Mesoscopic Charge Density Wave in a Magnetic Flux
凝聚态物理课件 第六章 维度性
当此类材料发生相变后,材料的物理性质 会发生巨大的改变,故人们可以利用材料 的物性的改变,设计出各种功能的元件应 用于不同的装臵中. 如:superconducting transition 可用于电 力载送,magenetic transition 可用于资料 存储.
三个方向同时退化━0D或准0D团簇系统
Graphite
Diamond
低维电子系统,德布罗意波长,
2 2m* E
2
为一特征长度,微观描述中,该尺度下,量 子尺寸效应将显露出来
E 100meV, m* 0.1eV , : 10 ~ 100nm
介观的界定
在空间尺寸上介于宏观和微观之间(这种 说法有点笼统). 介观系统:电子行为的主要特征是电子通 过样品之后仍能保持自身波函数的相位 相干性. 微观尺寸范围的系统里,如0.1nm左右尺 度的一个原子或一个小分子,所有的能级 都是分立的, 因而系统的物理性质主要 由量子行为控制.
M. Ratner, Nature 397, 480 (1999)
1D模型(SSH):
H H el H lat
ˆ n
n,s N t u u c c c n,s n 0 n 1 n n , s n 1, s n 1, s cn , s
聚硫氮(SN)x的分子结构
当温度降低时,这些一维导体会发生相 变,出现超晶格和电荷密度波 (CDW) 或 自旋密度波 (SDW),很多材料在相变后 成为导体(Peierls相变)。它们的分子式、 相变温度 Tc、超晶格的晶格常数即 CDW 波长、电导率等见表5.1.1(P116)。
聚合物通常由碳链组成,电子沿链方向的耦合比垂直于链 方向的耦合强得多,成为准一维体系,代表材料有聚乙炔、 聚噻吩、聚苯胺等。常温下,它们呈现二聚化结构,绝缘 基态,但在高温下,二聚化消失,发生Peierls相变。常温 下的聚合物通过掺杂电导率可增加几个甚至十几个数量级, 高达 105(cm)-1,成为有机导体。高分子聚合物还具有重 要的电致发光性能和潜在的铁磁性能。以聚对苯乙炔作为 发光材料研制的有机发光器件,其量子发光效率可达 4%, 亮度可与通常的液晶显示相比。目前已发现近百种有机高 分子材料具有电致发光特性,发光颜色已覆盖整个可见光 谱区。聚合物 m-PDPC(m-polydiphenylcarbene) 可具有潜 在铁磁特性,来源于每个基团内的局域自旋与 电子的自 旋耦合,这类材料还有 poly-BIPO,pyro-PAN 等。由于不 含任何无机金属离子,其磁性机理及材料合成中均出现很 多新概念和新方法。
物理学英文词汇
物理专业英语词汇(M)Favorite m center m 中心mach angle 马赫角mach cone 马赫锥mach number 马赫数mach wave 马赫波mach zehnder interferometer 马赫曾德耳干涉仪mach's principle 马赫原理machine language 机骑言machine oriented language 面向机颇语言macleod gage 麦克劳计macro crystal 粗晶macrography 宏观照相术macroinstability 宏观不稳定性macromolecule 高分子macron 宏观粒子macroparticle 宏观粒子macrophysics 宏观物理学macroscopic brownian motion 宏观布朗运动macroscopic particle 宏观粒子macroscopic quantization 宏观量子化macroscopic system 宏观系统macrostate 宏观态macrostructure 宏观结构macrosystem 宏观系统magdeburg hemispheres 马德堡球magellanic clouds 麦哲伦星系magellanic galaxy 麦哲伦星系magic eye 光党指示管magic lantern 幻灯magic number 幻数magic t t 形波导支路magma 岩浆magneli structure 马格涅利结构magnesium 镁magnet 磁铁magnetic 磁的magnetic amplifier 磁放大器magnetic analyzer 磁分析器magnetic anisotropy 磁蛤异性magnetic anomaly 磁异常magnetic axis 磁轴magnetic balance 磁力天平magnetic birefringence 磁双折射magnetic breakdown 磁哗magnetic bubble 磁泡magnetic bubble storage 磁泡存储器magnetic character figure 磁特正magnetic charge 磁荷magnetic chart 磁图magnetic circuit 磁路magnetic conductance 磁导magnetic core storage 磁芯存储器magnetic current 磁流magnetic declination 磁偏角magnetic deflection 磁偏转magnetic deflection mass spectrometer 磁偏转型质谱仪magnetic dip 磁倾角magnetic dipole 磁偶极子magnetic dipole moment 磁偶极矩magnetic dipole radiation 磁偶极辐射magnetic disk 磁盘magnetic disturbances 磁扰magnetic domain 磁畴magnetic domain walls 磁畴壁magnetic drum 磁鼓magnetic elements 磁元magnetic energy 磁能magnetic entropy 磁熵magnetic equator 磁赤道magnetic field 磁场magnetic field energy 磁场能量magnetic field intensity 磁场强度magnetic field strength 磁场强度magnetic fluid 磁铃magnetic flux 磁通量magnetic flux compression 磁通量紧缩magnetic flux density 磁通密度magnetic flux quantization 磁通量量子化magnetic fluxmeter 磁通量计magnetic focusing 磁致聚焦magnetic force 磁力magnetic head 磁头magnetic hysteresis 磁滞magnetic image 磁象magnetic inclination 磁倾角magnetic induction 磁感应magnetic induction flux 磁感应束magnetic kerr effect 克尔氏磁效应magnetic latitude 磁纬度magnetic leakage 磁漏magnetic lens 磁透镜magnetic line of force 磁力线magnetic loss 磁损耗magnetic map 磁图magnetic material 磁性材料magnetic memory 磁存储器magnetic mirror 磁镜magnetic moment 磁矩magnetic monopole 磁单极子magnetic needle 磁针magnetic north 磁北magnetic permeability 磁导率magnetic perturbation 磁扰magnetic point group 磁点群magnetic polarization 磁极化magnetic polaron 磁极化子magnetic pole 磁极magnetic potential 磁势magnetic pressure 磁压magnetic prism 磁棱镜magnetic probe 磁探针magnetic prospecting 磁法勘探magnetic quantum number 磁量子数magnetic recorder 磁记录器magnetic recording 磁记录magnetic refrigeration 磁冷却magnetic refrigerator 磁致冷机magnetic relaxation 磁弛豫magnetic reluctance 磁阻magnetic remanence 顽磁magnetic resistance 磁阻magnetic resonance 磁共振magnetic reynolds number 磁雷诺数magnetic rigidity 磁刚性magnetic rotatory dispersion 磁致旋光色散magnetic saturation 磁饱和magnetic semiconductor 磁性半导体magnetic separation 磁力选矿magnetic shell 磁壳magnetic shield 磁屏蔽magnetic sound recording 磁录音magnetic space group 磁空间群magnetic spectrometer 磁谱仪magnetic spin quantum number 自旋磁量子数magnetic star 磁星magnetic store 磁存储器magnetic storm 磁暴magnetic structure 磁结构magnetic substance 磁体magnetic superconductor 磁超导体magnetic surface 磁面magnetic susceptibility 磁化率magnetic tape 磁带magnetic thermometer 磁温度计magnetic thin film 磁薄膜magnetic torque 磁转矩magnetic transition 磁跃迁magnetic trap 磁阱magnetic variable 磁变星magnetic variable star 磁变星magnetic variations 磁变magnetic viscosity 磁粘滞性magnetics 磁学magnetism 磁magnetization 磁化magnetization curve 磁化曲线magnetization vector 磁化矢量magnetized black hole 磁化黑洞magnetizing 磁化magnetizing coil 磁化线圈magnetizing current 磁化电流magnetizing force 磁化力magneto aerodynamics 磁空气动力学magneto optic effect 磁光效应magneto oscillatory absorption 磁振荡吸收magneto rotation 磁致旋光magneto volume effect 磁体积效应magnetoacoustic effect 磁声效应magnetoacoustic wave 磁声波magnetocaloric effect 磁热效应magnetochemistry 磁化学magnetocircular dichroism 磁圆二向色性magnetodielectric 磁性电介质magnetodiode 磁敏二极管magnetoelastic effect 磁弹性效应magnetoelastic wave 磁弹性波magnetoelectricity 磁电学magnetogram 磁强记录图magnetograph 磁强记录仪magnetohydrodynamic instability 磁铃力学不稳定性magnetohydrodynamic wave 磁铃波magnetohydrodynamics 磁铃动力学magnetology 磁学magnetomechanical factor 磁力学因数magnetomechanics 磁力学magnetometer 磁强计magnetomotive force 磁通势magneton 磁子magnetooptics 磁光学magnetophotophoresis 磁光致泳动magnetoplasma 磁等离子体magnetoplasmadynamics 磁等离子体动力学magnetoplumbite 氧化铅铁淦氧磁体magnetopolaron 磁极化子magnetoreflection 磁反射magnetoresistance 磁阻效应magnetoresistor 磁致电阻器magnetosphere 磁层magnetostatic field 静磁场magnetostatics 静磁学magnetostriction 磁致伸缩magnetostriction oscillator 磁致伸缩振荡器magnetostrictive effect 磁致伸缩效应magnetothermal effect 磁致热效应magnetothermoelectric effect 磁致热电效应magnetron 磁控管magnetron vacuum gage 磁控管真空计magnification 放大率magnifier 放大镜magnifying glass 放大镜magnitude 量magnitude of the eclipse 食分magnon 磁振子magnus effect 马格努斯效应main quantum number 挚子数main sequence 烛main sequence stars 烛星main storage 宙储器major planets 大行星majorana force 马约喇纳力majorana neutrino 马约喇纳中微子majorana particle 马约喇纳粒子majorana spinor 马约喇纳旋量majority carrier 多数载劣majoron 马约喇纳量子maksutov telescope 马克苏托夫望远镜malleability 展性malter effect 马尔特效应malus law 马吕斯定律man made satellite 人造卫星mandelstam representation 曼德尔斯坦表象mandrin 细探针manganese 锰manganin 锰镍铜合金manifold 廖manipulator 机械手manometer 压力表manoscope 气体密度计manoscopy 气体密度测定manostat 稳压器mantle 地幔mantle convection 地幔对流mantle rayleigh wave 地幔瑞利波manual 手册many body force 多体力many body problem 多体问题many body system 多体系many wave approximation 多波近似mare 海margin 余量margin of error 误差范围margin of safety 安全因子marginal rays 边缘光线marine physics 海洋物理学mariner project 马里纳计划marisat system 海洋卫星系统mark 标记markoff chain 马尔柯夫链markoff process 马尔柯夫过程marriage of cable and satellites 电缆和人造卫星的联接mars 火星martensite 马氏体maser 微波激射器脉塞mass 质量mass absorption coefficient 质量吸收系数mass analysis 质量分析mass analyzer 质谱仪mass defect 质量筐mass effect 聚集效应mass energy conversion formula 质能换算公式mass energy equivalence principle 质能相当性原理mass energy relation 质能关系mass filter 滤质器mass flowmeter 质量量计mass formula 质量公式mass luminosity relation 质量发光度关系mass number 质量数mass renormalization 质量重正化mass separator 质量分离器mass shell 质壳mass spectrograph 质谱仪mass spectrometer 质谱仪mass spectroscopy 质谱法mass spectrum 质谱mass stopping power 质量阻止本领mass transfer 质量传递mass unit 质量单位massey criterion 梅涡据master equation 纸程master gyroscope 自由陀螺仪matching 匹配material 物质material point 质点material wave 物质波materials science 材料科学materials testing reactor 材料试验反应堆mathematical crystallography 数学晶体学mathematical expectation 数学期望值mathematical pendulum 单摆mathematical physics 数学物理mathematical programming 数学规划mathieu functions 马提厄函数matrix mechanics 矩阵力学matrix representation 矩阵表示matter 物质matter dominated universe 物质为诸宙matter wave 德布罗意波matthias rule 马赛厄斯定则matthiessen rule 马苇定则maupertuis' principle 莫佩尔秋原理maximum deviation 最大偏差maximum load 最大负载maximum lyapunov index 最大李亚普诺夫指数maximum permissible concentration 最大容许浓度maximum permissible dose 最大容许剂量maximum postulated accident 最大假设事故maximum speed 最大速度maximum stress 最大应力maximum temperature 最高温度maximum thermometer 最高温度表maximum velocity 最大速度maxwell 麦克斯韦maxwell boltzmann distribution 麦克斯韦玻耳兹曼分布maxwell boltzmann statistics 麦克斯韦玻耳兹曼统计maxwell bridge 麦克斯韦电桥maxwell demon 麦克斯韦妖maxwell field 麦克斯韦场maxwell relations 麦克斯韦关系maxwell velocity distribution 麦克斯韦的速度分布maxwell's distribution law 麦克斯韦分布律maxwell's equations 麦克斯韦方程maxwellian distribution 麦克斯韦分布maxwellmeter 磁通计mb 微巴mean acceleration 平均加速度mean deviation 平均偏差mean ergodic theorem 平均脯历经定理mean error 平均误差mean free path 平均自由程mean life 平均寿命mean lifetime 平均寿命mean solar day 平太阳日mean solar time 平太阳时mean square error 均方误差mean sun 平太阳mean value 平均值mean velocity 平均速度mean velosity 平场速度measure 测度measurement 测量measurement error 测量误差measuring 测量measuring apparatus 测量仪器measuring eyepiece 目镜测微计measuring instrument 测试仪器度量仪表measuring method 测量法measuring technique 测量技术mechanical energy 力学能mechanical equivalent of heat 热功当量mechanical filter 机械滤波器mechanical monochromator 机械单色器mechanical motion 力学运动mechanical system 力学系mechanical vibrations 机械振动mechanical world view of nature 机械的自然观mechanics 力学mechanism 机构mechanocaloric effect 机械热效应mechanochemistry 机械化学mechanoelectric conversion 机电变换mechanostriction 机致伸缩mechnical equivalent of light 光功当量medical electronics 医疗电子学medical physics 医用物理学medium 介质medium energy electron diffraction 中能电子衍射medium energy electron scattering spectroscopy 中能电子散射能谱学mega 兆mega electron volt 兆电子伏megacycle 兆周megawatt 兆瓦megger 高阻表megohm 兆欧meissner effect 迈斯纳效应meldometer 熔点测定计melt growth 熔体生长melting 熔化melting heat 熔化热melting point 熔点melting temperature 熔解温度membrane 膜memory 存储;记忆memory capacity 存储容量memory cell 存储单元memory effect 记忆效应memory register 存储寄存器mendeleev's periodic law 门捷列夫周期律mendelevium 钔meniscus 弯月面meniscus lens 弯月透镜mensa 山案座mercury 水星;水银mercury arc lamp 水银灯mercury arc rectifier 汞弧整流mercury barometer 水银气压表mercury cell 汞电池mercury diffusion pump 汞扩散泵mercury i chloride structure 氯化汞i型结构mercury relay 水银继电器mercury telemetry 水星遥测术mercury thermometer 水银温度表mercury vacuum gage 水银真空计mercury vapor lamp 水银灯meridian 子午线meridian passage 中天meridian transit 中天meridional ray 子午光线mesa transistor 台面型晶体管mesoatom 介子原子mesodynamics 介子动力学mesomolecule 介子分子mesomorphic state 介晶态meson 介子meson factory 介子工厂meson theory 介子理论meson theory of nuclear forces 核力的介子理论mesonic atom 介子原子mesonic molecule 介子分子mesopic vision 黄昏黎糜觉mesoscopic effect 介观效应mesosphere 中间层messier catalog 梅味星云星团表metacenter 