outstanding properties and ease of preparation in both ceramic and single-crystal forms, lead magnesium niobate has become the prototype for perovskites and,simi-larly,barium strontium niobate for the bronzes.5.2.1B-Site-Substituted Perovskite Relaxor Ferroelectrics5.2.1.1Lead Magnesium Niobate(PMN)Three of the key features of this typical relaxor are illustrated in Fig.5.1. In the weak-field dielectric response(Fig.5.1a),the permittivity reaches a high peak value∼20,000typical for a ferroelectric perovskite near T c,but5Relaxor Ferroelectrics133ЊC no line1α2Pb (Mg Nb )O ’⑀Fig.5.1.Characteristic features of the ferroelectric relaxor,lead magnesium nio-bate,Pb(Mg 1/3Nb 2/3)O 3(PMN).(a )Dielectric dispersion in PMN as a function of temperature and frequency.(b )Dielectric hysteresis in PMN as a function of temperature.(c )Optical and X-ray evidence for the absence of a macroscopic phase change below the dielectric maximum at T mthe maximum clearly does not mark a phase change to a ferroelectric form as the maximum temperature T m moves to higher temperature with increasing measuring frequency in a manner typical for a relaxation dielectric.There is also an associated maximum in tan δ,again typical of relaxor response (not shown).Behavior at lower temperatures under high alternating fields does,however,exhibit bonafide hysteretic response,a necessary and sufficient con-dition for ferroelectricity.However,unlike a normal ferroelectric,the hysteretic response is not lost suddenly at T m but decays more slowly into just nonlinear response (Fig.5.1b).The third surprising feature is that to longer-coherence-length probing radiation,samples even at very low temperature show no evidence of optical anisotropy or X-ray line splitting,which would be characteristic of the domains in a normal ferroelectric (Fig.5.1c).The early explanation that this could be due to a nanoscale structure of polar regions has proven correct,but only recently has its origin been correctly diagnosed.134L.E.CrossFig.5.2.(a )Refractive index of PMN at optical wave length showing the departure from linear behavior due to the onset of polar nano regions.(b )Thermal contraction in PMN showing the change from linearity induced by electrostriction in the polar nano regionKey forward progress came from the realization that even though in such a structure of compensating nanoscale polarizations,macro P =0,RMS polarization √P 2=0so that examination of properties that depend on P 2such as quadratic electro-optic effects or electrostriction could indicate the onset of nanoscale polarization fluctuations.The first clear evidence for the presence of nanoscale polar regions came from refractive index measurement on PMN by Burns and Dacol [3](Fig.5.2a).Normal,linear decrease of index n with temperature is enhanced beginning at a temperature T B much above T m through contribution from the electro-optic constants g 33and g 31of the form∆n =−n 3o 2 g 33+2g 313P 2d showing the onset of nanoscale polarization that did not perturb optical isotropy.5Relaxor Ferroelectrics 135This diagnosis was supported by thermal contraction measurements by Bhalla et al.[4](Fig.5.2b),which confirmed a departure from linear contrac-tion again at ∼345◦C so that the total strain becomesS 11(T )=α(T −T o )+(Q 11+2Q 12)P 2dfrom whichP 2d =S 11(T )−α(T o −T )(Q 11+2Q 12)A microscopic picture of the polarization situation is now also emerging from X-ray [5]and neutron diffraction [6],high-resolution transmission elec-tron microscopy [7],and neutron pair distribution function analysis [8].The consensus appears to be that there are nanopolar regions that begin to appear at ∼618K,which grow from 2–3nm in size near TB to ∼10nm at 160K,and that the volume fraction increases to near 30%at low temperature.It does appear generally agreed that above T m the polar nanoregions are dynamic and that they do probably carry a major fraction of the system polarizabil-ity so that the dynamics of the nanopolar regions must tie in closely with the massive dielectric relaxation near T m .Analysis of the major dispersion reveals departure from Arrhenius behavior,which can be very satisfactorily described by the empirical Vogel–Fulcher relation [9]that takes the form:τ−1=ω=ωo exp(E/k (T −T f ))where ωo is the attempt frequency,E the energy barrier between equivalent polar orientations,and T f can be viewed as a dipolar freezing temperature for the relaxation process.In PMN the fit is remarkably good [10](Fig.5.3)with E =0.079eV ,T f =217.7K,and k and ωo =1012Hz.It should be noted,however,that in fact there is a very broad distribution of relaxation times in PMN that changes at T f ,the freezing temperature,so it is thelargest1081061041021003.43.63.84.04.23.2I /T m a x × 103ω (H Z )Fig.5.3.The non-Arrhenius character of the dielectric relaxation in PMN.Solid line is a Vogel–Fulcher fit to the data.E =0.079eV ,T f =217.7K ,ωo =1012Hz136L.E.CrossFig. 