2016四川高职单招数学试题(卷)(附答案)

合集下载

四川高职单招数学试题(附答案)

四川高职单招数学试题(附答案)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2 B.{}0,1 C.{}0,2 D .{}0,1,2 2. 不等式的解集是( )A.x<3 B.x >-1 C .x <-1或x>3 D.-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( ) A.2 B.3 C.4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数 D. 既增又减函数 5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D .127. 已知{a n}为等差数列,a 2+a8=12,则a 5等于( ) A.4 ﻩB.5 C.6 ﻩ D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b,则λ=( ) A .6- B.6 C.32 D .32- 点)5,0(到直线x y 2=的距离为(ﻩﻩ)21<-xA.25 B.5 C .23ﻩﻩD.2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 ﻩﻩﻩ B .10种 C .9种 ﻩﻩD .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f(x)是定义在R 上的周期为2的函数,当x∈[﹣1,1)时,f(x )=,则f()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m.(用四舍五入法将结果精确到个位.参考数据:s in67°≈0.92,cos67°≈0.39,si n37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx﹣y﹣m+3=0交于点P(x ,y).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M ,M ].例如,当φ1(x)=x 3,φ2(x)=s inx 时,φ1(x )∈A ,φ2(x)∈B .现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A ”的充要条件是“∀b ∈R ,∃a ∈D,f(a )=b ”; ②函数f(x)∈B的充要条件是f(x )有最大值和最小值;③若函数f(x ),g (x )的定义域相同,且f (x)∈A,g (x )∈B ,则f (x)+g (x )∉B. ④若函数f (x)=aln(x+2)+(x>﹣2,a ∈R )有最大值,则f (x)∈B.其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。

四川省对口高职升学考试数学试题

四川省对口高职升学考试数学试题
A. B.
C. D.
15.若 + 为双曲线方程,则的取值范围是
A.(-,1)B.(2,+)
C.(1,2)D.(-,1)∪(2,+)
第二部分(非选择题共90分)
注意事项:
1.非选择题必须用毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.
2.本部分共2个大题,12个小题.共系数为
A.30B.15
C.-15D.-30
11.“|x|≤2”是“-2≤x≤2”的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
12. 如图,在平行四边形ABCD中,下列说法错误的是
A. 与 共线
B. 与 相等
C. 与 平行D. 与 的模相等
13.在ABC中,内角A、B、C所对的边分别是a、b、c,已知 =2,b= ,则a=
A.2 B.2
C. D.
14.小明所在班级举行毕业会时,设置了一个抽奖环节,抽奖箱中有6个完全相同的红球,3个完全相同的黄球,抽奖时从箱子中同时摸出两个球,若摸出的球正好为一红一黄时才获得礼品,那么小明可获礼品的概率为
A.B.{0,1}
C.{-1,0,1}D.{0,1,2,3}
2.已知向量a=(1,2),b=(3,6),则下列说法正确的是
A.向量a、b垂直B.向量a、b相等
C.向量a、b方向相反D.向量a、b平行
3.已知直线l1的斜率为-1,直线l2的斜率为1,那么这两条直线
A.相交但不垂直B.平行
C.重合D.垂直相交
4.函数y=log2(x+1)的定义域是
A.(0,+)B.[(0,+)]
C.(-1,+)D.[(-1,+)]
5.点(1,2)关于y轴对称的点为

四川单招考试真题数学

四川单招考试真题数学

选择题下列函数中,在其定义域内既是奇函数又是增函数的是( )A. y = x^3B. y = log₂xC. y = 2^xD. y = x - 1/x若直线y = kx + b 与曲线y = x^2 在点(1, 1) 相切,则k 的值为( )A. 0B. 1C. 2D. 3已知a > b,则下列不等式成立的是( )A. a^2 > b^2B. 1/a < 1/bC. a^3 > b^3D. |a| > |b|已知等比数列{an} 的前n 项和为Sn,且S3 = 3/2,S6 = 63/64,则a7 + a8 + a9 = ( )A. 21/8B. 63/64C. 243/256D. 729/512设随机变量X 服从正态分布N(2, σ²),若P(X < 4) = 0.9,则P(0 < X < 2) = ( )A. 0.4B. 0.3C. 0.2D. 0.1填空题函数y = √(x - 1) 的定义域为_______.已知等差数列{an} 的前n 项和为Sn,且S5 = 50,则a3 = _______.已知直线l 经过点P(1, 2) 且与直线y = 3x - 1 垂直,则直线l 的方程为_______.若实数x,y 满足x² + y² - 2x + 4y = 0,则x - y 的最大值为_______.在ΔABC 中,角A, B, C 的对边分别为a, b, c,且满足cosB = (a² + c² - b²) / (2ac),则ΔABC 的形状是_______.简答题已知函数f(x) = ax³ + bx² + cx + d (a ≠ 0) 的图像经过点(0,1),且在x = 1 处的切线方程为y = x。