定倾中心metal 金属metal film resistor 金属薄膜电阻器metal foil 金属箔metal insulator semiconductor light emitting diod 金属绝缘膜半导体发光二极管metal insulator transition 金属绝缘体跃迁metal nonmetal transition 金属非金属跃迁metal organic compound 有机金属化合物metal oxide semiconductor structure mos 结构metal vapor laser 金属蒸汽激光器metallic 金属的metallic binding 金属键metallic bond 金属键metallic crystal 金属晶体metallic element 金属元素metallic glass 金属玻璃metallic lustre 金属光泽metallic microcluster 金属微簇metallic reflection 金属反射metallic thin film 金属薄膜metallic valence 金属原子价metallized paper capacitor 镀金属纸介电容器metallography 金相学metallomicroscope 金相显微镜metallurgy 冶金学metamagnetism 亚磁性metastability 亚稳定性metastable atom 亚稳原子metastable equilibrium 亚稳平衡metastable level 亚稳能级metastable molecule 亚稳分子metastable nucleus 亚稳核metastable phase 亚稳相metastable state 亚稳状态meteor 燎meteor astronomy 燎天文学meteor camera 燎照相机meteor shower 燎雨meteor stream 燎群meteoric dust 燎尘meteoric iron 陨铁meteoric stone 石陨星meteorite 陨星meteorite crater 陨星坑meteoritic iron 陨铁meteoritics 陨石学meteorological acoustics 气象声学meteorological optics 气象光学meteorological radar 气象雷达meteorological satellite 气象卫星meteorological thermodynamics 气象热力学meteorology 气象学meter 米meter convention 米条约meter standard 米原器meter wave 米波metering 计量metglass 金属玻璃method 方法method of approximation 近似法method of crystal projection 晶体投影法method of difference 差分法method of images 镜象法method of iteration 迭代法method of least squares 最小二乘法method of measurement 测量法method of molecular orbitals 分子轨迹法method of perturbation 微扰法method of steepest descent 最陡下降法method of successive approximation 逐次逼近法method of undetermined coefficients 待定系数法metonic cycle 太阴周metre 米metre wave 米波metric 度规metric space 度量空间metric system 米制metric tensor 度规张量metrology 计量学metronome 节拍器mhd arc mpd 弧光mho 闻子mica 云母micelle 胶体微粒michel parameter 米歇尔参数michelson interferometer 迈克耳逊干涉仪michelson morley experiment 迈克耳逊莫雷实验michelson stellar interferometer 迈克耳逊恒星干涉计micro 微microaccelerometer 微加速计microaerotonometer 微量气体张力计microampere 微安microanalysis 微量化字分析microbalance 微量天平microbar 微巴microcanonical ensemble 微正则系综microchemical analysis 微量化字分析microchemistry 微量化学microcomputer 微型计算机microcrystal 微晶microcrystalline 微晶的microcrystallography 微观结晶学microengineering 微工程学microfarad 微法microfield 微场microfilm 缩微胶片micrography 显微照相术microinstability 微不稳定性microlaser 微型激光器microlock 卫星遥测系统micromagnetics 微磁学micromanometer 微压力计micrometer 测微计micrometer microscope 测微显微镜micrometron 自动显微镜micromicrocurie 微微居里micromicrofarad 微微法micron 微米microoscillograph 显微示波仪microparticle 微观粒子microphone 传声器microphotograph 显微镜照片microphotometer 测微光度计microphysics 微观物理学microplasma 微等粒子体microprobe 微探针microprogram 微程序microprojector 显微投影仪micropyrometry 微测高温术microscope 显微镜microscopic brownian motion 微观布朗运动microscopic particle 微观粒子microscopic state 微观状态microscopic system 微观系统microscopium 显微镜座microsecond 微秒microseismics 微地震学microseismograph 微震记录仪microspectrofluorimeter 显微荧光光谱仪microspectrograph 显微光谱仪microspectrophotometry 显微分光光度学microspectroscope 显微分光镜microspectroscopy 显微光谱学microstate 微观状态microstructure 显微结构microsystem 微观系统microtelescope 显微望远镜microthermometer 微温度计microthermometry 显微温度学microtron 电子回旋加速器microwave 微波microwave circuit 微波电路microwave diode 微波二极管microwave method 微波法microwave resonator 微波谐振器microwave spectroscopy 微波谱学microwave spectrum 微波频谱microwave transistor 微波晶体管microwave tube 微波电子管microwave ultrasound 微波超声microwave weapon 微波武器mie scattering 米散射migdal approximation 米格达尔近似migration length 迁移长度mil 密耳mile 英里milky way 银河miller index 密勒指数miller's notation 密勒记号milli 毫milliampere 毫安millibar 毫巴millimeter 毫米millimeter wave 毫米波millimetre 毫米million electorn volt 兆电子伏millisecond 毫秒millivolt 毫伏millivoltmeter 毫状计mimosa seismic foreteller 含羞草地震预报器miniature tube 微型管miniature valve 微型管minicomputer 小型计算机miniinfraredtracer 微型红外示踪器minilaser 微型激光器minimal interaction 最小耦合相互酌minimax principle 极大极小原理minimum b field 最小磁场minimum deviation 最小偏向minimum entropy production 最小熵产生minimum thermometer 最低温度表minkowski space time 闵科夫斯基时空minor planet 小行星minority carrier 少数载劣minus 减minus sign 减号minute 分mira stars 刍藁变星mira type variables 刍藁变星mirage 蜃景mirror field 磁镜场mirror nuclei 镜象核mirror reflection 镜反射mirror surface 镜面mirror telescope 反射望远镜misfit dislocation 错配位错missile 导弹missing line 丢失线missing mass 暗物质mistake 错误mixed crystal 混合晶体mixed state 混合态mixer diode 基模mixer tube 混频管mixing length 混合长度mixing ratio 混合比mixture 混合物mks system of units mks 单位制;mks单位制mksa system of units mksa 单位制mobile laser tracking station 移动激光追踪站mobility 迁移率mobility of ions 离子迁移率mode 模mode coupling 模耦合mode locked laser 锁模激光器mode locking 锁模mode of oscillation 振动型mode of vibration 振动型mode pulling 波模牵引model 模型model of nucleus 核模型model of the galaxy 银河系模型moderated neutron 慢化中子moderation 减速moderation of neutrons 中子减速moderator 减速剂modern biology 现代生物学modern physics 现代物理学modification 变形modular invariance 模数不变性modulated structure 灯结构modulation 灯modulation method 灯法modulation spectroscopy 灯光谱学modulation transfer function 灯传递函数modulator type vacuum gage 灯仆真空计module 模件modulus 模数modulus of elasticity 弹性模数modulus of rigidity 剪切殚性模量moffatt's vortex 莫法特涡旋mohoroviris discontinuity 莫霍洛维奇不连续性mohs hardness 莫氏硬度moist labile energy 潮湿不稳能moisture examining instrument 水气检查仪mol 克分子molar fraction 克分子分率molar heat 分子热molar polarization 克分子极化molar refraction 分子折射molar susceptibility 克分子磁化率molar volume 克分子体积molding 制模mole 克分子mole fraction 克分子分率molectronics 分子电子学molecular absorption coefficient 分子吸收系数molecular acoustics 分子声学molecular astronomy 分子天文学molecular beam 分子束molecular beam epitaxy 分子束外延molecular beam magnetic resonance 分子束磁共振molecular beam maser 分子束微波激射器molecular beam scattering 分子束散射molecular beam spectroscopy 分子束光谱学molecular biology 分子生物学molecular bond 分子键molecular chaos 分子混沌态molecular clock 分子钟molecular cloud 分子云molecular compound 分子化合物molecular conductivity 分子导电率molecular crystal 分子晶体molecular diffusion 分子扩散molecular dynamics 分子动力学molecular electronics 分子电子学molecular field 分子场molecular field approximation 分子场近似molecular flow 分子流molecular force 分子力molecular force field 分子力场molecular gas laser 分子气体激光器molecular heat 分子热molecular image 分子图象molecular integral 分子积分molecular inversion 分子倒转molecular ion 分子离子molecular kinetic theory 分子运动论molecular lattice 分子晶格molecular magnet 分子磁铁molecular mass 分子质量molecular motion 分子运动molecular orbital 分子轨函数molecular physics 分子物理学molecular polarizability 分子极化度molecular polarization 分子极化molecular pump 分子泵molecular radius 分子半径molecular rays 分子束molecular reaction 分子反应molecular refraction 分子折射molecular rotation 分子转动molecular scattering 分子散射molecular science 分子科学molecular sieve 分子筛molecular structure 分子结构molecular structure theory 分子结构论molecular viscosity 分子粘性molecular volume 克分子体积molecular weight 分子量molecule 分子moletron 分子加速器molten high polymer 熔融高聚物molybdenum 钼moment 矩moment of couple 力偶矩moment of force 力矩moment of impulse 冲量矩moment of inertia 转动惯量moment of momentum 角动量momentum 动量momentum space 动量空间momentum transfer 动量转移momentum transfer cross section 动量转移截面momentum transfer theory 动量转移理论monaural audition 单耳听力monitor 监测器监视器monoatomic gas 单原子气体monoatomic layer 单原子层monoceros 座monochord 弦音计monochromat 单色透镜monochromatic aberration 单色象差monochromatic light 单色光monochromatic radiation 单色辐射monochromatic rays 单色射线monochromaticity 单色性monochromatization of neutron 中子的单色化monochromatization of x rays x 射线单色化monochromator 单色器单色光镜monoclinic system 单斜晶系monocrystal 单晶monocular 单筒望远镜monodispersive system 单分散系monolithic circuit 单片电路monomer 单体monomode laser 单模激光器monomolecular film 单分子膜monopole 单极monopole moment 单极子矩monopole transition 单极跃迁monostable multivibrator 单稳多谐振荡器monotectic 偏晶体monte carlo method 蒙特卡罗法month 月moon 月球moon power station 月球发电站moon's age 月龄morning star 晨星morphophysics 形态物理学morse potential curve 莫尔斯势能曲线mos diode mos 二极管mos field effect transistor mos 金属氧化物半导体场效应晶体管mos integrated circuit mos 集成电路mos structure mos 结构mosaic crystal 嵌镶晶体mosaic structure 嵌镶结构moseley's law 莫塞莱定律mosfet mos 金属氧化物半导体场效应晶体管motion 运动motion equation 运动方程motor 电动机mott insulator 莫脱绝缘体mott scattering 莫脱散射mott transition 莫脱跃迁mottelson valatin effect 莫特尔逊瓦拉廷效应movement of the pole 极运动movement stability 运动的稳定性moving cluster 移动星团moving coil galvanometer 动圈检疗moving iron vane instrument 动叶式仪表moving magnet galvanometer 动磁型电疗moving magnet instrument 动磁式仪表moving medium acoustics 运动介质声学moving striation 活动条纹mpd arc mpd 弧光mtller scattering 摩利尔散射mts system of units mts单位制mu factor 放大系数multi color photometry 多色测光multi crystal x ray spectrometer 多晶x 射线光谱仪multi function observer 多功能观测器multichannel interferometric spectrometer 多道干涉光谱仪multichannel pulse height analyzer 多道脉冲高度分析器multienzymatic reaction 多酶反应multifilament composite wire 多丝结构复合线multigroup model 多群模型multilayer film 多层胶片multilayer mirror 多层反射镜multimode laser 多模激光器multimolecular layer 多分子层multiparticle correlation 多粒子关联multiparticle production 多粒子产生multiphase flow 多相流multiphoton absorption 多光子吸收multiphoton dissociation 多光子离解multiphoton process 多光子过程multiphoton transition 多光子跃迁multiple beam interference 多光束干涉multiple beam interferometry 多光束干涉测量法multiple collision 多次碰撞multiple correlation 多重相关multiple coulomb scattering 多次库仑散射multiple electrode tube 多栅管multiple electrode valve 多栅管multiple excitation 多次激发multiple galaxy 多重星系multiple ionization 多次电离multiple mirror telescope 多镜望远镜multiple periodic motion 多周期运动multiple process 多重过程multiple production 多重产生multiple reflection 多次反射multiple refraction 多次折射multiple scattering 多次散射multiple star 聚星multiple structure 多重结构multiplet 多重线multiplet term 多重项multiplication 增殖multiplication factor 倍增系数multiplicity 多重性multiplier 倍增器multiply connected region 多连通域multiply periodic motion 多重周期运动multiply twinned particle 多重孪晶粒子multiplying factor 倍率multipole 多极multipole expansion 多极展开multipole moment 多极矩multipole radiation 多极辐射multipurpose minicamera 多功能缩微照相机multipurpose reactor 多用堆multislit spectrometry 多狭缝能谱测定法multispectral photography 多谱照像术multispectral satellite data 多谱卫星数据multitarget tracking 多目标跟踪multivariate analysis 多变量分析multivibrator 多谐振荡器multiwire chamber 多丝室multiwire counter 多丝计数管mumeson 介子muon 介子muon beam 子束muon capture 子俘获muon catalyzed fusion 子催化聚变muon neutrino 子中微子muon number 子数muon spin rotation 子自旋转动muonic atom 原子muonic catalysis 子催化muonium 子偶素murchison meteorite 默基森陨星musca 苍蝇座musical acoustics 音乐声学musical scale 音阶musical sound 乐音muspace 空间mutarotation 变旋mutation 突变mutual conductance 互导mutual inductance 互感mutual induction 互感应mutual neutralization 互中性化myopia 近视myria 万myriad 一万myriads 无数myriameter 万米myriametric wave 超长波。
