2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测:(二十五) 创新应用问题 含解析
通用版2018学高考数学二轮复习练酷专题课时跟踪检测十八数列理201802062107
课时跟踪检测(十八) 数 列1.(2017· 长沙模拟)已知数列{a n }满足a 1=32,a n +1=3a n -1(n ∈N *). (1)若数列{b n }满足b n =a n -12,求证:{b n }是等比数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由已知得a n +1-12=3⎝ ⎛⎭⎪⎫a n -12(n ∈N *),从而有b n +1=3b n .又b 1=a 1-12=1, 所以{b n }是以1为首项,3为公比的等比数列.(2)由(1)得b n =3n -1,从而a n =3n -1+12,所以S n =1+12+3+12+…+3n -1+12=1+3+…+3n -1+n 2=1-3n 1-3+n 2=3n +n -12.2.(2017·云南模拟)已知数列{a n }中,a 2n +2a n -n 2+2n =0.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由a 2n +2a n -n 2+2n =0,得(a n -n +2)(a n +n )=0.∴a n =n -2或a n =-n .∴{a n }的通项公式为a n =n -2或a n =-n .(2)①当a n =n -2时,易知{a n }为等差数列,且a 1=-1, ∴S n =n a 1+a n 2=n -1+n -2=n n -2.②当a n =-n 时,易知{a n }也为等差数列,且a 1=-1, ∴S n =n a 1+a n 2=n-1-n 2=-nn +2.故S n =⎩⎪⎨⎪⎧ n n -2a n =n -,-n n +2a n =-n3.(2017·南京模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解:(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1),可得b n =(-1)n -1·(2n -1). ∴T 2n =1-3+5-7+…+(4n -3)-(4n -1) =(1-3)+(5-7)+…+(4n -3-4n +1) =(-2)×n =-2n .4.已知等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n .数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n. 解:(1)设等差数列{a n }的公差为d ,d >0,等比数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧ q +d =6,q +3+3d =8, 解得⎩⎪⎨⎪⎧ d =1,q =2或⎩⎪⎨⎪⎧ d =-43,q =9(舍去). 故a n =n ,b n =2n -1. (2)由(1)知S n =1+2+…+n =12n (n +1), 即1S n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 故1S 1+1S 2+…+1S n =2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 5.(2018届高三·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是首项为1,公差为2的等差数列, a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2. 等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12. T n ≤S n 即3n -12≤n 2,又n ∈N *, 所以n =1或2.6.(2017·石家庄模拟)已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n 2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解:(1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d ,则有2a m +3d =14, ∴d =2.由S m =0,得ma 1+m m -2×2=0, 即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2. 设数列{(a n +6)·b n }的前n 项和为T n , 则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,② ①-②,得-T n =2-1+20+…+2n -2-n ×2n -1 =2-1-2n 1-2-n ×2n -1=2n -1-12-n ×2n -1, ∴T n =(n -1)×2n -1+12(n ∈N *).。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(七)三角函数的图象与性质含解析
课时跟踪检测(七)三角函数的图象与性质1.(2018届高三·湖北七校联考)要得到函数y=sin错误!的图象,只需将函数y=sin 2x的图象( )A.向左平移π6个单位长度B.向右平移错误!个单位长度C.向左平移错误!个单位长度D.向右平移错误!个单位长度解析:选A ∵y=sin错误!=sin错误!,∴只需将函数y=sin 2x的图象向左平移错误!个单位长度即可得到函数y=sin错误!的图象.2.(2017·山东高考)函数y=错误!sin 2x+cos 2x的最小正周期为()A。
错误! B.错误!C.π D.2π解析:选C ∵y=错误!sin 2x+cos 2x=2sin错误!,∴最小正周期T=错误!=π。
3.(2018届高三·石家庄摸底)已知函数f(x)=sin错误!+cos 2x,则f(x)的一个单调递减区间是()A.错误!B.错误!C.错误!D.错误!解析:选A f(x)=sin错误!+cos 2x=错误!sin 2x+错误!cos 2x+cos 2x =错误!sin 2x+错误!cos 2x=错误!sin2x+错误!.由2kπ+错误!≤2x+错误!≤2kπ+错误!(k∈Z),得kπ+错误!≤x≤kπ+错误!(k∈Z),所以f(x)的一个单调递减区间为错误!.4.(2017·长沙模拟)将函数y=sin错误!的图象向左平移错误!个单位长度,所得图象对应的函数解析式为( )A.y=sin错误!B.y=-cos 2xC.y=cos 2x D.y=sin错误!解析:选A 依题意得,y=sin错误!=sin错误!=sin错误!.5.(2017·兰州模拟)函数f(x)=sin(ωx+φ) 错误!的部分图象如图所示,若x1,x2∈错误!,且f(x1)=f (x2),则f(x1+x2)=()A.错误!B.错误!C。
32D.1解析:选C 由图知,T2=π2,即T=π,则ω=2,∵点错误!在函数f(x)的图象上,∴sin错误!=0,即错误!+φ=kπ,k∈Z.又|φ|<π2,∴φ=错误!,∴f(x)=sin错误!.∵x1,x2∈-错误!,错误!,且f(x1)=f(x2),∴错误!=错误!,∴x1+x2=错误!,∴f(x1+x2)=sin错误!=错误!.6.已知x=错误!是函数f(x)=错误!sin(2x+φ)+cos(2x+φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在错误!上的最小值为( ) A.-2 B.-1C.- 2 D.-错误!解析:选B ∵x=错误!是f(x)=2sin错误!图象的一条对称轴,∴错误!+φ=kπ+错误!(k∈Z),即φ=错误!+kπ(k∈Z).∵0<φ<π,∴φ=错误!,∴g(x)=2sin错误!=2sin错误!.又∵-错误!≤x≤错误!,∴错误!≤2x+错误!≤错误!,∴-1≤2sin错误!≤2.∴g(x)在错误!上的最小值为-1。
2018年高考数学二轮复习专题(通用版)课时跟踪检测五理科数学(含答案)
课时跟踪检测(五)一、选择题1.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为( ) A.π2 B .π C.3π2D .2π 解析:选B 由已知可画出草图,如图所示,则T 4=π2+2π32-π2+π62,解得T =π. 2.已知外接圆半径为R 的△ABC 的周长为(2+3)R ,则sin A +sin B +sin C =( )A .1+32B .1+34C.12+32D.12+ 3 解析:选A 由正弦定理知a +b +c =2R (sin A +sin B +sin C )=(2+3)R ,所以sin A +sin B +sin C =1+32,故选A. 3.若函数f (x )=2m sin ⎝ ⎛⎭⎪⎫2x +π3-2在x ∈⎣⎢⎡⎦⎥⎤0,5π12内存在零点,则实数m 的取值范围是( )A .(-∞,-1]∪[1,+∞)B.⎣⎢⎡⎦⎥⎤-233,2 C .(-∞,-2]∪[1,+∞)D .[-2,1]解析:选C 设x 0为f (x )在⎣⎢⎡⎦⎥⎤0,5π12内的一个零点,则2m sin ⎝⎛⎭⎪⎫2x 0+π3-2=0,所以m =1sin ⎝ ⎛⎭⎪⎫2x 0+π3.因为0≤x 0≤5π12,所以π3≤2x 0+π3≤7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x 0+π3≤1,所以m ≤-2或m ≥1,故选C.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =5,a =3,cos(B -A )=79,则△ABC 的面积为( )A.152B.523C .5 2D .2 2 解析:选C 在边AC 上取点D 使A =∠ABD ,则cos ∠DBC =cos(∠ABC -A )=79,设AD =DB =x ,在△BCD 中,由余弦定理得,(5-x )2=9+x 2-2³3x ³79,解得x =3.故BD =DC ,在等腰三角形BCD 中,DC 边上的高为22,所以S △ABC =12³5³22=52,故选C. 5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A 由射影定理可知a cos C +c cos A =b ,则(a cos C +c cos A )sin B =b sin B ,又a sin B cos C +c sin B cos A =12b ,则有b sin B =12b ,sin B =12.又a >b ,所以A >B ,则B ∈⎝⎛⎭⎪⎫0,π2,故B =π6. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,λ∈R ,若BQ ―→²CP ―→=-32,则λ=( ) A.12B.1±22C.1±102D.-3±222解析:选A 以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),C (1,3),∴AB ―→=(2,0),AC ―→=(1,3),又AP ―→=λAB ―→,AQ ―→=(1-λ)AC ―→,∴P (2λ,0),Q (1-λ,3(1-λ)),∴BQ ―→²CP ―→=(-1-λ,3(1-λ))²(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12. 二、填空题7.对任意两个非零的平面向量α和β,定义α∘β=α²ββ²β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =________.解析:a ∘b =a²b b²b =|a ||b |cos θ|b |2=|a |cos θ|b |,① b ∘a =b²a a²a =|b ||a |cos θ|a |2=|b |cos θ|a |.② ∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴22<cos θ<1. 又|a |≥|b |>0,∴0<|b ||a |≤1.∴0<|b ||a |cos θ<1,即0<b ∘a <1. ∵b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,∴b ∘a =12. ①³②,得(a ∘b )(b ∘a )=cos 2θ∈⎝ ⎛⎭⎪⎫12,1, ∴12<12(a ∘b )<1,即1<a ∘b <2,∴a ∘b =32. 答案:328.在边长为2的菱形ABCD 中,∠BAD =60°,P ,Q 分别是BC ,BD的中点,则向量AP ―→与AQ ―→的夹角的余弦值为________.解析:以A 为原点,AB 所在直线为x 轴建立如图所示的直角坐标系,则A (0,0),B (2,0),C (3,3),D (1,3),所以P ⎝ ⎛⎭⎪⎫52,32,Q ⎝ ⎛⎭⎪⎫32,32,则AP ―→=⎝ ⎛⎭⎪⎫52,32,AQ ―→=⎝ ⎛⎭⎪⎫32,32, 所以cos ∠PAQ =AP ―→²AQ ―→|AP ―→||AQ ―→|=154+347³3=32114. 答案:321149.(2017²石家庄质检)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组。
2018年高考数学二轮复习课时跟踪检测(通用版)(十五)理 Word版 含答案