求函数f(x) 的解析式;求函数f(x) 的单调区间。

已知数列{an} 满足a1 = 1,且an + 1 = an + 2n (n ∈ N*)。

2016年高职高考数学答案

2016年高职高考数学答案

2016年高职高考数学答案篇一:2016年高职数学模拟试卷高职高考班《数学》模拟试题班别学号姓名一、选择题:(本大题共15小题,每小题5分,共75分。

请把每题唯一的正确答案填入表格内)1、设集合M?{xx?1?1},集合N?{1,2,3,4},则集合M?N?()A. {1,2} B. {2,3} C. {3,4} D. {2,3,4}2、x?2是x?4的()A. 充分条件B. 必要非充分条件C. 充要条件D. 既非充分条件又非必要条件3、函数y?x?1在区间(?1,??)上是()A. 奇函数B. 偶函数C. 增函数D. 减函数4、不等式1?x0的解集为()1?xA. (??,?1)?[1,??)B. [?1,1]C. (??,?1]?[1,??)D. [?1,1) 5、已知tan?cos??0,且tan?sin??0,则角?是()A.第一象限角B. 第二象限角C. 第三象限角D. 第四象限角6、函数f(x)?2x?8?x?2x?152的定义域是()A. (?3,5)B. (??,?3)?(5,??)C. [?3,5]D. (?3,4)?(4,5)2x1,x17、设函数f(x)??2,则f[f(?3)]?()?x?2,x?1A. ?5 B. 15 C. ?11 D. 7 8、已知向量?(1,2)与向量?(4,y)垂直,则y?()A. ?8 B. 8C. 2 D. ?2 9、已知两条直线y?ax?2和y?(a?2)x?1互相垂直,则a?()A. 1 B.2 C. 0D. ?110、函数f(x)??x2?4x?7在区间[?3,4]上的最大值是()A. ?25B. 19C. 11D. 10111、等比数列{an}中,a1?,a4?3,则该数列的前5项之积为()9A. ?1B. 3C. 1D. ?312、已知数列{an}中,a1?3,an?an?1?3则a10?()A. 30B. 27C. 33D. 36x?13、函数f(x)?3sin(?)(x?R)的最小正周期是()46A. 2?B. 4?C. 8?D. ? 14、中心在原点,焦点在y轴上,离心率为,的椭圆标准方程为()2x2y2x2x2y2y222y1 C. ?1 ??1 B. ??1 D. x?A.44622615、在10件产品中有4件次品,现从中任取3件产品,至少有一件次品的概率是() A.2531 B.C.D.5656二、填空题:(每小题5分,共5×5=25分。

2016年四川高职单招数学试题(附答案)

2016年四川高职单招数学试题(附答案)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则M N =( )A .{}2 B .{}0,1 C .{}0,2 D .{}0,1,22. 不等式的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<33.已知函数()22xf x =+,则(1)f 的值为( ) A .2 B .3 C .4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数D. 既增又减函数5. 设1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( )A. 1B.2 C . 13 D.127. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A.4 B.5C.6D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( )A .6-B .6C .32D .32-点)5,0(到直线x y 2=的距离为() 21<-xA .25B .5C .23D .2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种D .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[﹣M ,M ].例如,当φ1(x )=x 3,φ2(x )=sinx 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B . ④若函数f (x )=aln (x+2)+(x >﹣2,a ∈R )有最大值,则f (x )∈B .其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。

2016年普通高等学校招生全国统一考试(四川卷)数学试题(文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学试题(文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的•1. 设i为虚数单位,则复数(1 i)2=( )(A) 0 (B)2 (C) 2 i (D)2+2 i【答案】C【解析】试题分析:由题意,(1 i)2 =1 2i • i2 = 2i,故选C.考点:复数的运算.【名师点睛】本题考查复数的运算•数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.2. 设集合A={x|1 辽5},Z为整数集,则集合A n Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3【答案】B【解析】试题分析:由题意= 故其中的元素个数为》选B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.3. 抛物线y2 =4x的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) ( 1,0)【答案】D【解析】试题分析:由题意,y2 =4x的焦点坐标为(1,0),故选D.考点:抛物线的定义.【名师点睛】本题考查抛物线的定义•解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.4. 为了得到函数y =sin(x,§)的图象,只需把函数y=sinx的图象上所有的点( )(A)向左平行移动个单位长度(B) 向右平行移动二个单位长度3 3TT TT(C)向上平行移动一个单位长度(D) 向下平行移动一个单位长度3 3【答案】A【解析】TT 7T 试题分析:由題意,为得到函数潭=站(尤+彳儿只需数y = sinx的區僚上所有点向左移彳个单位,3 J故选A.考点:三角函数图像的平移•【名师点睛】本题考查三角函数的图象平移,函数y二f(x)的图象向右平移a个单位得y=f(x-a) 的图象,而函数y二f (x)的图象向上平移a个单位得y二f (x) • a的图象.左右平移涉及的是x的变化,上下平移涉及的是函数值f (x)加减平移的单位.5. 设p:实数x, y满足x 1且y . 1 , q:实数x, y满足x y 2,则p是q的( )(A)充分不必要条件(B) 必要不充分条件(C)充要条件(D) 既不充分也不必要条件【答案】A【解析】试题分析:由题意,x 1且y . 1,则x y 2,而当x y 2时不能得出,x 1且y • 1.故p是q的充分不必要条件,选 A.考点:充分必要条件•【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立•这类问题往往与函数、三角、不等式等数学知识结合起来考•有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6. 已知a函数f(x) =x3 -12x的极小值点,贝U a=( )(A)-4 (B) -2 (C)4 (D) 2【答案】D【解析】试题分析:「X =3x -1^3 x 2 X-2,令f x =0得x = -2或x=2,易得f x在-2,2上单调递减,在 2, •::上单调递增,故 f x 极小值为f 2,由已知得a =2,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值•在可导函数中函数的极值点x 0是方程f '(x) =0的解,但x 0是极 大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 X D 附近,如果x :::x 0时, f '(x) ::: 0 , x X O 时 f '(x) ■ 0 ,则 X D 是极小值点,如果 x X D 时,f '(x) ■ 0 , x X 。

