高三数学大一轮复习 圆锥曲线综合 板块一 轨迹方程学案
级高考数学一轮复习资料轨迹问题和圆锥曲线的综合
一、轨迹方程的求法:(1)条件直译法:(2)几何分析法:(3)相关点法:(4)定义法:(5)参数法:(6)交轨法:二、核心题型:圆锥曲线的定义及性质运用、直线与圆锥曲线的位置关系、弦长问题、焦点弦问题、弦的中点问题(注意检验!!!)、面积问题、范围和最值问题、存在性问题、对称问题、直线过定点问题、定值问题以及解析几何与函数、数列、不等式等的综合。
核心思想:分析法思想明确解题目标和方向、转化意识、简化运算意识。
题型一、轨迹方程的基本求法(条件直译法、定义法、相关点法、参数法、交轨法)1、若,M N 是两定点,6MN =,动点P 满足1PM PN ⋅=,则P 的轨迹方程为 .2、椭圆2212516x y +=的左右焦点为12,F F ,P 为椭圆上的一动点,M 为1F P 的中点.则M 的轨迹方程为 ;12PF F ∆重心G 的轨迹方程为 .3、从双曲线221x y -=上一点Q 引直线:20l x y +-=的垂线,垂足为N ,则线段QN 的中点M 的轨迹方程为 .4、过原点作28y x =的两互相垂直的弦,OA OB ,以,OA OB 为邻边作矩形OBMA .则动点M 的轨迹方程为 .弦AB 中点N 的轨迹方程为 .5、直线l 垂直于x 轴且交双曲线22221x y a b-=于,M N 两点,12,A A 为双曲线的顶点,则直线1A M 与2A N 的交点P 的轨迹方程为 .6、已知12,A A 为22194x y +=的长轴的两端点,12,P P 是垂直于12A A 的弦的两端点,则11A P 与22A P 的交点M 的轨迹方程为 .7、已知双曲线2222x y -=.(1)求以(2,1)A 为中点的双曲线的弦所在直线的方程;(2)过(1,1)B 能否作出直线l ,使l 与双曲线交于12,Q Q ,且(1,1)B 为12Q Q 的中点?1、(08重庆20题)已知)0,2(),0,2(N M -,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程;(2)若2·1cos PM PN MPN-=,求点P 的坐标。
高三数学一轮复习直线与圆锥曲线教案高三全册数学教案
芯衣州星海市涌泉学校第四讲直线与圆锥曲线一、考情分析直线与圆锥曲线的位置关系,是高考考察的重中之重,主要涉及弦长、中点弦、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘〞. 本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维才能,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探究、敢于创新的精神,进一步进步学生“应用数学〞的程度.二、知识归纳〔一〕直线与圆锥曲线问题的解决思路“三十二字思路〞:设而不求,求而不设;联立消元,二次判别;韦达,解决问题;遇弦中点,点差优先.〔二〕直线与椭圆()()()2222222222222010y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒+++-=⎨+=>>⎪⎩,显然,2220a k b +≠; 〔1〕当0∆=时,直线与椭圆只有一个公一一共点,属于直线与椭圆相切; 〔2〕当0∆>时,直线与椭圆有两个公一一共点,属于直线与椭圆相交; 〔三〕直线与双曲线()()()22222222222220100y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒-+++=⎨-=>>⎪⎩,, 〔1〕假设2220bak b k a-=⇔=±时,直线平行于双曲线的渐进线,此时, ①当0m =时,直线与渐进线重合,与双曲线无交点;②当0m ≠时,直线与双曲线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设2220bak b k a-≠⇔≠±时,直线不平行于双曲线的渐进线,此时, ①当0∆=时,直线与双曲线只有一个公一一共点,属于直线与双曲线相切; ②当0∆>时,直线与双曲线有两个公一一共点,属于直线与双曲线相交; 〔四〕直线与抛物线()()22222020y kx mk x mk p x m y px p =+⎧⎪⇒+-+=⎨=>⎪⎩, 〔1〕假设0k=时,直线平行于抛物线的对称轴,此时,直线与抛物线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设0k≠时,直线不平行于抛物线的对称轴,此时,①当0∆=时,直线与抛物线只有一个公一一共点,属于直线与抛物线相切; ②当0∆>时,直线与抛物线有两个公一一共点,属于直线与抛物线相交; 三、精典例析例1:曲线22148x y C -=:,定点()10M ,,直线l 经过点()01,,斜率为t ,与曲线C 交于不同的两点A B 、,设AB 的中点为P ,求直线MP 的斜率k 关于t 的函数关系()k f t =.解析:设直线l 的方程为1l ytx =+:,()()()112200,A x y B x y P x y ,,,,,那么:()222212290148y tx t x tx x y =+⎧⎪⇒---=⎨-=⎪⎩, ∴22t≠,2904t ∆>⇔<,且1212002222x x y y tx y t ++===-, ∵()()120022112222tx tx t x y t t +++===--,,∴020212y kx t t ==-+-;故()()223321122222k t t t ⎛⎫⎛⎛⎫=∈-- ⎪ ⎪+-⎝⎝⎭⎝⎭,,,.例2:椭圆()222210x y a b a b+=>>的离心率36=e ,过点()0A b -,和()0B a ,的直线与原点的间隔为23. 〔1〕求椭圆的方程. 〔2〕定点()10E -,,假设直线()20y kx k =+≠与椭圆交于C D 、两点.问:是否存在k 的值,使以CD 为直径的圆过()10E-,点?请说明理由. 解析:〔1〕直线AB 方程为:0bx ay ab --=,那么:22633312c a a ab b a b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪=⎪+⎩ , ∴椭圆方程为1322=+y x . 〔2〕假假设存在这样的k 值,设()()1122Cx y D x y ,,,,那么:()22222131290330y kx k x kx x y =+⎧⇒+++=⎨+-=⎩ , ∴0)31(36)12(22>+-=∆k k ,且1212221291313k x x x x k k +=-=++⋅,,∵()()()2121212122224y y kx kx k x x k x x =++=+++⋅,∴要使以CD 为直径的圆过()10E-,点,当且仅当CE DE ⊥时,那么: 121212121(1)(1)011y y y y x x x x =-⇔+++=++⋅. ∴05))(1(2)1(21212=+++++x x k x x k ,∴67=k,经历证,67=k 时符合题意. 综上,存在67=k ,使得以CD 为直径的圆过()10E -,点.例3:双曲线G 的中心在原点,它的渐近线与圆2210200xy x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于A B 、两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC⋅=.〔1〕求双曲线G 的渐近线的方程; 〔2〕求双曲线G 的方程;〔3〕椭圆S 的中心在原点,它的短轴是G 的实轴.