初三数学整式的乘除单元测试
整式的乘除(单元测试卷及答案)
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.954a a a =+B.33333a a a a =⋅⋅C.954632a a a =⨯D.()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2()A.1-B.1C.0D.19979.计算(a -b )(a+b )(a +b )(a -b )的结果是()A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为() A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
12.已知51=+x x ,那么221xx +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.16.若622=-n m ,且3=-n m ,则=+n m .三、解答题(共8题,共66分)17计算:(本题9分)(1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(3)(2266m n m -18、(本题9分)(1)先化简,再求值:(2a 21=,b 19、(本题8分)如图所示,长方形ABCD 是“,且E 为AB 边的中点,CF=BC 坪,求x 2和x 3项,求m 和n 的值21=2007,求ac bc ab c b a ---++222的值。
22]y y y x y +-÷-)2())(的值,与y 的值无关。
整式的乘除单元测试题
整式的乘除单元测试题1. 计算下列整式的乘积:a) $3x \cdot 2y$b) $(-5a) \cdot 4$c) $2xy \cdot (-3z)$d) $(2x + 3y) \cdot (-4)$2. 计算下列整式的商:a) $\dfrac{4xy}{2x}$b) $\dfrac{(-6a^2)}{3a}$c) $\dfrac{5x^2}{(-2x)}$d) $\dfrac{(3x + 2y)}{(-4)}$3. 综合运算:计算下列整式的乘积或商:a) $4xy \cdot 2x$b) $\dfrac{6a^2}{3a} \cdot (-2a)$c) $(-3m) \cdot \dfrac{2m}{(-5)}$d) $\dfrac{(-2x + 3y)}{(-4)} \cdot (-6)$4. 选择题:根据题目给出的条件,选择最恰当的答案。
a) 若$a = 3$,$b = 5$,$c = -2$,则$(2ab + 3c) \cdot (-4)$的结果是:① $-28$② $28$③ $-44$④ $44$b) 若$p = -2$,$q = 4$,$r = 3$,则$\dfrac{(3p + 2qr)}{6}$的结果是:① $-2$② $-4$③ $-1$④ $1$c) 若$x = -3$,$y = 4$,则$(-2x - 3y^2) \cdot (-2)$的结果是:① $32$② $-32$③ $-58$④ $58$5. 解答题:a) 计算$2x \cdot 3y$的结果,并将结果化简。
b) 计算$\dfrac{4xy}{2x}$的结果,并将结果化简。
c) 计算$(5a + 2b) \cdot (-3)$的结果,并将结果化简。
d) 计算$\dfrac{(-3x^2y)}{(-6xy)}$的结果,并将结果化简。
6. 解答题:a) 若$a = 2$,$b = 4$,$c = -1$,计算$(2a + b) \cdot (3a - c)$的结果。
第一章《整式的乘除》单元测试(含答案)
第一章 整式的乘除单元测试(BJ)(时间:120分钟 满分:150分)一、选择题(本大题共15小题每小题3分,共45分)1.计算a ·a 3的结果是(A )A .a 4B .-a 4C .a -3 D .-a 32.计算(xy 2)3结果正确的是(B )A .xy 5B .x 3y 6C .xy 6D .x 3y 5 3.计算(-2)0+9÷(-3)的结果是(B )A .-1B .-2C .-3D .-4 4.下列运算正确的是(C )A .x 4·x 3=x 12B .(x 3)4=x 81C .x 4÷x 3=x (x ≠0)D .x 3+x 4=x 75.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为(D ) A .7.7×10-5 m B .77×10-6 mC .77×10-5 m D .7.7×10-6 m6.若□×3xy =3x 2y ,则□内应填的单项式是(C )A .XyB .3xyC .xD .3x 7.计算a 5·(-a )3-a 8的结果是(B )A .0B .-2a 8C .-a 16D .-2a 16 8.2-3可以表示为(A )A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2) 9.下列运算正确的是(C )A .2x (x 2+3x -5)=2x 3+3x -5B .a 6÷a 2=a 3C .(-2)-3=-18 D .(a +b )(a -b )=(a -b )210.已知x +y -3=0,则2y ·2x 的值是(D )A .6B .-6 C.18 D .811.如果x 2+ax +9=(x +3)2,那么a 的值为(C )A .3B .±3C .6D .±612.如果(2x +m )(x -5)展开后的结果中不含x 的一次项,那么m 等于(D ) A .5 B .-10 C .-5 D .10 13.已知a =2 0162,b =2 015×2 017,则(B )A .a =bB .a >bC .a <bD .a ≤b 14.如果3a =5,3b =10,那么9a-b的值为(B )A.12B.14C.18 D .不能确定15.已知(x -2 015)2+(x -2 017)2=34,则(x -2 016)2的值是(D )A .4B .8C .12D .16 提示:把(x -2 015)2+(x -2 017)2=34变形为(x -2 016+1)2+(x -2 016-1)2=34. 二、填空题(本大题共5小题,每小题5分,共25分) 16.若(2x +1)0=1,则x 的取值范围是x ≠-12.17.化简:6a 6÷3a 3=2a 3.18.