2017_2018学年高中数学第二章推理与证明2.2直接证明与间接证明2.2.2间接证明教学案苏教版
_高中数学第二章推理与证明2
跟踪练习
(2014~2015·合肥一六八中高二期中)观察下题的解答过
程:
已知正实数 a、b 满足 a+b=1,求 2a+1+ 2b+1的最
大值.
解:∵
2a+1· 2≤
2a+12+ 2
22=a+32,
2b+1· 2
≤
2b+12+ 2
22=b+32,
相 加 得 2a+1 · 2 + 2b+1 · 2 = 2 ( 2a+1 + 2b+1)≤a+b+3=4.
综合法: ∵a、b、c∈R+,∴(a-b)2+(b-c)2+(c-a)2≥0, ∴2(a2+b2+c2)≥(ab+bc+ac), ∴3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac, ∴3(a2+b2+c2)≥(a+b+c)2, ∴ a2+b32+c2≥a+3b+c.
人教版 选修2-2
第二章 推理与证明
2.2 直接证明与间接证明
2.2.1 综合法和分析法
目标导航
• 了解综合法与分析法的特点,熟练应用分析法与综合法证明 命题.
重点难点
• 重点:综合法和分析法的概念及思考过程、特点. • 难点:综合法和分析法的应用.
新知导学
1.综合法证明不等式
• 1.定义 • 利用___已__知__条__件___和某些数学__定__义____、__定__理____、
、已知的重要不等式和逻辑推理的基本理论;
• (2)适用范围:对于一些条件复杂,结构简单的不等式的证明 ,经常用综合法.而对于一些条件简单、结论复杂的不等式 的证明,常用分析法;
• (3)思路方法:分析法证明不等式的思路是从要证的不等式出 发,逐步寻求使它成立的充分条件,最后得到的充分条件是 已知(或已证)的不等式;
人教版高中数学第二章2.2-2.2.2反证法
2.反证法证明问题的一般步骤.
[变式训练] 已知函数 f(x)=ax+xx-+21(a>1).用反证 法证明方程 f(x)=0 没有负数根.
证明:假设存在 x0<0(x0≠-1),满足 f(x0)=0, x0-2
则 ax0=-x0+1. 因为 a>1,x0<0,所以 0<ax0<1,
所以 0<-xx00- +21<1,即12<x0<2. 与假设 x0<0 矛盾,故方程 f(x)=0 没有负数根.
因为 AB⊥平面 α,AC⊥平面 α,BC⊂平面 α,
所以 AB⊥BC,AC⊥BC,在平面 β 内经过点 A 有两 条直线都和 BC 垂直,这与平面几何中经过直线外一点只 能有已知直线的一条垂线相矛盾.综上,经过一点 A 只 能有平面 α 的一条垂线.
图①
图②
归纳升华 (1)当证明结论以“有且只有”“只有一个”“唯一 存在”等形式出现的命题时,由于反设结论易于导出矛 盾,所以宜用反证法证明. (2)若结论的反面情况有多种,则必须将所有的反面 情况一一驳倒,才能推断结论成立.
(1-a)+b
所以
2
≥ (1-a)b>
14=12.
同理(1-2b)+c>12,(1-2c)+a>12.
三式相加得
(1-2a)+b+(1-2b)+c+(1-2c)+a>32, 即32>32,矛盾. 所以(1-a)b,(1-b)c,(1-c)a 不能都大于14.
归纳升华 1.反证法是利用原命题的否定不成立则原命题成立 来进行证明的.在使用反证法时,必须在假设中罗列出所 有与原命题相异的结论,缺少任何一种可能,反证法都是 不完全的. 2 . 对 于 否 定 性 命 题 或 结 论 中 出 现 “ 至 多 ”“ 至 少”“不可能”等字样时,常用反证法.
高中数学第二章推理与证明2.2直接证明与间接证明2.2.1.1综合法课件新人教A版选修1208303
S9=
=9a5<0.
所以S5最小.