假设S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解析:〔1〕设双曲线G 的渐近线的方程为:y kx =,那么:∵渐近线与圆2210200xy x +-+=12k =⇔=±. 故双曲线G 的渐近线的方程为:12y x =±.〔2〕设双曲线G 的方程为:224xy m -=,那么:()2221438164044y x x x m x y m ⎧=+⎪⇒---=⎨⎪-=⎩, ∴8164 33A B A B mx x x x ++==-,, ∵2PA PB PC ⋅=,P A B C 、、、一一共线且P 在线段AB 上,∴()()()()()()244164320P A B P P C B A A B A B x x x x x x x x x x x x --=-⇔+--=⇔+++=,例4:〔05年卷〕设A B 、是椭圆λ=+223y x 上的两点,点()13N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C D 、两点. 〔1〕确定λ的取值范围,并求直线AB 的方程;〔2〕试判断是否存在这样的λ,使得A B 、、C D 、四点在同一个圆上?并说明理由.解析:〔1〕法1:显然,直线AB 的斜率存在,设直线AB 的方程为(1)3y k x =-+,设1122()()A x y B x y ,,,,那么:22222(1)3(3)2(3)(3)03y k x k x k k x k x y λλ=-+⎧⇒+--+--=⎨+=⎩, ∴224[(3)3(3)]0k k λ∆=+-->,且21212222(3)(3)33k k k x x x x k k λ---+=⋅=++,,∵点()13N,是线段AB 的中点,∴2121(3)312x x k k k k +=⇔-=+⇒=-,直线AB 的方程是: ()3140y x x y -=--⇔+-=.∴12λ>,故λ的取值范围是()12,+∞.法2:设1122()()A x y B x y ,,,,那么:221112121212222233()()()()03x y x x x x y y y y x y λλ⎧+=⎪⇒-++-+=⎨+=⎪⎩, ∴12123()ABx x k y y +=-+;∵点()13N ,是线段AB 的中点,∴121226x x y y +=+=,,∴1AB k =-,直线AB 的方程是()3140y x x y -=--⇔+-=.∵点()13N,在椭圆的内部,∴2231312λ>⨯+=.故λ的取值范围是()12,+∞.〔2〕法1:∵直线CD 垂直平分线段AB ,∴直线CD 的方程为3120y x x y -=-⇔-+=,又设3344()()C x y D x y ,,,,CD 的中点00()M x y ,,那么:2222044403x y x x x y λλ-+=⎧⇒++-=⎨+=⎩, ∴103λ∆>⇔>,且341x x +=-,03400113()2222x x x y x =+=-=+=,,即1322M ⎛⎫- ⎪⎝⎭,.∴34||||CD x x =-=又22240481603x y x x x y λλ+-=⎧⇒-+-=⎨+=⎩,2012λ∆>⇔>,同理可得:12||AB x x =-=∴当12λ>AB CD >⇒<.假设在在12λ>,使得A B 、、C D 、四点一一共圆,那么CD 必为圆的直径,点M 为圆心,点M 到直线AB的间隔为:13|4|d-+-===,∴222229123||||||||22222AB CDMA MB dλλ--==+=+==.故当12>λ时,A B、、C D、四点均在以M为圆心,2||CD为半径的圆上.〔注:上述解法中最后一步也可如下解法获得:∵A B、、C D、一一共圆⇔△ACD为直角三角形,A为直角2||||||AN CN DN⇔=⋅,∴2||222CD CDABd d⎛⎫⎛⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭⎝⎭,∵3912 2222222CD CDd dλλ⎫⎛⎫⎛⎫--+-=-=-=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭即A、B、C、D四点一一共圆.〕例5:〔05年卷〕如图,设抛物线2C y x=:的焦点为F,动点P在直线20l x y--=:上运动,过P作抛物线C的两条切线PA PB、,且与抛物线C分别相切于A B、两点.〔1〕求△APB的重心G的轨迹方程;〔2〕证明:PFA PFB∠=∠.解析:〔1〕设切点()()()22001101A x xB x x x x≠,,,,那么:切线PA的方程为:20020x x y x--=,切线PB的方程为:21120x x y x--=,联立,解得:P点的坐标为01012x xP x x+⎛⎫⎪⎝⎭,;∴△APB的重心G的坐标为:PPGxxxxx=++=310,2222010*******()43333P P PGy y y x x x x x x x x x yy+++++--====,∴234P G Gy y x=-+,∵点P在直线20l x y--=:上运动,∴从而得到重心G 的轨迹方程为:221(34)20(42)3x y xy x x --+-=⇔=-+.〔2〕法1:∵22010001111114244x x FA x x FP x x FB x x +⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ,, ,, ∴cos ||||FP FA AFP FP FA ⋅∠=201001001201114||||x x x x x x x x FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⎝==; 同理,20110110122211112444cos ||||||1||x x x x x x x x FP FBBFP FP FB FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⋅⎝⎭⎝⎭∠===⎛⎫+;故PFA PFB ∠=∠. 法2:①当100x x =时,由于01x x ≠,不妨设00x =,那么:00y =,∴P 点坐标为102x P ⎛⎫⎪⎝⎭,,那么P 点到直线AF 的间隔为:11||2x d =;而直线BF 的方程212111111114()0444x y x x x x y x x --=⇔--+=,∴P 点到直线BF 的间隔为:22111111221||11|()|()||42124x x x x x x d x -++===+; ∴12d d =,故PFA PFB ∠=∠.②当001≠x x 时,直线AF 的方程:2020********(0)()04044x y x x x x y x x --=-⇔--+=-; 直线BF 的方程:212111111114(0)()04044x y x x x x y x x --=-⇔--+=-; ∴P 点到直线AF 的间隔为:22201010010001120111|()()||)()||24124x x x x x x x x x x x d x +---++-===+, 同理,P 点到直线BF 的间隔:2||012x x d -=, ∴12d d =,故PFA PFB ∠=∠.四、课后反思 .。
最新届高三数学一轮复习教案(圆锥曲线
届高三数学一轮复习教案(圆锥曲线)圆锥曲线1、求轨迹方程的几个步骤:(建-设-列-化-证)a.建系(建立平面直角坐标系,多数情况此步省略)b.设点(求哪个点的轨迹,就设它(x,y ))c.列式(根据条件列等量关系)d.化简(化到可以看出轨迹的种类)e.证明(改成:修正)(特别是①三角形、②斜率、③弦的中点问题) 2、求动点轨迹方程的几种方法a.直接法:题目怎么说,列式怎么列。