5.4.Suggested temperature-dependent relaxation time spectrum for PMN. G(τ,T)is the number of polar micro regions having a relaxation timeτ,T f is the freezing temperature,andτd is the Debye relaxation timerelaxation times that became macroscopic.A suggested response profile is given in Fig.5.4.Thus the Vogel–Fulcher relation suggests that the zero-field,cooled PMN freezes into a random array of micropolar regions in a spin-glass-like state[11]. The micropolar regions are dominantly polarized along the(111)orientation, but because of the random arrangement there is no macroscopic anisotropy. Under high electricfield,however,a static change can be induced,and the nanopolar region can be reoriented to form macro-domains,which then lead to the observed ferroelectricity at lower temperatures.The importance of the local B-site cation arrangement for the onset of the relaxor nanopolar structures is very nicely demonstrated in lead scan-dium tantalate.Material quenched from high temperature shows a disordered Sc:Ta arrangement and initial relaxor ferroelectric response[12];however,un-der high-temperature annealing,the Sc:Ta order1:1in NaCl-like ordering and the ordered structure exhibits a sharpfirst-order phase change at T m into a conventional ferroelectric[13,14].In fact,it does appear in PST that even for the disordered structure with careful preparation to avoid oxygen vacancy effects,the more perfect disordered structure goes through the major relaxor dispersion,but at lower temperature crosses over into the ferroelectric form as evidenced by the loss of dispersion and the onset of a macrodomain structure[15].In PMN,because of the1:2(Mg:Nb)composition on the B-site and the fact that the structure chooses to order1:1in(111)-oriented(Mg2Nb)and pure Nb composition sheets in which the Mg-containing sheet is still disordered,it is not possible to induce a highly ordered state and even1:1order is strongly kinetically limited.None the less,it does appear that limited ordering is an aid to relaxor behavior[16]and there is gathering evidence that thefirst onset of micropolar regions at T B occurs in the most highly ordered regions[17]and that it is in these regions that the nanopolarization is most mobile.5Relaxor Ferroelectrics 1375.2.2A-Site-Substituted Perovskite Relaxor Ferroelectrics5.2.2.1Lead Lanthanum Zirconate Titanate (PLZT)Probably the most widely studied mixed A -site perovskite system is lanthanum-modified lead zirconate titanate (PLZT).One of the first electronic ceramics to be hot-pressed to optical transparency,much original work was focused on the optical properties,which hinge upon relaxor ferroelectric be-havior closely similar to PMN.As in pure PZT,there is a pseudo-morphotropic phase boundary separating rhombohedral and tetragonal phases at lower La 3+concentration.Most interesting are compositions in the Pb 1−3/2x La x (Zr 0.65Ti 0.35)O 3system,with x between 0.06and 0.12.PbZr 0.65Ti 0.35O 3is in the rhombohedral phase field of the solid solution and completely free of radio fre-quency dispersion in dielectric properties.The 0.06mole fraction La 3+induces weak relaxor properties (Fig.5.5)and,as in disordered lead scandium tanta-lite,this composition is close to cross-over into ferroelectricity.The relaxor phase can be stabilized by additional La 3+or by increasing hydrostatic pres-sure (Fig.5.6).A most interesting feature of the whole range of La-substituted 65/35PZTs is the manner in which the phase diagram changes with La con-centration (Fig.5.7).Again,thermal expansion and optical index show that000000000000000000000000120001000080006000400020001600014000120001000080006000PLZT-6PLZT-7PLZT-8PLZT-6.5100150200250050100150100150200250TEMPERATURE (C)TEMPERATURE (C)D I E L E C T R I C C O N S T A N I E L E C T R I C C O N S T A N T (b)138L.E.CrossPLZT 6/65/351 bar 1 bar 103 Hz 105104103 Hz 10 kbar 20 kbar 103104105 Hz 20 kbar T m T F-R 128400 2.02.42.83.23.64.0510152025280320360400440T (K)ε’ x 10–3T T T PARAELECTRICKINETICALLY DISORDERED (K.D.)a) polarization F.E.ROMB. II ROMB. I F.E.T000000000000000K.D.a) polarization a) polarization a) polarization b) orientation b) orientation b) orientation c) elastic a) elastic c) elastic Glassy Glassy K.D.5Relaxor Ferroelectrics139Fig.5.8.