2013七年级数学期末复习一
七年级上册数学期末复习专题(最后三次课)学生版
七年级上册数学期末复习专题(一)——《有理数》【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用.5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.举一反三:【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 . -(-8)的相反数是 ;21-的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min.(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . (5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数 3.5万精确到 位, 3.4030×105精确到千位是 .2.如果(x -2)2+|y -3|=0,那么(2x -y )2005的值为( ). A .1 B .-1 C .22006 D .320053.在下列两数之间填上适当的不等号:20052006________20062007.举一反三:【变式】比较大小:(1)199-________0.001; (2)23-________-0.68类型二、有理数的运算4.(1)(﹣12)﹣5+(﹣14)﹣(﹣39) (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| (3)()1526061215⎡⎤⎛⎫⎛⎫---+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(4)()()5410.751252⎡⎤⎛⎫-⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)231111312112132442434(0.2)⎛⎫⎛⎫⎛⎫÷-++-⨯-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭举一反三:【变式】计算:(1)11(2)(2)22-⨯÷⨯-(2)()20064261031-+--⨯-类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.(3)转化思想:计算:31 35()147⎛⎫-÷- ⎪⎝⎭举一反三:【变式】若a是有理数,|a|-a能不能是负数?为什么?类型四、规律探索6.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.七年级上册数学期末复习专题(二)——《整式的加减》【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变. 4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项. 【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)xπ(7)5m n + (8)1+a% (9)1()2a b h +举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52mx y -的次数,则m =________;(3)若nma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【变式3】把多项式321325x x x --+按x 的降幂排列是________.类型二、同类项及合并同类项2.合并同类项.(1)232338213223c c c c c c -+-+-+; (2)22220.50.40.20.8m n mn nm mn -+-.举一反三: 【变式】若47ax y 与579bx y -是同类项,则a =________,b =________.类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+举一反三:【变式1】下列式子中去括号错误的是( ). A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【变式2】(2010·江西)化简:-2a+(2a -1)的结果是( ). A .-4a -1 B .4a -1 C .1 D .-1类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.举一反三:【变式】计算:11(812)3(22)32a abc c b ---+-+类型五、化简求值5. (1)直接化简代入 已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值 (烟台)若523m xy +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.举一反三:【变式1】(江苏常州)若实数a 满足2210a a -+=,则2245a a -+=________. 【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.()()22222mx -x +3x +1-5x -4y +3x七年级上册数学期末复习专题(三)——《一元一次方程》【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变. 3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法 解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式. (5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 【典型例题】类型一、一元一次方程的概念1.下列方程中,哪些是一元一次方程? 哪些不是? (1)2x+y =5; (2)x 2-5x+6=0; (3)23x x -=; (4)1123y y-+=.举一反三:【变式】下列说法中正确的是( ).A .2a-a=a 不是等式B .x 2-2x-3是方程 C .方程是等式 D .等式是方程2. 若方程3(x -1)+8=2x+3与方程253x k x+-=的解相同,求k 的值.举一反三:【变式】(2015春•泉州期中)当x=时,代数式2x+1与5x﹣8的值相等.类型二、一元一次方程的解法3.解方程2351 46y y+--=4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+举一反三:【变式】解方程:278(x-4)-463(8-2x)-888(7x-28)=0类型三、一元一次方程的应用5.(南京)甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.6. (2015•东城区一模)列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?举一反三:【变式】某文具店为促销X型计算器,优惠条件是一次购买不超过10个,每个38元,超过10个,超过部分每个让利2元(即每个36元),问李老师用812元共买了多少个?七年级上册数学期末复习专题(四)——《几何图形初步》【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图; ②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
2013-2014学年七年级数学上期末复习试卷(第1-3章)含答案
初一级数学《第一~第三单元》综合检测【2013年12月4日】初一()班学号:姓名:成绩:一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1 2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127 EMBED Equation.3B. 12.7 EMBED Equation.3C. 1.27 EMBED Equation.3D. 1.27 EMBED Equation.314. 一个两位数,十位上的数字是 EMBED Equation.3,个位上的数字比十位上的数字多1,则这个两位数是 (用 EMBED Equation.3 表示).15. 若 EMBED Equation.3 与 EMBED Equation.3互为倒数,则x = .16. 下列图形都是由同样大小的平行四边形按一定的规律组成。
七年级数学期末复习试卷
七年级期末数学试题 第1页,共4页七年级期末数学试题 第2页,共4页图3DCBAO2013-2014学年度第一学期期末复习检测七年级数学试题一、选择题:(本大题共10小题,每小题3分,满分30分) 1. 5-的绝对值是( ) A .15B .15-C .5D .5-2. 方程063=+x 的解是( )A .2 B .-2 C .3 D .-33. 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为( ) A. 81310⨯ B. 81.310⨯ C. 91.310⨯ D. 91.3 4.实数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A .a +b >0B .a - b < 0C . ab >0D .a/b >0 5.化简-2(m -n)的结果为( )A .-2m -nB . -2m+nC . 2m -2n D. —2m+2n 6.丁丁做了以下4道计算题:①2010(1)2010-=;②011--=-();③111236-+=-;④ 11122÷-=-().请你帮他检查一下,他一共做对了( ) A. 1题 B. 2题 C. 3题 D. 4题 7. 形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132-的结果为( )A .11B .-11C .5D .-28.点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是( ) A . AC =BC B. AC +B C= AB C. AB =2AC D. BC =21AB 9.如左图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是A.B.C.D.10.如图2示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2010个这样的三角形镶嵌而成的四边形的周长是( )CA.2009 B.2010C.2011 D. 2012二.填空题(本大题共6小题,每小题3分,满分18分) 11.如果□+2=0,那么“□”内应填的数是____________.12.一件商品按成本价提高20%后标价,又以9折销售,售价为270元。
七年级数学人教版(上册)期末复习(一)有理数
每年减少 10%的过度包装纸的用量,那么可减排二氧化碳 4 280 000
t.把数 4 280 000 用科学记数法表示为 4.28×106
.