b.定义法:先得到轨迹名称c.代入法(相关点法):设所求点(x ,y )另外点(21y x ,)找出已知点和所求点的关系c.参数法:(x,y )中x,y 都随另一个量变化而变化—消参e.待定系数法:先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程例题一:定义法求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。
例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y a x ,则34,5'''=⇒==bc a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4) 到定点与定直线距离相等。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
高考数学一轮复习导学案:轨迹与轨迹方程【A】(含答案)
轨迹与轨迹方程(教案)A一、知识梳理:1.求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。
2.求曲线的轨迹方程常采用的方法有:直接法、定义法、参数法、几何法、交轨法(1)、定义法:若动点的轨迹条件符合某一基本轨迹的定义(如椭圆,双曲线,圆等)可用定义直接求解.(2)、直接法:直接法是将动点满足的几何条件或者等量关系直接坐标化,列出等式后化简,得出动点的轨迹方程(也就是常说的五步法)(3)、相关点法(轨迹转移法):根据相关点所满足的方程,通过转换而求出动点轨迹的方程.(4)、参数法:若动点的坐标(x,y)中的x,y,分别随另一个变量的变化而变化,我们可以以这个变量为参数建立轨迹的参数方程.(5)、交轨法:求两动曲线交点的轨迹时,可由方程直接消去参数,例如:求两动直线交点的轨迹时常用此方法,也可以引入参数来建立这些动曲线之间的联系,然后消去参数得到轨迹方程.3.易错点提示:(1):要注意区别“轨迹”与“轨迹方程”这两个不同的概念;(2):检验是否有不符合条件或漏掉的点。
二、题型探究探究1:定义法例1:(1)、由动点p向圆错误!未找到引用源。
=1引两条切线PA,PB,切点分别为A,B,错误!未找到引用源。
,求动点P的轨迹方程。
(2)已知错误!未找到引用源。
三边AB,BC,AC的长度成等差数列,点B,C的坐标分别是(-1,0),C(1,0),求点A的轨迹方程.探究2:直接法:例2:已知错误!未找到引用源。
中,BC=2,错误!未找到引用源。
,求动点A的轨迹方程,并说明轨迹是图形。
探究3:相关点法:例3:已知P是圆错误!未找到引用源。
=1上任意一点,由P向x轴作垂线段PM,M 为垂足,求线段PM的中点N的轨迹。
高考数学一轮复习总教案:9.5 圆锥曲线综合问题
9.5 圆锥曲线综合问题典例精析题型一 求轨迹方程【例1】已知抛物线的方程为x2=2y ,F 是抛物线的焦点,过点F 的直线l 与抛物线交于A 、B 两点,分别过点A 、B 作抛物线的两条切线l1和l2,记l1和l2交于点M.(1)求证:l1⊥l2;(2)求点M 的轨迹方程.【解析】(1)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +12. 联立⎪⎪⎩⎪⎪⎨⎧=+=22121x y kx y 消去y 整理得x2-2kx -1=0.设A 的坐标为(x1,y1),B 的坐标为(x2,y2),则有x1x2=-1,将抛物线方程改写为y =12x2,求导得y′=x. 所以过点A 的切线l1的斜率是k1=x1,过点B 的切线l2的斜率是k2=x2. 因为k1k2=x1x2=-1,所以l1⊥l2.(2)直线l1的方程为y -y1=k1(x -x1),即y -x212=x1(x -x1). 同理直线l2的方程为y -x222=x2(x -x2). 联立这两个方程消去y 得x212-x222=x2(x -x2)-x1(x -x1), 整理得(x1-x2)(x -x1+x22)=0, 注意到x1≠x2,所以x =x1+x22. 此时y =x212+x1(x -x1)=x212+x1(x1+x22-x1)=x1x22=-12. 由(1)知x1+x2=2k ,所以x =x1+x22=k ∈R. 所以点M 的轨迹方程是y =-12. 【点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌.【变式训练1】已知△ABC 的顶点为A(-5,0),B(5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x29-y216=1B.x216-y29=1 C.x29-y216=1(x >3)D.x216-y29=1(x >4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6,根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x >3),故选C. 题型二 圆锥曲线的有关最值 【例2】已知菱形ABCD 的顶点A 、C 在椭圆x2+3y2=4上,对角线BD 所在直线的斜率为1.当∠ABC =60°时,求菱形ABCD 面积的最大值.【解析】因为四边形ABCD 为菱形,所以AC ⊥BD.于是可设直线AC 的方程为y =-x +n.由⎩⎨⎧+-==+n x y y x ,4322得4x2-6nx +3n2-4=0.因为A ,C 在椭圆上,所以Δ=-12n2+64>0,解得-433<n <433. 设A ,C 两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n 2,x1x2=3n2-44, y1=-x1+n ,y2=-x2+n.所以y1+y2=n 2. 因为四边形ABCD 为菱形,且∠ABC =60°,所以|AB|=|BC|=|CA|.所以菱形ABCD 的面积S =32|AC|2. 又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S =34(-3n2+16) (-433<n <433). 所以当n =0时,菱形ABCD 的面积取得最大值4 3.【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出n 的取值范围,虽然也能得出答案,但是得分损失不少.【变式训练2】已知抛物线y =x2-1上有一定点B(-1,0)和两个动点P 、Q ,若BP ⊥PQ ,则点Q 横坐标的取值范围是 .【解析】如图,B(-1,0),设P(xP ,x2P -1),Q(xQ ,x2Q -1),由kBP ·kPQ =-1,得x2P -1xP +1·x2Q -x2P xQ -xP=-1. 所以xQ =-xP -1xP -1=-(xP -1)-1xP -1-1. 因为|xP -1+1xP -1|≥2,所以xQ≥1或xQ≤-3. 题型三 求参数的取值范围及最值的综合题【例3】(2019浙江模拟)已知m >1,直线l :x -my -m22=0,椭圆C :x2m2+y2=1,F1,F2分别为椭圆C 的左、右焦点.(1)当直线l 过右焦点F2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF1F2,△BF1F2的重心分别为G ,H.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.【解析】(1)因为直线l :x -my -m22=0经过F2(m2-1,0), 所以m2-1=m22,解得m2=2, 又因为m >1,所以m = 2.故直线l 的方程为x -2y -1=0.