四川省中职单招考试模拟题数学试题及答案

四川省中职单招考试模拟题数学试题及答案

四川省中职单招考试模拟题数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,奇函数是()A. f(x) = x^3 - 2xB. f(x) = x^2 + 1C. f(x) = 2x - 1D. f(x) = |x|答案:A2. 若函数f(x) = 2x + 1在区间(0,+∞)上单调递增,那么函数g(x) = -2x + 1在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:B3. 下列各数中,无理数是()A. √9B. √16C. √3D. √1答案:C4. 已知a、b是方程x^2 - (a+2)x + b = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 5答案:B5. 下列关于x的不等式中,有解的是()A. x^2 + 1 < 0B. x^2 + 2x + 1 < 0C. x^2 - 4x + 3 < 0D. x^2 + 2x - 3 < 0答案:D6. 已知等差数列的前三项分别为a-1, a+1, 2a+1,那么该等差数列的公差为()A. 2B. 1C. -1D. 0答案:A7. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A8. 已知函数f(x) = x^2 - 2x + c在x = 1处取得最小值,那么c的值为()A. 0B. 1C. -1D. -3答案:B9. 已知a > b,那么下列不等式中成立的是()A. a^2 > b^2B. a^3 > b^3C. a^4 > b^4D. a^5 > b^5答案:B10. 若a、b是方程x^2 - 3x + 2 = 0的两根,那么a^2 + b^2的值为()A. 5B. 7C. 9D. 11答案:D二、填空题(每题4分,共40分)11. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上的单调性为______。

四川省2016年高职单招真题

四川省2016年高职单招真题

秘密★启用前四川省2016年高等职业院校单独招生统一考试文化考试(普通高中类)·语文注意事项:1.本试卷分语文、数学、英语三科,各100分,满分300分。

2.本考试实行同堂合卷,文化考试时间150分钟。

3.考生作答时,须将答案答在试卷相应位置,在草稿纸上答题无效。

一、基础知识及其运用(本大题共3小题,每小题5分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内,错选、多选或未选均无分。

1、下列词语中字形和加点字的读音全都正确的一组是()A.寒喧更胜一筹江堤.(dī)扣人心弦.(xián)B.脉搏顶力相助偌.大(ruò)锲.而不舍(qiè)C.烦躁自惭形秽吞噬.(shì)花团锦簇.(cù)D.嬉戏礼上往来拆.迁(chāi)对薄.公堂(pù)2、依次填入下列句子中横线上的词话,最恰当有一组是()(1)天启初年,“九千岁“宦官魏忠贤结党营私。

称霸一时,各县为之立生祠者_______,唯袁耀然拒不同流合污。

(2)在城里养花,汛土很金贵,有的人使用翻盆后的旧土,其实远不如碎砖瓦来得好,碎砖瓦取材方便,_______。

(3)周末回乡探望老人,路旁的树上一个个喜鹊窝。

________有的还与时俱进,跟盖楼似的,筑起了“小高层”。

A.比比皆是触目皆是俯拾即是B.俯拾即是比比皆是触目皆是C.触目皆是俯拾即是比比皆是D.比比皆是俯拾即是触目皆是3、下列各句中没有语病的一句是()A.止咳祛痰片是我公司生产的药品,效果一直为人称道,它里面的主要成分是远志、桔梗、贝母、氯化铵配制而成。

B.亚投行是多边发展金融机构大家庭的一员,能对现有体系进行很好的补充,也必将会吸收这一领域的成功经验。

C.高铁沿线旅游目的地要大力提开乡村休闲旅游,大力举办餐饮住宿、文化娱乐等项目,提高旅游产业的综合效益。

D.邵逸夫对国内教育事业做出了杰出贡献,他的名字不仅镌刻在万学子的心里,更镌刻在一座又一座的教学楼上。

四川省普通高校职教师资和高职班对口招生统一考试数学试卷1

四川省普通高校职教师资和高职班对口招生统一考试数学试卷1

四川省2016年普通高校职教师资和高职班对口招生统一考试 数 学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1~2页,第Ⅱ卷第3~4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

满分150分,考试时间120分钟。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

2.第Ⅰ卷共1个大题,15个小题。

每个小题4分,共60分。

一.选择题:(每小题4分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{0,1,2,3},{1,0,1}A B ==-, 则A ∩B = ( )A.∅B.{0,1}C.{1,0,1}-D.{0,1,2,3}2.已知向量a =(1,2),=(3,6),则下列说法正确的是 ( )A .向量,b 垂直B .向量,b 相等 C.向量,b 方向相反 D.向量,b 平行3.已知直线1l 的斜率为-1,直线2l 的斜率为1,那么这两条直线 ( )A.相交但不垂直 B .平行 C .重合 D .垂直相交4.函数2log (1)y x =+的定义域是 ( )A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)5.点(1,2)关于y 轴对称的点为 ( )A .(-1,2)B .(1,-2)C .(-1,-2)D .(2,1)6.函数2()f x x = ( )A .在(0,+∞)内是减函数B .在(-∞,0)内是增函数C .是奇函数D .是偶函数7.椭圆22195x y +=的离心率为 ( )A B C .49 D .238.函数22x y =的图像大致是 ( )A. B. C. D.9.在学校文艺晚会上,8位评委们为某表演者打出的分数如下:78,77,84,80,79,78, 91,81.这8位评委打出的分数去掉一个最高分和一个最低分后取平均值得到表演者的最终分数.那么该表演者最终分数为 ( )A. 81.5B. 81C. 80D. 79.510.二项式6(1)x -展开式中含有2x 项的系数为 ( )A .30B .15 C.-15 D. -3011.“||2x ≤”是“22x -≤≤”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.如图,在平行四边形ABCD 中,下列说法错误的是 ( )A.AB 与CD 共线B.AB 与CD 相等C.AB 与CD 平行D.AB 与CD 的模相等13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin 2sin A B=,b=,a = ( )A.B. 214.小明所在班级举行毕业班会时,设置了一个抽奖环节.抽奖箱中有6个完全相同的红球,3个完全相同的黄球,抽奖时从箱子中同时摸出两个球,若摸出的球正好为一红一黄时才获得礼品,那么小明可获得礼品的概率为 ( )A.12 B.13 C.14 D.11815.若22121x y m m +=--为双曲线方程,则m 的取值范围是 ( ) A .(-∞,1) B.(2,+∞) C .(1,2) D .(-∞,1)∪(2,+∞)第Ⅱ卷(非选择题 共90分)注意事项:1.非选择题必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。