用科学记数法将一个数表示成 a×10n 形式的方法:(1)确定 a, |a|大于或等于 1 且小于 10;(2)确定 n,当原数的绝对值大于或等于 10 时,n 为正整数,且等于原数的整数位数减 1.
1 解:(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,3.
1 绝对值分别为 0.5,2,2.5,2.5,0,1.4,4,3.
13.(20 分)计算: (1)0.125×(-7)×8. 解:原式=0.125×8×(-7) =1×(-7) =-7.
(2)-32-(-8)×(-1)5÷(-1)4. 解:原式=-9-(-8)×(-1)÷1 =-9-8 =-17.
(2)如果振子每振动 1 mm 用时 0.02 s,那么完成 8 次振动共需要 多少秒?
【解答】 (2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8| +|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).
61.5×0.02=1.23(s). 答:完成 8 次振动共需 1.23 s.
|a+b| 当 m=2 时,2m2+1+m-3cd=0+2-3=-1;
|a+b| 当 m=-2 时,2m2+1+m-3cd=0-2-3=-5.
15.(14 分)如图,数轴上有 A,B,C 三点,它们分别表示数 a, b,c,已知|a+24|+(b+10)2=0,且 b,c 互为相反数.
(1)求 a,b,c 的值. 解:(1)因为|a+24|+(b+10)2=0, 所以 a+24=0,b+10=0,解得 a=-24,b=-10. 因为 b,c 互为相反数,所以 b+c=0.所以 c=10.
初中七年级数学上册期末专项复习4套含答案
A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
七年级(上)数学期末总复习
等于20分钟的人数占总人数的40% 大于20分钟的人数占总人数的20% (3)老师随机地问一个同学,最可能得到 的答案是20分钟.
课后练习 一、填空题 1.数一数,在图中,共有_2_2_条线段.
2.如图 ( 1 ) 如 果 AD//BC , 那 么 根 据两__直__线__平__行__同__位__角__相__等__ ,
例6.下面是某班30学生每天上学单程所到时间(分钟)
(1)在这个统计表中,单程花_______分钟这一数 据的频数最大.
(2)若把这些数据分成小于20分钟,等于20分钟, 和大于20分钟这三档,则各档人数各占总人数的多少.
(3)Байду номын сангаас如老师随机地问一个同学,你认为老师最可 能得到的答案是几分钟
答:
(2)线段、射线、直线等简单平面图形的有关概念,特 征和表示法,三者的区别和联系,及线段中点概念,和进 行有关的简单计算.
(3)角的有关概念.表示法,度、分、秒、间的 换算及简单的计算.会比较角的大小及分类.
(4)平行线,相交线,了解了有关平行线垂线 的特征及识别.
4.数据的收集 通过解决简单的实际问题,体会大千世界的 不确定性,熟悉收集,整理数据,学会根据 不同问题选择适当统计图描述数据得到较明 显的结论,理解频数、频率,不可能发生, 可能发生和必然发生的概念.
二、典型例题分析 例1.把下面各数填入表示它所在数集里.
-3,11, 2 ,0,2003,0.414,-0.618,-7% 5
解:
例2.有理数a、b、c在数轴上的位置如图所示: 化简|a+b|-|c-b|
解:由a、b、c在数轴上所处的 位置可知:a<0、b>0、c<0, 且|a|<|b|<|c|.a+b>0,c-b<0 所以|a+b|=a+b,|c-b|=b-c. |a+b|-|c-b|=a+b-(b-c)=a+c.
七年级数学期末总复习——第一章至第三章湘教版
湘教版初一数学期末总复习——第一章至第三章一. 教学内容:期末总复习——第一章至第三章二. 重点、难点:重点:《有理数》一章的概念的理解,有理数大小的比较,有理数运算《代数式》一章的概念的理解与运用代数式的表示方法、列代数式、求代数式的值、去括号法则、一类代数式的加减、《图形欣赏与操作》这一章的概念及运用、简单几何体的对称性、三视图的画法、七巧板的拼摆。
难点:科学记数法,两负数的大小的比较、有理数的乘方与混合运算、用字母表示规律列代数式、去括号法则的运用、画三视图或通过立体图的三视图再去画立体图、拼七巧板、光源与投影的相关知识。
三. 教学知识要点:1. 第一章《有理数》知识网络的回忆①正数和负数可表示具有相反意义的量,假如向东走5米记为+5米,则向西走4米记作-4米,其中“+5米”与“-4米”是一对具有相反意义的量。
正数比0大,如4,6,19,π,……负数比0小,前面有一个“-”号,如-3,-7,-π,……0在此表示正数与负数的分界点,既不是正数,也不是负数。
②有理数分类⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧--- 08.523.15.0117542152.90.015.0001184531791980700131.a ,,,,,负分数,,,,,,正分数分数),,,负整数(如),,,,正整数(如整数有理数注意:分数中包含可以化成分数的小数。
无限不循环小数不可化成分数,它不包含在分数内,如π就是无限不循环小数,它不是分数,当然也不是整数,所以π不是有理数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧------⎪⎩⎪⎨⎧),,,负分数(),,,负整数(负有理数),,,正分数(),,,,正整数(正有理数有理数 08.277.04110152007.71.0215421.b③数轴是规定了原点、正方向、单位长度的直线。
所有有理数可用数轴上的点表示,但数轴上的点表示的数不一定是有理数。
2012-2013北师大七年级上数学第二、三、五单元期末复习题
三明四中2012-2013北师大七年级上数学第二、三、五单元期末复习题班级 姓名 座号 成绩一、基础知识: (有理数)1.正负数的意义:某景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C 2.相反数:-3的相反数是___ _3.绝对值:–5的绝对值是 4.倒数:31-的倒数是__ __ 5.大小比较:用“>”、“<”、“=”号填空:(1)1___02.0-; (2)43___54--6.科学记数法:用科学记数法表示13 040 000,应记作_____________________。