(2)A(x1,y1),B(x2,y2),由⎪⎪⎩⎪⎪⎨⎧=++=1,22222y m x m my x 消去x 得2y2+my +m24-1=0, 则由Δ=m2-8(m24-1)=-m2+8>0知m2<8, 且有y1+y2=-m 2,y1y2=m28-12. 由于F1(-c,0),F2(c,0),故O 为F1F2的中点,由AG =2GO , BH =2HO ,得G(x13,y13),H(x23,y23), |GH|2=(x1-x2)29+(y1-y2)29. 设M 是GH 的中点,则M(x1+x26,y1+y26), 由题意可知,2|MO|<|GH|,即4[(x1+x26)2+(y1+y26)2]<(x1-x2)29+(y1-y2)29, 即x1x2+y1y2<0.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12). 所以m28-12<0,即m2<4. 又因为m >1且Δ>0,所以1<m <2.所以m 的取值范围是(1,2).【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A 、B 、C 使△ABC 为正三角形,其中一个顶点A 与双曲线右顶点重合,则a 的取值范围为 .【解析】设B(m ,m2-1a ),则C(m ,-m2-1a)(m >1), 又A(1,0),由AB =BC 得(m -1)2+m2-1a=(2m2-1a )2, 所以a =3m +1m -1=3(1+2m -1)>3,即a 的取值范围为(3,+∞). 总结提高1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法.2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.。
高三数学第一轮复习 圆锥曲线(小结)教案
高三数学第一轮复习圆锥曲线(小结)教案高三数学第一轮复习圆锥曲线(小结)教案圆锥曲线一.课前预习:1.设抛物线y2x,线段AB的两个端点在抛物线上,且|AB|3,那么线段AB的中点M到y轴的最短距离是(B)231(B)1(C)(D)222x2y22.椭圆221(ab0)与x轴正半轴、y轴正半轴分别交于A,B两点,在劣弧abAB上取一点C,则四边形OACB的最大面积为(B(A))(A)1ab2(B)2ab2(C)3ab2(D)ab111,0),C(,0),且满足sinCsinBsinA,则动点A222的轨迹方程是(D)1616(A)16x2y21(y0)(B)16y2x21(x0)33161161(C)16x2y21(x)(D)16x2y21(x)3434224.已知直线yx1与椭圆mxny1(mn0)相交于A,B两点,若弦AB 中点的横3.ABC中,A为动点,B(x2y214坐标为,则双曲线221的两条渐近线夹角的正切值是.mn335.已知A,B,C为抛物线yx1上三点,且A(1,0),ABBC,当B点在抛物线上移动时,点C的横坐标的取值范围是(,3][1,).二.例题分析:2x2y2例1.已知双曲线C:221(a0,b0),B是右顶点,F是右焦点,点A在x轴正ab半轴上,且满足|OA|,|OB|,|OF|成等比数列,过点F作双曲线在第一、三象限内的渐近线的垂线l,垂足为P,(1)求证:PAOPPAFB;(2)若l与双曲线C的左、右两支分别交于点D,E,求双曲线C的离心率e的取值范围.a(1)证明:设l:y(xc),bay(xc)a2abb由方程组得P(,),ccybxaa2∵|OA|,|OB|,|OF|成等比数列,∴A(,0),ca2abb2abab∴PA(0,),OP(,),FP(,),ccccca2b2a2b2∴PAOP2,PAFP2,∴PAOPPAFB.cc用心爱心专心(2)设D(x1,y1),E(x2,y2),ay(xc)a422a4ca4c2b222由2得(b2)x2x(2ab)0,2bbbxy1a2b2a4b2(2a2b2)c0,∴b2a2,即c22a2,∴e2.∵x1x20,∴4ab22b所以,离心率的取值范围为(2,).2例2.如图,过抛物线x4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点,(1)设点P分有向线段AB所成的比为,证明:QP(QAQB);(2)设直线AB的方程是x2y120,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.2解:(1)设直线AB的方程为ykxm,代入抛物线方程x4y得x24kx4m0设A(x1,y1),B(x2,y2),则x1x24m,xx2x∵点P分有向线段AB所成的比为,得10,∴1,1x2又∵点Q是点P关于原点的对称点,∴Q(0,m),∴QP(0,2m),y∴QAQB(x1x2,y1y2(1)m)A∴QP(QAQB)2m[y1y2(1)m]Px12x1x22x1B2m[(1)m]4x24x2xOx1x24m4m4m2m(x1x2)2m(x1x2)04x24x2Q∴QP(QAQB).(2)由2x2y120x4y2得点A(6,9),B(4,4),121x,∴yx,∴抛物线在点A处切线的斜率为y|x63,42222设圆C的方程是(xa)(yb)r,1b9则a6,3(a6)2(b9)2(a4)2(b4)23232125解得a,b,,r22232312522∴圆C的方程是(x)2(y)2,即xy3x23y720.222由x4y得y三.课后作业:班级学号姓名用心爱心专心x2y2xy1.直线1与抛物线1相交于A,B两点,该椭圆上的点P使ABP 的面16943积等于6,这样的点P共有()(A)1个(B)2个(C)3个(D)4个2.设动点P在直线x1上,O为坐标原点,以OP为直角边,点O为直角顶点作等腰RtOPQ,则动点Q的轨迹是()(A)圆(B)两条平行线(C)抛物线(D)双曲线3.设P是直线yx4上一点,过点P的椭圆的焦点为F1(2,0),F2(2,0),则当椭圆长轴最短时,椭圆的方程为.x2y24.椭圆1的焦点为F1,F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么123|PF1|是|PF2|的倍.x2y25.已知双曲线221(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,ab且|PF1|4|PF2|,则此双曲线的离心率e的最大值为.6.直线l:ykx1与双曲线C:2xy1的右支交于不同的两点A,B,(1)求实数k的取值范围;(2)是否存在实数k,使得线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.7.22用心爱心专心8.如图,P是抛物线C:y12x上一点,直线l过点P并与抛物线C在点P的切线垂直,2l与抛物线C相交于另一点Q,(1)当点P的横坐标为2时,求直线l的方程;(2)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短用心爱心专心yQMPlOx-4-距离.扩展阅读:高三数学一轮复习精析教案15《圆锥曲线方程及性质》第33讲圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
2019-2020学年高三数学一轮复习 专题 圆锥曲线的参数方程导学案.doc
2019-2020学年高三数学一轮复习 专题 圆锥曲线的参数方程导学案 一、教学目标:知识与技能:了解圆锥曲线的参数方程及参数的意义过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:圆锥曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.三、教学方法:启发、诱导发现教学.四、教学过程:(一)、复习引入:1.写出圆方程的标准式和对应的参数方程。