(a)Structure of nanoscale domains revealed in PLZT8.2/65/35composi-tion by dark-field TEM.(b)Modification of the domain pattern by beam charging showing the induction of larger macrodomain stripesadded La.One of the best demonstrations of NPR in PLZT is the TEM study by Randall[18]showing for an8.2:65:35PLZT composition darkfield contrast from NPR(Fig.5.8a)and by charging from the beam current the evolution towards more normal continuous ferroelectric macro-domains(Fig.5.8b).5.2.2.2Bismuth Strontium TitanateA second A-site-substituted system that gives additional insight into relaxor ferroelectric behavior is bismuth-substituted strontium titanate,(Bi2/3x Sr1−x) TiO3,originally classified as Skanavi dielectrics in honor of its Russian discov-erer.More recent studies have again shown clear relaxor ferroelectric behavior for higher bismuth concentrations.In pure strontium titanate,SrTiO3,the weak-field dielectric permittiv-ity follows the Curie–Weiss law from high temperature down to50K with a Curie–Weiss temperatureθ=35.5K;however,no permittivity peak appears below50K and the permittivity levels offat a very high value that persists to a very low temperature.The suppression of ferroelectricity is attributed to quantumfluctuations and often described by a model due to Barrett[19,20]. Interestingly,at thefirst introduction of Bi3+at low levels,the quantum para-electric behavior is modified by two weak dispersions(A,B)exhibiting nicely separated tanδmaxima(Fig.5.9).At higher Bi3+concentrations,a more mas-sive relaxation(C)appears,and with further increase in Bi3+concentration digests both A and B.Dispersions A and B follow the simple Arrhenius law over the frequency range10–109Hz:τ=τo exp(E/kT),and display nicely symmetric Cole-Cole arcs,typical for dielectric dispersion.Relaxation C,however,is not of the Debye type and follows the Vogel–Fulcher law:140L.E.CrossFig.5.9.(a )Temperature dependence of ε for Sr 1−1.5x Bi x TiO 3with x ranging from 0to 4%at 0.1,1,10,100and 1,000kHz.Note the log T scale.(b )Temperature dependence of ε for similar compositions and temperature rangeτ=τo exp Ek (T −T f ) of a relaxor ferroelectric .Dispersions A and B increase in amplitude with Bi 3+concentration but do not move in frequency with Bi 3+concentration or applied bias field.Dis-persion εalso increases markedly with Bi 3+concentration,but moves to lower temperatures with concentration and with bias field.For a simple defect-dipole-induced relaxation as in A and B ,it is expected that the dielectric step height follows a simple Debye–Langevin relation:∆ε=(n (qδ)2/3kT )εoFor both A and B relaxations the observed∆εwould require a totally unrealistic displacementδs,suggesting that the effective electric movement is massively augmented by high lattice polarizability,i.e.,∆ε=(n(Nqδ)2/3KT)εowhere for realisticδ,N∼100is required.It is suggested that A and B dispersions are associated with local displace-ments of the Bi3+ion and are distinguished by the absence or near-presence of the associated strontium vacancy,which appears reasonable.For the C dis-persion,however,the very different character might suggest that,as in the original Skanavi model,Ti4+is participating.Again,polar clusters form at the higher Bi3+concentration,but now the clusters communicate much more effectively through the oxygen framework to give positive feedback and the slowing down evidenced in the Vogel–Fulcher model.Clearly,the system offers important clues as to the origin of relaxor re-sponse,but much more work is needed to pin down the possibilities.5.3Polycrystalline Ceramics Relaxor Based Actuators Realization of the absence of stable domain states in PMN in the temperature range from T m to T B suggested that the carefully prepared ceramic should be free from aging effects.In fact,the ceramic is not easy to prepare from mixed oxide powders because of the very refractory nature of magnesium oxide,and often early ceramics were heavily contaminated by a pyrochlore phase or by the excess MgO that was used to alleviate the problem.This difficulty was nicely solved by the columbite method of fabrication[21],in which the necessary MgO was pre-reacted with niobium pentoxide(Nb2O5) to form the columbite phase,which could then be reacted with PbO to form PMN.In the pure stoichiometric PMN,absence of aging is evidenced over a wide temperature range(Fig.5.10),andfield-induced polarization leads to useful electrostrictive strain(Fig.5.11).As a function of electricfield,the strain is not quadratic because of dielectric nonlinearity;none the less,it leads to impressive induced piezoelectricity at modest biasfield levels and is