椭圆 双曲线抛物线必背的经典结论
椭圆双曲线抛物线常用结论
椭圆、双曲线、抛物线常用结论1.),(),,(2211y x B y x A 是椭圆)0(12222>>=+b a by a x 的两点,),(00y x M 是AB 的中点,则220202ab k k y a x b k OM AB AB-=•⇔-=2.),(),,(2211y x B y x A 是椭圆)0(12222>>=+b a by a x 上关于原点对称的两点, 点P 是椭圆上不同于BA ,的动点,且PB PA ,斜率都存在,则22ab k k PBPA -=•3. ),(),,(2211y x B y x A 是双曲线)0,0(12222>>=-b a by a x 上的两点,),(00y x M 是AB 的中点,则220202ab k k y a x b k OM AB AB=•⇔= 4.),(),,(2211y x B y x A 是双曲线)0,0(12222>>=-b a by a x 上关于原点对称的两点, 点P 是双曲线上不同于B A ,的动点,且PB PA ,斜率都存在,则22ab k k PBPA =• 5. 若),(00y x P 是椭圆)0(12222>>=+b a b y a x 上的一点, 则过点P 的切线方程是:12020=+b y y a x x6. 若),(00y x P 是椭圆)0(12222>>=+b a by a x 外的一点,过点P 的两切线的切点分别为B A ,,则切点弦AB 的方程是:12020=+byy a x x 7. 若),(00y x P 是双曲线)0,0(12222>>=-b a b y a x 上的一点, 则过点P 的切线方程是:12020=-b y y a x x .8. 若),(00y x P 是双曲线)0,0(12222>>=-b a by a x 开口外的一点,过点P 的两切线的切点分别为B A ,,则切点弦AB 的方程是: 12020=-byy a x x9.直线与抛物线综合问题一. 考点精析1.主要考查直线与抛线的位置关系有关的问题:必须熟悉以下知识点:(1)抛物线的定义,运用定义确定标准方程中的p 的值;(p 是焦点到准线的距离);(2)熟悉22y px =(22x py =)(0)p >的图形的基本常识,能正确写出焦点坐标,准线方程; (3)会用焦半径,焦点弦及一般的弦长公式一般的弦长公式:|AB |=2121x x k -+或||11212y y k-+. 弦长公式实际上也是一条直线上两点间的距离公式. 2.常见的问题及一般解题流程(1)第一问:根据定义,或动点满足给定条件确定抛物线的方程;也可能是一个简单的计算题. (2)第二问:一般离不开直线方程与抛物线方程联立.如22()2202y kx b x my t x pkx pb x py=+=+⎧⇒--=⎨=⎩12121212x x y y x x y y +=+=⎧⎧⇒⎨⎨⋅=⋅=⎩⎩或 然后根据具体的已知条件,列出相应的等式(或不等式)(注意0>∆).(3)常见问题有:定点、定直线、定值问题;向量的数量积,及向量关系式的应用;如何用抛物线上的两点表示直线的斜率;过抛物线上一点的直线与抛物线的另一交点如何求?过抛物线上的两点的切线的交点及过两切点的切点弦的方程问题;与动直线有关的三角形,四边形的面积的最值(换元,二次函数,基本不等式,求导)等等. (4)抛物线上两点的斜率一定可以化简(都化成横坐标或纵坐标).)2(22212121px y y y px x y y k AB =+=--=或)2(22212121py x px x x x y y k AB =+=--=(5)过抛物线上一点P 的直线与抛物线交于另一点Q ,则可用韦达定理求得Q 点的坐标. 3.关于抛物线的切线问题: (1)用判别式法求切线 ;(2)焦点在y 轴上时,可用求导法求切线的斜率,写切线方程. (3)也可用代换法直接用切点坐标写出切线方程.已知点),(00y x P 是抛物线C 上一点,则以P 为切点的切线方程为:若)0(2:2>=p py x C : )(00y y p x x +=若)0(2:2>=p px y C : )(00x x p y y +=(即将抛物线方程中的:x x x 02→,y y y 02→,20x x x +→,2y y y +→) 4. 若点),(00y x P 是抛物线C 开口外一点,过P 作抛物线的两条切线,切点为A 、B ,则切点弦AB 的方程为:若)0(2:2>=p py x C : AB : )(00y y p x x +=若)0(2:2>=p px y C : AB : )(00x x p y y +=5.典型问题(1)过点),(00y x Q 作直线交抛物线)0(2:2>=p py x C 于),(),,(2211y x B y x A 两点,则抛物线在B A ,两点处的切线的交点P 必在一条定直线上l 上; 反之也成立. 由p x x p x y PA 2:211-=,pxx p x y PB 2:222-=解得)2,2(2121p x x x x P +(2)已知抛物线)0(2:2>=p px y C ,直线l 与抛物线交于A ,B若OB OA ⊥,则直线l 恒经过一个定点)0,2(p推广:一般地,已知抛物线)0(2:2>=p px y C ,直线l 交于A ,B 两点,点),(00y x P 是抛物线上的一个异于A ,B 若PB PA ⊥,则直线l 恒过一定点.(定点坐标与00,y x 有关).6.注意几点:①在设动直线方程时选择更合理的形式可使计算简化(如用b kx y +=还是b my x +=?). ②条件中的等式或不等式结合韦达定理一一转化为具体含参数的数学式子并化简,一个式子就是 一个得分点.③三角形或四边形的面积,一定要选择更好的表示形式(弦长公式、点线距离公式是主要工具). ④最值问题最终一定可转化为二次函数或对勾函数求最值.。
椭圆与双曲线的经典性质50条--(必背的经典结论)
椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1、点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2、PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3、以焦点弦PQ 为直径的圆必与对应准线相离.4、以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5、若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6、若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7、椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8、 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9、设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10、过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11、AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12、若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+ 13、若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+.双曲线1、点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2、PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3、以焦点弦PQ 为直径的圆必与对应准线相交.4、以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切P 在右支;外切P 在左支)5、若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6、若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7、 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8、 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--1)设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.2)过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.3) AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
椭圆与双曲线的必背的经典结论
椭圆与双曲线的必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.5. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.6. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.7. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.8. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.9. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
10. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 11. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)4. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.6. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.7. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.8. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
椭圆与双曲线的必背的经典结论
椭圆与双曲线的必背的经典结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF . 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF .11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
椭圆和双曲线的必背的经典结论
椭圆
1.点P处的切线PT平分△PF1F2在点P处的外角.
2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3.以焦点弦PQ为直径的圆必与对应准线相离.
4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
5.若 在椭圆 上,则过 的椭圆的切线方程是 .
6.若 在椭圆 外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是 .
7.椭圆 (a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点 ,则椭圆的焦点角形的面积为 .
8.椭圆 (a>b>0)的焦半径公式:
, ( , ).
9.设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.
14.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.
15.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.
16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).
(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)
11.设P点是椭圆 (a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记 ,则(1) .(2) .
12.设A、B是椭圆 (a>b>0)的长轴两端点,P是椭圆上的一点, , , ,c、e分别是椭圆的半焦距离心率,则有(1) .(2) .(3) .
13.已知椭圆 (a>b>0)的右准线 与x轴相交于点 ,过椭圆右焦点 的直线与椭圆相交于A、B两点,点 在右准线 上,且 轴,则直线AC经过线段EF的中点.