(1)圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数) (二)、讲解新课: 1.焦点在x 轴的椭圆:12222=+b y a x 参数方程 ⎩⎨⎧==θθsin cos b y a x (θ为参数) 2. 焦点在y 轴的椭圆22221(0)y x b a b a +=>>的参数方程是c o ss i n (2x b y a θθθθ==≤≤π⎨为参数,且0).★在利用⎩⎨⎧==θθsin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ)。
例1、已知椭圆⎩⎨⎧==θθsin 2cos 3y x (θ为参数)求 (1)6πθ=时对应的点P 的坐标 (2)直线OP 的倾斜角例2、求椭圆2211612x y +=上的点到直线l :2120x y --=的最大距离和最小距离。
变式:已知椭圆2214x y +=上任意一点M (除短轴以外)与短轴两端点1B 、2B 的连线分别交x 轴与P 、Q 两点,求证:OP OQ ∙为定值。
【课堂练习】1、当参数θ变化时,动点P (cos ,3sin 2θθ)所确定的曲线必过 ( )A .点(2,3)B .点(2,0)C .点(1,3) D.点(0,2π) 2、设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩ 的中心,P 是椭圆上对应于6πϕ= 的点,那么直线OP 的斜率为( )B.C.3、椭圆22194x y +=上的点到直线240x y +-=的距离最小值为 ( )4、定点(2a ,0)和椭圆cos sin x a y b θθ=⎧⎨=⎩ (θ为参数)上个点连线段的中点轨迹方程是 A.2222()144x a y a b -+= B.2222()144x a y a b++= B.2222()144x a y a b --= D.2222()144x a y a b +-={3322x t C y t =+⎧⎨=-+⎩5、已知椭圆的方程为22(1)(2)135x y -++=,则它的参数方程为______ 6、点P (x,y )在椭圆2244x y +=上,则x+y 的最大值为____;最小值为____7、已知极点与原点重合,极轴与x 轴正半轴重合,若曲线1C 的极坐标方程为cos()4πρθ-=曲线2C的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩ (θ为参数),试求曲线1C 、2C 的焦点的直角坐标.8、已知曲线1C :4cos 3sin x t y t =-+⎧⎨=+⎩ (t 为参数),2C :8cos 3sin x y θθ=⎧⎨=⎩ (θ为参数)(1)化1C 、2C 的方程为普通方程,并说明它们分别表示什么曲线;(2)若1C 上的点P 对应的参数为t=2π,Q 为2C 上的动点,求PQ 中点M 到直线3C :322x t y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.(三)、巩固训练1、曲线)(11为参数t t t y t t x ⎪⎩⎪⎨⎧-=+=的普通方程为2、曲线)(sin cos 为参数θθθ⎩⎨⎧==y x 上的点到两坐标轴的距离之和的最大值是( ) A .21 B .22 C .1 D .2 4、已知椭圆⎩⎨⎧==θθsin 2cos 3y x (θ为参数)求 (1)6πθ=时对应的点P 的坐标 (2)直线OP 的倾斜角(四)、小结:本课要求大家了解圆锥曲线的参数方程及参数的意义,能选取适当的参数,求简单曲线的参数方程,通过推到椭圆及双曲线的参数方程,体会求曲线的参数方程方法和步骤,对椭圆的参数方程常见形式要理解和掌握。
2019-2020学年高考数学一轮复习-圆锥曲线与方程学案-
圆锥曲线与方程离 心 率,ab a ac e 22222-==,e 越大椭圆越 ,e 越小椭圆越 。
准线方程准线垂直于长轴,且在椭圆外;两准线间的距离:顶点到准线的距离顶点1A (2A )到准线1l (2l )的距离为a ca -2顶点1A (2A )到准线2l (1l )的距离为a ca +2焦点到准线的距离焦点1F (2F )到准线1l (2l )的距离为 焦点1F (2F )到准线2l (1l )的距离为椭圆上到焦点的最大(小)距离最大距离为: 最小距离为: 相关应用题:远日距离: 近日距离: 直线和椭圆的位置椭圆12222=+by a x 与直线y kx b =+的位置关系:利用22221x y a b y kx b ⎧+=⎪⎨⎪=+⎩转化为一元二次方程用判别式确定。
相离: 相切: 相交:相交弦AB 的弦长2212121()4AB k x x x x =++- 通径:21AB y y =-=过椭圆上一点的切线 12020=+byy a x x 利用导数 00221y y x xa b+= 利用导数 焦半径 左焦半径:右焦半径: 上焦半径: 下焦半径: 焦点弦左焦点弦: 右焦点弦:上焦点弦: 下焦点弦:椭圆中解题技巧:例8、已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b = .例9、焦点在x 轴上的椭圆c 的一顶点为B (0,-1),右焦点到直线m :x-y+22=0的距离为3, (1)求c 的方程;(2)是否存在斜率k ≠0的直线与c 交于两点M 、N ,使|BM|=|BN|?若存在,求出k 的取值范围;若不存在,注明理由。
例10、(2010年高考浙江卷理科21)(本小题满分15分)已知m>1,直线l:x-my-2m 2=0, 椭圆C :(x m)2+y 2=1 ,F 1,,F 2分别为椭圆C 的左右焦点。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
高考数学一轮复习专题01 圆锥曲线方程(轨迹方程)(解析版)
解析几何 专题一:轨迹方程一、知识储备 1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: (1)定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
(2)直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。
(3)参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标,x y 与该参数t 的函数关系()x f t =,()y g t =,进而通过消参化为轨迹的普通方程(,)0F x y =.(4)代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
高三数学一轮 8.3 圆锥曲线精品复习学案
高三数学一轮 8.3 圆锥曲线精品复习学案【高考目标导航】一、曲线与方程1.考纲点击(1)了解方程的曲线与曲线的方程的对应关系;(2)了解解析几何的基本思想和利用坐标法研究几何问题的基本方法;(3)能够根据所给条件选择适当的方法求曲线的轨迹方程.2.热点提示(1)求轨迹方程是高考的重点和热点;(2)常以解答题的第一问的形式出现. 一般用直接法、定义法或相关点法求解,所求轨迹一般为圆锥曲线,属中低档题。
二、椭圆1.考纲点击(1)掌握椭圆的定义、几何图形、标准方程及简单性质;(2)了解椭圆的实际背景及椭圆的简单应用。
(3)理解数形结合的思想2.热点提示(1)椭圆的定义、标准方程和几何性质是高考重点考查的内容;直线和椭圆的位置关系是高考考查的热点。
(2)定义、标准方程和几何性质常以选择题、填空题的形式考查,而直线与椭圆位置关系以及与向量、方程、不等式等的综合题常以解答题的形式考查,属中高档题目。