高职单招数学之函数单调性专题练习试题及答案

高职单招数学之函数单调性专题练习试题及答案

高职单招数学之函数单调性专题练习试题一、单选题1.函数的单调增区间是A .B .C .D .2.已知函数1()x xf x e e =-,其中e 是自然对数的底数.则关于x 的不等式(21)(1)0f x f x -+-->的解集为A .4,(2,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭B .(2,)∞C .4,(2,)3⎛⎫-∞⋃+∞ ⎪⎝⎭D .(,2)-∞3.(多选题)已知函数()f x 的定义域是(0,)+∞且()()()f x y f x f y ⋅=+,当1x >时,()0f x >,且113f ⎛⎫=- ⎪⎝⎭,下列说法正确的是()A .()10f =B .函数()f x 在(0,)+∞上单调递减C .()()()1112320210232021f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭D .满足不等式()()12f x f x --≥的x 的取值范围为91,8⎛⎤ ⎥⎝⎦二、填空题4.用{}min ,a b 表示a ,b 两数中的最小值,若函数{}()min ,2f x x x =-的递增区间为_______.5.函数()f x =__________.6.已如函数3()5,(2,2)f x x x x =+∈-,若()2()20f t f t +->.则t 的取值范围为___________.7.设函数()f x 的导函数为()f x ',若对任意的x R ∈,都有()()0f x f x '+>成立,且()12f =,则不等式()12e xf x ->的解集为______________.8.若函数2,1()(4),1x ax x f x a x x ⎧-+<=⎨-≥⎩在R 上单调递增,则实数a 的取值范围为________.9.设()f x 是定义在R 上的偶函数,且当0x ≥时,()e x f x =,若对任意的[]0,1x b ∈+,不等式()()()2f x b f x +≥恒成立,则实数b 的取值范围为___________.10.已知()42f x x x =+,则关于x 的不等式()()12f x f +<的解是________.三、解答题11.已知函数()21mx n f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭,(1)求实数m ,n 的值;(2)用定义证明()f x 在()1,1-上是增函数.12.设函数()()m f x x m x=+∈R ,且()13f =.(1)请说明()f x 的奇偶性;(2)试判断()f x 在)+∞上的单调性,并用定义加以证明.13.函数()13133x x f x +-+=+.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在定义域上的单调性.高职单招数学之函数单调性专题练习试题参考答案1.B 【解析】试题分析:函数的定义域为(1,3)-,令2()23u f x x x ==-++,由二次函数性质可知()f x 在区间(1,1]-上单调递增,在区间[1,3)上单调递减,而14log y u =在定义域内是减函数,由复合的性质可知的递增区间为[1,3),故选B .2.B【解析】函数()1f x xx e e =-,其中e 是自然对数的底数,由指数函数的性质可得()f x 是递增函数,()()11x x x x f x e e f x e e---=-=-=- ,()f x \是奇函数,那么不等式()()2110f x f x -+-->,等价于()()()2111f x f x f x ->---=+,等价于211x x ->+,解得2x >,等式()()2110f x f x -+-->的解集为()2,∞,故选B.3.ACD【解析】令1x y ==得(1)(1)(1)f f f =+,所以(1)0f =,A 正确;设任意的12,(0,)x x ∈+∞,且12x x <,则211x x >,21()0x f x >,所以22211111()()()(()x x f x f x f x f f x x x =⋅=+>,所以()f x 在(0,)+∞上单调递增,B 错;令1y x =,则11(()(0f x f x f x x⋅=+=,所以()()()111232021232021f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1112320210000232021f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,C 正确;113f ⎛⎫=- ⎪⎝⎭,则1(3)()13f f =-=,(9)(33)(3)(3)2f f f f =⨯=+=,不等式()()12f x f x --≥化为()(1)(9)f x f x f ≥-+,即()(99)f x f x ≥-,又()f x 在(0,)+∞上递增,所以99990x x x ≥-⎧⎨->⎩,解得918x <≤,D 正确.故选:ACD .4.[]0,1,[2,)+∞【解析】试题分析:函数{}()min ,2f x x x =-的图象如下图所示,故由图可得:函数{}()min ,2f x x x =-的递增区间为[]0,1,[2,)+∞.所以答案应填:[]0,1,[2,)+∞.5.13,42⎡⎤⎢⎥⎣⎦【解析】令2230x x -++≥,解得31,2x ⎡⎤∈-⎢⎣⎦,设12y t =,223t x x =-++,外函数12y t =为增函数,则复合函数的减区间即为内函数的减区间,223t x x =-++,对称轴为14x =,其开口向下,故其减区间为13,42⎡⎤⎢⎥⎣⎦.