第二十五页,共30页。
6. 如图,在四棱锥 P-ABCD 中,PA⊥底面 ABCD,AB⊥AD, AC⊥CD,∠ABC=60°,
PA=AB=BC,E 是 PC 的中点. (1)证明:CD⊥AE. (2)证明:PD⊥平面 ABE.
第二十六页,共30页。
证明 (1)在四棱锥P-ABCD中, 因为PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD. 因为AC⊥CD,PA∩AC=A,所以(suǒyǐ)CD⊥平面PAC, 而AE⊂平面PAC,所以(suǒyǐ)CD⊥AE. (2)由PA=AB=BC,∠ABC=60°,可得AC=PA, 因为E是PC的中点,所以(suǒyǐ)AE⊥PC. 由(1)知,AE⊥CD, 且PC∩CD=C,所以(suǒyǐ)AE⊥平面PCD. 而PD⊂平面PCD,所以(suǒyǐ)AE⊥PD,
想到a·b
a
b
cos C和SABC
1 2
a
b sin C.利用
sin C 1 cos2 C经适当转化就可以获得结论.
第十二页,共30页。
证明 因为SABC (zhèngm
1 2
a
b sin C,cosC
ab, ab
íng):所以S 2ABC
1 4
a
2
b 2 sin2 C
1
2
a
b 2(1 cos2 C)
2.2 直接证明与间接(jiàn jiē)证明 2.2.1 综合法和分析法 第1课时 综合法
第一页,共30页。
有趣的数学(shùxué)证明引人入胜
第二页,共30页。
推理
合情推理 (或然性推理)
演绎推理 (必然性推理)
2017-2018学年高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 间接证明
2.2.2 间 接 证 明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a ,b ,c 满足a 2+b 2=c 2.求证:a ,b ,c 不可能都是奇数. 问题1:你能利用综合法和分析法给出证明吗? 提示:不能.问题2:a 、b 、c 不可能都是奇数的反面是什么?还满足条件a 2+b 2=c 2吗? 提示:都是奇数.若a 、b 、c 都是奇数,则不能满足条件a 2+b 2=c 2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法 (1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p 则q ”的过程可以用下面的框图表示:导致逻辑矛盾“若p 则q ”为真(2)反证法证明命题“若p 则q ”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果. ③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[对应学生用书P30][例1]锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac -a )+(ac -c )+1=a (c -1)+c (a -1)+1. ∵a (c -1)≤0,c (a -1)≤0. ∴a (c -1)+c (a -1)+1≤1, 即ac +bd ≤1. 与ac +bd >1相矛盾.∴假设不成立.∴a 、b 、c 、d 中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:6.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0, ∴-a +b2≥-a b >14=12. 同理-b +c 2>12,-c +a 2>12. 三式相加,得-a +b2+-b +c2+-c +a 2>32, 即32>32,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.7.用反证法证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明:假设方程f (x )=0在区间[a ,b ]上至少有两个根,设α,β为其中的两个实根. 因为α≠β,不妨设α<β,又因为函数f (x )在区间[a ,b ]上是增函数, 所以f (α)<f (β). 这与f (α)=0=f (β)矛盾.所以方程f (x )=0在区间 [a ,b ]上至多只有一个实根.1.反证法证明的适用情形 (1)一些基本命题、基本定理; (2)易导出与已知矛盾的命题; (3)“否定性”命题; (4)“惟一性”命题; (5)“必然性”命题; (6)“至多”“至少”类命题; (7)涉及“无限”结论的命题. 2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.[对应学生用书P32]一、填空题1.命题“1+b a ,1+ab中至多有一个小于2”的反设为________.答案:1+b a ,1+a b都小于22.(山东高考改编)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根. 答案:方程x 3+ax +b =0没有实根1. 用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为 ____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②. 答案:③①②5.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.解析:对“且”的否定应为“或”,所以“x ≠a 且x ≠b ”的否定应为“x =a 或x =b ”. 答案:x =a 或x =b 二、解答题6.(陕西高考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n, ∴S n =a 1-qn1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.7.设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|<12,|f (2)|<12,|f (3)|<12,则有⎩⎪⎨⎪⎧-12<1+a +b <12,-12<4+2a +b <12,-12<9+3a +b <12.于是有⎩⎪⎨⎪⎧-32<a +b <-12, ①-92<2a +b <-72, ②-192<3a +b <-172. ③由①、②得-4<a <-2,④ 由②、③得-6<a <-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P ∉直线a .求证:过点P 和直线a 平行的直线b 有且只有一条. 证明:(1)存在性:∵P ∉直线a ,∴点P 和直线a 确定一个平面α.由平面几何知识知:在平面α内过点P 能作出一条直线与直线a 平行,故直线b 存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.本文档仅供文库使用。
高中数学第2章推理与证明2.2直接证明与间接证明2.2.1综合法与分析法b12b高二12数学
第十八页,共三十一页。
在解决问题时,我们经常把综合法和分析法综合起来使用.根 据条件的结构特点去转化结论,得到中间结论 P;根据结论的 结构特点去转化条件,得到中间结论 Q,若由 Q 可以推出 P 成 立,就可证明结论成立.