三、双曲线1.考纲点击(1)了解双曲线的定义、几何图形和标准方程,知道双曲线的简单几何性质。
(2)了解双曲线的实际背景及双曲线的简单应用。
(3)理解数形结合的思想。
2.热点提示(1)双曲线的定义、标准方程和离心率、渐近线等知识是高考考查的重点;双曲线与其他圆锥曲线的交汇命题是热点。
(2)主要以选择、填空题的形式考查,属于中低档题。
四、抛物线1.考纲点击(1)掌握抛物线的定义、几何图形、标准方程及简单性质。
(2)理解数形结合的思想。
(3)了解抛物线的实际背景及抛物线的简单应用。
2.热点提示(1)抛物线的定义、标准方程及性质是高考考查的重点,抛物线与直线、椭圆、双曲线的交汇综合题是考查的热点。
(2)多以选择、填空题为主,多为中低档题。
有时也与直线、椭圆、双曲线交汇考查的解答题,此时属中高档题。
【考纲知识梳理】一、曲线与方程1.一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解。
高三数学大一轮复习 圆锥曲线综合 板块一 轨迹方程(1)学案
【例1】 平面直角坐标系中,O 为坐标原点,已知两点()()2113A B --,,,,若点C 满足OC OA OB αβ=+其中01αβ≤,≤,且1αβ+=,则点C 的轨迹方程为( )A .2340x y +-=B .()2211252x y ⎛⎫-+-= ⎪⎝⎭C .()435012x y x +-=-≤≤D .()38012x y x -+=-≤≤【例2】 P 是以1F 、2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线【例3】 已知P 为抛物线22(0)x py p =>上的动点,F 为抛物线的焦点,过F 作抛物线在P 点处的切线的垂线,垂足为G ,则点G 的轨迹方程为( ) A .222x y p +=B .2py =- C .22224p p x y ⎛⎫+-= ⎪⎝⎭D .0y =【例4】 已知定点(30)B ,,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且13AM MB =,则点M 的轨迹方程是___________.【例5】 若点11()P x y ,在圆221x y +=上运动,则点1111()Q x y x y +,的轨迹方程是______________典例分析板块一.轨迹方程(1)【例6】 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=°,则动点P 的轨迹方程为【例7】 动点P 是抛物线221y x =+上任一点,定点为(01)A -,,点M 分PA 所成的比为2,则M 的轨迹方程为_____________.【例8】 线段AB 过x 轴正半轴上一点(0)M m ,(0)m >,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为【例9】 到直线20x y -=和20x y -=的距离相等的动点的轨迹方程是 .【例10】 已知102A ⎛⎫- ⎪⎝⎭,,B 是圆221:()4(2F x y F -+=为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .【例11】 如图,正方体1111ABCD A B C D -的棱长为1,点M 在A 上,且13AM AB =,点P 在平面ABCD 上,且动点P 到直线11A D 的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是 .A D【例12】 点M 与点(40)F ,的距离比它到直线l :50x +=的距离小于1,则点M 的轨迹方程是__________【例13】 过抛物线24x y =的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是________【例14】 已知动点P 到定点(10)F ,和直线3x =的距离之和等于4,求P 的轨迹方程.【例15】 已知点()x y ,在椭圆C :22221(0)x y a b a b +=>>的第一象限上运动.求点y xy x ⎛⎫ ⎪⎝⎭,的轨迹1C 的方程.【例16】 圆C :22(5)(4)6x y -+-=内的一定点(43),A ,在圆上作弦MN ,使90MAN ︒∠=,求弦MN 的中点P 的轨迹方程.【例17】 已知A 、B 、D 三点不在一条直线上,且(20)A -,,(20)B ,,12()2AD AE AB AD ==+,.①求点E 的轨迹方程;②过A 作直线交以A ,B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.【例18】 AB 是圆O 的直径,且||2AB a =,M 为圆上一动点,作MN AB ⊥,垂足为N ,在OM上取点P ,使||||OP MN =,求点P 的轨迹方程.【例19】 求到两不同定点距离之比为一常数(0)λλ≠的动点的轨迹方程.【例20】 已知点P 到两个定点(10)M -,、(10)N ,N 到直线PM 的距离为1.求直线PN 的方程.【例21】 已知点(30)P -,,点A 在y 轴上,点Q 在x 轴的正半轴上,且0PA AQ ⋅=.点M 在直线AQ 上,满足32AM MQ =-.当点A 在y 轴上移动时,求动点M 的轨迹C 的方程.【例22】 已知ABC ∆中,A B C ∠∠∠,,所对的边分别为a b c ,,,且a c b >>成等差数列,2AB =,求顶点C 的轨迹方程.【例23】 过点(13)P ,作两条相互垂直的直线12l l ,,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【例24】 已知动点P 与双曲线221x y -=的焦点12F F ,的距离之和为定值,且12cos F PF ∠的最小值为13-.求动点P 的轨迹方程.【例25】 已知圆1M :22(4)25x y ++=,圆2M :22(4)1x y -+=,一动圆与这两个圆都外切.求动圆圆心P 的轨迹方程;【例26】 设1F ,2F 分别是椭圆C :2222162x y m m +=(0)m >的左,右焦点.⑴当P C ∈,且210PF PF ⋅=,12||||8PF PF ⋅=时,求椭圆C 的左,右焦点1F 、2F . ⑵1F 、2F 是⑴中的椭圆的左,右焦点,已知圆2F 的半径是1,过动点Q 作圆2F 切线QM ,使得12QF =(M 是切点),如下图.求动点Q 的轨迹方程.MQ (x , y )yxF 2F 1O【例27】 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,Q 是椭圆外的动点,满足1||2F Q a =.点P 是线段1F Q 与该椭圆的交点,点T 在线段2F Q 上,并且满足220||0PT TF TF ⋅=≠,.求点T 的轨迹C 的方程.【例28】 已知(70)(70)(212)A B C --,,,,,,椭圆过A ,B 两点且以C 为其一个焦点,求椭圆另一焦点的轨迹.【例29】 已知点A B ,分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,且OAB ∆ 的面积为定值2,求线段AB 中点M 的轨迹C 的方程.【例30】 已知点(40)A m ,,(0)B m ,,(m 是大于0的常数,)动点P 满足(4)6||AB AP x m m PB ⋅=-,求点P 的轨迹C 的方程.【例31】 在ABC △中,A 点的坐标为()3,0,BC 边长为2,且BC 在y 轴上的区间[]3,3-上滑动.