斯仑贝谢所有测井曲线英文名称解释
斯仑贝谢所有测井曲线英文名称解释OCEAN DRILLING PROGRAMACRONYMS USED FOR WIRELINE SCHLUMBERGER TOOLS ACT Aluminum Clay ToolAMS Auxiliary Measurement SondeAPS Accelerator Porosity SondeARI Azimuthal Resistivity ImagerASI Array Sonic ImagerBGKT Vertical Seismic Profile ToolBHC Borehole Compensated Sonic ToolBHTV Borehole TeleviewerCBL Casing Bond LogCNT Compensated Neutron ToolDIT Dual Induction ToolDLL Dual LaterologDSI Dipole Sonic ImagerFMS Formation MicroScannerGHMT Geologic High Resolution Magnetic ToolGPIT General Purpose Inclinometer ToolGR Natural Gamma RayGST Induced Gamma Ray Spectrometry ToolHLDS Hostile Environment Lithodensity SondeHLDT Hostile Environment Lithodensity ToolHNGS Hostile Environment Gamma Ray SondeLDT Lithodensity ToolLSS Long Spacing Sonic ToolMCD Mechanical Caliper DeviceNGT Natural Gamma Ray Spectrometry ToolNMRT Nuclear Resonance Magnetic ToolQSST Inline Checkshot ToolSDT Digital Sonic ToolSGT Scintillation Gamma Ray ToolSUMT Susceptibility Magnetic ToolUBI Ultrasonic Borehole ImagerVSI Vertical Seismic ImagerWST Well Seismic ToolWST-3 3-Components Well Seismic ToolOCEAN DRILLING PROGRAMACRONYMS USED FOR LWD SCHLUMBERGER TOOLSADN Azimuthal Density-NeutronCDN Compensated Density-NeutronCDR Compensated Dual ResistivityISONIC Ideal Sonic-While-DrillingNMR Nuclear Magnetic ResonanceRAB Resistivity-at-the-BitOCEAN DRILLING PROGRAMACRONYMS USED FOR NON-SCHLUMBERGER SPECIALTY TOOLSMCS Multichannel Sonic ToolMGT Multisensor Gamma ToolSST Shear Sonic ToolTAP Temperature-Acceleration-Pressure ToolTLT Temperature Logging ToolOCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR WIRELINE SCHLUMBERGER LOGSAFEC APS Far Detector Counts (cps)ANEC APS Near Detector Counts (cps)AX Acceleration X Axis (ft/s2)AY Acceleration Y Axis (ft/s2)AZ Acceleration Z Axis (ft/s2)AZIM Constant Azimuth for Deviation Correction (deg)APLC APS Near/Array Limestone Porosity Corrected (%)C1 FMS Caliper 1 (in)C2 FMS Caliper 2 (in)CALI Caliper (in)CFEC Corrected Far Epithermal Counts (cps)CFTC Corrected Far Thermal Counts (cps)CGR Computed (Th+K) Gamma Ray (API units)CHR2 Peak Coherence, Receiver Array, Upper DipoleCHRP Compressional Peak Coherence, Receiver Array, P&SCHRS Shear Peak Coherence, Receiver Array, P&SCHTP Compressional Peak Coherence, Transmitter Array, P&SCHTS Shear Peak Coherence, Transmitter Array, P&SCNEC Corrected Near Epithermal Counts (cps)CNTC Corrected Near Thermal Counts (cps)CS Cable Speed (m/hr)CVEL Compressional Velocity (km/s)DATN Discriminated Attenuation (db/m)DBI Discriminated Bond IndexDEVI Hole Deviation (degrees)DF Drilling Force (lbf)DIFF Difference Between MEAN and MEDIAN in Delta-Time Proc. (microsec/ft) DRH HLDS Bulk Density Correction (g/cm3)DRHO Bulk Density Correction (g/cm3)DT Short Spacing Delta-Time (10'-8' spacing; microsec/ft)DT1 Delta-Time Shear, Lower Dipole (microsec/ft)DT2 Delta-Time Shear, Upper Dipole (microsec/ft)DT4P Delta- Time Compressional, P&S (microsec/ft)DT4S Delta- Time Shear, P&S (microsec/ft))DT1R Delta- Time Shear, Receiver Array, Lower Dipole (microsec/ft)DT2R Delta- Time Shear, Receiver Array, Upper Dipole (microsec/ft)DT1T Delta-Time Shear, Transmitter Array, Lower Dipole (microsec/ft)DT2T Delta-Time Shear, Transmitter Array, Upper Dipole (microsec/ft)DTCO Delta- Time Compressional (microsec/ft)DTL Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLF Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLN Short Spacing Delta-Time (10'-8' spacing; microsec/ftDTRP Delta-Time Compressional, Receiver Array, P&S (microsec/ft)DTRS Delta-Time Shear, Receiver Array, P&S (microsec/ft)DTSM Delta-Time Shear (microsec/ft)DTST Delta-Time Stoneley (microsec/ft)DTTP Delta-Time Compressional, Transmitter Array, P&S (microsec/ft)DTTS Delta-Time Shear, Transmitter Array, P&S (microsec/ft)ECGR Environmentally Corrected Gamma Ray (API units)EHGR Environmentally Corrected High Resolution Gamma Ray (API units) ENPH Epithermal Neutron Porosity (%)ENRA Epithermal Neutron RatioETIM Elapsed Time (sec)FINC Magnetic Field Inclination (degrees)FNOR Magnetic Field Total Moment (oersted)FX Magnetic Field on X Axis (oersted)FY Magnetic Field on Y Axis (oersted)FZ Magnetic Field on Z Axis (oersted)GR Natural Gamma Ray (API units)HALC High Res. Near/Array Limestone Porosity Corrected (%)HAZI Hole Azimuth (degrees)HBDC High Res. Bulk Density Correction (g/cm3)HBHK HNGS Borehole Potassium (%)HCFT High Resolution Corrected Far Thermal Counts (cps)HCGR HNGS Computed Gamma Ray (API units)HCNT High Resolution Corrected Near Thermal Counts (cps)HDEB High Res. Enhanced Bulk Density (g/cm3)HDRH High Resolution Density Correction (g/cm3)HFEC High Res. Far Detector Counts (cps)HFK HNGS Formation Potassium (%)HFLC High Res. Near/Far Limestone Porosity Corrected (%)HEGR Environmentally Corrected High Resolution Natural Gamma Ray (API units) HGR High Resolution Natural Gamma Ray (API units)HLCA High Res. Caliper (inHLEF High Res. Long-spaced Photoelectric Effect (barns/e-)HNEC High Res. Near Detector Counts (cps)HNPO High Resolution Enhanced Thermal Nutron Porosity (%)HNRH High Resolution Bulk Density (g/cm3)HPEF High Resolution Photoelectric Effect (barns/e-)HRHO High Resolution Bulk Density (g/cm3)HROM High Res. Corrected Bulk Density (g/cm3)HSGR HNGS Standard (total) Gamma Ray (API units)HSIG High Res. Formation Capture Cross Section (capture units) HSTO High Res. Computed Standoff (in)HTHO HNGS Thorium (ppm)HTNP High Resolution Thermal Neutron Porosity (%)HURA HNGS Uranium (ppm)IDPH Phasor Deep Induction (ohmm)IIR Iron Indicator Ratio [CFE/(CCA+CSI)]ILD Deep Resistivity (ohmm)ILM Medium Resistivity (ohmm)IMPH Phasor Medium Induction (ohmm)ITT Integrated Transit Time (s)LCAL HLDS Caliper (in)LIR Lithology Indicator Ratio [CSI/(CCA+CSI)]LLD Laterolog Deep (ohmm)LLS Laterolog Shallow (ohmm)LTT1 Transit Time (10'; microsec)LTT2 Transit Time (8'; microsec)LTT3 Transit Time (12'; microsec)LTT4 Transit Time (10'; microsec)MAGB Earth's Magnetic Field (nTes)MAGC Earth Conductivity (ppm)MAGS Magnetic Susceptibility (ppm)MEDIAN Median Delta-T Recomputed (microsec/ft)MEAN Mean Delta-T Recomputed (microsec/ft)NATN Near Pseudo-Attenuation (db/m)NMST Magnetometer Temperature (degC)NMSV Magnetometer Signal Level (V)NPHI Neutron Porosity (%)NRHB LDS Bulk Density (g/cm3)P1AZ Pad 1 Azimuth (degrees)PEF Photoelectric Effect (barns/e-)PEFL LDS Long-spaced Photoelectric Effect (barns/e-)PIR Porosity Indicator Ratio [CHY/(CCA+CSI)]POTA Potassium (%)RB Pad 1 Relative Bearing (degrees)RHL LDS Long-spaced Bulk Density (g/cm3)RHOB Bulk Density (g/cm3)RHOM HLDS Corrected Bulk Density (g/cm3)RMGS Low Resolution Susceptibility (ppm)SFLU Spherically Focused Log (ohmm)SGR Total Gamma Ray (API units)SIGF APS Formation Capture Cross Section (capture units)SP Spontaneous Potential (mV)STOF APS Computed Standoff (in)SURT Receiver Coil Temperature (degC)SVEL Shear Velocity (km/s)SXRT NMRS differential Temperature (degC)TENS Tension (lb)THOR Thorium (ppm)TNRA Thermal Neutron RatioTT1 Transit Time (10' spacing; microsec)TT2 Transit Time (8' spacing; microsec)TT3 Transit Time (12' spacing; microsec)TT4 Transit Time (10' spacing; microsec)URAN Uranium (ppm)V4P Compressional Velocity, from DT4P (P&S; km/s)V4S Shear Velocity, from DT4S (P&S; km/s)VELP Compressional Velocity (processed from waveforms; km/s)VELS Shear Velocity (processed from waveforms; km/s)VP1 Compressional Velocity, from DT, DTLN, or MEAN (km/s)VP2 Compressional Velocity, from DTL, DTLF, or MEDIAN (km/s)VCO Compressional Velocity, from DTCO (km/s)VS Shear Velocity, from DTSM (km/s)VST Stonely Velocity, from DTST km/s)VS1 Shear Velocity, from DT1 (Lower Dipole; km/s)VS2 Shear Velocity, from DT2 (Upper Dipole; km/s)VRP Compressional Velocity, from DTRP (Receiver Array, P&S; km/s) VRS Shear Velocity, from DTRS (Receiver Array, P&S; km/s)VS1R Shear Velocity, from DT1R (Receiver Array, Lower Dipole; km/s) VS2R Shear Velocity, from DT2R (Receiver Array, Upper Dipole; km/s) VS1T Shear Velocity, from DT1T (Transmitter Array, Lower Dipole; km/s) VS2T Shear Velocity, from DT2T (Transmitter Array, Upper Dipole; km/s) VTP Compressional Velocity, from DTTP (Transmitter Array, P&S; km/s) VTS Shear Velocity, from DTTS (Transmitter Array, P&S; km/s)#POINTS Number of Transmitter-Receiver Pairs Used in Sonic Processing W1NG NGT Window 1 counts (cps)W2NG NGT Window 2 counts (cps)W3NG NGT Window 3 counts (cps)W4NG NGT Window 4 counts (cps)W5NG NGT Window 5 counts (cps)OCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR LWD SCHLUMBERGER LOGSAT1F Attenuation Resistivity (1 ft resolution; ohmm)AT3F Attenuation Resistivity (3 ft resolution; ohmm)AT4F Attenuation Resistivity (4 ft resolution; ohmm)AT5F Attenuation Resistivity (5 ft resolution; ohmm)ATR Attenuation Resistivity (deep; ohmm)BFV Bound Fluid Volume (%)B1TM RAB Shallow Resistivity Time after Bit (s)B2TM RAB Medium Resistivity Time after Bit (s)B3TM RAB Deep Resistivity Time after Bit (s)BDAV Deep Resistivity Average (ohmm)BMAV Medium Resistivity Average (ohmm)BSAV Shallow Resistivity Average (ohmm)CGR Computed (Th+K) Gamma Ray (API units)DCAL Differential Caliper (in)DROR Correction for CDN rotational density (g/cm3).DRRT Correction for ADN rotational density (g/cm3).DTAB AND or CDN Density Time after Bit (hr)FFV Free Fluid Volume (%)GR Gamma Ray (API Units)GR7 Sum Gamma Ray Windows GRW7+GRW8+GRW9-Equivalent to Wireline NGT window 5 (cps) GRW3 Gamma Ray Window 3 counts (cps)-Equivalent to Wireline NGT window 1GRW4 Gamma Ray Window 4 counts (cps)-Equivalent to Wireline NGT window 2GRW5 Gamma Ray Window 5 counts (cps)-Equivalent to Wireline NGT window 3GRW6 Gamma Ray Window 6 counts (cps)-Equivalent to Wireline NGT window 4GRW7 Gamma Ray Window 7 counts (cps)GRW8 Gamma Ray Window 8 counts (cps)GRW9 Gamma Ray Window 9 counts (cps)GTIM CDR Gamma Ray Time after Bit (s)GRTK RAB Gamma Ray Time after Bit (s)HEF1 Far He Bank 1 counts (cps)HEF2 Far He Bank 2 counts (cps)HEF3 Far He Bank 3 counts (cps)HEF4 Far He Bank 4 counts (cps)HEN1 Near He Bank 1 counts (cps)HEN2 Near He Bank 2 counts (cps)HEN3 Near He Bank 3 counts (cps)HEN4 Near He Bank 4 counts (cps)MRP Magnetic Resonance PorosityNTAB ADN or CDN Neutron Time after Bit (hr)PEF Photoelectric Effect (barns/e-)POTA Potassium (%) ROPE Rate of Penetration (ft/hr)PS1F Phase Shift Resistivity (1 ft resolution; ohmm)PS2F Phase Shift Resistivity (2 ft resolution; ohmm)PS3F Phase Shift Resistivity (3 ft resolution; ohmm)PS5F Phase Shift Resistivity (5 ft resolution; ohmm)PSR Phase Shift Resistivity (shallow; ohmm)RBIT Bit Resistivity (ohmm)RBTM RAB Resistivity Time After Bit (s)RING Ring Resistivity (ohmm)ROMT Max. Density Total (g/cm3) from rotational processing ROP Rate of Penetration (m/hr)ROP1 Rate of Penetration, average over last 1 ft (m/hr).ROP5 Rate of Penetration, average over last 5 ft (m/hr)ROPE Rate of Penetration, averaged over last 5 ft (ft/hr)RPM RAB Tool Rotation Speed (rpm)RTIM CDR or RAB Resistivity Time after Bit (hr)SGR Total Gamma Ray (API units)T2 T2 Distribution (%)T2LM T2 Logarithmic Mean (ms)THOR Thorium (ppm)TNPH Thermal Neutron Porosity (%)TNRA Thermal RatioURAN Uranium (ppm)OCEAN DRILLING PROGRAMADDITIONAL ACRONYMS AND UNITS(PROCESSED LOGS FROM GEOCHEMICAL TOOL STRING)AL2O3 Computed Al2O3 (dry weight %)AL2O3MIN Computed Al2O3 Standard Deviation (dry weight %) AL2O3MAX Computed Al2O3 Standard Deviation (dry weight %) CAO Computed CaO (dry weight %)CAOMIN Computed CaO Standard Deviation (dry weight %) CAOMAX Computed CaO Standard Deviation (dry weight %) CACO3 Computed CaCO3 (dry weight %)CACO3MIN Computed CaCO3 Standard Deviation (dry weight %) CACO3MAX Computed CaCO3 Standard Deviation (dry weight %) CCA Calcium Yield (decimal fraction)CCHL Chlorine Yield (decimal fraction)CFE Iron Yield (decimal fraction)CGD Gadolinium Yield (decimal fraction)CHY Hydrogen Yield (decimal fraction)CK Potassium Yield (decimal fraction)CSI Silicon Yield (decimal fraction)CSIG Capture Cross Section (capture units)CSUL Sulfur Yield (decimal fraction)CTB Background Yield (decimal fraction)CTI Titanium Yield (decimal fraction)FACT Quality Control CurveFEO Computed FeO (dry weight %)FEOMIN Computed FeO Standard Deviation (dry weight %) FEOMAX Computed FeO Standard Deviation (dry weight %) FEO* Computed FeO* (dry weight %)FEO*MIN Computed FeO* Standard Deviation (dry weight %) FEO*MAX Computed FeO* Standard Deviation (dry weight %) FE2O3 Computed Fe2O3 (dry weight %)FE2O3MIN Computed Fe2O3 Standard Deviation (dry weight %) FE2O3MAX Computed Fe2O3 Standard Deviation (dry weight %) GD Computed Gadolinium (dry weight %)GDMIN Computed Gadolinium Standard Deviation (dry weight %) GDMAX Computed Gadolinium Standard Deviation (dry weight %) K2O Computed K2O (dry weight %)K2OMIN Computed K2O Standard Deviation (dry weight %)K2OMAX Computed K2O Standard Deviation (dry weight %) MGO Computed MgO (dry weight %)MGOMIN Computed MgO Standard Deviation (dry weight %) MGOMAX Computed MgO Standard Deviation (dry weight %)S Computed Sulfur (dry weight %)SMIN Computed Sulfur Standard Deviation (dry weight %) SMAX Computed Sulfur Standard Deviation (dry weight %)SIO2 Computed SiO2 (dry weight %)SIO2MIN Computed SiO2 Standard Deviation (dry weight %) SIO2MAX Computed SiO2 Standard Deviation (dry weight %) THORMIN Computed Thorium Standard Deviation (ppm) THORMAX Computed Thorium Standard Deviation (ppm)TIO2 Computed TiO2 (dry weight %)TIO2MIN Computed TiO2 Standard Deviation (dry weight %) TIO2MAX Computed TiO2 Standard Deviation (dry weight %) URANMIN Computed Uranium Standard Deviation (ppm) URANMAX Computed Uranium Standard Deviation (ppm) VARCA Variable CaCO3/CaO calcium carbonate/oxide factor。
制冷专业英语大全e
制冷专业英语根本术语制冷refrigeration蒸发制冷evaporative refrigeration沙漠袋desert bag制冷机refrigerating machine制冷机械refrigerating machinery制冷工程refrigeration engineering制冷工程承包商refrigeration contractor制冷工作者refrigerationist制冷工程师refrigeration engineer制冷技术员refrigeration technician制冷技师refrigeration technician制冷技工refrigeration mechanic冷藏工人icer制冷安装技工refrigeration installation mechanic 制冷维修技工refrigeration serviceman冷藏链cold chain制冷与空调维修店refrigeration and air conditioning repair shop冷藏refrigerated prvservation一般制冷换热器英语换热器heat exchanger热交换器heat exchanger紧凑式换热器compact heat exchanger管式换热器tubular heat exchanger套管式换热器double-pipe heat exchanger间壁式换热器surface type heat exchanger外表式换热器surface type heat exchanger板管式换热器tube-on-sheet heat exchanger板翅式换热器plate-fin heat exchanger板式换热器plate heat exchanger螺旋板式换热器spiral plate heat exchanger平板式换热器flat plate heat exchanger顺流式换热器parallel flow heat exchanger逆流式换热器counter flow heat exchanger*流式换热器cross-flow heat echanger折流式换热器turn back flow heat exchanger直接接触式换热器direct heat exchanger旋转式换热器rotary heat exchanger刮削式换热器scraped heat exchanger热管式换热器heat pipe exchanger蓄热器recuperator壳管式换热器shell and tube heat exchanger管板tube plate可拆端盖removable head管束bundle of tube 管束尺寸size of tube bundle顺排管束in-line hank of tubes错排管束staggered hank of tubes盘管coil蛇形管serpentine coilU形管U-tube光管bare tube肋片管finned tube翅片管finned tube肋管finned tube肋管束finned tube bundle肋片fin套片plate fin螺旋肋spiral fin整体肋integral fin纵向肋longitudinal fin钢丝肋wire fin内肋inner fin肋片管尺寸size of fin tube肋片厚度fin thickness肋距spacing of fin肋片数pitch of fin肋片长度finned length肋片高度finned height肋效率fin efficiency换热面积heat exchange surface传热面积heat exchange surface冷却面积cooling surface加热外表heat exchange surface基外表primary surface扩展外表extended surface肋化外表finned surface迎风外表face area流通外表flow area净截面积net area;effective sectional area迎风面流速face velocity净截面流速air velocity at net area迎风面质量流速face velocity of mass净截面质量流速mass velocity at net area冷〔热〕媒有效流通面积effective area for cooling or heating medium冷〔热〕媒流速velocity of cooling or heating medium干工况dry condition;sensible cooling condition 湿工况wet condition;dehumidifying condition接触系数contact factor旁通系数bypass factor换热效率系数coefficient of heat transmission effectiveness盘管风阻力air pressure drop of coil;air resistance of coil盘管水阻力pressure drop of cooling or heating medium外表冷却surface cooling蒸发冷却evaporating cooling冷却元件cooling element涡流管制冷英语涡流制冷效应vortex refrigerating effect兰克-赫尔胥效应Ranque-Hilsch effect涡流管制冷vortex tube refrigeration涡流管vortex tube兰克管Ranque tube膨胀喷嘴expansion injector涡流室vortex device别离孔板separation orifice调节阀control valve膨胀压力比expansion pressure ratio冷气流分量cold gas fraction热气流分量hot gas fraction冷却效应cooling effect加热效应heating effect冷却效率cooling efficiency磁制冷英语磁热效应magnetocaloric effect磁制冷magnetic refrigeration磁制冷机magnetic refrigerating machine磁冰箱magnetic refrigerator压缩机制冷系统及机组制冷系统refrigeration system制冷机refrigerating machine机械压缩制冷系统mechanical compression refrigeration system蒸气压缩制冷系统vapour compression refrigeration system压缩式系统compression system压缩机compressor制冷压缩机refrigerating compressor,refrigerant compressor吸气端suction end排气端discharge end低压侧low pressure side高压侧high pressure side蒸发压力evaporating pressure 吸气压力suction pressure,back pressure排气压力discharge pressure蒸发温度evaporating temperature冷凝压力condensing pressure冷凝温度condensing temperature吸气温度suction temperature回气温度back temperature排气温度discharge temperature压缩比compression ratio双效压缩dual compression单级压缩single-stage compression双级压缩compound compression多级压缩multistage compression压缩级compression stage低压级low pressure stage高压级high pressure stage中间压力intermediate pressure中间冷却intercooling多级膨胀multistage expansion湿压缩wet compression干压缩dry compression制冷系统refrigerating system机械制冷系统mechanical refrigerating system氟利昂制冷系统freon refrigerating system氨制冷系统ammonia refrigerating system压缩式制冷系统compression refrigerating system 单级压缩制冷系统single-stage compression refrigeration system双级压缩制冷系统two-stage compression refrigeration system多级制冷系统multistage refrigerating system复叠式制冷系统cascade refrigerating system混合制冷剂复叠系统mixed refrigerant cascade集中制冷系统central refrigerating plant直接制冷系统direct refrigeration system直接膨胀供液制冷系统refrigeration system with supply liqiud direct expansion重力供液制冷系统refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统indirect refrigeration system融霜系统defrosting system热气融霜系统defrosting system by superheated vapour电热融霜系统eletrothermal defrosting system制冷系统故障breakdown of the refrigeratingsystem冰堵freeze-up冰塞ice plug脏堵filth blockage油堵greasy blockage液击〔冲缸、敲缸〕slugging湿行程wet stroke镀铜现象appearance of copper-plating烧毁burn-out倒霜frost back制冷机组refrigerating unit压缩机组compressor unit开启式压缩机组open type compresssor unit开启式压缩机open type compressor半封闭式压缩机组semihermetic compressor unit 半封闭式压缩机semihermetic compressor全封闭式压缩机组hermetically sealed compressor unit全封闭式压缩机hermetically sealed compressor压缩冷凝机组condensing unit全封闭式压缩冷凝机组hermetically sealed condensing unit半封闭式压缩冷凝机组semihermetically sealed condensing unit开启式压缩冷凝机组open type compressor condensing unit工业用压缩冷凝机组industrial condensing unit商业用压缩冷凝机组commercial condensing unit 整马力压缩冷凝机组integral horsepower condensing unit分马力压缩冷凝机组fractional horsepower condensing unit跨式制冷机组straddle refrigerating unit容积式压缩机及零部件英语容积式压缩机positive displacement compressor往复式压缩机〔活塞式压缩机〕reciprocating compressor回转式压缩机rotary compressor滑片式压缩机sliding vane compressor单滑片回转式压缩机single vane rotary compressor滚动转子式压缩机rolling rotor compressor三角转子式压缩机triangle rotor compressor多滑片回转式压缩机multi-vane rotary compressor 滑片blade旋转活塞式压缩机rolling piston compressor 涡旋式压缩机scroll compressor涡旋盘scroll固定涡旋盘stationary scroll,fixed scroll驱动涡旋盘driven scroll,orbiting scroll斜盘式压缩机〔摇盘式压缩机〕swash plate compressor斜盘swash plate摇盘wobble plate螺杆式压缩机screw compressor单螺杆压缩机single screw compressor阴转子female rotor阳转子male rotor主转子main rotor闸转子gate rotor无油压缩机oil free compressor膜式压缩机diaphragm compressor活塞式压缩机reciprocating compressor单作用压缩机single acting compressor双作用压缩机double acting compressor双效压缩机dual effect compressor双缸压缩机twin cylinder compressor闭式曲轴箱压缩机closed crankcase compressor开式曲轴箱压缩机open crankcase compressor顺流式压缩机uniflow compressor逆流式压缩机return flow compressor干活塞式压缩机dry piston compressor双级压缩机compund compressor多级压缩机multistage compressor差动活塞式压缩机stepped piston compound compressor,differential piston compressor串轴式压缩机tandem compressor,dual compressor截止阀line valve,stop valve排气截止阀discharge line valve吸气截止阀suction line valve局部负荷旁通口partial duty port能量调节器energy regulator容量控制滑阀capacity control slide valve容量控制器capacity control消声器muffler联轴节coupling曲轴箱crankcase曲轴箱加热器crankcase heater轴封crankcase seal,shaft seal填料盒stuffing box轴封填料shaft packing机械密封mechanical seal波纹管密封bellows seal转动密封rotary seal迷宫密封labyrinth seal轴承bearing滑动轴承sleeve bearing偏心环eccentric strap滚珠轴承ball bearing滚柱轴承roller bearing滚针轴承needle bearing止推轴承thrust bearing外轴承pedestal bearing臼形轴承footstep bearing轴承箱bearing housing止推盘thrust collar偏心销eccentric pin曲轴平衡块crankshaft counterweight,crankshaft balance weight曲柄轴crankaxle偏心轴eccentric type crankshaft曲拐轴crankthrow type crankshaft连杆connecting rod连杆大头crank