某班墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,已知这个长方形“学习园地”的长为3a ,则宽为2a -3b +1.19.当x =-2时,代数式ax 3+bx +1的值是2 017,那么当x =2时,代数式ax 3+bx +1的值是-2__015. 20.已知a 是-2的相反数,且|b +1|=0,则[-3a 2(ab 2+2a )+4a (-ab )2=÷(-4a )的值为5. 三、解答题(本大题共7小题,共80分) 21.(8分)计算:(1)2x 3·(-x )2-(-x 2)2·(-3x ); (2)(2x -y )2·(2x +y )2. 解:原式=2x 3·x 2-x 4·(-3x ) =2x 5+3x 5=5x 5. 解:原式=[(2x -y )·(2x +y )]2 =(4x 2-y 2)2 =16x 4-8x 2y 2+y 4.22.(8分)计算:(1)(-3)0+(-12)-2÷|-2|; (2)2017×1967.(用简便方法计算)解:原式=1+2 解:原式=(20+17)(20-17)=3. =202-(17)2=3994849.23.(10分)若a(x m y4)3+(3x2y n)2=4x2y2,求a、m、n的值.解:因为a(x m y4)3÷(3x2y n)2=4x2y2,所以ax3m y12÷9x4y2n=4x2y2.所以a÷9=4,3m-4=2,12-2n=2.解得a=36,m=2,n=5.24.(12分)化简求值:[(2x-y)(2x+y)+y(y-6x)+x(6y-2)]÷2x,其中x=1 009.解:原式=(4x2-y2+y2-6xy+6xy-2x)÷2x=(4x2-2x)÷2x=2x-1.当x=1 009时,原式=2×1 009-1=2 017.25.(12分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?解:原式=4x2-y2+2xy-8x2-y2+4xy+2y2-6xy=-4x2,因为这个式子的化简结果与y值无关,所以只要知道了x的值就可以求解,故小新说得对.26.(14分)图1是一个长为2x,宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x-y;(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x-y)2;方法2:(x+y)2-4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?(x+y)2,(x-y)2,4xy:(x-y)2=(x+y)2-4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,求(x-y)2.解:(x-y)2=(x+y)2-4xy=42-12=4.27.(16分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n-1)个数;(3)求第n行各数之和.解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.。
第一章《整式的乘除》单元检测题(三)及答案
第一章《整式的乘除》单元检测题(三)一.选择题1.下列等式错误的是()A.(2mn)2=4m2n2B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=﹣8m5n52.计算|﹣8|﹣(﹣)0的值是()A.﹣7 B.7 C.7D.93.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤4.计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+4 5.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.666.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm27.要使多项式(x2+px+2)(x﹣q)不含关于x的二次项,则p与q的关系是()8.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x9.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m10.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1 B.52013﹣1 C.D.二.填空题11.若a m=6,a n=9,则a2m-n=.12.已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为.13.如图,矩形ABCD的面积为(用含x的代数式表示).14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为.16.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣b c.若=12,则x=.三.解答题17.先化简,再求值:(1)(a+2)(a﹣2)+a(4﹣a),其中a=.(2)(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.(3)[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.18.先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.19.先化简(a+1)(a﹣1)+a(1﹣a)﹣a,再根据化简结果,你发现该代数式的值与a的取值有什么关系?(不必说理).20.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)小明同学用3张边长为a的正方形,4张边长为b的正方形,7张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(18a+45b)长方形,那么x+y+z=.24.