⑴求ABC △外心的轨迹方程;⑵设直线l :3y x b =+与⑴的轨迹交于E 、F 两点,原点到直线l 的距离为d ,求EF d的最大值.并求出此时b 的值.【例32】 点P 是曲线22412390x y x y ++-+=上的动点,直线10x y -+=是线段PQ 的中垂线,求点Q 的轨迹方程.【例33】 已知点(22)A ,,(22)B --,,点P 满足22PA PB -=,求点P 满足的轨迹方程.【例34】 设A B ,是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.【例35】 在ABC △中,BC 固定,顶点A 移动.设||2BC =,当三个角A B C ,,满足条件1|sin sin |sin 2C B A -=时,求顶点的轨迹方程.【例36】 已知直线1l :523(31)0x y m m -++=和2l :263(920)0x y m m +-+=,⑴求此两直线的交点P 的轨迹方程;⑵当m 为何值时,直线1l 、2l 的交点P 到直线43120x y --=的距离最短.【例37】 直线y kx =与圆2264100x y x y +--+=相交于两个不同点A B ,,当k 取不同实数值时,求AB 中点的轨迹方程.【例38】 已知(20)A -,,(20)B ,,动点P 与A B ,两点连线的斜率分别为1k 和2k ,且满足12(01)k k t t =≠-,.⑴求动点P 的轨迹C 的方程;⑵当0t <时,C 的两个焦点为12F F ,,若曲线C 上存在点Q 使得12120FQF ∠=,求t 的取值范围.。
2020年高三数学一轮复习导学案:圆锥曲线综合
第53课时 圆锥曲线综合(一)【复习目标】⒈理解圆锥曲线的统一定义并能应用定义分析解决问题; ⒉能熟练地运用圆锥曲线方程及性质解题。
【教学过程】 一、基础训练题:1.动点P 与点)0,1(F 间的距离比点P 到直线2:=x l 的距离小1,则点P 的轨迹方程为 。
2.过点)0,2(-M 的直线l 与椭圆2222=+y x 交于21,P P 两点,线段21P P 的中点为P ,设直线l 的斜率为)0(11≠k k ,直线OP 的斜率为2k ,则21k k ⋅的值为 ; 3.已知21,F F 是椭圆的两个焦点,Q 是椭圆上任意一点,从焦点2F 引∠21QF F 外角平分线的垂线,垂足为P ,则点P 的轨迹是 。
4.已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,P 是准线上一点,且21PF PF ⊥,ab PF PF 4||||21=⋅则双曲线的离心率是5.抛物线x y 42=的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交与点A ,l AK ⊥,垂足为K ,则△AKF 的面积是 6.已知P 为抛物线241x y =上的任意一点,F 为抛物线的焦点,点A 坐标为)1,1(,则PA PF +的最小值是____________。
7.已知P 是椭圆)0(12222>>=+b a by a x 上一点,P 与两焦点连线互相垂直,且到两准线距离分别为6,12,则椭圆方程为_____________________。
8.若P 点到定点(0,10)的距离与它到定直线y =185的距离之比是53, 则点P 的轨迹方程为 。
9.已知,A B 是椭圆22221(0)x y a b a b+=>>长轴的两个端点,D C ,是椭圆上关于x 轴对称的两点,直线BD AC ,的斜率分别为12,k k ,且12120.||||k k k k ≠+若的最小值为3,则椭圆的离心率为 。
高三数学第一轮复习单元讲座 第35讲 曲线方程及圆锥曲线的综合问题教案 新人教版
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座35)—曲线方程及圆锥曲线的一.课标要求:1.由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练;2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想;3.了解圆锥曲线的简单应用。
二.命题走向近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。
但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主。
1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2.与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。
预测07年高考:1.出现1道复合其它知识的圆锥曲线综合题;2.可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问。
三.要点精讲1.曲线方程(1)求曲线(图形)方程的方法及其具体步骤如下:建设现(限)代化”(2)求曲线方程的常见方法:直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。
这是求曲线方程的基本方法。
转移代入法:这个方法又叫相关点法或坐标代换法。
即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。
几何法:就是根据图形的几何性质而得到轨迹方程的方法。
参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y联系起来,得到用参数表示的方程。
如果消去参数,就可以得到轨迹的普通方程。
2.圆锥曲线综合问题(1)圆锥曲线中的最值问题、范围问题通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】 平面直角坐标系中,O 为坐标原点,已知两点()()2113A B --,,,
,若点C 满足OC OA OB αβ=+u u u r u u u r u u u r
其中01αβ≤,≤,且1αβ+=,则点C 的轨迹方程为( )
A .2340x y +-=
B .()2
211252x y ⎛
⎫-+-= ⎪⎝
⎭
C .()435012x y x +-=-≤≤
D .()38012x y x -+=-≤≤
【例2】 P 是以1F 、2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足
为M ,则点M 的轨迹是( ) A .圆
B .椭圆
C .双曲线
D .抛物线
【例3】 已知P 为抛物线22(0)x py p =>上的动点,F 为抛物线的焦点,过F 作抛物线在P 点
处的切线的垂线,垂足为G ,则点G 的轨迹方程为( ) A .222x y p +=
B .2
p
y =- C .2
22
24p p x y ⎛
⎫+-= ⎪⎝
⎭
D .0y =
【例4】 已知定点(30)B ,,点A 在圆221x y +=上运动,M 是线段AB 上的一点,且
13
AM MB =u u u u r u u u r
,则点M 的轨迹方程是___________.
【例5】 若点11()P x y ,在圆221x y +=上运动,则点1111()Q x y x y +,
的轨迹方程是______________
典例分析
板块一.轨迹方程(1)
【例6】 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=°,
则动点P 的轨迹方程为
【例7】 动点P 是抛物线221y x =+上任一点,定点为(01)A -,,点M 分PA u u u r
所成的比为2,
则M 的轨迹方程为_____________.