12/9/2021
第十九页,共三十一页。
1.设 a,b∈(0,+∞),且 a≠b,求证:a3+b3 >a2b+ab2. 证明:法一:(分析法) 要证 a3+b3>a2b+ab2 成立, 即需证(a+b)(a2-ab+b2)>ab(a+b)成立. 又因 a+b>0,故只需证 a2-ab+b2>ab 成立, 即需证 a2-2ab+b2>0 成立,即需证(a-b)2>0 成立. 而依题设 a≠b,则(a-b)2>0 显然成立. 由此不等式得证.
12/9/2021
第二十页,共三十一页。
法二:(综合法) a≠b⇔a-b≠0⇔(a-b)2>0⇔a2-2ab+b2>0⇔ a2-ab+b2>ab. 因为 a>0,b>0, 所以 a+b>0, 所以(a+b)(a2-ab+b2)>ab(a+b). 所以 a3+b3>a2b+ab2.
12/9/2021
12/9/2021
第八页,共三十一页。
【证明】 (1)因为 PC⊥平面 ABCD,所以 PC⊥DC. 又因为 DC⊥AC,且 PC∩AC=C,所以 DC⊥平面 PAC. (2)因为 AB∥DC,DC⊥AC,所以 AB⊥AC. 因为 PC⊥平面 ABCD,所以 PC⊥AB. 又因为 PC∩AC=C,所以 AB⊥平面 PAC. 又 AB⊂平面 PAB,所以平面 PAB⊥平面 PAC.
No Image
12/9/2021
第三十一页,共三十一页。
12/9/2021
2017_2018学年高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法课件新人教A版选修1_2
反思结论为否定形式的命题的证明常用反证法,通过反设首先将 否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理, 很容易推出矛盾,从而达到证题的目的.
题型一
题型二
题型三
题型四
【变式训练 1】 等差数列{an}的前 n 项和为 Sn,a1=1 + 2,S3=9+3 2. (1)求数列{an}的通项 an 与前 n 项和 Sn;
������2 + ������-������ ∴ ������ = 2������ .
∵a,b,t
均为有理数,∴
������2+������-������ 2������
也是有理数.
即 ������为有理数,这与已知 ������为无理数矛盾, 故假设不成立.
∴ ������ + ������一定是无理数.
分析:解答本题可按反证法的步骤,先假设 ������ + ������是有理数,然后由已知和假设推出矛 盾,得出假设不成立即可.
证法一:假设 ������ + ������为有理数,令 ������ + ������ = ������ ,
则 ������ = ������ − ������, 两边平方,得 b=t2-2������ ������ + ������ ,
为真
这个过程包括下面三个步骤: (1)反设——假设命题的结论不成立,即假设原结论的反面为真; (2)归谬——把“反设”作为条件,经过一系列正确的推理,得出矛 盾; (3)存真——由矛盾断定反设错误,从而肯定原结论成立. 简单概括反证法的证明过程就是“反设→归谬→存真”.