(10分)(1)正方形的边长增大5 cm,面积增大75 cm2,求原正方形的边长及面积;(2)正方形的一边增加4 cm,邻边减少4 cm,所得长方形的面积与这个正方形的边长减少2 cm所解:(1)设原正方形的边长为x cm,由题意得(x+5)2-x2=75,解得x=5,则原正方形的边长为5 cm,面积为25 cm2(2)设原正方形的边长为y cm,由题意得(y+4)(y-4)=(y-2)2,解得y=5参考答案与解析一.选择题1.【分析】根据幂的乘方和积的乘方分别求出每个式子的值,再判断即可.解:A、结果是4m2n2,故本选项错误;B、结果是4m2n2,故本选项错误;C、结果是8m6n6,故本选项错误;B、结果是﹣8m6n6,故本选项正确;故选D.2.【分析】先依据绝对值和零指数幂的性质计算,然后再依据有理数的减法法则计算即可.解:原式=8﹣1=7.故选:B.3.【分析】分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.4.【分析】根据多项式乘多项式的法则进行计算即可.解:(2x2﹣4)(2x﹣1﹣x),=(2x2﹣4)(x﹣1),=x3﹣2x2﹣2x+4.故选:D.5.【分析】归纳总结得到展开式中第三项系数即可.解:解:(a+b)2=a2+2ab+b2;33223(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.6.【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选B.7.【分析】把式子展开,找到所有x2项的所有系数,令其为0,可求出p、q的关系.解:∵(x2+px+2)(x﹣q)=x3﹣qx2+px2﹣pqx+2x﹣2q=﹣2q+(2﹣pq)x+(p﹣q)x2+x3.又∵结果中不含x2的项,∴p﹣q=0,解得p=q.故选A.8.【分析】根据完全平方公式的结构对各选项进行验证即可得解.解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.9.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.10.【分析】根据题目提供的信息,设S=1+5+52+53+...+52012,用5S﹣S整理即可得解.解:设S=1+5+52+53+...+52012,则5S=5+52+53+54+ (52013)S=.故选:C.二.填空题11.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.解:∵a m=6,a n=9,∴a2m-n=a2m÷a n=(a m)2÷a n=36÷9=4,故答案为:412.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.解:∵a+b=3,a﹣b=﹣1,∴原式=(a+b)(a﹣b)=﹣3,故答案为:﹣3.13.【分析】表示出矩形的长与宽,得出面积即可.解:根据题意得:(x+3)(x+2)=x2+5x+6,故答案为:x2+5x+6.14.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=a b.故答案为:a b.15.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.解:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,故答案为2.16.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.三.解答题17.(1)【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.(2)【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.(3)【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.18.【分析】先根据非负数的性质,求出m,n的值,再根据多项式乘以多项式,即可解答.解:∵|m﹣1|+(n+)2=0,∴m﹣1=0,n+=0,∴m=1,n=﹣,=m2n+m4n2﹣1﹣m2n=m4n2﹣1==1×﹣1==﹣.19.【分析】分别进行平方差公式、单项式乘多项式的运算,然后合并得出结果.解:原式=a2﹣1+a﹣a2﹣a=﹣1.该代数式与a的取值没有关系.20.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x ﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x ﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢挑错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣621.【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a+b+c=11,ab+bc+ac=38代入(1)中得到的关系式,然后进行计算即可;(3)先列出长方形的面积的代数式,然后分解代数式,可得到矩形的两边长;22解:(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,所以(a+b+c)2=a2+b2+c2+2ab+2bc+2c a.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=112﹣38×2=121﹣76=54.(3)长方形的面积=3a2+7ab+4b2=(3a+4b)(a+b).所以长方形的边长为3a+4b和a+b,所以较长的一边长为3a+4b(4)∵长方形的面积=xa2+yb2+zab=(25a+7b)(18a+45b)=450a2+126ab+1125ab+315b2=450a2+1251ab+315b2,∴x=450,y=1251,z=315.∴x+y+z=450+1251+315=2016.故答案为:2016.- 11 -。
初中数学九年级下册-数学:第15章整式的乘除与因式分解整章测试