椭圆双曲线抛物线必背的经典结论(供参考)
新梦想教育辅导讲义2124p x =;212y p =-;'90AC B ∠=; ''90A FB ∠=;12AB x x p =++=112AF BF P+=;9. B 、O 、'A 三点共线; 10.22sin AOB P S α=;11.23()2AOB S PAB =(定值);12. 1cos P AF α=-;1cos PBF α=+;13. 'BC 垂直平分'B F ; 14. 'AC 垂直平分'A F ; 15. 'C F AB ⊥; 16. 2AB P ≥; 17. 11'('')22CC AB AA BB ==+; 18.AB 3P K =y ;19. 2p 22y tan =x -α;20. 2A'B'4AF BF =⋅;21.1C'F A'B'2=.22. 切线方程 ()x x m y y +=00性质深究一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处? 结论1:交点在准线上 先猜后证:当弦x AB ⊥轴时,则点P 的坐标为⎪⎭⎫⎝⎛-0,2p 在准线上.结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立?结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB 是抛物线px y 22=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有结论6PA ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ .结论9 PA 平分∠A 1AB ,PB 平分∠B 1BA .教学主管意见:家长签字:___________新梦想教务处。
椭圆与双曲线的必背的经典结论
椭圆与双曲线的必背的经典结论好资料椭圆与双曲线的必背的经典结论椭圆1. 点P处的切线PT平分△PF1F2在点P处的外角.2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.x0xy0yx2y22 1. 15. 若P在椭圆上,则过的椭圆的切线方程是(x,y)P0000a2ba2b2x2y26. 若P0(x0,y0)在椭圆2 2 1外,则过Po作椭圆的两条切线切点为P1、P2,则切点abxxyy弦P1P2的直线方程是02 02 1.abx2y27. 椭圆2 2 1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点abF1PF2 ,则椭圆的焦点角形的面积为S F1PF2 b2tan.2x2y28. 椭圆2 2 1(a>b>0)的焦半径公式:ab|MF1| a ex0,|MF2| a ex0(F1( c,0) , F2(c,0)M(x0,y0)).9. 设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.x2y211. AB是椭圆2 2 1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则abb2x0b2kOM kAB 2,即KAB 2。
aay0x2y22 1内,则被Po所平分的中点弦的方程是12. 若P0(x0,y0)在椭圆2abx0xy0yx02y022 2 2. a2babx2y21内,则过Po的弦中点的轨迹方程是13. 若P0(x0,y0)在椭圆a2b2x2y2x0xy0y 2 2 2. 2abab好资料双曲线1. 点P处的切线PT平分△PF1F2在点P处的内角.2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P在左支)x2y25. 若P0(x0,y0)在双曲线2 2 1(a>0,b>0)上,则过P0的双曲线的切线方程abxxyy是02 02 1. abx2y26. 若P0(x0,y0)在双曲线2 2 1(a>0,b>0)外,则过Po作双曲线的两条切abxxyy线切点为P1、P2,则切点弦P1P2的直线方程是02 02 1.abx2y27. 双曲线2 2 1(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意ab2S bcot一点F,则双曲线的焦点角形的面积为. PF F1PF2122x2y28. 双曲线2 2 1(a>0,b>o)的焦半径公式:(F1( c,0) , F2(c,0)ab当M(x0,y0)在右支上时,|MF1| ex0 a,|MF2| ex0 a.当M(x0,y0)在左支上时,|MF1| ex0 a,|MF2| ex0 a9. 设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF. 10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.x2y211. AB是双曲线2 2 1(a>0,b>0)的不平行于对称轴的弦,M(x0,y0)为ABabb2x0b2x0的中点,则KOM KAB 2,即KAB 2。
椭圆双曲线抛物线必背的经典结论
11.AB是双曲线 (a>0,b>0)的不平行于对称轴的弦.M 为AB的中点.则 .即 。
12.若 在双曲线 (a>0,b>0)内.则被Po所平分的中点弦的方程是 .
(2) .(3) .
13.已知双曲线 (a>0,b>0)的右准线 与x轴相交于点 .过双曲线右焦点 的直线与双曲线相交于A、B两点,点 在右准线 上.且 轴.则直线AC经过线段EF的中点.
14.过双曲线焦半径的端点作双曲线的切线.与以长轴为直径的圆相交.则相应交点与相应焦点的连线必与切线垂直.
15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点.则该点与焦点的连线必与焦半径互相垂直.
6.P为椭圆 (a>b>0)上任一点,F1,F2为二焦点.A为椭圆内一定点.则 ,当且仅当 三点共线时.等号成立.
7.椭圆 与直线 有公共点的充要条件是 .
8.已知椭圆 (a>b>0).O为坐标原点.P、Q为椭圆上两动点.且 .(1) ;(2)|OP|2+|OQ|2的最大值为 ;(3) 的最小值是 .
2.过双曲线 (a>0,b>o)上任一点 任意作两条倾斜角互补的直线交双曲线于B,C两点.则直线BC有定向且 (常数).
3.若P为双曲线 (a>0,b>0)右(或左)支上除顶点外的任一点,F1, F2是焦点, , .则 (或 ).
4.设双曲线 (a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点.在△PF1F2中.记 , , .则有 .
13.若 在双曲线 (a>0,b>0)内.则过Po的弦中点的轨迹方程是 .