故答案为:13,42⎡⎤⎢⎥⎣⎦.6.(1,0)(0,2)- 【解析】3()5f x x x =+,()3()5f x x x f x -==---,函数为奇函数.2()350f x x '=+>,函数单调递增,()2()20f t f t +->,即()2(2)f t f t ->,故22222222t t t t -<<⎧⎪-<-<⎨⎪>-⎩,解得(1,0)(0,2)t ∈-⋃.故答案为:(1,0)(0,2)- .7.()1,+∞【解析】令()()e x g x f x =,则()()()e x g x f x f x ⎡⎤=+⎣⎦'',因为()()e 0,,0x x R f x f x ∀∈+'>>,所以()0g x '>,所以()g x 是R 上的增函数,不等式()12x f x e ->等价于()e 2e x f x >,因为()12f =,所以()12e g =,()e 2e x f x >等价于()()1g x g >,解得1x >,即不等式的解集为()1,+∞.故答案为:()1,+∞8.52,2⎡⎤⎢⎥⎣⎦【分析】根据给定条件结合分段函数在R 上单调递增的性质列出不等式组,解此不等式组即可作答.【解析】因函数2,1()(4),1x ax x f x a x x ⎧-+<=⎨-≥⎩在R 上单调递增,于是得124014a a a a ⎧≥⎪⎪->⎨⎪-+≤-⎪⎩,解得522a ≤≤,所以实数a 的取值范围为52,2⎡⎤⎢⎥⎣⎦.故答案为:52,2⎡⎤⎢⎥⎣⎦9.314⎛⎤-- ⎥⎝⎦,【解析】因为()f x 是定义在R 上的偶函数,且对[01]x b ∀∈+,恒有2()()f x b f x +≥,所以2()()()f x b f x b f x +=+≥,因为0x ≥时,()x f x e =,所以22()x b x x e e e +≥=,又函数x y e =在[0)+∞,上得到递增,所以2x b x +≥,两边同时平方,得22224x bx b x ++≥,即22320x bx b --≤,令22()32g x x bx b =--,即()g x 对[01]x b ∀∈+,恒小于或等于0,所以(0)0(1)010g g b b ≤⎧⎪+≤⎨⎪+>⎩,即()()22203121010b b b b b b ⎧-≤⎪⎪+-+-≤⎨⎪+>⎪⎩,解得314b -<≤-.即b 的取值范围为3(1]4--,.故答案为:3(1]4--,10.()3,1-【解析】因为42()f x x x =+,所以()f x 为偶函数,且在(0,)+∞为增函数.所以(1)(2)f x f +<根据偶函数的对称性知:212x -<+<,解得:31x -<<.故答案为:(3,1)-11.(1)1m =,0n =(2)证明见解析【解析】(1)()f x 为()1,1-上的奇函数,()00f ∴=,0n ∴=,1225f ⎛⎫= ⎪⎝⎭ ,22554m ∴=;1m ∴=(2)()21x f x x =+;设1x ,()21,1x ∈-,且12x x <,则:()()1212221211x x f x f x x x -=-++()()()()12122212111x x x x x x --=++1x ,()21,1x ∈-,且12x x <;120x x ∴-<,1210x x ->;()()120f x f x ∴-<,即()()12f x f x <;()f x \在()1,1-上是增函数.【点睛】本题考查奇函数的定义,以及根据增函数的定义证明函数为增函数的方法与过程.属于一般题.12.(1)奇函数,理由见解析(2)函数()f x在)+∞上为增函数,证明见解析【解析】(1)()113f m =+=,可得2m =,则()2f x x x=+,该函数的定义域为{}0x x ≠,对任意的0x ≠,()()2f x x f x x -=--=-,故函数()f x 为奇函数.(2)函数()f x在)+∞上为增函数,证明如下:任取1x、)2x ∈+∞且12x x >,则122x x >,120x x ->,则()()()()()()12121212121212121222220x x x x x x f x f x x x x x x x x x x x ---⎛⎫⎛⎫-=+-+=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12f x f x >,故函数()f x在)+∞上为增函数.13.(1)()f x 为奇函数,证明见解析;(2)在R 上为减函数,证明见解析.【解析】(1)()f x 为奇函数,()()1311333313x x x x f x +-+-==++ ,定义域为R ,关于原点对称,又()()()()()()31313313133313331x x xx x x x x f x f x --------====-+⨯⨯++,所以函数()f x 为奇函数.(2)()f x 在R 上为减函数,()()()()()21313213313313313x x x x x f x -+-===-+++ ,任取12R x x ∈、且12x x <,则()()()()1212212133313313x x f x f x ⎡⎤⎡⎤⎢⎥⎢⎥-=---++⎢⎥⎢⎥⎣⎦⎣⎦()()()()()2112122332231331331313x x x x x x -=-=++++()()21121212,330,130,130,0x x x x x x f x f x <∴->+>+>∴-> ,即()()12f x f x >.因此,函数()13133x x f x +-+=+在R 上为减函数.。