第十五章 整式的乘除与因式分解测试一、填空题(每题2分,共32分)1.2221(2)2xy x y = . 2.3(2)a a b c --+= . 3.(2)(2)m b b m -+= .4.2007200831()(1)43⨯-= .5.++xy x 1292 =(3x + )26._________________,,6,4822===+=-y x y x y x 则. 7.已知:________1,5122=+=+aa a a . 8.(________)749147ab aby abx ab -=+--.9.多项式5545y y x x n +-是五次三项式,则正整数n 可以取值为 .10.分解因式:a a 43-= ,222221y xy x +-= .11.如果=-+=-k a a k a 则),21)(21(312 .12.若===+-+-b a b b a a ________,,02910422则 .13.正方形面积为)0,0(2212122>>++b a y xy x 则这个正方形的周长是 .14.写一个二项式,使它可以先提公因式,•再运用公式来分解,•你写的二项式是_________,因式分解的结果是___ ___.15.已知8,6x y x y +=-=,求代数式2222x y x y ---= .16.如图1在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a>b ),把余下的部分拼成一个矩形,如图2,通过计算两个图形(阴影部分)的面积,•可以验证一个等式,则这个等式是___ __.二、解答题(共68分)17.(4分)计算:2(1)(23)a a a +-+.18.(4分)计算:25(2)(31)2(1)(5)y y y y y --+-+-.19.(4分)因式分解:222510m mn n -+.20.(4分)因式分解:212()4()a b x y ab y x ---.21.(5分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=.22.(5分)已知:2226100x x y y ++-+=,求,x y 的值.第16题图1 第16题图223.(5分)已知x (x -1)-(x 2-y )=-2.求222x y xy +-的值.24.(6分)已知2410a a --=,求(1)1a a -;(2)21()a a+.25.(6分)一个长80cm ,宽60cm 的铁皮,将四个角各裁去边长为bcm 的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26.(6分)某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)27.(7分)本市出租车的收费标准为:3千米以内(含3千米)收费5元,超过3千米的部分每千米收费1.20元(不足1千米按1千米计算),另加收0.60元的返空费. 用x 表示出应收费y 元的代数式; (1)设行驶路程为千米(x ≥3且取整数),(2)当收费为10.40元时,该车行驶路程不超过多少千米?路程数在哪个范围内?x28.(12分)由多项式的乘法法则知:若2()()x a x b x px q ++=++,则,p a b q a b =+=;反过来2()().x px q x a x b ++=++要将多项式2x px q ++进行分解,关键是找到两个数a 、b ,使,,a b p a b q +==如对多项式232x x -+,有3, 2.1,2,p q a b =-==-=-此时(1)(2)3,(1)(2)2,-+-=---=所以232x x -+可分解为(1)(2),x x --即232(1)(2)x x x x -+=--.(1)根据以上分填写下表:(2)根据填表,还可得出如下结论:当q 是正数时,应分解成两个因数a 、b 号,a 、b 的符号与 相同;当q 是负数时,应分解成的两个因数a 、b 号,a 、b 中绝对值较大的因数的符号与 相同.(3)分解因式.212x x --= ;276x x -+= .。
整式的乘除单元测试卷及答案
整式的乘除单元测试卷及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( ) A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a2+b 2的值等于( ) A 、84 B 、78 C 、12 D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定nm a b a二、填空题(共6小题,每小题4分,共24分) 11.设12142++mx x 是一个完全平方式,则m =_______。
整式的乘除测试题练习四套(含答案)
整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
初中数学整式的乘除练习题及参考答案
初中数学整式的乘除练习题及参考答案[注意:本文按照练习题格式组织,每题后附有参考答案。
]练习题1:计算以下两个整式的积:(2x + 3)(4x - 5)参考答案1:(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15练习题2:求下列整式的商式:(8x^3 - 10x^2 + 12x) ÷ 2x参考答案2:(8x^3 - 10x^2 + 12x) ÷ 2x = 4x^2 - 5x + 6练习题3:计算以下两个整式的乘积:(3a - 1)(a^2 + a + 2)参考答案3:(3a - 1)(a^2 + a + 2) = 3a^3 + 3a^2 + 6a - a^2 - a - 2 = 3a^3 + 2a^2 + 5a - 2练习题4:求下列整式的商式:(5x^3 - 4x^2 + 3x) ÷ x^2参考答案4:(5x^3 - 4x^2 + 3x) ÷ x^2 = 5x - 4 + 3/x练习题5:计算以下两个整式的乘积:(2y^2 + 3y - 4)(y^2 - 2y + 6)参考答案5:(2y^2 + 3y - 4)(y^2 - 2y + 6) = 2y^4 - 4y^3 + 12y^2 + 3y^3 - 6y^2 + 18y - 4y^2 + 8y - 24 = 2y^4 - y^3 + 2y^2 + 26y - 24练习题6:求下列整式的商式:(6b^3 + 4b^2 - 8b) ÷ 2b参考答案6:(6b^3 + 4b^2 - 8b) ÷ 2b = 3b^2 + 2b - 4练习题7:计算以下两个整式的乘积:(4x - 7)(2x + 5)参考答案7:(4x - 7)(2x + 5) = 8x^2 + 20x - 14x - 35 = 8x^2 + 6x - 35练习题8:求下列整式的商式:(10c^2 - 5c + 3) ÷ c参考答案8:(10c^2 - 5c + 3) ÷ c = 10c - 5 + 3/c练习题9:计算以下两个整式的乘积:(3y^2 - 2)(y^2 + 3y - 1)参考答案9:(3y^2 - 2)(y^2 + 3y - 1) = 3y^4 + 9y^3 - 3y^2 - 2y^2 - 6y + 2 = 3y^4 + 9y^3 - 5y^2 - 6y + 2练习题10:求下列整式的商式:(15a^3 - 10a - 5) ÷ 5a参考答案10:(15a^3 - 10a - 5) ÷ 5a = 3a^2 - 2 - 1/a通过以上的练习题和参考答案,相信你对初中数学整式的乘除运算有了更深入的理解。
历年初三数学整式的乘除基础测试及答案
《整式的乘除》基础测试(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x ( )【答案】x 4;2.2.4(m -n )3÷(n -m )2=___________.【答案】4(m -n ).3.-x 2·(-x )3·(-x )2=__________.【答案】x 7.4.(2a -b )()=b 2-4a 2.【答案】-2a -b .5.(a -b )2=(a +b )2+_____________.【答案】-4ab .6.(31)-2+ 0=_________;4101×0.2599=__________.【答案】10;16. 7.2032×1931=( )·( )=___________.【答案】20+32,20-32,39995. 8.用科学记数法表示-0.0000308=___________.【答案】-3.08×10-5.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.【答案】x -2y ,1x 2-4xy +4y .10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.【答案】-2,35.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是…………………………………………………………………( )(A )a n ·a 2=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6【答案】D .12.x 2m +1可写作…………………………………………………………………………( ) (A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +1【答案】C .13.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n )(21×10n )=102n 【答案】D . 14.化简(a n b m )n ,结果正确的是………………………………………………………( ) (A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )n m n b a 2【答案】C .15.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n (D )(a -b )3=(b -a )3【答案】B .16.下列各组数中,互为相反数的是……………………………………………………( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3 【答案】D .17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-27【答案】C .18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b【答案】B .(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2; 【答案】-43x 9y 8. (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);【答案】516ax 4y . (3)(2a -3b )2(2a +3b )2;【答案】16a 4-72a 2b 2+81b 4.(4)(2x +5y )(2x -5y )(-4x 2-25y 2); 【答案】625y 4-16x 4.(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );【答案】-10ab n -1+7a 2b n -4a n +3.(6)(x -3)(2x +1)-3(2x -1)2.【答案】-10x 2+7x -6.20.用简便方法计算:(每小题3分,共9分)(1)982;【答案】(100-2)2=9604.(2)899×901+1;【答案】(900-1)(900+1)+1=9002=810000.(3)(710)2002·(0.49)1000. 【答案】(710)2·(710)2000·(0.7)2000=49100. (四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.【提示】配方:(a +3)2+(b -5)2=0,a =-3,b =5,【答案】-41.22.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值. 【答案】222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.【答案】a 2+b 2=21[(a +b )2+(a -b )2]=6, ab =41[(a +b )2+(a -b )2]=2. 24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .【答案】用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x 【答案】⎪⎩⎪⎨⎧=-=.237y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).【答案】x >-31.。