age-free over a suitable range of temperature.Fortunately,the age-free range of T can be manipulated by limited solid solution with lead titanate(PbTiO3) to give performance superior to the best hard PZT at room temperature.It was this longer-term stability of the bias-induced displaced states that led to PMN being chosen for Hubble corrector tilt mirrors,a decision that has been amply justified by its subsequent performance.Interesting to note also is that many of the actuator controlled atmospheric densityfluctuation corrector mirrors now incorporated into most very large ground-based telescopes also use ceramic PMN-based compositions.1709010–70100 000Hz10 000Hz1000Hz100Hz00000ELECTRIC FIELD (kV/cm) 26812x10–4STRAIN 10010102020PZT=Pb(Zr 0.5Ti 0.5)O 30.9PMN-0.1PT.Pb(Mg 0.3Nb 0.6Ti 0.1)d 33~1500p C/NAT 3.7 kV/cm1. 1KHZ2. 10 KHZ3. 1000 KHZ12300000000101102103104NO aging3 h aging10 h100 h1000 h00000000 0(a) (I)(II)(III)(IIII)100000 Hz100000 Hz10 000 Hz10000 Hz1000 Hz1000 Hz100 Hz100 HzE-field induced phase transition .21.8.6.4.2.2.411,111,and 111-oriented polar domains are equallychanged in energy by a (001)-oriented E-field,so there is no driving force to move the domain walls.Since the single-domain permittivity along the (111)domain polar axis is modest,it is natural to suggest that field-induced rotation of the domain vectors (as in Fig.5.16c)is the intrinsic strain mech-anism,with a field-induced switch over to a tetragonal form at a very high field as observed (Fig.5.16d).Now,it is natural also to question whether,on the basis of the observed polarization changes,the tilt would be adequate to generate the observed strain levels and if so,what would be the required tilt of P s from (111)to produce the strain level observed before the switchover.Early phenomenolog-ical analysis [27]using strain measured in the tetragonal state to characterizeFig.5.16.Sequence of states in an(001)-oriented PZN:4.5PT single crystal.In virgin,poled,under modest(001)Efield,and after high switchingfieldQ11show that the induced strain is more than adequate.More recent calcu-lation[28]using total strain measured for the tetragonal state after switching to determine Q11agrees closely with the observed S3and S1values,and the calculated tilt of P s from(111)before switchover is similar to that measured in the tilt of the optical indicatrix under(001)-oriented E-field in a rhombo-hedral single domain[29].With support also from ab initio calculation[30], there is now little doubt that the driving mechanism for high d33and large S3 under(001)-oriented E-field is rotation of the polarization vector away from the(111)direction in the rhombohedral domain towards the orientation of the driving E-field.The basic explanation is quite clear;however,there is much complexity in the detail.In a relaxor ferroelectric,a poling operation is required to put the low-temperature form into the ferroelectric phase with long-range order.The resulting phase may depend on the magnitude,orientation,and temperature of the poling operation.The original phase diagram is oversimplified,and in some compositions close to the MPB there is evidence of stable monoclinic and orthorhombic forms.Unfortunately,much confusion has also been gener-ated by overemphasis on the role of the monoclinic phase in these crystals.It is absolutely true that under high(001)E-field the P vector in the domain is tilted more than20◦away from the rhombohedral(111)and the symmetry is unquestionably monoclinic,but of critical importance is the fact that the monoclinic form is metastable so that when thefield is removed the domain reverts back to its equilibrium rhombohedral form giving the recoverable an-hysteretic quasi-linear actuation strain under the E-field.It is perfectly true that in the monoclinic state P s may lie anywhere in the mirror plane between rhombohedral and tetragonal orientation,but it is absolutely untrue that it is free to rotate in this plane in that for any given composition,temperature, and pressure,the vector will always occur at the same orientation in one of the family of24permitted orientation states.What is unusual is that the P s vector will change its orientation in the mirror as a function of temperature, giving an unusual component of pyroelectricity orthogonal to the direction of P s in the single domain.Clearly,for the type of actuation achieved in the (001)-poled rhombohedral form of both PMN:PT and PZN:PT,in rhombo-hedral compositions close to the MPB the last thing one would want is a stable intervening monoclinic form between tetragonal and rhombohedral,as this would necessarily