名师点拨用反证法证明数学命题,需要注意以下几点: (1)反证法中的“反设”,是应用反证法的第一步,也是关键一步.“反 设”的结论将是下一步“归谬”的一个已知条件.“反设”是否正确、
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法a22a高二22数学
当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,
可用反证法证明,证明时常见的“结论词”与“反设词”如下:
结论词
反设词
结论词
反设词
至少有一个 至多有一个
一个也没有 至少有两个
对所有 x 成立 存在某个 x0 不成立 对任意 x 不成立 存在某个 x0 成立
12/13/2021
2.(2014·高考山东卷)用反证法证明命题“设 a,b 为实数,则方程 x3+ax+b=0 至少有一个实根”时,要做的假设是( ) A.方程 x3+ax+b=0 没有实根 B.方程 x3+ax+b=0 至多有一个实根 C.方程 x3+ax+b=0 至多有两个实根 D.方程 x3+ax+b=0 恰好有两个实根 解析:至少有一个实根的否定是没有实根,故要做的假设是“方程 x3+ax+b=0 没有实根”. 答案:A
因为 x>0 且 y>0,
所以 1+x≥2y 且 1+y≥2x,
12/13/2021
两式相加,得 2+x+y≥2x+2y, 所以 x+y≤2,这与已知条件 x+y>2 矛盾, 因此1+y x<2 和1+x y<2 中至少有一个成立.
12/13/2021
探究三 用反证法证明唯一性命题
[典例 3] 求证:两条相交直线有且只有一个交点. [证明] 已知:a与b是两条相交直线, 求证:a与b有且只有一个交点. 证明:假设结论不正确,则有两种可能:a与b无交点,或不止有一个交点. 若直线a,b无交点, 则a∥b或a,b是异面直线,与已知矛盾. 若直线a,b不止有一个交点, 则至少有两个交点A和B,
12/13/2021
[随堂训练] 1.用反证法证明命题:“三角形三个内角至少有一个不大于 60°”时,应假设( ) A.三个内角都不大于 60° B.三个内角都大于 60° C.三个内角至多有一个大于 60° D.三个内角至多有两个大于 60°
高中数学 第二章 推理与证明 2.2 直接证明与间接证明(第2课时)课堂探究 新人教A版选修2-2(
究新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.2 直接证明与间接证明(第2课时)课堂探究新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.2 直接证明与间接证明(第2课时)课堂探究新人教A版选修2-2的全部内容。
堂探究新人教A版选修2—2探究一用反证法证明否定性命题当要证结论中含有“不”“不是”“不可能”“不存在”等词语的命题时,因为此类命题的反面比较具体,适于应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.【典型例题1】已知f(x)=a x+错误!(a>1),证明方程f(x)=0没有负数根.思路分析:本题考查反证法问题,因涉及方程的根可从范围方面寻找矛盾.证明:假设x0是f(x)=0的负数根,则x0<0,x0≠-1且ax0=-错误!,由0<0x a<1可知0<-错误!<1,解得12<x0<2,这与x0<0矛盾,故假设不成立,即方程f(x)=0没有负数根.反思反证法的具体步骤是:(1)提出假设:作出与求证的结论相反的假设,否定结论;(2)推出矛盾:由假设出发,推出与公理、定义、已知定理或题设相矛盾的结果;(3)肯定结论:出现矛盾是因为“否定结论”所致,由此得出原命题成立.探究二用反证法证明唯一性命题1.证明“唯一性”问题的方法:“唯一性"包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个",推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.2.证明“有且只有"的问题,需要证明两个命题,即存在性和唯一性.【典型例题2】已知函数y=f(x)在区间[a,b]上的图象连续不间断,且f(x)在[a,b]上单调,f(a)>0,f(b)<0。
高中数学 第二章 推理与证明 2.2 直接证明与间接证明(
高中数学第二章推理与证明 2.2 直接证明与间接证明(第2课时)
预习导航新人教A版选修2-2
1.反证法
假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.思考1反证法解题的实质是什么?