初三数学中考复习 整式的乘除 专题训练 含答案
2019 初三数学中考复习整式的乘除专题训练1. 下列计算正确的是( B )A.a2+a3=a5 B.a2·a3=a5 C.(a2)3=a5 D.a3÷a2=a52. 下列运算不正确的是( B )A.a5+a5=2a5 B.2x(3x2+1)=6x3+1C.2a2·a-1=2a D.(2a3-a2)÷a2=2a-13. 化简(xy-1)2-(xy-1)(xy+1)的结果为( B )A.2xy-2 B.-2xy+2 C.2 D.-24. 人体中成熟的红细胞的平均直径为0.000 007 7 m,用科学记数法表示为( D ) A.7.7×10-5 m B.77×10-6 m C.77×10-5 m D.7.7×10-6 m 5.已知xa=3,xb=5,则x3a-2b=( A )A.2725B.910C.35D.526.如果(2x+m)(x-5)展开后的结果中不含x的一次项,那么m等于( D )A.5 B.-10 C.-5 D.107.计算(π-3.14)0+(-0.125)1000×81000的结果是( D )A.π-3.14 B.0 C.1 D.28.我们约定a⊗b=10a×10b,如2⊗3=102×103=105,那么4⊗8为( C )A.32 B.1032 C.1012 D.12109.若a+b=0,ab=-11,则a2-ab+b2的值是( D )A.-11 B.11 C.-33 D.3310.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小长方形的两边长(x>y),请观察图案,指出以下关系式中,不正确的是( D )A.x+y=7 B.x-y=2 C.4xy+4=49 D.x2+y2=2511.已知P=715m-1,Q=m2-815m(m为任意实数),则P,Q的大小关系为( C )A.P>Q B.P=Q C.P<Q D.不能确定12. 将(-30)0,(-3)2,(15)-1这三个数按从小到大的顺序排列,正确的结果是( D )A.(15)-1<(-30)0<(-3)2 B.(-30)0<(-3)2<(15)-1C.(-3)2<(15)-1<(-30)0 D.(-30)0<(15)-1<(-3)213. 若(x-12)0没有意义,则x-2的值为__4__.14.若(2x+1)0=1,则x的取值范围是__x≠-12__.15.若(2apbp+q)3=8a9b15,则p=__3__,q=__2__.16.若a为正整数,且x2a=6,则(2x5a)2÷4x6a的值为__36__.17.已知实数a,b满足a+b=3,ab=2,则a2+b2=__5__.18.已知一个长方形的周长为6a-4b,其中一边长为a-b,则这个长方形的面积为__2a2-3ab+b2__.19.当x=-2时,代数式ax3+bx+1的值是2019,那么当x=2时,代数式ax3+bx+1的值是__-2019__.20.如图,从直径是x+2y的圆中挖去一个直径为x的圆和两个直径为y的圆,则剩余部分的面积是__πxy+12πy2__.21.计算:(1)(-2x2y)3(3xy2)2-12x3y3(-5x5y4);解:原式=(-2)3·x6·y3·32·x2·y4+60x8y7=-72x8y7+60x8y7=-12x8y7(2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x);解:原式=(2x2-6xy)÷(-2x)=-x+3y(3)(x2-2xy)·9x2-(9xy3-12x4y2)÷3xy;解:原式=9x4-18x3y=3y2+4x3y=9x4-14x3y-3y2(4)20192-2019×2019-9992.解:原式=20192-(2019-1)(2019+1)-9992=20192-(20192-1)-9992=1-9992=(1-999)(1+999)=-99800022.先化简,再求值:(2a-b)2-(a+1-b)(a+1+b)+(a+1)2,其中a=12,b=-2.解:原式=4a2-4ab+b2-(a+1)2+b2+(a+1)2=4a2-4ab+2b2,当a=12,b=-2时,原式=1+4+8=1323.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.解:原式=2x2-2x-x+1-(x2+2x+1)+1=2x2-3x+1-x2-2x-1+1=x2-5x+1,当x2-5x=14时,原式=14+1=1524.某县直学校分为初中部和小学部,做广播操时,两部分别站两个不同的操场上进行,站队时,做到了整齐划一,初中部排成的是一个规范的长方形方阵,每排(3a-b)人,站有(3a +2b)排;小学部站的方阵更特别,排数和每排人数都是2(a+b).(1)试求该县直学校初中部比小学部多多少学生?(2)当a=10,b=2时,试求该县直学校一共有多少学生.解:(1)县直学校初中部比小学部多(5a2-5ab-6b2)名学生(2)当a=10,b=2时,该县直学校一共有1528名学生。
整式的乘除》单元考试题及答案
整式的乘除》单元考试题及答案第五章:整式的乘除单元测验数学试卷班级:______ 姓名:______ 得分:______一、填空题:(每小题3分,共30分)1.(-a)×(-a)×a = ________;-x²⁵³ ÷ (-x)³²² = ________2.-2x²y³3.2c³ × 3(-8x²) × (-x) × (-y)² = ________;abc² × (-2ac) =________4.(2²)² ÷ 2x = ________;5.-x²y × (x²-2xy+1/5) = ________;6.(-1/2) × (-4xy) = 12xy;-2 + (π-3.14) - (-2) = ________7.(a-10a+7) = ________;若x-3x+1=2,则x+(2/2)¹ =________8.若x²n=2,则2x³n = ________;若642 × 83 = 2ⁿ,则n = ________9.(-8)²⁰⁰⁴ = ________10.已知ab=-3,则-abab-ab-b = ________二、选择题:(每小题3分,共30分)11.下列各式计算正确的是()A、a² = a×a;B、3×5x² = 10x⁶;C、(-c)÷(-c) = -1;D、ab³ = a³b³12.下列各式计算正确的是()A、(x+2y)² = x²+4y²;B、(x+5)(x-2) = x²+3x-10;C、(-x+y)² = x²+y²;D、(x+2y)(x-2y) = x²-4y²13.用科学记数法表示的各数正确的是()A、 = 3.45×10⁴;B、0. = 4.3×10⁻⁵;C、-0. = -4.8×10⁻⁴;D、- = 3.4×10⁵14.当a=1/3时,代数式(a-4)(a-3)-(a-1)(a-3)的值为()A、3/4;B、-6;C、0;D、815.已知a+b=2,ab=-3,则a²-ab+b²的值为()A、11;B、12;C、13;D、1416.已知28a²bm÷4anb²=7b²,那么m、n的值为()A、m=4,n=2;B、m=4,n=1;17、设正方形边长为x,则面积为x^2,根据题意可得(x+3)^2-x^2=39,化简得x=6,答案为C。