2016年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设i 为虚数单位,则复数2(1)i +=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】试题分析:由题意,22(1)122i i i i +=++=,故选C. 考点:复数的运算.【名师点睛】本题考查复数的运算.数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.2. 设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.3. 抛物线24y x =的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.4. 为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度 【答案】A考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,函数()y f x =的图象向右平移a 个单位得()y f x a =-的图象,而函数()y f x =的图象向上平移a 个单位得()y f x a =+的图象.左右平移涉及的是x 的变化,上下平移涉及的是函数值()f x 加减平移的单位.5. 设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( ) (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A 【解析】试题分析:由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,选A. 考点:充分必要条件.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6. 已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D 【解析】试题分析:()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 极小值为()2f ,由已知得2a =,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,7. 某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(A)2018年 (B) 2019年 (C)2020年 (D)2021年 【答案】B考点:1.增长率问题;2.常用对数的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.8. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A)35 (B) 20 (C)18 (D)9 【答案】C考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.9. 已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r的最大值是( ) (A)443 (B) 449(C) 43637+ (D) 433237+【答案】B 【解析】考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DA DBDC ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()(22214x y BM +++=,因此可用圆的性质得出最值.因此本题又考查了数形结合的数学思想.10. 设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A.考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.二、填空题:本大题共5小题,每小题5分,共25分.11.0750sin = .【答案】12考点:三角函数诱导公式【名师点睛】本题也可以看作是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解.12.已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.13.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .【答案】-2考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性()()f x f x T =+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区间上,再由函数式求值即可.15.在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: ①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】 试题分析:对于①,若令(1,1)P ,则其伴随点为11(,)22P '-,而11(,)22P '-的伴随点为(1,1)--,而不是P ,故①错误;对于②,设曲线(,)0f x y =关于x 轴对称,则(,)0f x y -=对曲线(,)0f x y =表示同一曲线,其伴随曲线考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16、(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.0.500.42(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.a ;(Ⅱ)36000;(Ⅲ)2.04.【答案】(Ⅰ)0.30试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000.(Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.17、(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,12BC CD AD==.D CBAP(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD的中点M,证明详见解析;(Ⅱ)证明详见解析. 试题解析:M D CBAP(I)取棱AD的中点M(M∈平面P AD),点M即为所求的一个点.理由如下:因为AD‖BC,BC=12AD,所以BC‖AM, 且BC=AM.所以四边形AMCB是平行四边形,从而CM‖AB.又AB⊂平面P AB,CM ⊄平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点) (II)由已知,P A⊥AB, P A⊥CD,因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以P A⊥平面ABCD. 从而P A⊥BD.因为AD∥BC,BC=12 AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.考点:线面平行、线线平行、线线垂直、线面垂直.【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.18、(本题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C a b c +=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.试题解析:(Ⅰ)根据正弦定理,可设sin a A =sin b B =sin c C =k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c中,有 cos sin A k A +cos sin B k B =sin sin C k C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C ,所以sin A sin B =sin C .(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B , 故sin tan 4cos B B B ==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.19、(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ . (Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式; (Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+. 【答案】(Ⅰ)1=n n a q -;(Ⅱ)1(31)2n n +-.(Ⅱ)先利用双曲线的离心率定义得到n e 的表达式,再由22e =解出q 的值,最后利用等比数列的求和公式求解计算.试题解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立.所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2323+a a a a ,,成等差数列,可得32232=a a a a ++,所以32=2,a a ,故=2q .所以1*2()n n a n -=?N.考点:数列的通项公式、双曲线的离心率、等比数列的求和公式【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第(Ⅰ)问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n -代换n (2n ≥),然后两式相减,可得n a 的递推式,利用这种方法解题时要注意1a ;在第(Ⅱ)问中,按题意步步为营,认真计算.不需要多少解题技巧,符合文科生的特点.20、(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点1)2P 在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:MA MB MC MD ⋅=⋅.【答案】(1)2214x y +=;(2)证明详见解析. 【解析】试题分析:(Ⅰ)由椭圆两个焦点与短轴的一个端点是正三角形的三个顶点可得2a b =,椭圆的标准方程中可减少一个参数,再利用1)2P 在椭圆上,可解出b 的值,从而得到椭圆的标准方程;(Ⅱ)首先设出直线l 方程为12y x m =+,同时设交点1122(,),(,)A x y B x y ,把l 方程与椭圆方程联立后消去y 得x 的二次方程,利用根与系数关系,得1212,x x x x +,由M A M B ⋅214AB =求得MA MB ⋅(用m 表示),由OM 方程12y x =-具体地得出,C D 坐标,也可计算出MC MD ⋅,从而证得相等. 试题解析:(I )由已知,a =2b . 又椭圆22221(0)x y a b a b +=>>过点1)2P ,故2213414b b +=,解得21b =. 所以椭圆E 的方程是2214x y +=.所以25)(2)4MC MD m m m ⋅=-=-. 又222212*********[()()][()4]4416MA MB AB x x y y x x x x ⋅==-+-=+- 22255[44(22)](2)164m m m =--=-. 所以=MA MB MC MD ⋅⋅.考点:椭圆的标准方程及其几何性质.【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题解决问题的能力和数形结合的思想.在涉及到直线与椭圆(圆锥曲线)的交点问题时,一般都设交点坐标为1122(,),(,)x y x y ,同时把直线方程与椭圆方程联立,消元后,可得1212,x x x x +,再把MA MB ⋅用12,x x 表示出来,并代入刚才的1212,x x x x +,这种方法是解析几何中的“设而不求”法.可减少计算量,简化解题过程.21、(本小题满分14分)设函数2()ln f x ax a x =--,1()xe g x x e =-,其中q R ∈,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.【答案】(1)当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,.(Ⅰ)的结论,缩小a 的范围,设()g x =111ex x --11x x e x xe ---,并设()s x =1e x x --,通过研究()s x 的单调性得1x >时,()0g x >,从而()0f x >,这样得出0a ≤不合题意,又102a <<时,()f x 的极小值点1x =>,且(1)0f f <=,也不合题意,从而12a ≥,此时考虑1211()2e x h x ax x x -¢=-+-得'()h x 2111x x x x>-+-0>,得此时()h x 单调递增,从而有()(1)0h x h >=,得出结论. 试题解析:(I )2121'()20).ax f x ax x x x-=-=>( 0a ≤当时, '()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增.因此()h x 在区间1+)∞(,单调递增.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立.综上,a ∈1+)2∞[,.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.。