7.数轴:.数轴上表示数5-和表示14-的两点之间的距离是__________ 8.乘方:(-2)2= , -22= ,(-1)100= ,-1100= ,(32-)2=9.四则运算:⑴ -32-5= ; (2) -2+25= ;⑶(-0.5)×(-8)= ; (4)12-21= ; ⑸()25-= ____ ⑹ 25-= ____ ⑺ -23-(-12)= ;(8)])4()1[(2232---⨯-= 10.(—3)5的底数是 ,指数是11.下列算式中,积为负数的是………………………………………………( )A 、)5(0-⨯B 、)10()5.0(4-⨯-⨯C 、)2()5.1(-⨯-D 、)32()51()2(-⨯-⨯-12.下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3) C 、432与169 D 、2)4(-与–1613.计算:)4(2)3(623-⨯+-⨯-= ,15783--+-= ,=-⨯÷)41(436(整式的加减)1.单项式2335a bc -的系数是______,次数是______;2.多项式2143x x -+-是 次 项式3.同类项:若代数式473b a x + 与代数式 yb a 24- 是同类项,则 yx 的值是( ) A 、9 B 、9- C 、4 D 、4-4.合并同类项:把-x-x 合并同类项得( )A 、0 B 、-2 C 、-2x D 、-2x 2 7-3x-4x 2+4x-8x 2-15 = 5.去括号:(5x-3y)-(6x+5y)=6.化简:=+-a a a 32 =-+)1(22x x 3x-4x+x= 3a-(2a-1)=7、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分....每度电价按b 元收费。
人教版七年级数学第一学期期末复习压轴训练(含答案)
1.武汉市居民用电电费目前实行梯度价格表(为计算方便,数据进行了处理)(1)若月用电150千瓦时,应交电费_______元;若月用电250千万时,应交电费____元(2)若居民王成家12月应交电费150元,请计算他们家12月的用电量(3)若居民王成家12月份交纳的电费,经过测算,平均每千万时0.55元,请计算他们家12月的用电量2.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是__________,B,C两点之间的距离为__________;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是__________;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M__________,N__________;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P__________,Q__________(用含m,n的式子表示这两个数).1.平价商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1) 甲种商品每件进价为_______元,每件乙种商品利润率为________(2) 若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3) 在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小聪第一天只购买乙种商品,实际付款360元,第二天只购买甲种商品实际付款432元,求小聪这两天在该商场购买甲、乙两种商品一共多少件?2.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足:|a+2|+(c ﹣7)2=0.(1)a = ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A .B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示)(4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.1、七年级学习代数式求值时,遇到这样一类题“代数式6351ax y x y -++--的值与x 的取值无关,求a 的值”,通常的解题方法是:把x 、y 看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式=(3)65a x y +-+,所以30a +=,则 3a =-.(1)若关于x 的多项式2(23)23x m m x -+-的值与x 的取值无关,求m 值;(2)已知A 22321x xy x =+--,B 21x xy =-+-;且3A +6B 的值与x 无关,求y 的值;(3)7张如图1的小长方形,长为a ,宽为b ,按照图2方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为1S ,左下角的面积为2S ,当AB 的长变化时,12S S -的值始终保持不变,求a 与b 的等量关系.2、如图,已知数轴上有A .B 、C 三点,分别表示有理数﹣26、﹣10、10,动点P 从点A 出发,以每秒1个单位的速度向终点C 移动,当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,问当点Q 从A 点出发几秒钟时,点P 和点Q 相距2个单位长度?直接写出此时点Q 在数轴上表示的有理数.1、现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y米,宽都是x米.(1)(3分)若一用户需Ⅰ型的窗框2个,Ⅱ型的窗框3个,求共需这种材料多少米(接缝忽略不计)?(2)(4分)已知y>x,求一个Ⅰ型的窗框比一个Ⅱ型的窗框节约这种材料多少米?,4,P、M、N为数轴上的三个动点,点M从B点出发速度2、已知数轴上两点A,B对应的数分别是10为每秒2个单位,点N从A点出发速度为M点的2倍,点P从原点出发速度为每秒1个单位.