2019-2020年九年级数学复习:整式的乘除单元综合练习题.docx
2019-2020 年九年级数学复习:整式的乘除单元综合练习题一、选择题:(每题 4 分,共 32 分)1.下列计算中正确的是()( A)a2a3a6( B)(a2)3a5( C)a6a2a3( D)a32a33a3 2.计算 (4 x2)(2 x1) 的结果是()( A)8x22( B)8x2x 2( C) 8x24x 22(D)8x 2x 23.( a b)(a b)()( A)a2b2( B)a22ab b2( C)a22ab b2( D)b2a24.5201332013()1325( A)1(B)1(C) 0( D) 20125.设5a b25a b2 A ,则A()33=(A) 30 ab( B)60 ab( C) 15 ab( D) 12 ab 6.用科学记数法表示0.00000310得()() 3.10×105(B) 3.1 ×106(C) 3.1 ×107( D) 3.10 ×108A7.为了应用 ( a b)(a b)a2b2的公式计算(x 2y1)(x 2 y1) ,下列变形正确的是()2( B)(A)x (2 y 1)(C)( x 2 y) 1 (x 2 y) 1(D)x(2 y1) x (2 y 1) x(2 y21)8. 若a b 2, a c 1 ,则(2a b c)2(c a)2的值为()(A) 1( B)2(C)9(D) 12二、填空题:(每小题 4 分,共24 分)9.( a+3)2=_________;(2a+ b)( a- b)=____________;10.10 -2×10 5= _______ ;(- 2a)3= _______;11.若 x5=32,则 x=______12.若 ( x 5) 2 x2 kx 25 ,则k=____________13.a 2m a 3mAa 3m 1 ,则 A =14. 已知梯形的上底长为(a b)cm ,下底长为(3a 2b)cm ,高为 (4 a b)cm ,则这个梯形的面积 =三、解答题:15. 计算:(每题 5 分,共 20 分)223(1) 11 3.14( 2)20132x 3 y 2xy 2x 3 y 2x22(3)6m 2n 6m 2 n 23m 2 3m 2(4) 1232 122 124 (运用乘法公式简便计算)16. ( 8 分)化简,再求值:2(x 1)2 5(x 1)(x 1) 3(x 1)2 ,其中 x 7.5 。
初三数学整式乘除练习题
初三数学整式乘除练习题1. 计算下列各题:(1) $2x^2 \cdot 3x^3$(2) $-4xy^2 \cdot (-2xy^3)$(3) $(2x^2y)^2 \cdot (-3xy^4)$(4) $(-5a^2b^3c^4) \cdot (-\frac{1}{5}abc^2)$2. 化简下列各题:(1) $(2xy)^2 \div (2x^2y)$(2) $(4x^2y^3)^2 \div (-2xy^2)$(3) $(3a^3b^4c)^2 \div (9a^5b^2c^3)$(4) $(-2x^2y^3)^2 \div (-6xy^2)$3. 解答下列各题:(1) 计算 $6x \cdot (3x^2 + 2xy - 5y)$(2) 计算 $-3a^3 \cdot (2a^2b + ab^2 - 4b^3)$(3) 计算 $(4xy - 2xz) \cdot (3xy + 2xz)$(4) 计算 $(-2ab^2 + 3bc^2) \cdot (5abc - 2b^2c)$4. 完成下列各题:(1) 若 $2x \cdot (3x - 4) = 0$,求$x$的值。
(2) 若 $-5ab \cdot (2a + 3b) = 0$,求$a$和$b$的值。
(3) 若 $(4xy + 2xz) \cdot (3xy - 2xz) = 0$,求$x$和$y$的值。
(4) 若 $(-3ac + 2bc) \cdot (5abc - 2bc) = 0$,求$a$,$b$和$c$的值。
5. 解答下列问题:(1) 说明整式的乘法法则。
(2) 说明整式的除法法则。
(3) 什么情况下,两个整式的乘积等于零?(4) 什么情况下,一个整式除以另一个整式的商等于零?练习题参考答案:1.(1) $6x^5$(2) $8x^2y^5$(3) $12x^3y^9$(4) $abc^7$2.(1) $x$(2) $-8x^3y^5$(3) $\frac{1}{3}ab^2$(4) $\frac{xˆ2y}{3}$3.(1) $18x^3 + 12x^2y - 30xy$(2) $-6a^5b - 3a^4b^2 + 12ab^4$(3) $12x^2y^2 - 4xz^2y^2 + 6x^2z^2$(4) $-10a^2b^4c - 4ab^3c^3 + 4b^3c^3$4.(1) $x = 0$ 或 $x = \frac{4}{3}$(2) $a = 0$ 或 $b = -\frac{2}{3}$(3) $x = 0$ 或 $y = \frac{2}{3}$(4) $a = 0$ 或 $b = 0$ 或 $c = \frac{2}{5}$5.(1) 整式的乘法法则是将同类项的系数相乘,底数相乘,指数相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 整式的乘除单元检测
一、填一填(每小题3分,共30分)
1.计算:(a 2b 3)2=________.