椭圆与双曲线的对偶性质--(会推导的经典结论)
椭圆 双曲线抛物线必背的经典结论之欧阳地创编
新梦想教育辅导讲义时间:2021.03.04 创作:欧阳地学员编号(卡号):年级:第课时学员姓名:辅导科目:教师:课题授课时间:月日备课时间:月日教学目标重点、难点考点及考试要求教学内容椭圆双曲线抛物线必背的经典结论椭圆1.点P处的切线PT平分△PF1F2在点P处的外角.2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ为直径的圆必与对应准线相离.4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.5.若在椭圆上,则过的椭圆的切线方程是.6.若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7.椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.8.椭圆(a>b>0)的焦半径公式:,( , ).9.设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.10.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11.AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。
12.若在椭圆内,则被Po所平分的中点弦的方程是.13.若在椭圆内,则过Po的弦中点的轨迹方程是.双曲线1.点P处的切线PT平分△PF1F2在点P处的内角.2.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ为直径的圆必与对应准线相交.4.以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)5.若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是.6.若在双曲线(a>0,b>0)外,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.7.双曲线(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为.8.双曲线(a>0,b>o)的焦半径公式:( ,当在右支上时,,.当在左支上时,,9.设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.10.过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.11.AB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即。
椭圆-双曲线抛物线必背的经典结论
椭圆-双曲线抛物线必背的经典结论新梦想教育辅导讲义1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.■新 MM ,5新梦想教育教学内容椭圆双曲线抛物线必背的经典结论点P 处的切线PT 平分△ PFF 2在点P 处的外角.PT 平分APFF z 在点P 处的外角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点以焦点弦PQ 为直径的圆必与对应准线相离以焦点半径PF i 为直径的圆必与以长轴为直径的圆内切2X 右F 0(X O ,V O )在椭圆— a 2 X 右F 0(X O , y 。
)在椭圆— a 2 X 椭圆c 2 aS F 1PF 2X 2椭圆2a |MF 1I2V b 22y b 21上,则过P 。
的椭圆的切线方程是 笑 -y 2y1. a b 1外,则过Po 作椭圆的两条切线切点为 p 、则切点弦P 1P 2的直线方程是驾 -y 0y 1. a 2 b 2 2。
1 (a >b>0)的左右焦点分别为 日,Fz,点P 为椭圆上任意一点 b 2 F 1PF 2 ,则椭圆的焦点角形的面积为 b 2 tan —. 2 b 2 1 (a>b>0)的焦半径公式:ex 0, | MF 2 | a ex 0(F i ( c,0) , F 2(c,0) M(X 0, y(0). 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点F 的椭圆准线于 MN 两点,贝U MF± NF.过椭圆一个焦点 NF. AB 是椭圆 即K AB 双曲线 1. 2. 3. 4. F 的直线与椭圆交于两点 P 、Q, A 1、A 2为椭圆长轴上的顶点, AP 和AQ 交于点Ml, AP 和A 1Q 交于点N,则MFX2X 2 a : b 2b 2X o2 a V 。
F 0(X O , y o )在椭圆 F 0(X O , y o )在椭圆 1的不平行于对称轴的弦, M (x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新梦想教育辅导讲义学员编号(卡号): 年 级: 第 课时学员姓名: 辅导科目: 教师: 课 题授课时间: 月 日备课时间: 月 日教学目标重点、难点考点及考试要求教学内容椭圆 双曲线抛物线必背的经典结论椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=. 6.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 7.椭圆22221x ya b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b -=.7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PFS b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB=。
12.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-.13.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b-=-. 椭圆与双曲线的对偶性质--(会推导的经典结论) 椭 圆1.椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b -=.2.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+.4.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤21-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b +=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7.椭圆220022()()1x x y y a b --+=与直线Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8.已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.9.过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.10.已知椭圆22221x y a b +=( a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan2PF FS b γ∆=.12.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3)22222cot PABa b S b a γ∆=-.13.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C在右准线l 上,且BCx ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项. 椭圆与双曲线的对偶性质--(会推导的经典结论) 双曲线1.双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3.若P为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+).4.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e ≤21+时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a-. 9.过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10.已知双曲线22221x y a b -=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则220a b x a +≥或220a b x a+≤-.11.设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-. (2) 2tan tan 1eαβ=-.(3) 22222cot PABa b S b a γ∆=+.13.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BCx ⊥轴,则直线AC 经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.抛物线结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。