课时跟踪检测(十五)一、选择题1.(2017·福州模拟)在检测一批相同规格质量共500 kg 的航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批航空用耐热垫片中非优质品的质量约为( )A .2.8 kgB .8.9 kgC .10 kgD .28 kg解析:选B 由题意,可知抽到非优质品的概率为5280,所以这批航空用耐热垫片中非优质品的质量约为500×5280=12514≈8.9 kg.2.如图所示的茎叶图记录了甲、乙两组各组四名同学的植树棵数,分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为20的概率为( )A.12B.14C.23D.13解析:选B 记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),共16种,设选出的两名同学的植树总棵数为20为事件C ,则C 包含的结果有:(A 3,B 1),(A 4,B 1),(A 3,B 3),(A 4,B 3),共4种,故所求的概率P (C )=14.3.(2017·郑州模拟)设a =⎠⎛0πsin xdx ,则⎝⎛⎭⎪⎫a x -1x 6的展开式中常数项为( )A .-160B .160C .20D .-20解析:选 A 依题意得,a =-cos xπ=-(cos π-cos 0)=2,则⎝⎛⎭⎪⎫a x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6的展开式的通项T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =C r 6·26-r ·(-1)r ·x 3-r .令3-r=0,得r =3.因此⎝⎛⎭⎪⎫a x -1x 6的展开式中的常数项为C 36×23×(-1)3=-160,故选A.4.点(a ,b )是区域⎩⎪⎨⎪⎧a +b -4≤0,a >0,b >0内的任意一点,则使函数f (x )=ax 2-2bx +3在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数的概率为( )A.13B.23C.12D.14解析:选A 作出不等式组表示的平面区域如图所示,可行域为△OAB 及其内部(不包括边OA ,OB ),其中A (0,4),B (4,0).若函数f (x )=ax 2-2bx +3在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数,则⎩⎪⎨⎪⎧a >0,--2b 2a ≤12,即⎩⎪⎨⎪⎧a >0,a -2b ≥0,则满足条件的(a ,b )所在区域为△OBC 及其内部(不包括边OB ).由⎩⎪⎨⎪⎧a +b -4=0,a -2b =0,得⎩⎪⎨⎪⎧a =83,b =43,∴C ⎝ ⎛⎭⎪⎫83,43,∴S △OBC =12×4×43=83,又S △OAB =12×4×4=8,∴所求的概率P =S △OBC S △OAB =13. 5.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的无量纲指数.空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士记录去年某地某月10天的AQI 的茎叶图如图.利用该样本估计该地本月空气质量优良(AQI≤100)的天数(按这个月总共30天计算)为( )A .15B .18C .20D .24解析:选B 从茎叶图中可以发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为610=35,则估计该地本月空气质量优良的频率为35,从而估计该地本月空气质量优良的天数为30×35=18.6.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为( )A .16B .18C .32D .72解析:选D 因为对空位有特殊要求,先确定空位,假设7个车位分别为1234567,先研究恰有3个连续空位的情况,若3个连续空位是123或567,另一个空位有3种选法,车的停放方法有A 33种,故停放方法有2×3×A 33=36(种);若3个连续空位是234或345或456,另一个空位有2种选法,车的停放方法依然有A 33种,因此此种情况下停放方法有3×2×A 33=36(种),从而不同的停放方法共有72种.二、填空题7.某小区有两个相互独立的安全防范系统甲和乙,系统甲和系统乙在任意时刻发生故障的概率分别为18和p .若在任意时刻恰有一个系统不发生故障的概率为0.25,则p =________.解析:记“系统甲发生故障”、“系统乙发生故障”分别为事件A ,B ,“任意时刻恰有一个系统不发生故障”为事件C ,则P (C )=P (A -)P (B )+P (A )P (B -)=⎝ ⎛⎭⎪⎫1-18·p +18·(1-p )=0.25,解得p =16.答案:168.将一颗骰子连续抛掷三次,它落地时向上的点数依次构成等比数列的概率与构成等差数列的概率之比为________.解析:将一颗骰子连续抛掷三次共有63=216个基本事件.它落地时向上的点数依次构成等差数列的有以下几种情况:公差为0的有(1,1,1),(2,2,2),…,(6,6,6),共6个基本事件,公差为1的有(1,2,3),(2,3,4),(3,4,5),(4,5,6),共4个基本事件,公差为-1的有(3,2,1),(4,3,2),(5,4,3),(6,5,4),共4个基本事件,公差为2的有(1,3,5),(2,4,6),共2个基本事件,公差为-2有(5,3,1),(6,4,2),共2个基本事件,所以依次构成等差数列的共有18个基本事件;它落地时向上的点数依次构成等比数列的有以下几种情况:公比为1的有(1,1,1),(2,2,2),…,(6,6,6),共6个基本事件,公比为2的有(1,2,4),共1个基本事件,公比为12的有(4,2,1),共1个基本事件,所以依次构成等比数列的共有8个基本事件,故落地时向上的点数依次构成等比数列的概率与构成等差数列的概率之比为821618216=49. 答案:499.如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:∵y =e x与y =ln x 互为反函数,故直线y =x 两边的阴影部分面积相等,只需计算其中一部分即可.如图,S 1=⎠⎛01e xd x =e x| 10=e 1-e 0=e -1.∴S 总阴影=2S 阴影=2(e ×1-S 1)=2[e -(e -1)]=2,故所求概率为P =2e.答案:2e2三、解答题10.(2017·山东高考)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX.解:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P(M)=C 48C 510=518. (2)由题意知X 可取的值为:0,1,2,3,4,则P(X =0)=C 56C 510=142,P(X =1)=C 46C 14C 510=521,P(X =2)=C 36C 24C 510=1021,P(X =3)=C 26C 34C 510=521,P(X =4)=C 16C 44C 510=142.因此X 的分布列为故X 的数学期望是EX =0+1×521+2×1021+3×521+4×142=2.11.人耳的听力情况可以用电子测听器检测,正常人的听力在0~25 dB (分贝)之间,并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图如图:(1)现从听力测试值为(0,10]的同学中任意抽取4人,记听力非常优秀的同学人数为X ,求X 的分布列与数学期望;(2)在(1)中抽取的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发声情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号a 1,a 2,a 3,a 4(其中a 1,a 2,a 3,a 4为1,2,3,4的一个排列).若Y 为两次排序偏离程度的一种描述,Y =|1-a 1|+|2-a 2|+|3-a 3|+|4-a 4|,求Y≤2的概率.解:(1)由频率分布直方图知,50名同学中听力测试值为(0,10]的同学人数为50×(0.016+0.024)×5=10,其中听力非常优秀的同学人数为4,听力优秀的人数为6.则X 的可能取值为0,1,2,3,4.P(X =0)=C 46C 410=114,P(X =1)=C 14·C 36C 410=821,P(X =2)=C 24·C 26C 410=37,P(X =3)=C 34·C 16C 410=435,P(X =4)=C 44C 410=1210.所以X 的分布列为E(X)=0×114+1×21+2×7+3×35+4×210=1.6.(2)序号a 1,a 2,a 3,a 4的排列总数为A 44=24,当Y =0时,a 1=1,a 2=2,a 3=3,a 4=4,只有1种情况.当Y =|1-a 1|+|2-a 2|+|3-a 3|+|4-a 4|=2时,a 1,a 2,a 3,a 4的取值情况有3种,分别为a 1=1,a 2=2,a 3=4,a 4=3;a 1=1,a 2=3,a 3=2,a 4=4; a 1=2,a 2=1,a 3=3,a 4=4. 故P(Y≤2)=424=16.。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(十五) 排列、组合与二项式定理
课时跟踪检测(十五) 排列、组合与二项式定理1.(2017·宝鸡模拟)我市正在建设最具幸福感城市,原计划沿渭河修建7个河滩主题公园.为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为( )A .12B .8C .6D .4解析:选C 由题意知除两端的2个河滩主题公园之外,从中间5个河滩主题公园中调整2个,保留3个,可以从这3个河滩主题公园的4个空中任选2个来调整,共有C 24=6种方法.2.若⎝⎛⎭⎫9x -13x n (n ∈N *)的展开式中第3项的二项式系数为36,则其展开式中的常数项为( )A .84B .-252C .252D .-84解析:选A 由题意可得C 2n =36,∴n =9.∴⎝⎛⎭⎫9x -13x n =⎝⎛⎭⎫9x -13x 9的展开式的通项为T r +1=C r 9·99-r ·⎝⎛⎭⎫-13r令9-3r 2=0,得r =6. ∴展开式中的常数项为C 69×93×⎝⎛⎭⎫-136=84.3.(2017·昆明一模)旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方法数为( )A .24B .18C .16D .10解析:选D 第一类,甲在最后一个体验,则有A 33种方法;第二类,甲不在最后一个体验,则有A 12A 22种方法,所以小李旅游的方法共有A 33+A 12A 22=10种.4.(2017·西安二检)将除颜色外完全相同的一个白球、一个黄球、两个红球分给三个小朋友,且每个小朋友至少分得一个球的分法种数为( )A .15B .21C .18D .24解析:选B 分两类,第一类:两个红球分给其中一个人,有A 33种分法;第二类:白球和黄球分给一个人,有A 13种分法;第三类:白球和一个红球分给一个人,有A 33种分法;第四类:黄球和一个红球分给一个人,有A 33种分法.总共有A 33+A 13+A 33+A 33=21种分法.5.将⎝ ⎛⎭⎪⎫x +124x n 的展开式按x 的降幂排列,若前三项的系数成等差数列,则n 为( ) A .6B .7C .8D .9解析:选C 二项式的展开式为T r +1=C r n (x )n -r⎝ ⎛⎭⎪⎫124x r =C r n ⎝⎛⎭⎫12r ,由前三项系数成等差数列得C 0n +C 2n ⎝⎛⎭⎫122=2C 1n ⎝⎛⎭⎫121,即n 2-9n +8=0,解得n =8或n =1(舍去),故n =8.6.(2017·西安二模)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种解析:选A 1号盒子可以放1个或2个球,2号盒子可以放2个或3个球,所以不同的放球方法有C14C33+C24C22=10(种).7.(2017·广州模拟)将5位同学分别保送到北京大学、上海交通大学、中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A.150种B.180种C.240种D.540种解析:选A先将5人分成三组,3,1,1或2,2,1,共有C35+C15×C24·C222!=25种方法,再将三组学生分到3所学校有A33=6种方法,共有25×6=150种不同的保送方法.8.(2017·成都模拟)(x+1)5(x-2)的展开式中x2的系数为()A.25 B.5C.-15 D.-20解析:选C因为(x+1)5的展开式的通项公式为T r+1=C r5x5-r,令5-r=2,得r=3;令5-r=1,得r=4,所以(x+1)5(x-2)的展开式中x2的系数为-2C35+C45=-15.9.(2018届高三·桂林中学摸底)从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x2 a2+y2b2=1中的a和b,则能组成落在矩形区域B={(x,y)||x|<11,且|y|<9}内的椭圆个数为() A.43 B.72C.863 D.90解析:选B在1,2,3,…,8中任取两个数作为a和b,共有A28=56个椭圆;在9,10中取一个作为a,在1,2,3,…,8中取一个作为b,共有A12A18=16个椭圆,由分类加法计数原理,知满足条件的椭圆的个数为56+16=72.10.(2018届高三·威海二中调研)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B,C实施时必须相邻,则实验顺序的编排方法共有()A.24种B.96种C.120种D.144种解析:选B先安排程序A,从第一步或最后一步选一个,有A12种,再把B,C看成一个整体和其余三个程序编排,有A44种,最后B,C排序,有A22种,故共有A12A44A22=96种.11.在(2x-3y)10的展开式中,奇数项的二项式系数和与各项系数的和的比值为() A.210B.29C.1210 D.129解析:选B令x=1,y=1,则各项系数的和为(2-3)10=1,因为C010+C210+C410+…+C1010=C110+C310+C510+…+C910,C010+C110+C210+C310+C410+C510+…+C910+C1010=210,故奇数项的二项式系数和为C010+C210+C410+…+C1010=29,故奇数项的二项式系数和与各项系数的和的比值为29.12.