pin end连杆小头piston pin end曲轴crankshaft主轴颈main journal曲柄crank arm,crank shaft曲柄销crank pin曲拐crank throw曲拐机构crank-toggle阀盘valve disc阀杆valve stem阀座valve seat阀板valve plate阀盖valve cage阀罩valve cover阀升程限制器valve lift guard阀升程valve lift阀孔valve port吸气口suction inlet压缩机气阀compressor valve吸气阀suction valve排气阀delivery valve圆盘阀disc valve环片阀ring plate valve簧片阀reed valve舌状阀cantilever valve条状阀beam valve 提升阀poppet valve菌状阀mushroom valve杯状阀tulip valve缸径cylinder bore余隙容积clearance volume附加余隙〔补充余隙〕clearance pocket活塞排量swept volume,piston displacement理论排量theoretical displacement实际排量actual displacement实际输气量actual displacement,actual output of gas气缸工作容积working volume of the cylinder活塞行程容积piston displacement气缸cylinder气缸体cylinder block气缸壁cylinder wall水冷套water cooled jacket气缸盖〔气缸头〕cylinder head平安盖〔假盖〕safety head假盖false head活塞环piston ring气环sealing ring刮油环scraper ring油环scrape ring活塞销piston pin活塞piston活塞行程piston stroke吸气行程suction stroke膨胀行程expansion stroke压缩行程compression stroke排气行程discharge stroke升压压缩机booster compressor立式压缩机vertical compressor卧式压缩机horizontal compressor角度式压缩机angular type compressor对称平衡型压缩机symmetrically balanced type compress吸收式制冷机英语吸收式制冷机absorption refrigerating machine吸收式制冷系统absorption refrigerating system间歇式吸收系统intermittent absoprtion system连续循环吸收式系统continuous cycle absorption system固体吸收式制冷solid absorption refrigeration氨-水吸收式制冷机ammonia/water absorption refrigerating machine单级氨-水吸收式制冷机single stage ammonia/water absorption refrigerating machine 多级氨-水吸收式制冷机multistage ammonia/water absorption refrigerating machine 双级氨-水吸收式制冷机ammonia/water absorption refrigerating machine with two stage absorption process双级发生和双级吸收式氨-水制冷机ammonia/water absorption refrigerating machine with two stage generation and absoprtion process 分解decomposition水解hydrolysis扩散diffusion能量增强剂energy booster缓蚀剂anticorrsive发生缺乏incomplete boiling吸收缺乏incomplete absorption喷淋密度sprinkle density溴化锂lithium bromide溴化锂水溶液aqueous solution of lithium bromide 氨水溶液aqueous solution of ammonia吸收剂absorbent,absorbing agent吸附剂adsorbent溶液solution浓度concentration溶解度solubility溶剂solvent溶质solute浓溶液rich solution,concentrated solution稀溶液weak solution,diluted solution溶液分压partial pressure of liquor吸收absorption吸附adsorption吸收式制冷absorption refrigeration吸附式制冷adsorption refrigeration工质对working substance热力系数heat ratio放气范围deflation ratio焓-浓度图enthalpy concentration chart溴化锂吸收式制冷机lithiumbromide absorption refrigerating machine单效型溴化锂吸收式制冷机single-effect lithiumbromide absorption refrigerating machine两效型溴化锂吸收式制冷机double-effect lithiumbromide absorption refrigerating machine单筒型溴化锂吸收式制冷机one-shell lithiumbromide absorption refrigerating machine 双筒型溴化锂吸收式制冷机two-shell lithiumbromide absorption refrigerating machine三筒型溴化锂吸收式制冷机three-shell lithiumbromide absorption refrigerating machine两级溴化锂吸收式制冷机two-stage lithiumbromide absorption refrigerating machine直燃式溴化锂吸收式制冷机direct-fired lithiumbormide absorption refrigerating machine 溴化锂吸收式冷温水机组lithiumbromide absorption water heater chiller无泵型溴化锂吸收式制冷机lithiumbromide absorption refrigerating machine with bubble pump 蒸汽型吸收式制冷机steam operated absorption refrigerating machine热水型吸收式制冷机hot water operated absorption refrigerating machine发生器generator沉浸式发生器submerged generator喷淋式发生器spray-type generator立式降膜式发生器vertical falling film generator直燃式发生器direct-fired generator高压发生器high pressure generator低压发生器low pressure generator吸收器absorber喷淋式吸收器spray absorber降膜式吸收器falling film absorber立式降膜式吸收器vertical falling film absorber卧式降膜式吸收器horizontal falling film absorber 喷淋装置spray system溶液换热器solution heat exchanger溶晶管anti-crystallinic pipe抽气装置purging system精馏器rectifier屏蔽泵shield pump发生器泵generator pump吸收器泵absorber pump蒸发器泵evaporator pump溶液泵solution pump氨水泵aqua-ammonia pump混合阀mixing valve太阳能制冷与供热英语太阳能solar energy太阳常数solar constant太阳能系统solar energy system被动式太阳能系统passive solar energy system主动式太阳能系统active solar energy system混合式太阳能系统hybrid solar energy system太阳能制冷solar cooling太阳能热机驱动制冷solarpowered cooling太阳能吸收式制冷机solar absorption refrigerating machine光-热转换制冷photothermal refrigeration光-电转换制冷photoelectrical refrigeration太阳能蒸汽喷射制冷机solar steam jet refrigerating machine连续式太阳能吸收式制冷机continual solar absorption refrigerating machine间歇式太阳能吸收式制冷机intermittent solar absorption refrigerating machine敞开式太阳能吸收式制冷机open solar absorption refrigerating machine太阳能空调装置solar air-conditioning system太阳能制冷系统solar energy cooling system,solar cooling system太阳能集热器solar collector选择式吸收外表selective absorber surface电淀积electrodeposition平板型太阳能集热器flat plate solar collector真空管太阳能集热器tubular solar collector,vacuum tube collector聚光型太阳能机热器focus solar collector集热量heat-collecting capacity集热温度heat-collecting temperature集热效率heat-collecting efficiency蓄热介质heat storge medium岩石蓄热容器rock storge container辅助热源supplementary heat source太阳能贮存系统solar energy storge system太阳能供热系统solar heating system,solar space heating installation自然循环闭式供水系统natural convection closed water system强制循环闭式供水系统forced convection in a closed water system热风供热系统warm air heating system家用太阳能热水系统solar domestic water heating system热管与余热制冷英语热管heat pipe深冷热管cryogenic heat pipe低温热管low temperature heat pipe中温热管moderate temperature heat pipe 高温热管liquid metal heat pipe管芯wick相容性compatibility传热极限heat transport limitation重力热管gravity assisted heat pipe热管换热器heat pipe exchanger深冷热管手术器heat pipe surgery cryoprobe余热exhaust heat低温余热low temperature exhaust heat余热制冷utilizing waste heat for refrigeration氟利昂透平freon turbine氟利昂透平离心式制冷机centrifugal refrigerating machine driven by freon turbine动力-制冷循环power/refrigeration cycle透平压缩机及零部件英语涡流swirl叶片颤振blade flutter叶片通过频率blade passing frequency喘振surging脱流stall叶轮反响度(反作用度) impeller reaction叶轮impeller半开式叶轮unshrouded impeller闭式叶轮shrouded impeller叶片blade,vane导流叶片组件pre-rotary vane assembly扩压器diffuser蜗壳scroll滑动slip透平压缩机turbocompressor离心式压缩机centrifugal compressor轴流式压缩机axial flow compressor刚性轴离心式压缩机stiff-shaft centrifugal compressor挠性轴离心式压缩机flexibleshaft centrifugal compressor亚音速压缩机subsonic compressor超音速压缩机supersonic compressor冷却塔英语自然通风式冷却塔atmpspheric cooling tower,natural draught cooling tower机械通风式冷水塔mechanical draught cooling tower吸风式冷水塔induced draught cooling tower送风式冷水塔forced draught cooling tower水膜式冷水塔film cooling tower水滴式冷水塔drop cooling tower喷雾式冷水塔spray cooling tower拉西环Rasching rings温度接近值approach水垢scale水垢抑制剂scale inhibitor藻类algae防藻剂algaecide淀渣slime升压阀back-up valve冷水塔water cooling tower,cooling tower凉水塔water cooling tower,cooling tower冷却塔water cooling tower,cooling tower喷水池spray pond干式冷水塔dry cooling tower湿-干式冷水塔wet-dry cooling tower冷水塔填料packing of cooling tower,fill of cooling tower膜式填料film packing帘栅形填料grid packing,grid fill片式填料plate packing,plate fill松散填料random packing,random fill飞溅式填料splash packing空气压缩制冷系统英语空气循环制冷air-cycle refrigeration空气循环制冷机air-cycle refrigerating machine涡轮冷却器turbine cooler温降temperature drops开式循环open cycle闭式循环closed cycle除水water elimination补气air supply回热式空气制冷循环regenerative air cycle飞机座舱空调系统aircraft air-conditioning system 增压式飞机空调系统"Bootstrap" system冲压空气ram air制冷系统自动调节流量调节flow regulation制冷剂控制器refrigerant control膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交*充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve 过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve流量调节flow regualation制冷剂控制器refrigerant control膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostaice expansion valve外平衡热力膨胀阀external equalizer thermostaice expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交*充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve 过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve恒压膨胀阀constant pressure expansion valve能量调节capacity regulator单机能量调节capacity regulation of single unit卸载能量调节capacity regulation of load drainage 程序指令式能量调节系统capacity regulation system of program order电磁阀solenoid valve电磁滑阀magnetic slide valve三通电磁阀three way magnetic valve蒸汽喷射式制冷系统英语蒸汽喷射制冷steam jet refrigeration蒸汽喷射制冷机steam-jet refrigerating machine蒸发式蒸汽喷射制冷机evaporation-type steam jet refrigeration machine混合式蒸汽喷射制冷机contact-type steam jet refrigerating machine蒸汽喷射制冷系统steam jet refrigerating system 蒸汽喷射器steam ejector主喷射器main ejector辅助喷射器auxiliary ejector喷射系数jet coefficient主冷凝器main condenser辅助冷凝器auxiliary condenser多效蒸发multieffective evaporation高位安装high-level installation低位安装low-level installation上下位安装high-low-level installation臭氧层保护英语臭氧ozone臭氧层ozonesphere,ozone layer臭氧层破坏ozonesphere depletion,ozonesphere disturbance消耗臭氧层物质ozone depleting substances〔ODS〕禁用制冷剂forbidden refrigerant过渡制冷剂transition refrigerant替代制冷剂substitute refrigerant自然制冷剂natural refrigerant氟利昂家族freon group全氟代烃fluorocarbon 〔FC〕氯氟烃chloroflurocarbon〔CFC〕氢氟烃hydrofluorocarbon〔HCF〕含氢氯氟烃hydrochloroflurocarbon〔HCFC〕含氢氯化烃hydrochlorocarbon〔HCC〕全氯化烃polychlorocarbon〔PCC〕哈龙Halon共沸混合物azeotropic mixture碳氢化合物hydrocarbon compound,hydrocarbon 〔HC〕臭氧消耗潜能值ozone depletion potential〔ODP〕温室效应greenhouse effect全球变暖global warming京都议定书kyoto protocol全球变暖潜能值global warming potential〔GWP〕变暖影响总当量total equivalent warming impact 〔TEWI〕寿命期气候性能life cycle climate performance 〔LCCP〕蕴含能量embodied energy不易收集的排放fugitive emissions热电制冷英语热电制冷thermoelectric refrigeration温差电制冷thermoelectric refrigeration半导体制冷semiconductor refrigeration热电效应thermoelectric effect塞贝克效应Seebeck effect珀尔帖效应Peltier effect热电制冷效应thermoelectric refrigeration effect汤姆逊效应Thomson effect焦耳效应Joule effect傅里叶效应Fourier effect温差电动势thermoelectric power塞贝克系数Seebeck coefficient优值系数figure of merit热电堆thermoelectric pile温差电堆thermoelectric pile最正确电流optimum current经济电流economic current热电半导体thermoelectric semiconductors热电材料thermoelectric material热电制冷材料thermoelectric cooling materialn型半导体n-type semiconductorsp型半导体p-type semiconductors半导体制冷器thermoelectric-refrigerating unit热电制冷器thermoelectric refrigerating unit热电空调器thermoelectric air conditioner半导体空调器thermoelectric air conditioner半导体恒温器thermoelectric thermostat半导体冷饮水器thermoelectric drinking water cooler半导体热泵thermoelectric heat pump半导体降温机thermoelectric dehumidifier低温半导体制冷器low temperature thermoelectric unit焊接式半导体制冷器soldered thermoelectric refrigerating unit粘接式半导体制冷器sticky thermoelectric refrigerating unit嵌装式半导体制冷器inlaid thermoelectric refrigerating unit复叠式半导体制冷器cascade thermoelectric refrigerating unit医用半导体制冷器medicine thermoelectric refrigerating unit盐水冷却系统开式盐水冷却系统open brine system闭式盐水系统closed brine system盐水箱brine bank盐水混合箱brine mixing tank盐水溢流箱brine return tank盐水回流箱brine return tank盐水膨胀箱brine balance tank盐水加热器brine heater盐水冷却器brine cooler盐水筒brine drum盐水集管brine header盐水泵brine pump盐水喷雾brine spray盐水喷淋brine sparge制冷暖通行业品牌中英文对照AEROFLEX “亚罗弗〞保温ALCO “艾科〞自控Alerton 雅利顿Alfa laval阿法拉伐ARMSTRONG “阿姆斯壮〞保温AUX 奥克斯BELIMO 瑞士“搏力谋〞BERONOR西班牙“北诺尔〞电加热器BILTUR 意大利“百得〞BOSIC “柏诚〞自控BROAD 远大Burnham美国“博恩汉〞锅炉CALPEDA意大利“科沛达〞水泵CARLY 法国“嘉利〞制冷配件Carrier 开利Chigo 志高Cipriani 意大利斯普莱力CLIMAVENETA意大利“克莱门特〞Copeland“谷轮〞压缩机CYRUS意大利〞赛诺思〞自控DAIKIN 大金Danfoss丹佛斯Dorin “多菱〞压缩机DUNHAM-BUSH 顿汉布什DuPont美国“杜邦〞制冷剂Dwyer 美国德威尔EBM “依必安〞风机ELIWELL意大利“伊力威〞自控EVAPCO美国“益美高〞冷却设备EVERY CONTROL意大利“美控〞Erie 怡日FRASCOLD 意大利“富士豪〞压缩机FRICO瑞典“弗瑞克〞空气幕FUJI “富士〞变频器FULTON 美国“富尔顿〞锅炉GENUIN “正野〞风机GREE 格力GREENCOOL格林柯尔GRUNDFOS “格兰富〞水泵Haier 海尔Hisense 海信HITACHI 日立Honeywell 霍尼韦尔Johnson 江森Kelon 科龙KRUGER瑞士“科禄格〞风机KU BA德国“库宝〞冷风机Liang Chi 良机LIEBERT 力博特MARLEY “马利〞冷却塔Maneurop法国“美优乐〞压缩机McQuary 麦克维尔Midea 美的MITSUBISHI三菱Munters 瑞典“蒙特〞除湿机Oventrop德国“欧文托普〞阀门Panasonic 松下RANCO “宏高〞自控REFCOMP意大利“莱富康〞压缩机RIDGID 美国“里奇〞工具RUUD美国“路德〞空调RYODEN “菱电〞冷却塔SanKen “三垦〞变频器Samsung 三星SANYO 三洋SASWELL英国森威尔Schneider 施耐德SenseAir 瑞典“森尔〞传感器SIEMENS 西门子SINKO "新晃“空调SINRO “新菱〞冷却塔STAND “思探得〞加湿器SWEP 舒瑞普TECKA “台佳〞空调Tecumseh“泰康〞压缩机TRANE 特灵TROX德国“妥思〞VASALA芬兰“维萨拉〞传感器WILO德国“威乐〞水泵WITTLER 德国〞威特〞阀门YORK 约克ZENNER德国“真兰〞计量制冷能力及计算术语英语运行工况operating conditions标准性能standard rating标准工况standard condition空调工况air conditioning condition内部条件internal conditions外部条件external conditions蓄热accumulation of heat蓄冷accumulation of cold制冰能力ice-making capacity热泵用压缩机的供热系数heat-pump compressor coefficient of performance容积效率volumetric efficiency容积输气量vulumetric displacement实际输气量actual displacement理论输气量theoretical displacement冷凝热量condenser heat过冷热量heat of subcooling过热热量superheat运转工况下的制冷量rating under working conditions标准制冷量standard rating名义工况normal conditions试验工况test conditions轴功率brake power效率efficiency指示效率indicated efficiency机械效率mechanical efficiency总效率overall efficiency制冷系数coefficient of performance 〔COP〕制冷压缩机的制冷系数refrigerating compressor coefficient of performance热力完善度thermodynamical perfectness能效比energy efficiency ratio 〔EER〕热泵供热系数heat-pump coefficient of performance空调有效显热制冷量useful sensible heat capacity of air conditioner空调有效潜热〔减湿〕制冷量useful latent heat (dehumidifyying) capacity of air conditioner空调器有效总制冷量useful total capacity of air conditioner制冷剂循环量circulating mass of refrigerant制冷剂循环容积circulating volume of refrigerant 单位压缩功compress work per mass示功图indicator diagram指示功indicated work摩擦功frictional work功率power摩擦功率frictional power指示功率indicated power理论功率idea power制冷量refrigerating capacity总制冷量gross refrigerating capacity净制冷量net refrigerating capacity单位制冷量refrigerating capacity per weighing单位容积制冷量refrigerating capacity per unit of swept volume制冷系统制冷量system refrigerating capacity单位轴功率制冷量refrigerating effect per shaft power压缩冷凝机组制冷量compressor condensing unit refrigerating capacity制冷压缩机制冷量refrigerant compressor capacity 蒸发器净制冷量net cooler refrigerating capacity制冷装置制冷装置refrigerating installation,refrigerating plant工业制冷装置industrial refrigerating plant商业制冷装置commercial refrigerating plant中心站房central station成套机组self-contained system标准安装code installation制冷回路refrigerating circuit热平衡heat balance货物负荷product load操作负荷service load设计负荷design load负荷系数load factor制冷装置试验与操作试运转commissioning吹污flush气密性试验gas-tight test,air-right test密闭容器closed container漏气air infiltration放气air vent检漏leak hunting,leak detection检漏仪leak detector卤素灯halide torch电子检漏仪electronic leak detector真空试验vacuum test试验压力test pressure工作压力operating pressure,working pressure最高工作压力highest operating pressure气密试验压力gas-tight test pressure设计压力design pressure平衡压力balance pressure充气aerate,gas charging制冷剂充注refrigerant charging首次充注initial charge保护充注holding charge,service charge制冷剂缺乏lack of refrigerant,under-charge,gas shortage缺液starveling充灌台charging board充灌量charge充注过多overcharge供液过多overfeeding制冷剂抽空pump down of refrigerant降温试验pull down test制冷[功能]试验refrigeration test卸载起动no-load starting,unloaded start卸载机构unloader闪发flash vaporization,instantaneous vaporization 闪发气体flash gas不凝性气体non condensable gas气体排除gas purging,degassing,gasoff阀针跳动hammering,needle hammer阀振荡hunting of a valve阀片跳动valve flutter,valve bounce短期循环short-cycling异常温升overheating 泄漏leak气蚀cavitation制冷剂瓶refrigerant cylinder,gas bottle检修用瓶service cylinder,gas bottle紧急泄放阀emergency-relief valve检修阀service valve平安阀pressure relief valve抽空阀pump out valve加油阀oil charge valve放油阀oil drain valve放空阀purge valve充灌阀charging valve喷液阀liquid injection valve润滑油润滑油lubricant oil冷冻机油refrigeration oil冷冻油refrigerant oil凝点condensation point闪点flash point浊点cloud point絮凝点flock point流动点pour point起泡foaming皂化saponify油泥sludge结碳carbonization制冷剂制冷剂〔制冷工质〕refrigerant高温制冷剂high temperature refrigerant低压制冷剂low pressure refrigerant中温制冷剂medium temperature refrigerant 中压制冷剂medium pressure refrigerant低温制冷剂low temperature refrigerant高压制冷剂high pressure refrigerant氟利昂freon卤化碳制冷剂halocarbo refrigerant氟利昂11 freon 11氟利昂12 freon 12氟利昂13 freon 13氟利昂14 freon 14氟利昂22 freon 22氟利昂113 freon 113氟利昂125 freon 125氟利昂134a freon 134a氟利昂152a freon 152a碳氢化合物制冷剂hydrocarbon refrigerant甲烷methane乙烷ethane丙烷propane丁烷butane异丁烷isobutane乙烯ethylene无机化合物制冷剂inorganic compund refrigerant 氨ammonia二氧化碳carbon dioxide二氧化硫sulphur dioxide干冰dry ice共沸制冷剂azeotropic mixture refrigerant氟里昂500 freon 500氟里昂501 freon 501氟里昂502 freon 502氟里昂503 freon 503氟里昂504 freon 504近共沸溶液制冷剂near azeotropic mixture refrigerant非共沸溶液制冷剂nonazeotropic mixture refrigerant蒸发器壳盘管式蒸发器shell-and-coil evaporator壳管式蒸发器shell-and-tube evaporator喷淋式蒸发器spray-type evaporator立管式蒸发器vertical-type evaporator平行管蒸发器receway coil螺旋管式蒸发器spiral tube evaporator“V〞型管蒸发器herringbone type evaporator沉浸式盘管蒸发器submerged evaporator板式蒸发器plate-type evaporator螺旋板式蒸发器spiral sheet evaporator平板式蒸发器plate-type evaporator,tube-in-sheet evaporator管板式蒸发器tube-on-sheet evaporator凹凸板式蒸发器embossed-plate evaporator吹胀式蒸发器roll-bond evaporator压焊板式蒸发器roll-bond evaporator制冰块器的蒸发器ice cube maker evaporator结冰式蒸发器ice-bank evaporator蓄冰式蒸发器ice-bank evaporator结霜蒸发器frosting evaporator除霜蒸发器defrosting evaporator无霜蒸发器nonfrosting evaporator强制通风蒸发器forced circulation evaporator 冷液式蒸发器liquid cooling evaporator封套式蒸发器wrap-round evaporator蒸发器evaporator直接冷却式蒸发器direct evaporator直接式蒸发器direct evaporator间接冷却式蒸发器indirect cooled evaporator间接式蒸发器indirect evaporator干式蒸发器dry expansion evaporator满液式蒸发器flooded evaporator再循环式蒸发器recirculation-type evaporator强制循环式蒸发器pump-feed evaporator冷凝器英语冷凝器condenser冷凝液condensate空冷式冷凝器air-cooled condenser风冷式冷凝器air-cooled condenser自然对流空冷式冷凝器natural convecton air-cooled condenser强制通风式冷凝器forced draught condenser冷凝风机condensate fan线绕式冷凝器wire and tube condenser水冷式冷凝器water-cooled condenser沉浸式盘管冷凝器submerged coil condenser套管式冷凝器double pipe condenser壳管式冷凝器shell and tube condenser组合式冷凝器multishell condenser卧式壳管式冷凝器closed shell and tube condenser 卧式冷凝器closed condenser立式壳管式冷凝器open shell and tube condenser 立式冷凝器open condenser,vertical condenser 壳盘管式冷凝器shell and coil condenser分隔式冷凝器split condenser淋激式冷凝器atmospheric condenser溢流式冷凝器bleeder-type condenser蒸发式冷凝器evaporative condenser板式冷凝器plate-type condenser空冷板式冷凝器air-cooled plate-type condenser 水冷板式冷凝器water-cooled plate-type condenser焊接板式冷凝器welded sheet condenser螺旋板式冷凝器spiral sheet condenser冷凝-贮液器condenser-receiver混合式冷凝器barometric condenser液化器liquefier冷凝水泵condensate pump冷凝器梳condensate comb。
(2021年整理)材料专业常用术语英语单词表
材料专业常用术语英语单词表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(材料专业常用术语英语单词表)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为材料专业常用术语英语单词表的全部内容。
Unit 1property (材料的)性质heat treatment 热处理metal 金属glass 玻璃plastics 塑料fiber 纤维electronic devices 电子器件component 组元,组分semiconducting materials 半导体材料materials science and engineering 材料科学与工程materials science 材料科学materials engineering 材料工程materials scientist 材料科学家materials engineer 材料工程师synthesize 合成synthesissubatomic structure 亚原子结构electron 电子atom 原子nuclei 原子核nucleusmolecule 分子microscopic 微观的microscope 显微镜naked eye 裸眼macroscopic 宏观的specimen 试样deformation 变形polished 抛光的reflect 反射magnitude 量级solid materials 固体材料mechanical properties 力学性质force 力elastic modulus 弹性模量strength 强度electrical properties 电学性质electrical conductivity 导电性dielectric constant 介电常数electric field 电场thermal behavior 热学行为heat capacity 热容thermal conductivity 热传导(导热性)magnetic properties 磁学性质magnetic field 磁场optical properties 光学性质electromagnetic radiation 电磁辐射light radiation 光辐射index of refraction 折射率reflectivity 反射率deteriorative characteristics 劣化特性processing 加工performance 性能linear 线性的integrated circuit chip 集成电路芯片strength 强度ductility 延展性deterioration 恶化,劣化mechanical strength 机械强度elevated temperature 高温corrosive 腐蚀性的fabrication 制造Unit 2chemical makeup 化学组成atomic structure 原子结构advanced materials 先进材料high-technology 高技术smart materials 智能材料nanoengineered materials 纳米工程材料metallic materials 金属材料nonlocalized electrons 游离电子conductor 导体electricity 电heat 热transparent 透明的visible light 可见光polished 抛光的surface 表面lustrous 有光泽的aluminum 铝silicon 硅alumina 氧化铝silica 二氧化硅oxide 氧化物carbide 碳化物nitride 氮化物dioxide 二氧化物clay minerals 黏土矿物porcelain 瓷器cement 水泥mechanical behavior 力学行为ceramic materials 陶瓷材料stiffness 劲度strength 强度hard 坚硬brittle 脆的fracture 破裂insulative 绝缘的resistant 耐……的resistance 耐力,阻力,电阻molecular structures 分子结构chain-like 链状backbone 骨架carbon atoms 碳原子low densities 低密度mechanical characteristics 力学特性inert 隋性synthetic (人工)合成的fiberglass 玻璃纤维polymeric 聚合物的epoxy 环氧树脂polyester 聚酯纤维carbon fiber—reinforced polymer composite 碳纤维增强聚合物复合材料glass fiber-reinforced materials 玻璃纤维增强材料high-strength, low-density structural materials 高强度低密度结构材料solar cell 太阳能电池hydrogen fuel cell 氢燃料电池catalyst 催化剂nonrenewable resource 不可再生资源Unit 3periodic table (元素)周期表atomic structure 原子结构magnetic 磁学的optical 光学的microstructure 微观结构macrostructure 宏观结构positively charged nucleus 带正电的原子核atomic number 原子序数proton 质子atomic weight 原子量neutron 中子negatively charged electrons 带负电的电子shell 壳层magnesium 镁chemical bonds 化学键partially-filled electron shells 未满电子壳层bond 成键metallic bond 金属键nonmetal atoms 非金属原子covalent bond 共价键ionic bond 离子键Unit 4physical properties 物理性质chemical properties 化学性质flammability 易燃性corrosion 腐蚀oxidation 氧化oxidation resistance 抗氧化性vapor (vapour)蒸汽,蒸气,汽melt 熔化solidify 凝固vaporize 汽化,蒸发condense 凝聚sublime 升华state 态plasma 等离子体phase transformation temperatures 相变温度density 密度specific gravity 比重thermal conductivity 热导linear coefficient of thermal expansion 线性热膨胀系数electrical conductivity and resistivity 电导和电阻corrosion resistance 抗腐蚀性magnetic permeability 磁导率phase transformations 相变phase transitions 相变crystal forms 晶型melting point 熔点boiling point 沸腾点vapor pressure 蒸气压atm 大气压glass transition temperature 玻璃化转变温度mass 质量volume 体积per unit of volume 每单位体积the acceleration of gravity 重力加速度temperature dependent 