提示:用反证法解题的实质就是否定结论导出矛盾,从而证明原结论正确.否定结论:对结论的反面要一一否定,不能遗漏;否定一个反面的反证法称为归谬法,否定两个或两个以上反面的反证法称为穷举法;要注意用反证法解题,“否定结论”在推理论证中作为已知使用,导出矛盾是指在假设的前提下,逻辑推理结果与“已知条件、假设、公理、定理或显然成立的事实”等相矛盾.
2.反证法常见的矛盾类型
反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.。
高中数学第二章推理与证明2.2直接证明与间接证明2.2.1第2课时分析法a22a高二22数学
[反思提升] 分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”. 分析法的书写要严格按照“要证明,只需证明,即证明”的写法,因为这不仅是一 种格式,而且表明“后一步的成立足以保证前一步成立”.在用分析法解题时,应 避免因与综合法混淆而发生的错误.
12/13/2021
[随堂训练] 1.关于综合法和分析法的说法错误的是( ) A.综合法和分析法是直接证明中最基本的两种证明方法 B.综合法又叫顺推证法或由因导果法 C.综合法和分析法都是因果分别互推的两头凑法 D.分析法又叫逆推证法或执果索因法 解析:由综合法和分析法的定义可知,选项 A、B、D 正确,选项 C 错误,故选 C. 答案:C
即 a2+a12+4
a2+a12+4
12/13/2021
≥a2+2+a12+2 2(a+1a)+2, 从而只需证 2 a2+a12≥ 2(a+1a), 只需证 4(a2+a12)≥2(a2+2+a12), 即 a2+a12≥2, 而上述不等式显然成立, 故原不等式成立.
12/13/2021
探究二 用分析法证明立体几何问题 [典例 2] 如图所示,已知 PA⊥矩形 ABCD 所在平面,M,N 分别是 AB,PC 的中 点. 求证:MN⊥CD.
12/13/2021
只需证 BC⊥AP 且 BC⊥PH,AC⊥PB 且 AC⊥PH, 只需证 AP⊥平面 PBC,PB⊥平面 PAC, 也就是要证 AP⊥PB,AP⊥PC,PB⊥PA,PB⊥PC. 由条件知 PA,PB,PC 两两垂直,上式显然成立, 所以结论成立,即 H 是△ABC 的垂心.
12/13/2021
(已知条件、 定理 、 定义 、_公__理__等)
为止,这种证明方法叫作分析法
2017-2018学年高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.1.2 分析
2.2.1.2 分析法课时达标训练1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推法.其中正确的语句有( )A.2个B.3个C.4个D.5个【解析】选C.结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确.2.要证不等式-<-成立,只需证( )A.(-)2<(-)2B.(-)2>(-)2C.(+)2<(+)2D.(--)2<(-)2【解析】选C.因为-<0,-<0,所以要证-<-,只需证+<+,即证(+)2<(+)2.3.下列条件①a b>0;②ab<0;③a>0,b>0;④a<0,b<0中能使不等式+≥2成立的有________(填上正确答案的序号).【解析】要使不等式+≥2成立,需使不等式中a,b同号,所以其正确答案序号为①③④.答案:①③④4.如果a >b,则实数a,b应满足的条件是________.【解析】要使a >b成立,只需(a)2>(b)2,只需a3>b3≥0,即a,b应满足a>b≥0.答案:a>b≥05.设a,b>0,且a≠b,用分析法证明:a3+b3>a2b+ab2.【证明】要证a3+b3>a2b+ab2成立,只需证(a+b)(a2-ab+b2)>ab(a+b)成立,又因为a+b>0,只需证a2-ab+b2>ab成立,只需证a2-2ab+b2>0成立,即证(a-b)2>0成立.由题设a≠b可知,(a-b)2>0显然成立.所以命题得证.- 2 -。
2018高中数学第2章推理与证明第2节直接证明与间接证明学案理苏教版选修22
第2节直接证明与间接证明一、学习目标:1. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2. 了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
二、重点、难点重点:了解分析法和综合法的思考过程、特点。
难点:运用分析法、综合法提高分析问题和解决问题的能力。
三、考点分析:对两种直接证明方法的考查在选择题、填空题和解答题中都有出现,单纯的考查并不常见,作为解决问题的工具,与其他知识综合运用的特点比较突出。
它可以和很多知识,如函数、数列、三角函数、导数等相联系,证明时不仅要用到不等式的相关知识,还要用到其他数学知识、技能和技巧,而且还考查了运算能力,分析问题和解决问题的能力。
对于反证法很少单独命题,但是运用反证法分析问题、进行证题思路的判断则经常用到,有独到之处。
三种证明方法的定义与步骤:1. 综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。
2. 分析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。
3. 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法。
用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止;(3)断言假设不成立;(4)肯定原命题的结论成立。