(2017·衡水二模)已知数列{a n}共有5项,其中a1=0,a5=2,且|a i+1-a i|=1,i=1,2,3,4,则满足条件的数列{a n}的个数为()A.2 B.3C.4 D.6解析:选C法一:因为|a i+1-a i|=1,所以a i+1-a i=1或a i+1-a i=-1,即数列{a n}从前往后,相邻两项之间增加1或减少1,因为a1=0,a5=2,所以从a1到a5有3次增加1,有1次减少1,故数列{a n}的个数为C34=4.法二:设b i=a i+1-a i,i=1,2,3,4,∵|a i+1-a i|=1,∴|b i|=1,即b i=1或-1.a5=a5-a4+a4-a3+a3-a2+a2-a1+a1=b4+b3+b2+b1=2,故b i(i=1,2,3,4)中有3个1,1个-1,故满足条件的数例{a n}的个数为C14=4.13.(2018届高三·湖南五校联考)在(2x+1)(x-1)5的展开式中含x3项的系数是________.(用数字作答)解析:由题易得二项式的展开式中含x 3项的系数为C 25(-1)2+2C 35(-1)3=-10.答案:-1014.(2018届高三·西安八校联考)已知关于x 的二项式⎝ ⎛⎭⎪⎫x +a 3x n 的展开式的二项式系数之和为32,常数项为80,则实数a 的值为________.解析:依题意得2n=32,n =5,二项式⎝ ⎛⎭⎪⎫x +a 3x n =⎝ ⎛⎭⎪⎫x +a 3x 5的展开式的通项T r +1=C r 5·(x )5-r ·⎝ ⎛⎭⎪⎫a 3x r =C r 5·a r 令15-5r 6=0,得r =3.由C 35·a 3=10a 3=80,解得a =2. 答案:215.(2018届高三·广西五校联考)已知n =∫20x 3d x ,则⎝ ⎛⎭⎪⎫x -23x n 的展开式中常数项为________.解析:n =∫20x 3d x =14x 4| 20=4,二项式的展开式的通项为T r +1=C r 4x 4-r ⎝⎛⎭⎪⎫-23x r =(-2)r C r 4x 4-43r ,令4-43r =0,则r =3,展开式中常数项为(-2)3C 34=-8×4=-32. 答案:-3216.(2017·中山模拟)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数是________.解析:当十位数字为0,千位数字为7时,四位数的个数是A 28;当十位数字与千位数字为1,8或8,1时,四位数的个数是A 28A 22;当十位数字与千位数字为2,9或9,2时,四位数的个数是A 28A 22.故所求的四位数的个数是A 28+A 28A 22+A 28A 22=280.答案:280。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(十三) 算法、推理与证明
课时跟踪检测(十三)算法、推理与证明1.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n边形的内角和是(n-2)·180°(n∈N*,且n≥3).A.①②B.①③④C.①②④D.②④解析:选C①是类比推理;②④是归纳推理,∴①②④都是合情推理.2.(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()A.0,0B.1,1C.0,1D.1,0解析:选D当输入x=7时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x成立,故a=1,输出a的值为1.当输入x=9时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x不成立且x能被b整除,故a=0,输出a的值为0.3.(2017·惠州模拟)执行如图所示的程序框图,则输出的结果为()A.7B.9C .10D .11解析:选B 法一:i =1,S =lg 13=-lg 3>-1;i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;i =9,S =lg19+lg 911=lg 111=-lg 11<-1,故输出的i =9.法二:因为S =lg 13+lg 35+…+lg i i +2=lg 1-lg 3+lg 3-lg 5+…+lg i -lg(i +2)=-lg(i+2),当i =9时,S =-lg(9+2)<-lg 10=-1,所以输出的i =9.4.通过圆与球的类比,由结论“半径为r 的圆的内接四边形中,正方形的面积最大,最大值为2r 2”猜想关于球的相应结论为“半径为R 的球的内接六面体中,______”.( )A .长方体的体积最大,最大值为2R 3B .正方体的体积最大,最大值为3R 3C .长方体的体积最大,最大值为43R 39D .正方体的体积最大,最大值为83R 39解析:选D 类比可知半径为R 的球的内接六面体中,正方体的体积最大,设其棱长为a ,正方体体对角线的长度等于球的直径,即3a =2R ,得a =2R 3,体积V =a 3=83R 39.5.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,……,若m 3的“分裂”中有一个数是2 017,则m =( )A .44B .45C .46D .47解析:选B 由题意不难找出规律,23=3+5,33=7+9+11,43=13+15+17+19,……,m 增加1,累加的奇数个数便多1,易得2 017是第1 009个奇数,由⎩⎪⎨⎪⎧1+2+3+…+(m -1)<1 009,1+2+3+…+(m -1)+m ≥1 009,得⎩⎪⎨⎪⎧m (m -1)2<1 009,m (m +1)2≥1 009,又m ∈N *,所以m =45.6.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n也为等差数列.类比这一性质,可知若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nn B .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n解析:选D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+n -12d=d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q d n =(c 1·c 2·…·c n )1n =c 1{d n }为等比数列,故选D.7.(2018届高三·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:由表知,只有丁猜对了比赛结果,故选D.8.在平面几何中,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,若四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为R ,则四面体的体积为( )A.13(S 1+S 2+S 3)R B.14(S 1+S 2+S 3+S 4)R 2 C.13(S 1+S 2+S 3+S 4)R 2 D.13(S 1+S 2+S 3+S 4)R 解析:选D 三角形面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径,二维图形中的12类比为三维图形中的13,从而得出结论.所以V A -BCD =13(S 1+S 2+S 3+S 4)R . 9.(2017·成都模拟)对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 017次操作后得到的数是( )A .25B .250C .55D .133解析:选D 由规定:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133,…,故操作得到的数值周期出现,且周期为3.又2 017=3×672+1,相当于操作了1次,故选D.10.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧a (a -b ),a ≥b ,b (a +1),a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4=2(1+1)=4.11.(2018届高三·西安八校联考)如图给出的是计算12+14+16+…+12 014+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:选B 依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018,输出的S =12+14+16+…+12 014+12 016,所以题中的判断框内应填入的是“i ≤2016”.12.(2018届高三·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.13.(2018届高三·安溪三校联考)已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x (a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立.解析:对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立.答案:sin x 1+sin x 22<sin x 1+x 2214.(2017·合肥模拟)观察下列等式: S 1=12n 2+12n ,S 2=13n 3+12n 2+16n ,S 3=14n 4+12n 3+14n 2,S 4=15n 5+12n 4+13n 3-130n ,S 5=An 6+12n 5+512n 4+Bn 2,…可以推测,A -B =________.解析:由S 1,S 2,S 3,S 4,S 5的特征,推测A =16.又S k 的各项系数的和为1,∴A +12+512+B =1,∴B =-112.故推测A -B =16+112=14.答案:1415.(2017·江西师大附中期末考试)对于集合{a 1,a 2,…,a n }和常数a 0,定义: ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为________.解析:由题意,得集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为ω=sin 2⎝⎛⎭⎫π2-a 0+sin 2⎝⎛⎭⎫5π6-a 0+sin 2⎝⎛⎭⎫7π6-a 03.即3ω=cos 2a 0+1-cos ⎝⎛⎭⎫5π3-2a 02+1-cos ⎝⎛⎭⎫7π3-2a 02,所以6ω=2cos 2a 0+1-cos ⎝⎛⎭⎫π3+2a 0+1-cos π3-2a 0,即6ω=2cos 2a 0+2-2cos π3cos 2a 0, 所以6ω=2cos 2a 0+2-(2cos 2a 0-1),于是ω=12.答案:1216.执行如图所示的程序框图,输出的S 的值为________.解析:S =sin1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3+…+sin 2 017×π3=sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3×336+sin 1×π3=32. 答案:32。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(十六)概率含解析
课时跟踪检测(十六)概率1.(2017·衡水模拟)设某批产品合格率为错误!,不合格率为错误!,现对该产品进行测试,设第X次首次取到正品,则P(X=3)等于() A.C错误!错误!2×错误!B.C错误!错误!2×错误!C.错误!2×错误!D.错误!2×错误!解析:选C 根据题意P(X=3)即第3次首次取到正品的概率.若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(X=3)=错误!2×错误!。
2.(2017·沈阳模拟)将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是()A。
错误!B。
错误!C。
错误! D.错误!解析:选B A,B,C,D 4名同学排成一排有A错误!=24种排法.当A,C之间是B时,有2×2=4种排法,当A,C之间是D时,有2种排法,所以所求概率为错误!=错误!.3。
如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线y=错误!经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A。
错误!B。
错误!C。
错误! D.错误!解析:选C 由题意可得,阴影部分的面积S=错误!错误!错误!d x=错误!x错误!错误!错误!=错误!,故质点落在图中阴影区域的概率P=错误!=错误!.4.(2017·广东韶关调研)我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》……《缉古算经》等10部专著,有着丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化"校本课程学习内容,则所选的2部名著中至少有1部是魏晋南北朝时期的名著的概率为()A.错误!B.错误!C。
错误! D.错误!解析:选A 从10部名著中选择2部名著的方法数为C2,10=45,所选的2部都为魏晋南北朝时期的名著的方法数为C错误!=21,只有1部为魏晋南北朝时期的名著的方法数为C错误!×C错误!=21,于是事件“所选的2部名著中至少有1部是魏晋南北朝时期的名著"的概率P=错误!=错误!.5.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x +ξ不存在零点的概率为( )A。