2.计算:(4m+3)(4m -3)=_________.
3.a 2-6a+_______=(a -_______)2.
4.若)72)((++x a x 的积中不含有x 的一次项,则a 的值是________
5.若a m =3,a n =2,则a m+n =_________.
6.若(x -3)(x+1)=x 2+ax+b ,则b a =________.
7.若x 3=-8a 9b 6,则x=______________.
8.若x+y=5,x -y=1,则xy=________.
9.计算(-0.25)2006×42006=________.
10.研究下列算式,你能发现什么规律?请运用你发现的规律完成下列填空:
1×3+1=4=22;
2×4+1=9=32;
3×5+1=16=42;
4×6+1=25=52;
第n 个等式为:___________________.
二、选一选(每小题3分,共30分)
11.在①(-1)0=1; ②(-1)3=-1; ③(-x )5÷(-x )3=-x 2中,
正确的式子有 (
) A .①② B .②③ C .①③ D .①②③
12.下列运算正确的是 (
)
A .a 4+a 5=a 9
B .a 3·a 3·a 3=3a 3
C .2a 4×3a 5=6a 9
D .(-a 3)4=a 7
13.下列各式中,计算结果为81-x2的是()A.(x+9)(x-9)B.(x+9)(-x-9)
C.(-x+9)(-x-9)D.(-x-9)(x-9)
14.计算a5·(-a)3-a8的结果等于()A.0 B.-2a8C.-a16D.-2a16
15.下列式子成立的是()A.(2a-1)2=4a2-1 B.(a+3b)2=a2+9b2
C.(a+b)(-a-b)=a2-b2D.(-a-b)2=a2+2ab+b2
16.x2+ax+121是一个完全平方式,则a为()A.22 B.-22 C.±22 D.0
17.一个长方形的面积为4a2-6ab+2a,它的长为2a,则宽为()A.2a-3b B.4a-6b C.2a-3b+1 D.4a-6b+2
18.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是()A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8
19.应用(a+b)(a-b)=a2-b2的公式计算(x+2y-1)(x-2y+1),则下列变形正确的是()A.[x-(2y+1)] 2B.[x+(2y+1)] 2
C.[x-(2y-1)][x+(2y-1)] D.[(x-2y)+1][(x-2y)-1]
20.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3 B.-1 C.1 D.5
三、做一做(共40分)
21.计算(每小题4分,共20分):
(1)(-1)2006-(3.14- )0;
(2)(2x 3y )2·(-2xy )+(-2x 3y )3÷(2x 2)
(3)(6m 2n -6m 2n 2-3m 2)÷(-3m 2);
(4)(2x -3)2-(2x+3)(2x -3)
(5))32)(32(++-+y x y x
22.(4分)运用乘法公式进行简便计算:1232-122×124
23.(4分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.
24.(4分)如果3=+b a ,2=ab ,求:(1)2233b a +; (2)2)(b a -
25.(4分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算.现有一居民本月用水x 吨,则应交水费多少元?
26.(4分)利用我们学过的知识,可以导出下面这个形式优美的等式:
a 2+
b 2+
c 2-ab -bc -ac=12
[(a -b )2+(b -c )2+(c -a )2], 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性.
(2)若a=2005,b=2006,c=2007,你能很快求出a 2+b 2+c 2-ab -bc -ac 的值吗?。