(完整版)四川省2016年高职院校单独招生

(完整版)四川省2016年高职院校单独招生

秘密★启用前四川省2016年高职院校单独招生文化考试(中职类)·数学一、单项选择题(本大题共10小题,每小题5分,共50分)。

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号 内。

错选、多选或未选均无分。

1.设集合A ={1,2,3},B ={2,3,4},则A ∩B = 【 】 A.∅ B.{2,3} C.{1,4} D.{1,2,3,4}2.函数y =x -12的定义域是 【 】 A.(-∞,1] B.[1,+∞) C.(-∞,1) D.(1,+∞)3.已知向量(a +2b )a ⋅=0,则 【 】 A.a ⊥b B.a //b C.(a +2b )⊥a D.(a +2b )//a4.底面半径为5cm ,母线长为4cm 的圆柱体积为 【 】 A.100cm 3 B.100πcm 3 C.3100πcm 3 D.40πcm 35.三角函数y =2sin x 在区间[-π,π]上的图像为 【 】6.某面试考场有6张考题签,编号为1,2,3,4,5,6.考试时,每个考生任取一张答题后再放回,则两个考生同时抽中3号签的概率为 【 】 A.41 B.61 C.301 D.3617.抛物线y 2=4x 的准线方程为 【 】 A.x =1 B.x =2 C.x =-1 D.x =-2 8.如图所示,正方体ABCD —A 1B 1C 1D 1中,下列结论不成立的是 【 】得分评卷人复查人CDB 1B A 1D 1 C 1 A A.A 1C 1⊥B 1C B.BB 1⊥A 1D 1 C.AB //D 1C 1D.BB 1⊥平面ABCD9.一元二次方程x 2+mx +4=0无实数解,则m 的取值范围为 【 】 A.(-∞,-4)∪(4,+∞) B.(-∞,-4]∪[4,+∞) C.(-4,4) D.[-4,4] 10.某通讯公司提供了三种移动电话收费方式.方式一:收月基本费18元,送120分钟通话时间,超过120分钟的部分再以每分钟0.19元的价格按通话时间计费;方式二:收月基本费28元,送220分钟通话时间,超过220分钟的部分再以每分钟0.19元的价格按通话时间计费;方式三:收月基本费38元,送310分钟通话时间,超过310分钟的部分再以每分钟0.19元的价格按通话时间计费.下列说法错误的是: 【 】 A.若通话时间少于120分钟,则选择方式一更省钱 B.若通话时间多于310分钟,则选择方式三更省钱C.若通话时间多于120分钟且少于170分钟,则选择方式二更省钱D.若通话时间多于180分钟且少于270分钟,则选择方式二更省钱二、填空题(本大题共5个小题,每小题4分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分.11.已知向量a =(1,-1),b =(0,5),则3a +b =________。

2016四川职业技术学院高职单招测试题(含答案解析)

2016四川职业技术学院高职单招测试题(含答案解析)

考单招——上高职单招网(考试时间:90分钟满分:100分)选择题(每题4分,共100分):第1题:A.suffer B. flu C. current D. plus【正确答案】B讲解:【解析】[&#652;] [u:] [&#652;] [&#652;] 选B第2题:We have plenty of time to catch the train.A.a lot ofB.a lotC.manyD.kinds of【正确答案】A 讲解:a lot of =lots of 许多,大量修饰可数或不可数名词,many 修饰可数名词。

选A第3题:下列对加横线字词解释有错误的一项是()A.礼尚往来(崇尚)沸反盈天(充满)锱铢必较(古代计时单位)B.引吭高歌(喉咙)明日黄花(菊花)残曛烛天(落日的余光)C.峨冠博带(高)有史可稽(考核)层峦叠嶂(重叠的山峰)D.冠冕堂皇(礼帽)天理昭彰(明显)斑驳陆离(色彩繁杂的样子)【正确答案】A 讲解:A选项的锱铢必较中的锱是古代重量单位,四锱是一两。

考试做这一类题如果把握不准,最好用排除法,而平时做题一定要每一个都查清楚、记牢固。

第4题:As is known to us, children who are not active or ______ diet is high in fat will gain weight quickly.A. thatB. whatC. whichD. whose 【正确答案】D讲解:正如我们所知,不爱运动或者饮食中脂肪含量过高的孩子会快速增肥。

定语从句引导词whose+n.表示某人的。

选D第5题:The fact the earth is becoming warmer and warmer has worri ed many scientists.考单招——上高职单招网A. whatB. whichC. thatD. though 【正确答案】C讲解:the fact that 同位语从句。

川省高职单招数学试题

川省高职单招数学试题

川省高职单招数学试题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-18年单招题一、选择题:1、函数x y =的定义域上( )A 、{0≤x x }B 、{0 x x }C 、{0≥x x }D 、{0 x x }2、已知平面向量a =(1,3),b =(-1,1),则b a •=( )A 、(0,4)B 、(-1,3)C 、0D 、2 3、93log =( )A 、1B 、2C 、3D 、44、下列函数在其定义域内是增函数的是( )A 、x y =B 、x y sin =C 、2x y =D 、xy 1= 5、不等式)2)(1(--x x <0的解集为( )A 、(1,2)B 、[]2,1C 、),2()1,(+∞⋃-∞D 、][),21,(+∞⋃-∞6、直线13+=x y 的倾斜角为( ) A 、6π B 、4π C 、3π D 、43π 7、已知某高职院校共有10个高职单招文化考试考场,每名考生被安排到每个考场的可能性相同,两名考试一同前往该校参加高职单招文化考试,则他们在同一个考场考试的概率为( )A 、91B 、101C 、901D 、1001 8、过点A (-1,1)和B (1,3),且圆心在x 轴上的圆的方程是( )A 、2)2(22=-+y xB 、10)2(22=-+y xC 、22-22=+y x )( D 、102-22=+y x )( 9、某报告统计的2009-2017年我国高速铁路运营里程如下所示: 根据上图,以下关于2010-2017年我国高速铁路运营里程的说法错误的是( )A 、高速铁路运营里程逐年增加B 、高速铁路运营里程年增长量最大的年份是2014年C 、与2014年相比,2017年高速铁路运营里程增加了1倍以上D 、与2012年相比,2017年高速铁路运营里程增加了1倍以上10、已知函数{x x x f 22)(-=00≤x x 若b a ,为实数,且ab <0,则)(b a f -=( )A 、)()(b f a f -B 、)()(b f a fC 、)()(b f a f D 、)()(a f b f 二、填空题:11、已知集合A={1,2,3},B={1,a },B A ⋃={1,2,3,4},则a =______12、函数x x y cos sin =的最小正周期是___________13、已知灯塔B 在灯塔A 的北偏东30°,两个灯塔相距20海里,从轮船C 上看见灯塔A 在它的正南方向,灯塔B 在它的正东北方向,则轮船C 与灯塔B 的距离为_______海里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则M N =I ( )A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2. 不等式的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( )A .2B .3C .4D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数D. 既增又减函数5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D.127. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A.4 B.5 C.6 D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( ) A .6- B .6 C .32 D .32- 点)5,0(到直线x y 2=的距离为() A .25B .5C .23D .2521<-x10. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种 D .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ . 15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[﹣M ,M].例如,当φ1(x )=x 3,φ2(x )=sinx 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f(x )∈A”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b”;②函数f (x )∈B 的充要条件是f (x )有最大值和最小值; ③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B . ④若函数f (x )=aln (x+2)+(x >﹣2,a ∈R )有最大值,则f (x )∈B .其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。