【例8】 线段AB 过x 轴正半轴上一点(0)M m ,(0)m >,端点A 、B 到x 轴距离之积为2m ,
以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为
【例9】 到直线20x y -=和20x y -=的距离相等的动点的轨迹方程是 .
【例10】 已知102A ⎛⎫
- ⎪⎝⎭
,
,B 是圆221:()4(2F x y F -+=为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .
【例11】 如图,正方体1111ABCD A B C D -的棱长为1,点M 在A 上,且1
3
AM AB =,点P 在平
面ABCD 上,且动点P 到直线11A D 的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是 .
A D
【例12】 点M 与点(40)F ,的距离比它到直线l :50x +=的距离小于1,则点M 的轨迹方程
是__________
【例13】 过抛物线24x y =的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨
迹方程是________
【例14】 已知动点P 到定点(10)F ,和直线3x =的距离之和等于4,求P 的轨迹方程.
【例15】 已知点()x y ,在椭圆C :22221(0)x y a b a b +=>>的第一象限上运动.
求点y xy x ⎛⎫ ⎪⎝⎭
,的轨迹1C 的方程.
【例16】 圆C :22(5)(4)6x y -+-=内的一定点(43),A ,在圆上作弦MN ,使90MAN ︒∠=,
求弦MN 的中点P 的轨迹方程.
【例17】 已知A 、B 、D 三点不在一条直线上,且(20)A -,,(20)B ,,
12()2
AD AE AB AD ==+u u u r u u u r u u u r u u u r ,.
①求点E 的轨迹方程;
②过A 作直线交以A ,B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为
4
5
,且直线MN 与E 点的轨迹相切,求椭圆的方程.
【例18】 AB 是圆O 的直径,且||2AB a =,M 为圆上一动点,作MN AB ⊥,垂足为N ,在OM
上取点P ,使||||OP MN =,求点P 的轨迹方程.
【例19】 求到两不同定点距离之比为一常数(0)λλ≠的动点的轨迹方程.
【例20】 已知点P 到两个定点(10)M -,、(10)N ,N 到直线PM 的距离为
1.求直线PN 的方程.
【例21】 已知点(30)P -,,点A 在y 轴上,点Q 在x 轴的正半轴上,且0PA AQ ⋅=u u u r u u u r
.点M 在
直线AQ 上,满足32
AM MQ =-u u u u r u u u
u r .当点A 在y 轴上移动时,求动点M 的轨迹C 的方
程.
【例22】 已知ABC ∆中,A B C ∠∠∠,,所对的边分别为a b c ,,,且a c b >>成等差数列,
2AB =,求顶点C 的轨迹方程.
【例23】 过点(13)P ,作两条相互垂直的直线12l l ,
,1l 交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.
【例24】 已知动点P 与双曲线221x y -=的焦点12F F ,的距离之和为定值,且12cos F PF ∠的最
小值为1
3
-.求动点P 的轨迹方程.
【例25】 已知圆1M :22(4)25x y ++=,圆2M :22(4)1x y -+=,一动圆与这两个圆都外切.求
动圆圆心P 的轨迹方程;
【例26】 设1F ,2F 分别是椭圆C :22
22
162x y m m +=(0)m >的左,右焦点.
⑴当P C ∈,且210PF PF ⋅=u u u r u u u r
,12||||8PF PF ⋅=时,求椭圆C 的左,右焦点1F 、2F .
⑵1F 、2F 是⑴中的椭圆的左,右焦点,已知圆2F 的半径是1,过动点Q 作圆2F 切线QM ,使得12QF =(M 是切点),如下图.求动点Q 的轨迹方程.
M
Q (x , y )
y
x
F 2
F 1
O
【例27】 已知椭圆22
221(0)x y a b a b +=>>的左、右焦点分别是1F 、2F ,Q 是椭圆外的动点,满
足1||2F Q a =u u u r
.点P 是线段1F Q 与该椭圆的交点,点T 在线段2F Q 上,并且满足220||0PT TF TF ⋅=≠u u u r u u u r u u u r ,.求点T 的轨迹C 的方程.
【例28】 已知(70)(70)(212)A B C --,,,,,,椭圆过A ,B 两点且以C 为其一个焦点,求椭
圆另一焦点的轨迹.
【例29】 已知点A B ,分别是射线()1:0l y x x =≥,()2:0l y x x =-≥上的动点,O 为坐标原点,
且OAB ∆ 的面积为定值2,求线段AB 中点M 的轨迹C 的方程.
【例30】 已知点(40)A m ,,(0)B m ,,(m 是大于0的常数,)动点P 满足
(4)6||AB AP x m m PB ⋅=-u u u r u u u r u u u r
,求点P 的轨迹C 的方程.
【例31】 在ABC △中,A 点的坐标为()3,0,BC 边长为2,且BC 在y 轴上的区间[]3,3-上滑
动.
⑴求ABC △外心的轨迹方程;
⑵设直线l :3y x b =+与⑴的轨迹交于E 、F 两点,原点到直线l 的距离为d ,求EF d
的最大值.并求出此时b 的值.
【例32】 点P 是曲线22412390x y x y ++-+=上的动点,直线10x y -+=是线段PQ 的中垂
线,求点Q 的轨迹方程.
【例33】 已知点(22)A ,,(22)B --,
,点P 满足22PA PB -=,求点P 满足的轨迹方程.
【例34】 设A B ,是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分
线l 交MA 于点P ,求动点P 的轨迹方程.
【例35】 在ABC △中,BC 固定,顶点A 移动.设||2BC =,当三个角A B C ,,满足条件
1
|sin sin |sin 2
C B A -=时,求顶点
的轨迹方程.
【例36】 已知直线1l :523(31)0x y m m -++=和2l :263(920)0x y m m +-+=,
⑴求此两直线的交点P 的轨迹方程;
⑵当m 为何值时,直线1l 、2l 的交点P 到直线43120x y --=的距离最短.
【例37】 直线y kx =与圆2264100x y x y +--+=相交于两个不同点A B ,,
当k 取不同实数值时,求AB 中点的轨迹方程.
【例38】 已知(20)A -,,(20)B ,,动点P 与A B ,两点连线的斜率分别为1k 和2k ,且满足
12(01)k k t t =≠-,.
⑴求动点P 的轨迹C 的方程;
⑵当0t <时,C 的两个焦点为12F F ,,若曲线C 上存在点Q 使得12120FQF ∠=o
,
求t 的取值范围.。