【配套K12】通用版2018年高考数学二轮复习课时跟踪检测二理
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(六) 导数的简单应用
课时跟踪检测(六) 导数的简单应用[A 级——“12+4”保分小题提速练]1.(2018届高三·江西师范大学附中调研)若⎠⎛12(x -a )d x2x d x ,则a 的值为( )A .-1B .1C .2D .4解析:选B ⎠⎛12(x -a )d x =⎝⎛⎭⎫12x 2-ax ⎪⎪⎪21=32-a2x d x =12sin 2x⎪⎪⎪⎪π41=12.由32-a =12,得a =1. 2.(2017·北京模拟)曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3D.π2解析:选B 因为f (x )=x ln x ,所以f ′(x )=ln x +x ·1x =ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π4.3.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x =(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞).4.(2016·沈阳监测)由曲线y =x 2,y =x 围成的封闭图形的面积为( ) A.16 B.13 C.23 D .1解析:选B 由题意可知所求面积(如图阴影部分所示)为∫10(x -x 2)d x =⎝ ⎛⎭⎪⎫23x -13x 3| 10=13. 5.(2018届高三·江西赣中南五校联考)设函数f (x )的导数为f ′(x ),且f (x )=x 2+2xf ′(1),则f ′(2)=( )A .0B .2C .4D .8解析:选A 因为f (x )=x 2+2xf ′(1), 所以f ′(x )=2x +2f ′(1), 令x =1,则f ′(1)=2+2f ′(1), 解得f ′(1)=-2,则f ′(x )=2x -4, 所以f ′(2)=2×2-4=0.6.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值为3,那么此函数在[-2,2]上的最小值为( )A .0B .-5C .-10D .-37解析:选D 由题意知,f ′(x )=6x 2-12x ,由f ′(x )=0得x =0或x =2,当x <0或x >2时,f ′(x )>0,当0<x <2时,f ′(x )<0,∴f (x )在[-2,0]上单调递增,在[0,2]上单调递减,由条件知f (0)=m =3,∴f (2)=-5,f (-2)=-37,∴最小值为-37.7.(2017·广州模拟)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 由题易知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率为f ′(x 0)=3x 20+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 0+x 30+ax 20=0,解得⎩⎪⎨⎪⎧ x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.所以当⎩⎪⎨⎪⎧x 0=1,a =-2时,点P 的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1,a =2时,点P 的坐标为(-1,1). 8.(2017·昆明检测)若函数f (x )=e 2x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[-1,+∞)B .(-1,+∞)C .[-2,+∞)D .(-2,+∞)解析:选C ∵f (x )在(0,+∞)上单调递增,且f ′(x )=2e 2x +a ,∴f ′(x )=2e 2x +a ≥0在(0,+∞)上恒成立,即a ≥-2e 2x 在(0,+∞)上恒成立,又x ∈(0,+∞)时,-2e 2x <-2,∴a ≥-2.9.(2018届高三·重庆调研)若函数f(x)=(x+a)e x在(0,+∞)上不单调,则实数a的取值范围是()A.(-∞,-1) B.(-∞,0)C.(-1,0) D.[-1,+∞)解析:选A f′(x)=e x(x+a+1),由题意,知方程e x(x+a+1)=0在(0,+∞)上至少有一个实数根,即x=-a-1>0,解得a<-1.10.已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是()解析:选D当x<0时,由导函数f′(x)=ax2+bx+c<0,知相应的函数f(x)在该区间内单调递减,排除A、B;当x>0时,由导函数f′(x)=ax2+bx+c的图象可知,导函数在区间(0,x1)内的值是大于0的,则在此区间内函数f(x)单调递增,排除C,故选D.11.(2017·重庆适应性考试)设函数f(x)=e x(x-a e x)(其中e是自然对数的底数)恰有两个极值点x1,x2(x1<x2),则下列说法不正确的是()A.0<a<12B.-1<x1<0C.-12<f(0)<0 D.f(x1)+f(x2)>0解析:选D由题意得f′(x)=e x(1-a e x)+e x(x-a e x)=e x(1+x -2a e x),函数f(x)的两个极值点为x1,x2(x1<x2),即x1,x2(x1<x2)是方程f′(x)=0的两个不相等的实数根,所以1+x-2a e x=0且a≠0,所以x +12a =e x ,设函数y =x +12a(a ≠0),y =e x ,在同一坐标系中画出两个函数的大致图象如图所示,要使得两个函数图象有2个不同的交点,应满足⎩⎨⎧12a>0,12a >1,解得0<a <12,且-1<x 1<0,因为f (0)=e 0(0-a e 0)=-a ,所以-12<f (0)<0,故选D.12.已知函数f (x )=e xx 2-k ⎝⎛⎭⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)解析:选A f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =(x -2)⎝⎛⎭⎫e xx -k x 2(x >0).设g (x )=e x x ,则g ′(x )=(x -1)e xx 2,则g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴g (x )在(0,+∞)上有最小值,为g (1)=e ,结合g (x )=e xx 与y =k 的图象可知,要满足题意,只需k ≤e.13.(2017·云南模拟)已知函数f (x )=ax ln x +b (a ,b ∈R),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:414.(2017·太原二模)若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]15.(2017·新乡一模)设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)16.(2017·金华十校联考)若函数f(x)=ln x+ax的图象上存在与直线2x-y=0平行的切线,则实数a的取值范围为________.解析:函数f(x)=ln x+ax的图象上存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)上有解,又f′(x)=1x+a,即1x+a=2在(0,+∞)上有解,即a=2-1x在(0,+∞)上有解,因为x>0,所以2-1x<2,所以实数a的取值范围是(-∞,2).答案:(-∞,2)[B级——中档小题强化练]1.(2017·开封二模)过点A(2,1)作曲线f(x)=x3-3x的切线最多有()A.3条B.2条C.1条D.0条解析:选A由题意得,f′(x)=3x2-3,设切点为(x0,x30-3x0),那么切线的斜率为k =3x20-3,利用点斜式方程可知切线方程为y-(x30-3x0)=(3x20-3)(x-x0),将点A(2,1)代入可得关于x0的一元三次方程2x30-6x20+7=0.令y=2x30-6x20+7,则y′=6x20-12x0.由y′=0得x0=0或x0=2.当x0=0时,y=7>0;x0=2时,y=-1<0.所以方程2x30-6x20+7=0有3个解.故过点A(2,1)作曲线f(x)=x3-3x的切线最多有3条.2.(2018届高三·东北三校一联)已知定义在R上的奇函数f(x)的图象为一条连续不断的曲线,f(1+x)=f(1-x),f(1)=a,且当0<x<1时,f(x)的导函数f′(x)满足f′(x)<f(x),则f(x)在[2 015,2 016]上的最大值为()A .aB .0C .-aD .2 016解析:选C 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2 015,2016]上的图象与[-1,0]上的图象形状完全相同.令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x <0(x ∈(0,1)),函数g (x )在(0,1)上单调递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由奇函数的性质可得f (x )在(-1,0)上也单调递减,则f (x )在[2 015,2 016]上的最大值为f (2 015)=f (-1)=-f (1)=-a .3.(2017·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-(2x 2+4x )或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16.4.(2017·广西三市联考)已知函数f (x )=e x (x -b )(b ∈R).若存在x ∈⎣⎡⎦⎤12,2,使得f (x )+xf ′(x )>0,则实数b 的取值范围是( )A.⎝⎛⎭⎫-∞,83 B.⎝⎛⎭⎫-∞,56C.⎝⎛⎭⎫-32,56D.⎝⎛⎭⎫83,+∞ 解析:选A 由f (x )+xf ′(x )>0,得[xf (x )]′>0, 设g (x )=xf (x )=e x (x 2-bx ),若存在x ∈⎣⎡⎦⎤12,2,使得f (x )+xf ′(x )>0,则函数g (x )在区间⎣⎡⎦⎤12,2上存在子区间使得g ′(x )>0成立. g ′(x )=e x (x 2-bx )+e x (2x -b )=e x [x 2+(2-b )x -b ], 设h (x )=x 2+(2-b )x -b , 则h (2)>0或h ⎝⎛⎭⎫12>0,即8-3b >0或54-32b >0,得b <83.5.(2017·甘肃一诊)若函数f (x )=x 2-4e x -ax 在R 上存在单调递增区间,则实数a 的取值范围为________.解析:因为f (x )=x 2-4e x -ax , 所以f ′(x )=2x -4e x -a .由题意,f ′(x )=2x -4e x -a >0,即a <2x -4e x 有解. 设g (x )=2x -4e x ,则g ′(x )=2-4e x . 令g ′(x )=0,解得x =-ln 2.当x ∈(-∞,-ln 2)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(-ln 2,+∞)时,g ′(x )<0,函数g (x )单调递减.所以当x =-ln 2时,g (x )取得最大值-2-2ln 2, 所以a <-2-2ln 2. 答案:(-∞,-2-2ln 2)6.(2018届高三·兰州四校联考)已知f (x )=(x +1)3e-x +1,g (x )=(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,则实数a 的取值范围是________.解析:∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,即为f (x )max ≥g (x )min .又f ′(x )=(x +1)2e -x+1(-x +2),由f ′(x )=0得x =-1或2,故当x <2时,f ′(x )≥0,f (x )单调递增;当x >2时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (2)=27e ,又g (x )min =a ,则a ≤27e,故实数a 的取值范围是⎝⎛⎦⎤-∞,27e . 答案:⎝⎛⎦⎤-∞,27e [C 级——压轴小题突破练]1.(2017·宝鸡模拟)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0的取值范围为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫22,2D.()2,3解析:选D 函数y =x 2的导数为y ′=2x ,在点(x 0,x 20)处的切线的斜率为k =2x 0,切线方程为y -x 20=2x 0(x -x 0),设切线与y =ln x 相切的切点为(m ,ln m ),0<m <1,因为y =ln x 的导数为y ′=1x ,所以2x 0=1m ,切线方程为y -ln m =1m (x -m ),令x =0,可得y =ln m -1=-x 20,由0<m <1,可得x 0=12m >12,且x 20>1,解得x 0>1,由m =12x 0,可得x 20-ln(2x 0)-1=0,令f (x )=x 2-ln(2x )-1,x >1,则f ′(x )=2x -1x >0,f (x )在x >1时单调递增,且f (2)=2-ln 22-1<0,f (3)=3-ln 23-1>0,则有x 20-ln(2x 0)-1=0的根x 0∈(2,3).2.(2017·惠州模拟)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e) C.⎝⎛⎭⎫0,1e ∪(1,e) D.⎝⎛⎭⎫1e ,e解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f ⎝⎛⎭⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于-1<ln x <1,所以1e <x <e.。