(1)(1分)线段AB之间的距离为个单位长度.(2)(4分)若点M向左运动,同时点N向右运动,求多长时间点M与点N相遇?(3)(4分)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?七上数学压轴1参考答案1.解答:解:(1)0.5×150=75(元),0.5×180+0.6×(250-180)=90+0.6×70=90+42=132(元).答:若月用电150千瓦时,应交电费75元,若月用电250千瓦时,应交电费132元.(2)设他们家12月的用电量是x千瓦时,依题意有0.5×180+0.6(x-180)=150,解得x=280.答:他们家12月的用电量是280千瓦时.(3)设他们家12月的用电量是y千瓦时,依题意有0.5×180+0.6(y-180)=0.55y,解得y=360.答:他们家12月的用电量是360千瓦时.故答案为:75,132.2.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.七上数学压轴2参考答案(2)(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变. 3BC-2AB=3(2t+6)-2(3t+3)=12.压轴3答案1、【答案】(1)解:22(23)232323x m m x mx m m x -+-=-+-2(23)32m x m m =--+,关于x 的多项式2(23)23x m m x -+-的值与x 的取值无关,230m ∴-=, 解得32m =. (2)解:2223211A x xy x B x xy =+--=-+-,, 22363(2321)6(1)A B x xy x x xy ∴+=+--+-+-226963666x xy x x xy =+---+-1569xy x =--(156)9y x =--,36A B +的值与x 无关,1560y ∴-=, 解得25y =. (3)解:设AB x =,由图可知,1(3)3S a x b ax ab =-=-,22(2)24S b x a bx ab =-=-,则123(24)S S ax ab bx ab -=---324ax ab bx ab =--+(2)a b x ab =-+,当AB 的长变化时,12S S -的值始终保持不变,12S S ∴-的值与x 的值无关,20a b ∴-=,2a b ∴=.【思路引导】(1)由题可知代数式的值与x 的取值无关,所以含x 项的系数为0, 故将多项式进行整理,令x 的系数为0,即可求出m ;可;(3)设AB =x , 由图可知,1(3)3S a x b ax ab =-=-,22(2)24S b x a bx ab =-=- ,即可得S 1-S 2 的代数式,根据取值与x 无关可得a-2b=0,即a =2b.2、【答案】解:有两种情况:①点Q 追上点P 之前相距2个单位长度.设此时点Q 从A 点出发t 秒钟.依题意,得(16+t )﹣3t =2,解得,t =7.此时点Q 在数轴上表示的有理数为﹣5;②点Q 追上点P 之后相距2个单位长度.设此时点Q 从A 点出发m 秒钟.依题意,得3m ﹣(16+m )=2,解得,m =9.此时点Q 在数轴上表示的有理数为1.综上所述,当点Q 从A 点出发7秒和9秒时,点P 和点Q 相距2个单位长度,此时点Q 在数轴上表示的有理数分别为﹣5和1【思路引导】根据题意分两种情况进行分析:①点Q 追上点P 之前相距2个单位长度可得方程,解方程即可;②点Q 追上点P 之后相距2个单位长度可得方程,解法即可,最后总结可得结论.压轴4答案1、【答案】(1)解:根据图形,1个Ⅰ型窗框用料(32x y +)米;1个Ⅱ型窗框用料(23x y +)米;2个Ⅰ型窗框和3个Ⅱ型窗框共需这种材料(单位:米)2、【答案】(1)14(2)解:设运动时间为t 秒时,点M 与点N 相遇.2t+2 ⨯ 2t =146t =14t = 73; ∴ 当运动时间为73 秒时,点M 与点N 相遇. (3)解:点M 、N 、P 运动的时间为y 秒时,点P 到点M 、N 的距离相等,①(2y +4)-y =4y -10-yy =7②2y +4-y =y -(4y -10)y =1.5∴当点M 、N 、P 运动时间为7S 或1.5S 时,点P 到点M ,N 的距离相等.故答案为:14;【思路引导】(1)根据数轴上两点间的距离公式求解即可;(2)设运动时间为t秒时,根据点M移动的距离+点N移动的距离=AB=14,列出方程并解之即可;(3)分两种情况:①点P在AB之间,②点M、N在点P的右侧时,据此分别列出方程并解之即可.+++x y x y2(32)3(23)=+++x y x y6469=+;x y1213(2)解:1个Ⅱ型窗框和1个Ⅰ型窗框多用这种材料(单位:米)+-+(23)(32)x y x y=+--2332x y x y=-.y x【思路引导】(1)根据题意列出算式,去掉括号合并即可;(2)用1个Ⅱ型窗框用料-1个Ⅰ型窗框用料,列出算式,去掉括号合并即可。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版七年级上册数学期末复习专项——《数轴类综合问题》(一)
人教版七年级上册数学期末复习专项——《数轴类综合问题》(一)1.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;当点P运动到AB的中点时,它所表示的数是.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.已知数轴上有A,B,C三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.3.已知点M、N在数轴上,点M对应的数是﹣3,点N在点M的右边,且距点M4个单位长度.(1)直接写出点N所对应的有理数;(2)点P是数轴上一动点,请直接写出点P到点M和点N的距离和的最小值;(3)若点P到点M、N的距离之和是6个单位长度:①求点P所对应的有理数是多少?②如果点Q从点N出发,沿数轴正方向以每秒1个单位长度的速度运动,同时点P以每秒3个单位长度的速度沿数轴正方向运动,t秒后P、Q两点相距4个单位长度,求t.4.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.5.