introduce massive hysteresis in the strain because the P s vector drops into and has then to be pulled out from the stable tilted orientation.A key basic unresolved problem in the PMN:PT and PZN:PT systems is why the tilting mechanism is so astoundingly successful in raising piezoelectric response.Other simpler perovskites such as BaTiO3and KNbO3 have ferroelectric/ferroelectric phase boundaries,and at temperature close to the boundary exhibit appropriate high dielectric anisotropy[31,32].For sim-ple domain-average-engineered structures,however,both measured and cal-culated properties,although significantly enhanced,are almost an order of magnitude less than in the relaxor ferroelectrics.For future development based on the relaxor single crystals,it would ap-pear that a very important question is how the residual disorder and random fields soften both the dielectric and elastic properties without destroying the high-temperature reach and the strong remanent polarization in the poled ferroelectric forms,as discussed further in Sect.5.5.4.2Tungsten-Bronze Structure Relaxor FerroelectricsA substantial number of corner-linked-octahedron-type complex ferroelectric oxides that crystallize in the tetragonal tungsten-bronze crystal structure exhibit the relaxor ferroelectric character.A cross-section of the structure nor-mal to the fourfold axis(Fig.5.17)illustrates the corner linking of octahedra, which is much less regular than in the perovskite,leading tofive-,four-,and threefold tunnels for the A-sites running parallel to the fourfold symmetry axis.The general chemical formula is of the form(A1)4(A2)2C4B10O30,where A1are15-fold coordinated sites in thefivefold tunnels,A2are12-fold coor-dinated in the fourfold tunnels,C are ninefold coordinated in the threefold tunnels,andB are the sixfold coordinated B-site cation as in the perovskite.Fig.5.17.Cross-section of a ferroelectric tetragonal tungsten-bronze taken normal to the fourfold axis.Identifyingfivefold(A1),fourfold(A2),and threefold tunnels and the15-,12-,and9-fold coordinated sites in these tunnelsTable5.1.Ferroelectric species that could occur from the4/mmm prototypic point symmetry in Shuvalov notation.Non-zero components of P s delineated for each species14/mmm(1)D4F4mm p2Z=0,p2X=p2Y=024/mmm(2)D2F mm2p2X=p2Y=0,p2Z=034/mmm(4)A2F m p2X=p2Y=0,p2Z=044/mmm(4)A.4F m p2X=p2Y=0,p2Z=054/mmm(8)A1F1p2X=p2Y=p2Z=0An example of a ferroelectric(non-relaxor)bronze in which all sites are occu-pied is(K4)A1(K2)A2Li4(Nb)10O30.Very frequently,however,the structure is quite stable when not all cites arefilled as,for example,in the solid solution (Sr x Ba1−x)5Nb10O30,in which the A-sites are only5/6filled,there is charge unbalance,disorder,and strong relaxor behavior.All bronze structured ferroelectrics and relaxor ferroelectrics have high-temperature paraelectric point symmetry4/mmm,which by Aizu/Shuvalov symmetry considerations limits possible ferroelectric species and polar direc-tion to those given in Table5.1.That the setting is with the fourfold axis along z,P i2=0,means that for the i th direction±P s i occurs with equal proba-bility in the domain structure.To date,only ferroelectrics in4mm and mm2 point symmetries have been found;however,there is mounting evidence that in several relaxor compositions nanopolar regions may have lower symmetry involving a small tilting of the P vector away from the four-or twofold axis.5.4.2.1Barium Strontium Niobate (Sr 1−X Ba x )Nb 2O 6Neither pure barium niobate nor pure strontium niobate will form in the bronze structure;however,in the solid solution they form 0.25Ba/0.75Sr to 0.75Ba/0.25Sr stable tungsten-bronze structure forms.The most widely studied is (Sr 0.61Ba 0.39)Nb 2O 6,which is pseudo-congruently melting so that excellent-quality,large,and striation-free single crystals can be grown.It has been shown from X-ray analysis by Abrahams [33]that the large Ba 2+ions are exclusively in the 15-fold A 2-sites,while the strontium ions are mixed between A 1and A 2sites and the smaller C site is completely empty.Massive dispersion in the weak-field dielectric permittivity (Fig.5.18)im-mediately suggests relaxor ferroelectric behavior,which is supported by the Vogel–Fulcher analysis (Fig.5.19),and there is clear evidence from both op-tical birefringence and thermal contraction studies of the presence of c -axis micropolar regions up to a Burns temperature some 200◦C above the dielectric maximum at T m .The uniaxial character of the polar behavior permits a very simple macroscopic demonstration that the polar nanoregions between T m(a)(b)00000000000000000000000。