知识点一:综合法例1 对于定义域为[]0,1的函数()f x ,如果同时满足以下三个条件:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2 间 接 证 明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a ,b ,c 满足a 2+b 2=c 2.求证:a ,b ,c 不可能都是奇数. 问题1:你能利用综合法和分析法给出证明吗? 提示:不能.问题2:a 、b 、c 不可能都是奇数的反面是什么?还满足条件a 2+b 2=c 2吗? 提示:都是奇数.若a 、b 、c 都是奇数,则不能满足条件a 2+b 2=c 2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法 (1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p 则q ”的过程可以用下面的框图表示:导致逻辑矛盾“若p 则q ”为真(2)反证法证明命题“若p 则q ”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果. ③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[对应学生用书P30][例1]角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1⊂平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P∉平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P∉平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:6.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.∵a ,b ,c ∈(0,1),∴1-a >0,1-b >0,1-c >0, ∴-a +b2≥-a b >14=12. 同理-b +c 2>12,-c +a 2>12. 三式相加,得-a +b2+-b +c2+-c +a 2>32, 即32>32,矛盾. 所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.7.用反证法证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明:假设方程f (x )=0在区间[a ,b ]上至少有两个根, 设α,β为其中的两个实根. 因为α≠β,不妨设α<β,又因为函数f (x )在区间[a ,b ]上是增函数, 所以f (α)<f (β). 这与f (α)=0=f (β)矛盾.所以方程f (x )=0在区间 [a ,b ]上至多只有一个实根.1.反证法证明的适用情形 (1)一些基本命题、基本定理; (2)易导出与已知矛盾的命题; (3)“否定性”命题; (4)“惟一性”命题; (5)“必然性”命题; (6)“至多”“至少”类命题;(7)涉及“无限”结论的命题. 2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.[对应学生用书P32]一、填空题1.命题“1+b a ,1+ab中至多有一个小于2”的反设为________.答案:1+b a ,1+a b都小于22.(山东高考改编)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根. 答案:方程x 3+ax +b =0没有实根1. 用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为 ____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②. 答案:③①②5.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________. 解析:对“且”的否定应为“或”,所以“x ≠a 且x ≠b ”的否定应为“x =a 或x =b ”.答案:x =a 或x =b 二、解答题6.(陕西高考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n, ∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.7.设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:假设|f (1)|<12,|f (2)|<12,|f (3)|<12,则有⎩⎪⎨⎪⎧-12<1+a +b <12,-12<4+2a +b <12,-12<9+3a +b <12.于是有⎩⎪⎨⎪⎧-32<a +b <-12, ①-92<2a +b <-72, ②-192<3a +b <-172. ③由①、②得-4<a <-2,④ 由②、③得-6<a <-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P ∉直线a .求证:过点P 和直线a 平行的直线b 有且只有一条. 证明:(1)存在性:∵P ∉直线a ,∴点P 和直线a 确定一个平面α.由平面几何知识知:在平面α内过点P 能作出一条直线与直线a 平行,故直线b 存在. (2)惟一性:假设过点P 还有一条直线c 与a 平行. ∵a ∥b ,a ∥c ,∴b ∥c ,这与直线b 、c 有共点P 矛盾. 故假设不存在,因此直线b 惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.。