已知数轴上O、A两点对应的数为0、10,Q为数轴上一点.(1)Q为OA线段的中点(即点Q到点O和点A的距离相等),点Q对应的数为.(2)数轴上有点Q,使Q到O、A的距离之和为20,点Q对应的数为.(3)若点Q点表示8,点M以每秒钟5个单位的速度从O点向右运动,点N以每秒钟1个单位的速度从A点向右运动,t秒后有QM=QN,求时间t的值t=.6.如图,点A,B是数轴上的两点.点P从原点出发,以每秒2个单位的速度向点B作匀速运动;同时,点Q也从原点出发用2s到达点A处,并在A处停留1s,然后按原速度向点B运动,速度为每秒4个单位.最终,点Q比点P早3s到达B处.设点P运动的时间为ts.(1)点A表示的数为;当t=3s时,P、Q两点之间的距离为个单位长度;(2)求点B表示的数;(3)从P、Q两点同时出发至点P到达点B处的这段时间内,t为何值时,P、Q两点相距3个单位长度?7.已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数.一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒.(1)请求出A、B、C三点分别表示的数;(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是.8.在长江某段笔直的航道上依次有三个城市A、O、B,长江水流的方向为自西向东,水流的速度为每小时m千米,以O为原点建立数轴,取向东的方向为正方向,选取1千米为一个单位长度,A、B两城市所对应的数分别为a、b,满足|a+200|+(a+b)2=0.(1)求A、B两个城市所对应的数;(2)有两艘轮船P、Q分别从A、B两个城市同时出发相向而行,两船在静水中的速度分别为每小时40千米和每小时60千米,求P、Q两船相遇地点C所对应的数;(3)在(2)的条件下,当m=10时,P、Q两船继续按原速原方向行驶,当Q到达A 城市后,立即返回,两船都向东继续行驶,从相遇时刻起经过多长时间P、Q两船相距200千米?并直接写出此时P船在数轴上所对应的数.9.如图,动点M、N同时从原点出发沿数轴做匀速运动,已知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在数轴上画出A、B两点的位置,并回答:点M运动的速度是(单位长度/秒);点N运动的速度是(单位长度/秒).②若点P为数轴上一点,且P A﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?10.阅读下面的材料:如图①,若线段AB在数轴上,A,B两点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点,用1个单位长度表示lcm.(1)请你在数轴上表示出A,B两点的位置;(2)若将点A向左移动xcm,则移动后点A表示的数为若点M从原点O出发以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t(秒),同时,另一动点N从点B出发,以每秒2个单位长度的速度向左匀速运动,到达原点O后立即原速度返回向右匀速运动,当MN=1cm时,求t的值.参考答案1.解:(1)∵数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10,∴得B点表示的数为﹣4,当点P运动到AB的中点时,它所表示的数为1.故答案为﹣4、1.(2)①根据题意,得6t﹣2t=10解得t=2.5答:当P运动2.5秒时,点P追上点Q.②根据题意,得当点P与点Q相遇前,距离8个单位长度:2t+(10﹣6t)=8,解得t=0.5;当点P与点Q相遇后,距离8个单位长度:(6t﹣10)﹣2t=8,解得t=4.5.答:当点P运动0.5秒或4.5秒时,点P与点Q间的距离为8个单位长度.2.解:(1)设x秒后,甲到A,B,C的距离和为60个单位.B点距A,C两点的距离为26+20=46<60,A点距B、C两点的距离为26+46=72>60,C点距A、B的距离为46+20=66>40,故甲应位于AB或BC之间.①AB之间时:4x+(26﹣4x)+(26﹣4x+20)=60,x=3;②BC之间时:4x+(4x﹣26)+(46﹣4x)=60,x=10,综上所述,经过3s或10s后,甲到A,B,C的距离和为60个单位;(2)设ts后甲与乙相遇4t+6t=46,解得:x=4.6,4×4.6=18.4,﹣36+18.4=﹣17.6答:甲,乙在数轴上的点﹣17.6相遇;(3)设y秒后甲到A,B,C三点的距离之和为60个单位,①甲从A向右运动3秒时返回,此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣36+4×3﹣4y;乙表示的数为:10﹣6×3﹣6y,依据题意得:﹣36+4×3﹣4y=10﹣6×3﹣6y,解得:y=8,相遇点表示的数为:﹣36+4×3﹣4y=﹣56(或:10﹣6×3﹣6y=﹣56),②甲从A向右运动10秒时返回,设y秒后与乙相遇.甲表示的数为:﹣36+4×10﹣4y;乙表示的数为:10﹣6×10﹣6y,依据题意得:﹣36+4×10﹣4y=10﹣6×10﹣6y,解得:y=﹣27(不合题意舍去),即甲从A向右运动3秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣56.3.解:(1)﹣3+4=1.故点N所对应的数是1;(2)当点P在点M和点N之间时,点P到点M和点N的距离和的最小,最小值为PM+PN=4.(3)①设P点表示的数是x,(a)当点P在点M的左边,∵PM+PN=6,∴1﹣x﹣3﹣x=6,解得x=﹣4,∴点P表示的数是﹣4,(b)当点P在点N的右边,同理可得x﹣1+x+3=6,解得x=2,∴点P表示的数是2,综合以上可得点P表示的数是2或﹣4;(3)点P、Q同时出发向右运动,设运动时间为t秒,当P对应的数是2时,∵点P运动速度大于点Q的运动速度,∴只存在一种情况,∴2﹣1+3t=t+4,解得t=,故分为两种情况讨论:当P对应的数是﹣4时,(a)未追上时:(5+t)﹣3t=4,解得:t=;(b)追上且超过时:3t﹣(5+t)=4,解得:t=.答:经过秒或秒或秒后,P、Q两点相距4个单位长度.4.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.5.