2018年高考理科数通用版二轮创新专题复习:课时跟踪检测(九)含答案
课时跟踪检测(九)A组—-12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B。
2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为错误!×2=12,故选B。
3.(2017·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条B.1条C.2条D.0条或2条解析:选C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(2017·成都模拟)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m,n可能平行,也可能异面;②若α∩β=l,且m⊥l,n⊥l,则α⊥β;③若α∩β=l,且m⊥l,m⊥n,则α⊥β。
其中真命题的个数是()A.0 B.1 C.2 D.3解析:选B 对于①,直线m,n可能平行,也可能异面,故①是真命题;对于②,直线m,n同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n∥l时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(四) 函数的图象与性质
课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝⎛⎭⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝⎛⎭⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x 22xB .f (x )=cos xx 2 C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2ee --xx解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2ee --xx,所以f (x )=(e -x -e x )ln 2,由于函数g (x )=e -x 与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x -e x )ln 2是减函数,故选D.4.函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln [x (2-x )]=ln [-(x -1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝⎛⎭⎫12=ln 12+ln ⎝⎛⎭⎫2-12=ln 34, f ⎝⎛⎭⎫32=ln 32+ln ⎝⎛⎭⎫2-32=ln 34, 所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32=ln 34,所以排除D.故选C.6.函数f (x )=cos (πx )x 2的图象大致是( )解析:选A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=cos (-πx )(-x )2=cos (πx )x 2=f (x ), ∴f (x )为偶函数,排除C 、D ;当x =1时,f (1)=cos π1=-1<0,排除B ,故选A.7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝⎛⎭⎫72<f (3)<f ⎝⎛⎭⎫52, 即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( )A.⎣⎡⎭⎫-1,12 B.⎝⎛⎭⎫-1,12 C .(-∞,-1]D.⎝⎛⎭⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a>b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A由一元二次方程的解法易得(x-a)(x-b)=0的两根为a,b,根据函数零点与方程的根的关系,可得f(x)=(x-a)(x-b)的零点就是a,b,即函数f(x)的图象与x轴交点的横坐标为a,b.观察f(x)=(x-a)·(x-b)的图象,可得其与x轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a>b,可得-2<b<-1,0<a<1.函数g(x)=a x+b,由0<a<1可知其是减函数,又由-2<b<-1可知其图象与y轴的交点在x轴的下方,分析选项可得A符合这两点,B、C、D均不满足,故选A.10.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在(-1,3)上的解集为()A.(1,3) B.(-1,1)C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)解析:选C作出函数f(x)的图象如图所示.当x∈(-1,0)时,由xf(x)>0得x∈(-1,0);当x∈(0,1)时,由xf(x)>0得x∈∅;当x∈(1,3)时,由xf(x)>0得x∈(1,3).故x∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y=3-|x|3+|x|的定义域为[a,b](a,b∈Z),值域为[0,1],则满足条件的整数对(a,b)共有() A.6个B.7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x>0时是减函数,所以函数的图象如图所示,根据图象可知,函数y=3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -120+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-2=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x ,且当x ∈[-3,-1]时,n ≤f (x )≤m恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x ,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝⎛⎭⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数,∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝⎛⎭⎫x -32=f ⎝⎛⎭⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝⎛⎭⎫x -32=f ⎝⎛⎭⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x ,所以当x∈[0,1]时,x+2∈[2,3],f(x)=f(x+2)=x+2.又f(x)为偶函数,所以当x∈[-1,0]时,-x∈[0,1],f(x)=f(-x)=-x+2,当x∈[-2,-1]时,x+2∈[0,1],f(x)=f(x+2)=x+4,所以当x∈[-2,0]时,f(x)=3-|x+1|.4.(2017·安庆二模)如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O沿l1以1 m/s的速度匀速竖直向上移动,且在t=0时,圆O与l2相切于点A,圆O被直线l2所截得到的两段圆弧中,位于l2上方的圆弧的长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:选B法一:如图所示,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,|AO|=1-t,cos x 2=|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-2-12=f ⎝⎛⎭⎫-12=2×⎝⎛⎭⎫-12×12=-12. 答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3), ∴f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝⎛⎦⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝⎛⎭⎫-12=-12; ②函数f (x )的值域是⎝⎛⎦⎤-12,12; ③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1.其中,真命题的个数为( )A .1B .2C .3D .4解析:选B ①∵-1-12<-12≤-1+12, ∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝⎛⎭⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝⎛⎦⎤-12,12, 则f (x )=x -{x }=a ,∴f (x )∈⎝⎛⎦⎤-12,12,所以②是真命题; ③∵f ⎝⎛⎭⎫12=12-0=12,f ⎝⎛⎭⎫-12=12≠-f ⎝⎛⎭⎫12, ∴函数f (x )不是奇函数,故③是假命题;④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ),∴函数f (x )的最小正周期为1,故④是真命题.综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P以1 cm /s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S =f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t ); 当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin ∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ). 综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A.3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1(x )+f 2(x )2+|f 1(x )-f 2(x )|2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g (x 1)-g (x 2)x 1-x 2>0恒成立,则b -a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1(x )+f 2(x )2+f 1(x )-f 2(x )2=f 1(x ); 当f 1(x )<f 2(x )时,g (x )=f 1(x )+f 2(x )2+f 2(x )-f 1(x )2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≥f 2(x ),f 2(x ),f 1(x )<f 2(x ),即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称.又f (x )在(-∞,-2)上为增函数,则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方,得3sin 2x -2(1-m )sin x -(1-m )2<0,即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧ 3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧ 3sin x +1-m <0,sin x -1+m >0, 即⎩⎪⎨⎪⎧ 3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧ 3sin x <m -1,sin x >1-m , 即⎩⎪⎨⎪⎧ m -1<-3,1-m >1或⎩⎪⎨⎪⎧ m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(二十五) 创新应用问题 Word版含解析