(1)求数列{}n a 的通项公式;(2)记数列1{}n a 的前n 项和n T ,求得使1|1|1000n T -<成立的n 的最小值。

17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N 。

(I )请将字母标记在正方体相应的顶点处(不需说明理由) (II )证明:直线//MN 平面BDH (III )求二面角A EG M --余弦值19.(12分)(2014•四川)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=﹣2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2﹣,求数列{}的前n 项和T n .GFHEC DA B20.(本小题13分)如图,椭圆2222:1+=x y E a b的离心率是2,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点。

当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为。

(1) 球椭圆E 的方程; (2) 在平面直角坐标系xoy 中,是否存在与点P 不同的定点Q ,使得=QA PAQB PB恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由。

21.(14分)(2014•四川)已知函数f (x )=e x﹣ax 2﹣bx ﹣1,其中a ,b ∈R ,e=2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.11.解答:解:复数===﹣2i ,故答案为:﹣2i .12.解答: 解:∵f(x )是定义在R 上的周期为2的函数, ∴=1.故答案为:1.13.解答: 解:过A 点作AD 垂直于CB 的延长线,垂足为D , 则Rt△ACD 中,∠C=30°,AD=46m∴CD==46≈79.58m.又∵Rt△ABD 中,∠ABD=67°,可得BD==≈19.5m∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m 故答案为:60m14.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:515.解答:解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值.∴命题②“函数f(x)∈B的充要条件是f(x)有最大值和最小值.”是假命题;(3)对于命题③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.∴f(x)+g(x)∈R.则f(x)+g(x)∉B.∴命题③是真命题.(4)对于命题④∵函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,∴假设a>0,当x→+∞时,→0,ln(x+2)→+∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符;假设a<0,当x→﹣2时,→,ln(x+2)→﹣∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符.∴a=0.即函数f(x)=(x>﹣2)当x >0时,,∴,即;当x=0时,f (x )=0; 当x <0时,,∴,即.∴.即f (x )∈B .故命题④是真命题. 故答案为①③④.三、解答题16. 解:(1)当2n ≥时有,11112(2)n n n n n a S S a a a a --=-=---则12n n a a -=(2)n ≥12nn a a -= (2n ³) 则{}n a 是以1a 为首项,2为公比的等比数列。

又由题意得21322a a a +=+1112224a a a ⇒⋅+=+12a ⇒= 则2n n a =*()n N ∈ (2)由题意得112n n a = *()n N ∈ 由等比数列求和公式得11[1()]1221()1212n n n T -==-- 则2111-=()22n n T ()-= 又Q 当10n =时, 10911=1024=51222(),() 111000n T ∴-<成立时,n 的最小值的10n =。

点评:此题放在简答题的第一题,考察前n 项和n S 与通项n a 的关系和等比数列的求和公式,难度较易,考察常规。

可以说是知识点的直接运用。

所以也提醒我们在复习时要紧抓课本,着重基础。

17.解答: 解:(1)X 可能取值有﹣200,10,20,100. 则P (X=﹣200)=,P (X=10)== P (X=20)==,P (X=100)==,故分布列为:X ﹣200 10 20 100 P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣. 由(1)知,每盘游戏或得的分数为X 的数学期望是E (X )=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.18.【答案】(I )直接将平面图形折叠同时注意顶点的对应方式即可 如图(II )QLKMH N GE FD CA B连接BD ,取BD 的中点Q ,连接MQ因为M 、Q 为线段BC 、BD 中点,所以////MQ CD GH 且1122MQ CD GH ==又因N 为GH 中点,所以12NH GH =得到NH MQ =且//NH MQ 所以四边形QMNH 为Y 得到//QH MN 又因为QH ⊂平面BDH 所以//MN 平面BDH (得证) (III )连接AC ,EG ,过点M 作MK AC ⊥,垂足在AC 上,过点K 作平面ABCD 垂线,交EG 于点L ,连接ML ,则二面角A EG M MLK --=∠ 因为MK ⊂平面ABCD ,且AE ABCD ⊥,所以MK AE ⊥ 又AE ,AC ⊂平面AEG ,所以MK ⊥平面AEG且KL AEG ⊂,所以MK ⊥KL ,所以三角形MKL 为RT ∆ 设正方体棱长为a ,则AB BC KL a ===, 所以2a MC =, 因为45MCK ∠=︒,三角形MCK 为RT ∆,所以cos 454MK MC =∠︒=所以4tan 4MK MLK KL a ∠===,所以cos MLK ∠=所以cos cos 3A EG M MLK <-->=∠=19.解解:(1)∵点(a 8,4b 7)在函数f (x )=2x的图象上,答:∴,又等差数列{a n}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴S n==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2x ln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴a n=a1+(n﹣1)d=1+(n﹣1)×1=n,∴b n=2n.∴.∴T n=+…++,∴2T n=1+++…+,两式相减得T n=1++…+﹣=﹣==.20:【答案】解:(1)由题知椭圆过点)。

相关文档
最新文档