解:(1)(0+10)÷2=5.故点P对应的数为5.故答案为:5.(2)①分Q在O的左边,点Q对应的数是﹣5,②Q在O的右边,点Q对应的数是15.故点P对应的数为﹣5或15.故答案为:﹣5或15.(3)①M在Q的左边,依题意有:8﹣5t=t+(10﹣8),解得t=1,②M在Q的右边,依题意有:5t﹣8=t+(10﹣8),解得t=.则t的值1或.故答案为:1或.6.解:(1)∵Q从原点出发用2s到达点A处,且速度为每秒4个单位∴|OA|=2×4=8又∵A点在原点的左侧∴A:﹣8当t=3s时又∵Q也从原点出发用2s到达点A处,并在A处停留1s∴|OQ|=|OA|=8∵点P从原点出发,以每秒2个单位的速度向点B作匀速运动∴|OP|=2×3=6∴|PQ|=|OQ|+|OP|=6+8=14(2):点P从原点运动到点B的时间为t,∴8+2t=4(t﹣6)解得:t=16∴BC=2t=32∴点B表示的数是32(3):由(2)得:∵点P到达点B处需要16s,点Q到达点B处需要13s,∴P、Q两点相距3个单位长度分四种情况:①:当点Q从O﹣﹣A上时,4t+2t=3,解得:t=②:当点Q从O﹣﹣A﹣﹣B上时且在P的左侧时,8+2t=4(t﹣3)+3,解得:t=③:当点Q从O﹣﹣A﹣﹣B上时且在P的右侧时,8+2t+3=4(t﹣3),解得:t=④:当点Q到达点B时:2t+3=32,解得:t=∵t<16s∴当P、Q两点相距3个单位长度,t的值为:,,,.7.解:(1)∵(a+12)2+|b+5|=0,∴a+12=0,b+5=0,解得:a=﹣12,b=﹣5,又∵b与c互为相反数,∴b+c=0,∴c=5;(2)若小蜗牛运动到B前相距1个单位长度时,运动时间为x秒,∵AB的距离为|﹣12﹣(﹣5)|=7,∴2x+1=7,解得:x=3;若小蜗牛运动到B后相距1个单位长度时,运动时间为y秒,依题意得:2y=7+1,解得:y=4,综合所述:经过3秒或4秒时,小蜗牛到点B的距离为1个单位长度;(3)设点P表示数为z,∵AC的距离为|﹣12﹣5|=17,BC的距离为|5﹣(﹣5)|=10,∴点P只能在AC之间,不可能在点C的右边;又∵P A+PC=17,P A+PB+PC=20,∴|PB|=3∴|z﹣(﹣5)|=3,解得:z=﹣8或z=﹣2.8.解:(1)∵|a+200|+(a+b)2=0,∴a+200=0,a+b=0.解得a=﹣200,b=300,∴A,B两个城市所对应的数分别是﹣200,300;(2)设t小时相遇,根据题意可得:(40+m+60﹣m)t=300﹣(﹣200),∴t=5,∴相遇地点C所对应的数=﹣200+5(40+m)=5m;(3)当m=10,即相遇地点C所对应的数为50.设从相遇时刻起经过x小时,P、Q两船相距200千米,当Q到达A城市前,(40+10+60﹣10)x=200,解得:x=2,符合题意,P船在数轴上所对应的数为:50+50×2=150;当Q到达A城市后,70(x﹣5)+200=50x+250 或70(x﹣5)﹣200=50x+250,解得:x=20或x=40,符合题意,P船在数轴上所对应的数为:50+50×20=1050,或50+50×40=2050.故从相遇时刻起经过2或20或40小时P、Q两船相距200千米,此时P船在数轴上所对应的数分别是150或1050或2050.9.解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵P A﹣PB=OP≥0,∴x≥2,当2≤x≤8时,P A﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,P A﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=或=1;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上所述,经过4秒或8秒或秒或秒,MN=4(单位长度).10.解(1):∵一个点从数轴上的原点开始,先向左移动2cm到达A点∴A:﹣2∵一个点从数轴上的原点开始,先向左移动2cm到达A点,再向右移动7cm到达B点∴7﹣2=5∴B:5(2):∵A:﹣2∴A:﹣2﹣x(3)相遇前,距离原本是5,距离1,则一起行4,t+2t=4,t=.相遇后t+2t=6,t=2.N遇到原点后返回追上前是t﹣(2t﹣5)=1,t=4.返回追上后2t﹣5﹣t=1,t=6,答:t的值为或2或4或6.。
湘教版七年级数学下册 期末复习(一) 二元一次方程组 知识梳理
A.①×3+②×2
B.①×3-②×2
C.①×5+②×3
D.①×5-②×3
5.二元一次方程组2xx--2yy==-0,3的解为( C )
A.xy= =21
D.yx==1-2
6.若5a7xby+7和-6a2-4yb2x是同类项,则x,y的值分别是( B )
18.(8分)小明用代入消元法解二元一次方程组x2+x-y=y=-31,2.①② 第一步:将方程①变形,得y=2x-3.③ 第二步:把方程③代入方程①,得2x-(2x-3)=3. 第三步:整理,得3=3. 第四步:因为x可取一切有理数,所以原方程组有无数个解.
问题: (1)以上解法,造成错误的一步是 第二步; (2)请你给出用加减消元法解此二元一次方程组的正确过程. 解:①+②,得3x=-9. 解得x=-3. 把x=-3代入②,得y=-9. 所以方程组的解为xy= =- -39.,
数学
期末复习(一) 二元一次方程组
01 知识结构图
02 重难点突破
重难点1 二元一次方程组的解法 【例1】 解方程组:42xx- +3y=y=62.②,① 【解答】 解法一:②×2-①,得5y=10,解得y=2. 把y=2代入②,得x=2. 所以原方程组的解为yx==22.,
解法二:由②,得y=6-2x.③ 将③代入①,得4x-3(6-2x)=2,解得x=2. 将x=2代入③,得y=2. 所以原方程组的解为yx==22.,
19.(8分)已知甲、乙两辆汽车同时、同方向从同一地点出发行 驶.若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车 相遇,相遇时乙车走了1小时.求甲、乙两车的速度.
解:设甲、乙两车的速度分别是x千米/时和y千米/时.根据题 意,得
xx×=12+y,y×1=90×2.解得yx==6102.0, 答:甲、乙两车的速度分别是120千米/时、60千米/时.