课时跟踪检测(二十五)创新应用问题.(·大连二模)定义运算:=(\\(,≥,,<,))例如:=,(-)=,则函数()=(-)的最大值为( )....解析:选由题意可得()=(-)=(\\(,≤≤,-,>或<,))当≤≤时,()∈[];当>或<时,()∈(-∞,).综上可得函数()的最大值为..朱载堉(—),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的倍.设第三个音的频率为,第七个音的频率为.则=( ).解析:选设个音的频率所成的等比数列{}的公比为,则依题意,有=·=,所以=,所以====..(·宜昌三模)已知甲、乙两车间的月产值在年月份相同,甲车间以后每个月比前一个月增加相同的产值,乙车间以后每个月比前一个月增加产值的百分比相同.到年月份发现两车间的月产值又相同,比较甲、乙两个车间年月份月产值的大小,则( ).甲车间大于乙车间.甲车间等于乙车间.甲车间小于乙车间.不确定解析:选设甲车间以后每个月比前一个月增加相同的产值,乙车间每个月比前一个月增加产值的百分比为,甲、乙两车间的月产值在年月份均为,则由题意得+=×(+).①月份甲车间的月产值为+月份乙车间的月产值为×(+),由①知,(+)=+,即月份乙车间的月产值为=,∵(+)-(+)=>,∴+>,即月份甲车间的月产值大于乙车间的月产值..如图,某广场要规划一矩形区域,并在该区域内设计出三块形状、大小完全相同的小矩形绿化区,这三块绿化区四周均设置有宽的走道,已知三块绿化区的总面积为,则该矩形区域占地面积的最小值为( ) ....解析:选设绿化区域小矩形的宽为,长为,则=,∴=,故矩形区域的面积=(+)(+)=(+)=++≥+)=,当且仅当=,即=时取“=”,∴矩形区域的面积的最小值为 ..已知函数=()(∈),对函数=()(∈),定义()关于()的“对称函数”为函数=()(∈),=()满足:对任意的∈,两个点(,()),(,())关于点(,())对称.若()是()=关于()=+的“对称函数”,且()>()恒成立,则实数的取值范围是.解析:根据“对称函数”的定义可知,=+,即()=+-,()>()恒成立,等价于+->,即+>恒成立,设()=+,()=,作出两个函数对应的图象如图所示,当直线和上半圆相切时,圆心到直线的距离===,即=,∴=或=-(舍去),即要使()>()恒成立,则>,即实数的取值范围是(,+∞).答案:(,+∞).三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?译文如下:要测量海岛上一座山峰的高度,立两根高均为丈的标杆和,前后标杆相距步,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,,,三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,,,三点也共线,问岛峰的高度=步.(古制:步=尺,里=丈=尺=步)解析:如图所示,由题意知==步,=步,=步,设=步,因为∥,所以△∽△,所以=,所以=,即=.因为∥,所以△∽△,所以=,所以=,即=,由题意(-)-(-)=,即--=,=,即=步.答案:.对于定义在区间上的函数(),若存在闭区间[,]⊆和常数,使得对任意∈[,],都有()=,且对任意∈,当∉[,]时,()<恒成立,则称函数()为区间上的“平顶型”函数.给出下列结论:①“平顶型”函数在定义域内有最大值;。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(三) 不等式
课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2,则m -n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b 的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a +4b ≥22a ·22b =22a +2b=22,当且仅当2a =22b ,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝ ⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z 有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝ ⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x-x ,设f (x )=2x -x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4] C.⎣⎡⎦⎤45,13 D.⎣⎡⎦⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝⎛⎭⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63B.233C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x -0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +y xy 的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +y xy =1x +4y =3(x +y )⎝⎛⎭⎫1x +4y =3⎝⎛⎭⎫1+4+y x +4xy ≥3⎝⎛⎭⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy 的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0] C.⎣⎡⎦⎤-15,35 D.⎣⎡⎦⎤-15,0 解析:选D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x 得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2); 由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0); 由⎩⎪⎨⎪⎧ y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1). 要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3.答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎡⎭⎫24,+∞.答案:⎣⎡⎭⎫24,+∞16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧ x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2). 由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3). 因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2.综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]。
2018年高考数学二轮复习专题(通用版)课时跟踪检测二理科数学(含答案)
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.。
教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二理
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(二十)概率与统计含解析
课时跟踪检测(二十) 概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:(1)求y(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?参考公式:线性回归方程错误!=错误!x+错误!,其中错误!=错误!,错误!=错误!-错误!错误!。
解:(1)由所给数据计算得错误!=错误!×(10+15+20+25+30)=20,y=错误!×(11+10+8+6+5)=8,错误!(x i-错误!)2=(-10)2+(-5)2+02+52+102=250,错误!(x i-错误!)(y i-错误!)=(-10)×3+(-5)×2+0×0+5×(-2)+10×(-3)=-80。
错误!=错误!=错误!=-0。
32.错误!=错误!-错误!错误!=8+0。
32×20=14.4。
所求线性回归方程为错误!=-0.32x+14.4。
(2)由(1)知当x=40时,y,^=-0.32×40+14.4=1.6。
故当价格x=40(元/kg)时,日需求量y的预测值为1。
6 kg.2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气重度污染的天数,求X的分布列与数学期望.解:设A i表示事件“此人于11月i日到达该市”(i=1,2,…,12).依题意知,P(A i)=错误!,且A i∩A j=∅(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A1∪A2∪A3∪A7∪A12,所以P(B)=P(A1∪A2∪A3∪A7∪A12)=P(A1)+P(A2)+P (A3)+P(A7)+P(A12)=错误!。
2018年高考数学(理科,通用版)练酷专题二轮复习课时跟踪检测:(一) 集合、常用逻辑用语(精编含解析)
课时跟踪检测(一)集合、常用逻辑用语1. 设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A. {1,-3}B. {1,0}C. {1,3}D. {1,5}【答案】C【解析】因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.故选C 2. 设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A. (1,2)B. (1,2]C. (-2,1)D. [-2,1)【答案】D【解析】由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}故选D.3. 已知命题q:∀x∈R,x2>0,则( )A. 命题綈q:∀x∈R,x2≤0为假命题B. 命题綈q:∀x∈R,x2≤0为真命题C. 命题綈q:∃x0∈R,≤0为假命题D. 命题綈q:∃x0∈R,≤0为真命题【答案】D【解析】全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以﹁q为真命题.故选D.4. 命题“若a>b,则a+c>b+c”的否命题是( )A. 若a≤b,则a+c≤b+cB. 若a+c≤b+c,则a≤bC. 若a+c>b+c,则a>bD. 若a>b,则a+c≤b+c【答案】A故选A.5. “x>1”是“x2+2x>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由,得或,所以“”是“”的充分不必要条件,故选A.6. 已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A. (-∞,-2)B. [2,+∞)C. [-2,2]D. (-∞,-2]∪[2,+∞)【答案】D【解析】因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.故答案为:D.7. 已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A. {x|2<x<3}B. {x|-1<x≤0}C. {x|0≤x<6}D. {x|x<-1}【答案】C【解析】由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁U B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A={x|0≤x<6}.故答案为; C .8. 已知命题p:∃x0∈(-∞,0),2x0<3x0;命题q:∀x∈,tan x>sin x,则下列命题为真命题的是( )A. p∧qB. p∨(﹁q)C. (﹁p)∧qD. p∧(﹁q)【答案】C【解析】根据指数函数的图象与性质知命题p是假命题,﹁p是真命题;∵x∈,且tan x=,∴0x<1,tan x>sin x,∴q为真命题,故选C.9. 祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】的体积相等,在同高处的截面积相等,由于A、B体积相等,A、B在同高处的截面积不恒相等,譬如一个为柱体另一个为椎体,所以条件不充分;反之成立,条件是必要的,因此是的必要不充分条件.选B.10. 设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={x|log2x<1},Q={x||x-2|<1},则P-Q=( )A. {x|0<x<1}B. {x|0<x≤1}C. {x|1≤x<2}D. {x|2≤x<3}【答案】B【解析】试题分析:因为,所以考点:新定义下的集合的运算.11. 命题p:“∃x0∈R,使得+mx0+2m+5<0”,命题q:“关于x的方程2x-m=0有正实数解”,若“p或q”为真,“p且q”为假,则实数m的取值范围是( )A. [1,10]B. (-∞,-2)∪(1,10]C. [-2,10]D. (-∞,-2]∪(0,10]【答案】B故答案为:B.点睛:本题考查了一元二次方程的解与判别式的关系、一元二次不等式的解集与判别式的关系、复合命题的真假判定,对于“p或q”为真,则只需要其中一个为真,“p或q” 为假,则两个均为假.12. 下列选项中,说法正确的是( )A. 若a>b>0,则ln a<ln bB. 向量a=(1,m)与b=(m,2m-1)(m∈R)垂直的充要条件是m=1C. 命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D. 已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题【答案】D【解析】A中,因为函数y=ln x(x>0)是增函数,所以若a>b>0,则ln a>ln b,故A错;B中,若a⊥b,则m+m(2m-1)=0,解得m=0,故B错;C中,命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n0∈N*,3n0≤(n0+2)·2n0-1”,故C错;D中,原命题的逆命题是“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”,是假命题,如函数f(x)=x2-2x-3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,故D正确.故答案为;D .点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.