随温度而变的,与温度有关的grams/cubic centimeter 克每立方厘米kilograms/cubic meter 千克每立方米grams/milliliter 克每毫升grams/liter 克每升pounds per cubic inch 磅每立方英寸pounds per cubic foot 磅每立方英尺alcohol 酒精benzene 苯magnetize 磁化magnetic induction 磁感应强度magnetic field intensity 磁场强度constant 常数vacuum 真空magnetic flux density 磁通密度diamagnetic 反磁性的factor 因数paramagnetic 顺磁性的ferromagnetic 铁磁性的non-ferrous metals 非铁金属,有色金属brass 黄铜ferrous 含铁的ferrous metals 含铁金属,黑色金属relative permeability 相对磁导率transformer 变压器,变换器eddy current probe 涡流探针Unit 5hardness 硬度impact resistance 耐冲击性fracture toughness 断裂韧度,断裂韧性structural materials 结构材料anisotropic 各向异性orientation 取向texture 织构fiber reinforcement 纤维增强longitudinal 纵向transverse direction 横向short transverse direction 短横向a function of temperature 温度的函数,温度条件room temperature 室温elongation 伸长率tension 张力,拉力compression 压缩bending 弯曲shear 剪切torsion 扭转static loading 静负荷dynamic loading 动态载荷cyclic loading 循环载荷,周期载荷cross-sectional area 横截面stress 应力stress distribution 应力分布strain 应变engineering strain 工程应变perpendicular 垂直normal axis 垂直轴elastic deformation 弹性形变plastic deformation 塑性形变quality control 质量控制nondestructive tests 无损检测tensile property 抗张性能,拉伸性能Unit 6lattice 晶格positive ions 正离子a cloud of delocalized electrons 离域电子云ionization 电离,离子化metalloid 准金属,类金属nonmetal 非金属diagonal line 对角线polonium 钋semi—metal 半金属lower left 左下方upper right 右上方conduction band 导带valence band 价带electronic structure 电子结构synthetic materials (人工)合成材料oxygen 氧oxide 氧化物rust 生锈potassium 钾alkali metals 碱金属alkaline earth metals 碱土金属volatile 活泼的transition metals 过渡金属oxidize 氧化barrier layer 阻挡层basic 碱性的acidic 酸性的electrochemical series 电化序electrochemical cell 电化电池cleave 解理,劈开elemental 元素的,单质的metallic form 金属形态tightly-packed crystal lattice 密排晶格,密堆积晶格atomic radius 原子半径nuclear charge 核电荷number of bonding orbitals 成键轨道数overlap of orbital energies 轨道能重叠crystal form 晶型planes of atoms 原子面a gas of nearly free electrons 近自由电子气free electron model 自由电子模型an electron gas 电子气band structure 能带结构binding energy 键能positive potential 正势periodic potential 周期性势能band gap 能隙Brillouin zone 布里渊区nearly-free electron model 近自由电子模型solid solution 固溶体pure metals 纯金属duralumin 硬铝,杜拉铝Unit 9purification 提纯,净化raw materials 原材料discrete 离散的,分散的iodine 碘long—chain 长链alkane 烷烃,链烃oxide 氧化物nitride 氮化物carbide 碳化物diamond 金刚石graphite 石墨inorganic 无机的mixed ionic—covalent bonding 离子-共价混合键constituent atoms 组成原子conduction mechanism 传导机制phonon 声子photon 光子sapphire 蓝宝石visible light 可见光computer-assisted process control 计算机辅助过程控制solid—oxide fuel cell 固体氧化物燃料电池spark plug insulator 火花塞绝缘材料capacitor 电容electrode 电极electrolyte 电解质electron microscope 电子显微镜surface analytical methods 表面分析方法Unit 12macromolecule 高分子repeating structural units 重复结构单元covalent bond 共价键polymer chemistry 高分子化学polymer physics 高分子物理polymer science 高分子科学molecular structure 分子结构molecular weights 分子量long chains 长链chain—like structure 链状结构monomer 单体plastics 塑料rubbers 橡胶thermoplastic 热塑性thermoset 热固性vulcanized rubbers 硫化橡胶thermoplastic elastomer 热塑弹性体natural rubbers 天然橡胶synthetic rubbers 合成橡胶thermoplastic 热塑性thermoset 热固性resin 树脂polyethylene 聚乙烯polypropylene 聚丙烯polystyrene 聚苯乙烯polyvinyl—chloride 聚氯乙烯polyvinyl 聚乙烯的chloride 氯化物polyester 聚酯polyurethane 聚氨酯polycarbonate 聚碳酸酯nylon 尼龙acrylics 丙烯酸树脂acrylonitrile-butadiene—styrene ABS树脂polymerization 聚合(作用)condensation polymerization 缩聚addition polymerization 加聚homopolymer 均聚物copolymer 共聚物chemical modification 化学改性terminology 术语nomenclature 命名法chemist 化学家the Noble Prize in Chemistry 诺贝尔化学奖catalyst 催化剂atomic force microscope 原子力显微镜(AFM) Unit 15composite 复合材料multiphase 多相bulk phase 体相matrix 基体matrix material 基质材料reinforcement 增强体reinforcing phase 增强相reinforcing material 加强材料metal—matrix composite 金属基复合材料ceramic—matrix composite 陶瓷基复合材料resin—matrix composite 树脂基复合材料strengthening mechanism 增强机理dispersion strengthened composite 弥散强化复合材料particle reinforced composites 颗粒增强复合材料fiber—reinforced composites 纤维增强复合材料Unit 18nanotechnology 纳米技术nanostructured materials 纳米结构材料nanometer 纳米nanoscale 纳米尺度nanoparticle 纳米颗粒nanotube 纳米管nanowire 纳米线nanorod 纳米棒nanoonion 纳米葱nanobulb 纳米泡fullerene 富勒烯size parameters 尺寸参数size effect 尺寸效应critical length 临界长度mesoscopic 介观的quantum mechanics 量子力学quantum effects 量子效应surface area per unit mass 单位质量的表面积surface physics and chemistry 表面物理化学substrate 衬底,基底graphene 石墨烯chemical analysis 化学分析chemical composition 化学成分analytical techniques 分析技术scanning tunneling microscope 扫描隧道显微镜spatial resolution 空间分辨率de Brogile wavelength 德布罗意波长mean free path of electrons (电子)平均自由程quantum dot 量子点band gap 带隙continuous density of states 连续态密度discrete energy level 离散能级absorption 吸收infrared 红外ultraviolet 紫外visible 可见quantum confinement (effect) 量子限域效应quantum well 量子势阱optoelectronic device 光电子器件energy spectrum 能谱electron mean free path 电子平均自由程spin relaxation length 自旋弛豫长度Unit 21biomaterial 生物材料implant materials 植入材料biocompatibility 生物相容性in vivo 在活体内in vitro 在活体外organ transplant 器管移植calcium phosphate 磷酸钙hydroxyapatite 羟基磷灰石research and development 研发 R&D Preparation & Characterizationprocessing techniques 加工技术casting 铸造rolling 轧制,压延welding 焊接ion implantation 离子注入thin—film deposition 薄膜沉积crystal growth 晶体生长sintering 烧结glassblowing 玻璃吹制analytical techniques 分析技术characterization techniques 表征技术electron microscopy 电子显微术X—ray diffraction X射线衍射calorimetry 量热法Rutherford backscattering 卢瑟福背散射neutron diffraction 中子衍射nuclear microscopy 核子微探针。
纳米电介质的短时击穿与长时失效-综述-李盛涛
Short-term Breakdown and Long-term Failure in Nanodielectrics: A ReviewShengtao Li1, Guilai Yin1, G. Chen2, Jianying Li1, Suna Bai1 Lisheng Zhong1, Yunxia Zhang1 , and Qingquan Lei1,31 State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China2 School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK3 Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education,Harbin University of Science and Technology, Harbin, Heilongjiang, 150040, ChinaABSTRACTNanodielectrics, which are concentrated in polymer matrix incorporating nanofillers,have received considerable attention due to their potential benefits as dielectrics. In thispaper, short-term breakdown and long-term failure properties of nanodielectrics havebeen reviewed. The characteristics of polymer matrix, types of nanoparticle and itscontent, and waveforms of the applied voltage are fully evaluated. In order toeffectively comment on the published experimental data, a ratio k has been proposed tocompare the electric properties of the nanodielectrics with the matrix and assess theeffect for nanoparticles doping. There is evidence that the short-term breakdownproperties of nanodielectrics show a strong dependence on the applied voltagewaveforms. The polarity and the cohesive energy density (CED) of polymer matrixhave a dramatic influence on the properties of nanodielectrics. Nanoparticle dopedcomposites show a positive effect on the long-term failure properties, such as ageingresistance and partial discharge (PD) properties of nanocomposites are superior thanmicrocomposites and the matrix. The larger the dielectric constant and CED of thematrix become, the more significant improvements in long-term performance appear.Based on the reported experimental results, we also present our understandings andpropose some suggestions for further work.Index Terms — Nanodielectric, short-term breakdown, long-term degradation,cohesive energy density.1 INTRODUCTION NANOCOMPOSITES present a series of unique properties, such as electrics [1-3], mechanics [4-5], optics [6-7] and magnetics [8, 9], due to nanoparticles with a giant specific surface area, quantum size effect and the special interface between particles and polymer matrix. Nanodielectrics have attracted a great attention since the first experimental data were reported publicly in 2002 [10-11]. The current research is concentrated on the short-term breakdown and the long-term failure of epoxy and other polymer matrix with inorganic nanoparticles added.Short-term breakdown properties mainly include surface flashover and electric breakdown. The transport processes of electrons under low and high electrical field, which are affected by the quantum size effect of nanoparticles and the interface around the nanoparticles, are hard to describe clearly at the present stage but important for understanding the mechanisms of short-term breakdown. The interface is widely recognized to play a key role in determining the short-term breakdown properties, its detailed structure and properties need to firstly be understood. Efforts have been made over the years on the possible interaction between polymeric matrix and nanoparticles. It has been known that the polarity of polymer, the type and the surface states of nanoparticles have a combinative influence on the interface. Roy and Nelson have discussed the role of interface in polymer nanocomposites [12]. A multi-core model of the interface has been constructed by Tanaka [13] and Wilke and Wen have proposed an organic and inorganic composites hybrid network model [14]. More research is required.The homogeneous distribution of nanoparticles in polymer matrix is another problem of the interface research.Manuscript received on 2 February 2010, in final form 26 May 2010.1070-9878/10/$25.00 © 2010 IEEENanoparticles are dispersed in matrix chiefly by shear force diffusion and chemical modification in the majority of experiments. The viscosity of the matrix is an important factor for shear force diffusion. Chemical modification will alter the surface states of nanoparticles (such as silane couplings pretreatment) in order to increase the electrostatic force between fillers and matrix. In different production processes, the interface is in various thickness and layer numbers. In this way, the results of nanodielectric properties have little comparability and poor reproducibility, which has been confirmed by the reported data. Some groups reported that the nanoparticles can help to improve the short-term performance [13, 15-16], while others experiments observed the opposite results [17], indicating that the role of nanoparticles in matrix is still unclear in the short-term breakdown. However, the long-term performances, such as PD resistance and ageing resistance, are superior to the matrix. Based on the published data, short-term breakdown properties and long-term failure properties of spherical inorganic particles in polymeric matrices nanodielectrics