2013北师大版七年级数学下第4章《变量之间的关系》期末复习测试卷一
第四章变量之间的关系综合练习一、填空题:1.表示变量之间的关系常用方法是2. 1~6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x ,其中a 是婴儿出生时体重.一个婴儿出生时的体重4000克,请用表格表示,在3.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化。
①在这个变化中,自变量、因变量分别是_____________、_____________; ②如果高为h(cm)时,体积为V(cm 3),则V 与h 的关系为___________________; ③当高为5cm 时,棱柱的体积是_______________;④棱柱的高由1cm 变化到10cm 时,它的体积由_____________变化到______________.(1) 上表反映了____________和________________两个变量之间的关系. 其中自变量是_____________,因变量是_______________. (2) 随着自变量的变化,因变量变化的趋势是什么?答:___________________________________________________________(3) 你认为入学儿童的人数会变成零吗? 答:_____________________________ 5、正方形的边长为a ,那么它的面积s 与a 之间的关系式为 。
6、某种储蓄的月利率是002.0,存入100元本金后,则本息和y (元)与所存月数x 之 间的关系式为 ,10个月后本息和为 元。
7、声音在空气中传播的速度y (米/秒)与气温C x o 之间有如下关系: y 33153+=x .(1)在这一变化过程中,自变量是 ,因变量是 。
(2)当气温15=x C o 时,声音速度=y 米/秒。
(3)当气温22=x C o 时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距 米。
2013学年七年级上数学《有理数的概念》期末复习试题
2013七年级数学复习讲义—有理数的概念班级 小组 姓名一、填空题:1.某粮店出售的三种品牌的面粉袋上分别标有“质量为(25±0.1)kg 、(25±0.2)kg 、(25±0.3)kg”的字样,从中任意拿出两袋,它们的质量最多能相差 kg ;2.地图上标有甲地的温度为25度,乙地的温度为20度,丙地的温度为-5度,则温度最高处与最低处相差____度;3. -0.5的倒数是 ,()25.0-= ,()35.0-= .4.若a 的相反数是3,则a 的倒数是 , 一个数等于它的倒数的4倍,这个数是 。
5.若| a |=0.75, 则a 是 ,若|x |≤2,且 x 为整数,那么x 为6..绝对值不大于2011的所有整数的和是________,积是_______.7. 数轴上点A 表示-3,那么到点A 的距离是5个单位长的点表示的数是__________. 8.相反数等于它本身的有理数是_____________,绝对值等于它本身的有理数是_____________,倒数等于它本身的有理数是_____________,平方等于它本身的有理数是_____________, 立方等于它本身的有理数是______________。
9.在-45,0,9.8,-6,-3.2,+108,28,-9这些有理数中, (1)正整数有 ;(2)负整数有 ;(3)负分数有 .10.比较大小:-[-(-0.3)] -∣-31∣。
11.数轴上表示数5-和表示14-的两点之间的距离是__________。
12.若0|2|)1(2=++-b a ,则b a +=_________。
13.在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个。
七年级数学下 期末复习题 一
6
3.点 P 在四象限, 且点 P 到 x 轴的距离为 3, 点 P 到 y 轴的距离为 2, 则点 P 的坐标为 ( A. ( 3, 2) B. (3, 2) C. (2,3) D. (2, 3)
)
4.已知三角形的周长是 c ,其中一边是另一边 2 倍,则三角形的最小边的范围是( A.
)
c c 与 之间 6 4
36.快乐公司决定按如图所示给出的比例,从甲、乙、丙三个工厂共购买 200 件同种产品 A. 已知这三个工厂生产的产品 A 的优等品率如表所示. 甲 优等品率 80% 乙 85% 丙 90%
(1)快乐公司从甲厂购买____________件产品 A; (2)快乐公司购买的 200 件产品 A 中优等品有____________件; (3)根据市场发展的需要,快乐公司准备通过调整从三个工厂所购买的产品 A 的比例,提高 所购买的 200 件产品 A 中的优等品的数量.若从甲厂购买产品 A 的比例保持不变,那么应从 乙、丙两工厂各购买多少件产品 A,才能使所购买的 200 件产品 A 中优等品的数量为 174 件.
5
七年级下数学讲义
37.上海世博会会期为 2010 年 5 月 1 日至 2010 年 10 月 31 日。门票设个人票和团队票两大 类。个人普通票 160 元/张,学生优惠票 100 元/张;成人团队票 120 元/张,学生团队票 50 元/张。 (1)如果 2 名老师、10 名学生均购买个人票去参观世博会,请问一共要花多少元钱购买 门票? (2)用方程组 解决下列问题:如果某校共 30 名师生去参观世博会,并得知他们都是以团 ... 队形式购买门票,累计花去 2200 元,请问该校本次分别有多少名老师、多少名学生参观世 博会?
22.如图,AB∥CD,∠A=1300,则∠D+∠CED= 23.如图,等边△ABC 的边长为 1 cm,D、E 分别是 AB、AC 上的点, 将△ADE 沿直线 DE 折叠, 点 A 落在点 A 处,且点 A 在△ABC 外部,则阴影部分图形的周长为 cm.
苏科版2013七年级数学第二学期期末章节总复习
HDADACBEF 苏科版2013七年级数学第二学期期末复习1第七章 平行线的性质和判定一、知识点: 二、基础训练:1:①如图,找出图中所有的同位角 ; 找出图中所有的内错角 ; 找出图中所有的同旁内角 。
②∠BAC 和∠ 是 和 被 所截的内错角; ∠ACD 和∠ 是 和 被 所截的同旁内角。
2.如图,给出下面的推理,其中正确的是 ( )① ∠B=∠BEF ,∴ AB ∥EF ② ∠B=∠CDE .∴ AB ∥CD ③ ∠B +∠BEF=180°,∴ AB ∥EF ④ AB ∥CD ,CD ∥EF ,∴ AB ∥EF A .①②③ B .①②④ C .①③④ D .②③④3.如图AB ∥DE ,∠B=150°,∠D=140°,则∠C 的度数为 ( ) A .60° B .75° C .70° D .50°第2题 第3题 第4题 第5题4.如图,若∠1与∠2互补,∠2与∠3互补,则 ( ) A .l 3∥l 4 B .l 2∥l 5 C .l 1∥l 3 D .l 1∥l 25.如果线段AB 是线段CD 经过平移得到的,如图所示,那么线段AC 与BD 的关系为( ) A .相交 B .平行 C .平行且相等 D .相等 三、例题讲解1、如图,从下列三个条件中:(1)AD ∥C B (2)AB ∥CD (3)∠A=∠C , 任选两个作为条件,另一个作为结论,编一道数学题,并说明理由。
已知: 结论: 理由: 2、如图,AD ∥BC ,∠A=∠C ,BE 、DF 分别平分∠ABC 和∠CDA ,试说明BE3、两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积。