在判断命题的充要条件时,可以先找命题的逆否命题,判断逆否命题的充要条件即可.13. 若集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则实数a的值为________.【答案】1或-【解析】试题分析:由题意可知,集合中的方程有且只有一个根.当时,方程变为,符合题意;当时,有,解得.考点:1.子集的个数;2.由方程根的情况讨论参数的取值范围.14. 已知集合A=B={x|-1<x<m+1,x∈R},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是________.【答案】(2,+∞)【解析】A=={x|-1<x<3},∵x∈B成立的一个充分不必要条件是x∈A,∴A B,∴m+1>3,即m>2.故答案:(2,+∞)15. 已知非空集合A,B满足下列四个条件:①A∪B={1,2,3,4,5,6,7};②A∩B=∅;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.(1)如果集合A中只有1个元素,那么A=________;(2)有序集合对(A,B)的个数是________.【答案】(1). {6} (2). 32【解析】(1)若集合A中只有1个元素,则集合B中有6个元素,6∉B,故A={6}.(2)当集合A中有1个元素时,A={6},B={1,2,3,4,5,7},此时有序集合对(A,B)有1个;当集合A中有2个元素时,5∉B,2∉A,此时有序集合对(A,B)有5个;当集合A中有3个元素时,4∉B,3∉A,此时有序集合对(A,B)有10个;当集合A中有4个元素时,3∉B,4∉A,此时有序集合对(A,B)有10个;当集合A中有5个元素时,2∉B,5∉A,此时有序集合对(A,B)有5个;当集合A中有6个元素时,A={1,2,3,4,5,7},B={6},此时有序集合对(A,B)有1个.综上可知,有序集合对(A,B)的个数是1+5+10+10+5+1=32.答案:(1){6} (2)3216. 下列说法中不正确的是________.(填序号)①若a∈R,则“<1”是“a>1”的必要不充分条件;②“p∧q为真命题”是“p∨q为真命题”的必要不充分条件;③若命题p:“∀x∈R,sin x+cos x≤”,则p是真命题;④命题“∃x0∈R,+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”.【答案】②④【解析】由<1,得a <0或a >1,反之,由a >1,得<1,∴“<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =,∴命题p 为真命题,③正确;命题“∃x 0∈R ,+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确.故答案:②④点睛:本题考查命题的否定,充要条件及四种命题,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.。
2018年高考理科数二轮创新专题复习:课时跟踪检测三 含答案 精品
课时跟踪检测(三)A组——12+4提速练一、选择题1.(2017·沈阳质量检测)已知△ABC中,A=π6,B=π4,a=1,则b=()A.2 B.1 C. 3 D. 2解析:选D由正弦定理asin A=bsin B,得1sinπ6=bsinπ4,即112=b22,∴b=2,故选D.2.(2017·张掖模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,b sin B-a sin A=12a sin C,则sin B=()A.74 B.34C.73 D.13解析:选A由b sin B-a sin A=12a sin C,得b2-a2=12ac,∵c=2a,∴b=2a,∴cos B=a2+c2-b22ac=a2+4a2-2a24a2=34,则sin B=1-⎝⎛⎭⎫342=74.3.已知sin β=35⎝⎛⎭⎫π2<β<π,且sin(α+β)=cos α,则tan(α+β)=()A.-2 B.2C.-12D.12解析:选A∵sin β=35,且π2<β<π,∴cos β=-45,tan β=-34.∵sin(α+β)=sin αcos β+cos αsin β=cos α,∴tan α=-12,∴tan(α+β)=tan α+tan β1-tan α·tan β=-2.4.若△ABC的三个内角A,B,C对应的边分别为a,b,c,且a cos C,b cos B,c cos A成等差数列,则B=()A.30°B.60°C.90°D.120°解析:选B 由题意知2b cos B =a cos C +c cos A ,根据正弦定理可得2sin B cos B =sin A cos C +cos A sin C ,即2sin B cos B =sin(A +C )=sin B ,解得cos B =12,所以B =60°.5.(2018届高三·贵州七校联考)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎫2θ+π4的值为( ) A .-7210 B.7210 C .-210D.210解析:选D 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝⎛⎭⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝⎛⎭⎫45-35=210,故选D. 6.(2017·青岛模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2sin B +sin C )b +(2c +b )sin C ,则A =( )A .60°B .120°C .30°D .150°解析:选B 由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A =-12,又A 为三角形的内角,故A =120°.7.(2017·惠州调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.2+1B.3+1 C .2D. 5解析:选B 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1. 8.(2017·长沙模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2+b 2=4a +2b -5且a 2=b 2+c 2-bc ,则sin B 的值为( )A.32B.34C.22D.35解析:选B 由a 2+b 2=4a +2b -5可知(a -2)2+(b -1)2=0,故a =2且b =1.又a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,故sin A =32.根据正弦定理a sin A =b sin B,得sin B=322=34,故选B. 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b cos C ,则△ABC 的形状是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形解析:选C ∵a =2b cos C =2b ·a 2+b 2-c 22ab ,即b 2-c 2=0,∴b =c ,∴△ABC 是等腰三角形,故选C.10.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( )A .2 3 B. 3 C.33D.233解析:选D 由S △BCD =1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255或cos ∠DCB =-255,又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以cos ∠DCB =255.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,所以cos ∠DBC =BD 2+BC 2-CD 22BD ·BC =31010,所以sin ∠DBC =1010.在△ABC 中,由正弦定理可得AC =BC sin B sin A =233,故选D.11.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos ∠A =( )A.223B.24C.64D.63解析:选C 因为DE ⊥AB ,DE =22,所以AD =22sin ∠A ,所以BD =AD =22sin ∠A.因为AD =DB ,所以∠A =∠ABD ,所以∠BDC =∠A +∠ABD =2∠A .在△BCD 中,由正弦定理BD sin ∠C =BC sin ∠BDC ,得22sin ∠A 32=4sin 2∠A ,整理得cos ∠A =64.12.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D ∵23cos 2A +cos 2A =23cos 2A +2cos 2A -1=25cos 2A -1=0,∴cos 2A =125,∵△ABC 为锐角三角形,∴cos A =15.由余弦定理知a 2=b 2+c 2-2bc cos A ,即49=b 2+36-125b ,解得b =5或b =-135(舍去). 二、填空题13.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin C c =6sin 60°3=22, 因为0°<B <180°, 所以B =45°或135°.因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°. 答案:75°14.(2017·广州模拟)设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2sin C =4sin A ,(ca +cb )(sin A -sin B )=sin C (27-c 2),则△ABC 的面积为________.解析:由a 2sin C =4sin A 得ac =4,由(ca +cb )(sin A -sin B )=sin C (27-c 2)得(a +b )(a -b )=27-c 2,即a 2+c 2-b 2=27,∴cos B =a 2+c 2-b 22ac =74,则sin B =34,∴S △ABC =12ac sinB =32.答案:3215.(2018届高三·湖北七市(州)联考)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C =120°,a =2b ,则tan A =________.解析:由余弦定理得,c 2=a 2+b 2-2ab cos C =4b 2+b 2-2×2b ×b ×⎝⎛⎭⎫-12=7b 2,∴c =7b ,则cos A =b 2+c 2-a 22bc =b 2+7b 2-4b 22×b ×7b =277,∴sin A =1-cos 2A =1-47=217,∴tan A =sin A cos A =32. 答案:3216.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =________.解析:由题意可得12AB ·BC ·sin B =12,又AB =1,BC =2,所以sin B =22,所以B =45°或B =135°.当B =45°时,由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B =1,此时AC =AB =1,BC =2,易得A =90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC =AB 2+BC 2-2AB ·BC ·cos B = 5.答案: 5B 组——能力小题保分练1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C =( )A.34 B .43C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.2.(2017·合肥质检)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]解析:选A 由正弦定理可得,(a -b )(a +b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,则A =π3.又b sin B =c sin C =a sin π3=2,所以b =2sin B ,c =2sin C ,所以b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4 ⎩⎪⎨⎪⎧1-cos 2B 2+1-cos[2(A +B )]2 ⎭⎪⎬⎪⎫=3sin 2B -cos 2B +4=2sin ⎝⎛⎭⎫2B -π6+4.又△ABC 是锐角三角形,所以B ∈⎝⎛⎭⎫π6,π2,则2B -π6∈⎝⎛⎭⎫π6,5π6,所以sin ⎝⎛⎭⎫2B -π6∈⎝⎛⎦⎤12,1,所以b 2+c 2的取值范围是(5,6],故选A. 3.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.解析:在三角形ABC 中,AC =1002,在三角形MAC 中,MA sin 60°=ACsin 45°,解得MA=1003,在三角形MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m .答案:1504.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =________.解析:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,AB = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a .