AB CDE四、课堂练习:1、如图①,如果∠ = ∠ ,那么根据 可得AD ∥BC (写出一个正确的就可以).2、如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.3、如图④,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.4、把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB ′= 70º, 则∠B ′OG = .5、如图⑥中∠DAB 和∠B 是直线DE 和BC 被直线 所截而成的,称它们为 角.6、如图,AB ∥CD ,AD ∥BC ,∠A 的2倍与∠C 的3倍互补,求∠A 和∠D 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年度第二学期七年级数学期末复习试题一一、选择题1、下列各式计算正确的是( )A .(a +1)2=a 2+1B .a 2+a 3=a 5C .a 8÷a 2=a 6D .3a 2-2a 2=12、某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为 ( ).A .1.2×10-3B .1.2×10-4C .1.2×104D .-1.2×1043、如果162++mx x 是一个完全平方式,那么m 的值为( ) A .8 B .-8 C .±8 D .不能确定 4、下列是因式分解的是( ) A .4a 2-4a +1=4a(a -1)+1 B .a 2-4b 2=(a +4b)(a -4b) C .x 2+2xy +4y 2=(x +2y)2 D .(xy)2-1=(xy +1)(xy -1) 5、若a>b.下列各不等式中正确的是( ) A.a-1<b-1 B.ba 8181-<-C.8a<8bD.-a+1<-b-16.已知三角形的三边分别为2,a-1,4那么a 的取值范围是 ( ) A .3<a<7 B .2<a<6 C .1<a<5 D .4<a<67、如图,用8块全等的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是( )A .200cm 2B .300cm 2C .600cm 2D .2400cm 2 8.下列命题中,属于真命题的是( )A .互补的角是邻补角B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C .同位角相等D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
9、下列四个命题中,逆命题正确的一个为( )A 、如果两个数的差为正数,那么这两个数都为正数;B 、如果a 2+b 2=0,那么a =0; C 、如果一个三角形为锐角三角形,那么这个三角形三个角中必存在大于60°的角; D 、如果两个角有一条公共边,并且这两个角的和是180°,那么这两个角互为邻补角; 10.下列选项中,可以用来证明命题“21,1a a >>若则”是假命题的反例是( )A. 2a =-B. 1a =-C. 1a =D. 2a = 11、如图,如果AB∥CD,则角α、β、γ之间的关系式为( )A 、α+β+γ=360ºB 、α-β+γ=180ºC 、α+β+γ=180ºD 、α+β-γ=180º 12、如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC=90°-∠ABD ;④BD 平分∠ADC ;⑤∠BDC=12∠BAC .其中正确的结论有( ) A .2个 B .3个C .4个D .5个13.不等式组⎩⎨⎧<<+<<-5321x a x a 的解集为23+<<a x ,则a 的取值范围是( )A 、1>aB 、3≤aC 、1<a 或3>aD 、31≤<a14.《九章算术》是我国东汉初年编订的一部数第11题αγβEDCBAABC FED第12题学经典著作.在它的“方程”一章里,一 次方程组是由算筹布置而成的.《九章算 术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1 所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图2所示的算筹图我们可以表述为( ) A .211,4327.x y x y ⎧⎨⎩+=+= B .211,4322.x y x y ⎧⎨⎩+=+= C .3219,423.x y x y ⎧⎨⎩+=+= D .26,4327.x y x y ⎧⎨⎩+=+=二、填空题:1、已知{23x y =-=是二元一次方程5a x y +=的一个解,则a = 。
2、如果一个多边形的每个外角都是36,那么这个多边形是 边形。
3、已知方程532=+y x ,用含y 代数式表示x ,得x = 4、不等式3(x+1)≥5x —3的正整数解是 。
5、当a 时,不等式(a —1)x >1的解集是x <11-a 。
6、如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °.7、如图,有三种卡片,其中边长为a 的正方形卡片1张,边长分别 为a 、b 的矩形卡片6张,边长为b 的正方形卡片9张。
用这16张卡 片拼成一个正方形,则这个正方形的边长为 .8、若0232=--a a ,则a a 262+-=______________9.已知a 、b 、c 满足a+2b+3c=10,3a+2b+c=70,则a+b+c=______________________.10.将命题“所有直角都相等”改写成“如果……那么…”的形式为 。
11.把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题改写成“如果…,那么…”的形式:12.关于x 的不等式3x-a ≤0,只有两个正整数解,则a 的取值范围是13.已知:在同一平面内,直线a ∥c ,且直线a 到直线c 的距离是3;直线b ∥c ,直线b 到直线c 的距离为5,则直线a 到直线b 的距离为 .14、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
15.如图,△ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1.再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长n 次后得到的△A n Bn C n 的面积为 .三、解答题:图 1 图 2 图 3第 14 题图第14题 第15题⎩⎨⎧+=---=+m y x my x 3174321F EDC B A 1、计算:⑴()()()0320112011130.252⎛⎫-+---⨯ ⎪⎝⎭; ⑵ ()()()2212121m m m +-+-2、因式分解:(1)ax 3y +axy 3-2ax 2y 2 (2)x 2(x -y )+(y -x )3、(1)解方程组2313424()3(23)17x y x y x y ⎧-=⎪⎨⎪---=⎩ (2)解不等式组3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩4、已知方程组 的解满足x 为非正数,y为负数.(1)求m的取值范围;(2)化简:∣m -3∣-∣m +2∣;(3)在m的取值范围内,当m为何整数时,不等式2mx +x <2m +1的解为x >1.5、请把下列的证明过程补充完整:已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE . 证明:∵AB ∥CD (已知) ∴∠4=∠_____________( )∵∠3=∠4(已知) ∴∠3=∠_____________( 等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF (等式的性质) 即∠BAF=∠_______________ ∴∠3=∠_________________(等量代换)∴AD ∥BE ( ) 6、如图,已知∠ABC=30,∠BAD=∠EBC ,AD 交BE 于F. (1)求BFD ∠的度数;(2)若EG ∥AD ,EH ⊥BE ,求∠HEG 的度数.7、操作与实践(1)如图1,已知△ABC,过点A画一条平分三角形面积的直线;(2)如图2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO的面积相等;(3)如图3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.8、某地“梅花节”期间,某公司70名职工组团前往参观欣赏梅花,旅游景点规定:①门票每人60元,无优惠;②景区游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?9、某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?。