在Rt △ACD 中,AC =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∵S △ABC =12AB ·AC ·sin ∠BAC =12BC ·AD ,即12×23a ×53a ·sin ∠BAC =12a ·13a , ∴sin ∠BAC =31010.答案:310105.如图,在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos∠DAC =31010,cos ∠C =255,则AC =________.解析:因为BD =2DC ,设CD =x ,AD =y ,则BD =2x ,因为cos ∠DAC =31010,cos ∠C =255,所以sin ∠DAC =1010,sin ∠C =55,在△ACD 中,由正弦定理可得AD sin ∠C=CD sin ∠DAC ,即y 55=x 1010,即y =2x .又cos ∠ADB =cos(∠DAC +∠C )=31010×255-1010×55=22,则∠ADB =π4.在△ABD 中,AB 2=BD 2+AD 2-2BD ×AD cos π4,即2=4x 2+2x 2-2×2x ×2x ×22,即x 2=1,所以x =1,即BD =2,DC =1,AD =2,在△ACD 中,AC 2=CD 2+AD 2-2CD ×AD cos 3π4=5,得AC = 5.答案: 56.(2017·成都模拟)已知△ABC 中,AC =2,BC =6,△ABC 的面积为32.若线段BA 的延长线上存在点D ,使∠BDC =π4,则CD =________.解析:因为S△ABC =12AC ·BC ·sin ∠BCA ,即32=12×2×6×sin∠BCA ,所以sin ∠BCA =12.因为∠BAC >∠BDC =π4,所以∠DAC <3π4,又∠DAC =∠ABC +∠ACB ,所以∠ACB <3π4,则∠BCA =π6,所以cos∠BCA =32.在△ABC 中,AB 2=AC 2+BC 2-2AC ·BC ·cos ∠BCA =2+6-2×2×6×32=2,所以AB =2=AC ,所以∠ABC =∠ACB =π6,在△BCD 中,BC sin ∠BDC =CD sin ∠ABC ,即622=CD12,解得CD = 3. 答案: 3。
教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二十五文
课时跟踪检测(二十五)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·湖南五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( )A.⎣⎢⎡⎦⎥⎤14,34 B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3]D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =yx +1=yx --,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·沈阳质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·湖北七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +2+n ++13n +1=n +1+13n +1+2≥2n +13n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n =3时,f n -4a n +1=374<485,∴最小值为374,故选A.6.(2018届高三·广东省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),f g+f -g -=52.在有穷数列⎩⎨⎧⎭⎬⎫f n gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2<0,所以f xg x 为减函数,所以0<a <1.由fg +f -g -=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f n g n =⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k>1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x+λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ伴随函数”.有下列关于“λ伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ伴随函数”; ②f (x )=x 不是“λ伴随函数”; ③f (x )=x 2是一个“λ伴随函数”; ④“12伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ伴随函数”,③错误;对于④,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·南昌模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x +3y )max =34×12=9.答案:99.(2017·云南统考)已知y =f (x )是R 上的偶函数,对于任意的x ∈R ,均有f (x )=f (2-x ),当x ∈[0,1]时,f (x )=(x -1)2,则函数g (x )=f (x )-log 2 017|x -1|的所有零点之和为________.解析:因为函数f (x )是偶函数,所以f (x )=f (2-x )=f (x +2),所以函数f (x )的周期为2,又当x ∈[0,1]时,f (x )=(x -1)2,将偶函数y =log 2 017|x |的图象向右平移一个单位长度得到函数y =log 2 017|x -1|的图象,由此可在同一平面直角坐标系下作出函数y =f (x )与y =log 2 017|x -1|图象(图略),函数g (x )的零点,即为函数y =f (x )与y =log 2 017|x -1|图象的交点的横坐标,当x >2 018时,两函数图象无交点,又两函数图象在[1,2 018]上有2 016个交点,由对称性知两函数图象在[-2 016,1]上也有2 016个交点,且它们关于直线x =1对称,所以函数g (x )的所有零点之和为4 032.答案:4 032 三、解答题10.(2017·张掖模拟)已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e 为自然对数的底数).(1)求f (x )的解析式及单调递减区间;(2)是否存在最小的常数k ,使得对任意x ∈(0,1),f (x )>kln x +2x 恒成立?若存在,求出k 的值;若不存在,请说明理由.解:(1)f ′(x )=mx -x2(x >0,且x ≠1),由f ′(e 2)=12=m 4,得m =2,故f (x )=2x ln x ,此时f ′(x )=x -x2,由f ′(x )<0得0<x <1或1<x <e ,所以函数f (x )的单调递减区间为(0,1),(1,e).(2)f (x )>k ln x +2x 恒成立,即2x ln x >k ln x +2x 恒成立⇔k ln x <2xln x-2x 恒成立,当x ∈(0,1)时,ln x <0,则有k >2x -2x ·ln x 恒成立, 令g (x )=2x -2x ·ln x ,则g ′(x )=2x -ln x -2x,再令h (x )=2x -ln x -2,得h ′(x )=x -1x<0, 所以h (x )在(0,1)内单调递减, 所以h (x )>h (1)=0,故g ′(x )=h xx>0, 所以g (x )在(0,1)内单调递增,g (x )<g (1)=2,则k ≥2. 故存在最小的常数k =2满足题意.11.(2018届高三·西安八校联考)设函数f (x )=m e x-ln x -1. (1)当m =0时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当m ≥1时,证明:f (x )>1.解:(1)当m =0时,f (x )=-ln x -1,则f ′(x )=-1x,所以f (1)=-1,f ′(1)=-1.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(-1)=-(x -1),即y =-x . 故曲线y =f (x )在点(1,f (1))处的切线方程为y =-x . (2)当m ≥1时,f (x )=m e x-ln x -1≥e x-ln x -1. 要证f (x )>1,只需证e x-ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x-1x.设h (x )=e x -1x ,则h ′(x )=e x+1x2>0,所以函数h (x )=g ′(x )=e x-1x在(0,+∞)上单调递增.因为g ′⎝ ⎛⎭⎪⎫12=e 12-2<0,g ′(1)=e -1>0, 所以函数g ′(x )=e x-1x 在(0,+∞)上有唯一零点x 0,且x 0∈⎝ ⎛⎭⎪⎫12,1.因为g ′(x 0)=0,所以e x 0=1x 0,即ln x 0=-x 0.当x ∈(0,x 0)时,g ′(x )<0, 当x ∈(x 0,+∞)时,g ′(x )>0,所以当x =x 0时,g (x )取得极小值(也是最小值)g (x 0).故g (x )≥g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2=x 0-2x 0>0.综上,当m ≥1时,f (x )>1.12.(2017·云南调研)已知函数f (x )=ln x -ax . (1)讨论函数f (x )的单调性;(2)当函数f (x )有两个不相等的零点x 1,x 2时,证明:x 1x 2>e 2. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a ,①当a ≤0时,f ′(x )>0,则函数f (x )在(0,+∞)上递增;②当a >0时,若x ∈⎝⎛⎭⎪⎫0,1a ,则f ′(x )>0,函数f (x )在⎝ ⎛⎭⎪⎫0,1a 上递增.若x ∈⎝ ⎛⎭⎪⎫1a ,+∞,则f ′(x )<0,函数f (x )在⎝ ⎛⎭⎪⎫1a,+∞上递减.(2)证明:不妨设x 1>x 2>0,由已知得⎩⎪⎨⎪⎧ln x 1=ax 1,ln x 2=ax 2⇒⎩⎪⎨⎪⎧ln x 1-ln x 2=ax 1-x 2,ln x 1+ln x 2=a x 1+x 2,可得a =ln x 1-ln x 2x 1-x 2,要证x 1x 2>e 2,只需证ln(x 1x 2)>2,即证ln x 1+ln x 2=a (x 1+x 2)=(x 1+x 2)·ln x 1-ln x 2x 1-x 2>2,即证ln x 1-ln x 2>x 1-x 2x 1+x 2,即证ln x 1x 2>x 1-x 2x 1+x 2,令x 1x 2=t (t >1),即证ln t >t -t +1,即证ln t -t -t +1>0.设g (t )=ln t -t -t +1,则g ′(t )=t -2t t +2>0,g (t )在(1,+∞)上单调递增,又g (1)=0,∴g (t )>g (1)=0,综上,原不等式成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二十五) 创新应用问题
1.(2017·大连二模)定义运算:x y =⎩⎪⎨⎪⎧ x ,xy ≥0,
y ,xy <0,例如:34=3,(-2)
4=4,则函数f(x)=x 2(2x -x 2)的最大值为( )
A .0
B .1
C .2
D .4
解析:选D 由题意可得f(x)=x 2(2x -x 2)=⎩⎪⎨⎪⎧ x 2,0≤x ≤2,
2x -x 2,x >2或x <0,当
0≤x ≤2时,f(x)∈[0,4];当x >2或x <0时,f(x)∈(-∞,0).综上可得函数f(x)的最大值为4.
2.朱载堉(1536—1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频
率为f 1,第七个音的频率为f 2.则f 2f 1
=( ) A.32 B.1116 C .4122 D.82
解析:选A 设13个音的频率所成的等比数列{a n }的公比为q ,则依题意,
有a 13=a 1·q 12=2a 1,所以q =2112,所以f 2f 1=a 7a 3=q 4=213=32. 3.(2017·宜昌三模)已知甲、乙两车间的月产值在2017年1月份相同,甲车间以后每个月比前一个月增加相同的产值,乙车间以后每个月比前一个月增加产值的百分比相同.到2017年7月份发现两车间的月产值又相同,比较甲、乙两个车间2017年4月份月产值的大小,则( )
A .甲车间大于乙车间
B .甲车间等于乙车间
C .甲车间小于乙车间
D .不确定
解析:选A 设甲车间以后每个月比前一个月增加相同的产值a ,乙车间每个月比前一个月增加产值的百分比为x ,甲、乙两车间的月产值在2017年1月份均为m ,则由题意得m +6a =m ×(1+x)6.①
4月份甲车间的月产值为m +3a,4月份乙车间的月产值为m ×(1+x)3,
由①知,(1+x)6=1+6a m ,即4月份乙车间的月产值为m 1+6a m
=m 2+6ma ,∵(m +3a)2-(m 2+6ma)=9a 2>0,∴m +3a >
m 2+6ma ,即4月份甲车间的月产值大于乙车间的月产值.
4.如图,某广场要规划一矩形区域ABCD ,并在该区域
内设计出三块形状、大小完全相同的小矩形绿化区,这三块
绿化区四周均设置有1 m 宽的走道,已知三块绿化区的总面积为200 m 2,则该矩形区域ABCD 占地面积的最小值为( )
A .248 m 2
B .288 m 2
C .328 m 2
D .368 m 2。