are reviewed in this paper. It includes five parts. The first part describes the temporal and spatial hierarchy between ageing, degradation and breakdown in dielectrics. Surface flashover characteristics and electric breakdown properties of nanodielectrics belongto the short-term breakdown, which are commented in part two. Part three consists of long-term failure behaviors. The properties of electrical ageing and PD behavior are evaluated in this section. The fourth section is discussion,in which we will present our understandings on the reported results of nanodielectrics. Summary and suggestions for further work are contained in the final section.2 THE SPATIO-TEMPORAL RELATION BETWEEN AGEING, DEGRADATION AND BREAKDOWN OF DIELECTRICSUnder a variety of field stresses, the breakdown suffered by dielectric material presents a very strong time-dependent relationship, so it can be divided into five or more kinds by breakdown speed as shown in Table 1 [18]. The three formers are known as the short-term breakdown, the others are degradation [19-20].Short-term breakdown shows a very strong dependence on the electrode distance (d). With the d decreasing, breakdowns of solid dielectrics are thermal breakdown (mm - cm), electron impact ionization breakdown (µm - mm) and Fowler-Nordheim electron emission breakdown (1-100 nm) [20-21]. Similar relationships in space dimension could also be seen for short-term breakdown of gas and liquid dielectrics.Although the time scale of breakdown in gas, liquid and solid dielectrics is 1 µs - 1 ms, several µs to tens of ms and dozens to hundreds of minutes, respectively, the short-term breakdown or the long-term degradation of gas, liquid and solid dielectrics shows a very similar layers development structure.Significant time hierarchy and space dimension were found in the ageing, degradation and breakdown of solid dielectric materials [22]. The characteristics of ageing include three aspects: aging always starts in mesoscopic scale and hard to observe directly; it is a continuous process in whole service life and exists at everywhere in the dielectric; it may decrease the system mean time between failures (MTBF), but may not lower the breakdown voltage. For degradation, it also shows three distinctive features: degradation always occurs in micrographic scale and could be observed directly, such as electrical trees; it happens in some places of the material and develops slowly from seconds to months; it can decrease both the MTBF and breakdown voltage. Breakdown (BD) is a disaster for dielectric. It starts from a void in macroscopic scale somewhere in dielectric. The process is very fast (<< 1 s) at only one location, then the dielectric could not be used anymore [18].A general description of the space dimension of process of aging, degradation and breakdown in solid dielectric is as follows. Under the field stress, diameter of about 10nm nanohole appears in the insulation without defect initially. With the growth of nanohole, PD occurs in it. Electrical tree grows continuously in the surrounding polymer region until it spreads through the insulation between the electrodes and then breakdown takes place [22-23].The characteristics of tree growth and final breakdown in solid dielectrics are relatively clear. How are the nanoholes formed in dielectric materials is currently one of the hotspots in dielectric research. Ageing processes and mechanisms in mesoscopic scale can be described by three theoretical models: the kinetic model suggested by Lewis [24-32]; the space-charge life model developed by Dissado and Montanari [33-38] and thermodynamic model of molecular presented by Crine [21, 39-40]. Basic descriptions of phenomenon in mesoscopic scale are as follows. The breaking and rearrangement of molecular bonds caused by field and mechanical stresses, affects the existence of nanohole and low density areas (LDA). Then the number of nanoholes develops continuously in LDAs, which are reflected by meteorological ageing phenomenon at the same time. More LDAs appear, thermo-electrons inject and discharge produced in LDAs leading to an increase in local conductivity, these all bring the final breakdown.Table 1.Different electrical breakdown in time scale.Electric breakdown ThermalbreakdownElectro-mechanicalbreakdownPD andElectricaltreesWatertreesShort-term breakdown Long-term failureThe time ofbreakdown10-9–10-6s 10-7–10-3s 10-6–10-3s 10-2–107s hrs –yrs3 THE PROPERTIES OF SHORT-TERM BREAKDOWN IN NANODIELECTRICS3.1 SURFACE FLASHOVER CHARACTERISTICSOF NANODIELECTRIC IN VACUUM Surface flashover of dielectric in vacuum is a typical BD at material surface. It depends on many parameters, such as the waveform of the applied voltage, profile of the insulator, bulk material, surface condition of insulator, and structure of electrodes and so on [41]. Since the surface flashover voltage of dielectric material in vacuum is far lower than the breakdown voltage of vacuum or the bulk, many failures in high electric devices were caused by surface flashover of insulator. In order to improve the surface flashover voltage of insulator in vacuum, nanoparticles and microparticles as dopants added into polymer matrix were considered and new traps could be introduced into the polymer. Type, quantity and distribution of traps will be altered in material surface. It is useful to improve the flashover voltage of dielectric material. Some works have been done in epoxy resin (EP) [42-50].In order to effectively review the published data, a ratio k 1, which is defined as the flashover voltage of composite in vacuum divided the flashover voltage of polymer matrix in vacuum, is introduced in this paper.Figure 1 shows the flashover properties of microdielectric and nanodielectric at various applied voltage waveforms. It apparently indicates that the flashover voltage strongly depends on the waveform of the applied voltage. For microdielectric, when pulse rise time of applied voltage is shorter than 1µs, microparticles reduce the flashover voltage and the ratio k 1 is lower than unit. When the pulse rise time is over 1µs, microparticles present a positive effect on improving the flashover voltage and the ratio k 1 is above unit. However, the flashover voltage ofnanodielectric has a slight improvement under the pulse rise time of applied voltage lower than 1µs. No experimental data is available in a longer time scale. More work should be done on the flashover breakdown of nanodielectrics in vacuum under long impulse waveform voltage. The reason for the effect of the applied voltage waveform on the ratio k 1 is unclear.The influence of inorganic nanoparticles on surface flashover of composite is also reviewed here and the results are shown in Figure 2. The information that can be extracted from Figure 2 is that the flashover property of nano Al(OH)3 / EP composite is superior to pure EP with about 10%~20% higher surface flashover voltage, while the results of nano SiO 2 / EP composite are opposite. For nano Al 2O 3 / EP composite, the surface flashover voltage is lower than that of pure EP when the content is less than 2% and then increases slowly with the content. Apparently, nanofillers with various dielectric constant exhibited different surface flashover performances. It is generally recognized that the type and the density of traps in material influence the surface flashover properties. Some evidences indicated that new traps with different levels were introduced into composites by doping particles with various dielectric constant [49]. Thus, ratio k 1 dependence of dielectric constant of particles is associated with the new traps.The role of traps during the flashover growing was emphasized [51], deep traps can restrain the surface flashover occurring while shallow traps are beneficial for surface flashover. When oxide fillers are doped into polymer matrix, there are two possible cases of change in trap distribution [51]. Nanofillers can introduce deep traps into material whereas mircofillers bring shallow traps [49-50, 52].That is to say, theoretically, it can improve the surface flashover voltage by optimizing theproportion of micro and nano particles co-doped. TheFigure 1. The flashover properties of composites under various applied voltage waveform, ( ► from [42, 43], ◄ from [42, 43], ★ from [42, 43], ◆ from [44], ▲ from [45], ■ from [46], 〇 from [45, 47], untreated; ● from [48], ▼ from [49], □ from [50]. ) Nanofillers were treated in [48, 49, 50] while untreated in others.Figure 2. Flashover properties versus nanofillers loading, impulse waveform is 40 ns/200 ns, (■ from [45, 47, 49], ● from[45, 47, 50], ▼from [45, 47]). Nanofillers were treated in [49, 50] while untreated in others.experimental results [52] prove the point and it has been found that the surface flashover properties of nano-and-micro-particles mixture composite (NMMC) is superior to nanocomposite and microcomposite as shown in Figure 3. It can be seen from Figure 3a that, with microparticles doping, surface flashover voltage does not perform well. The surface flashover voltage of microcomposite decreases firstly and then increases, it reaches to the minimum point at 20% microparticles doping. This is likely due to the shallow traps introduced by the microparticles. It is known that weak static electric fields exist at the interface between microparticles and epoxy resin. Microparticles introduce shallow traps which contribute a lot to the flashover [51]. Considering an idealized situation where all the spherical shaped particles are assumed to sit on the eight corners of a cube, it is possible to calculate the separation distance between adjacent particles. For 1µm diameter particles, percolation occurs at about 20% content. “Interaction zone” overlap between two neighbor particles, which leads to the density of shallow traps decreasing when the content of micro-particles was over 20%. For nanocomposites, theaddition of nanoparticles introduces deep level traps [13], which can restrain flashover to occur. Comparing Figure 3a with Figure 3b, it is apparent that the surface flashover properties of NMMC are the best. The lowest flashover voltage of NMMC is observed at about 10% of micro-particle content which is less than that of microcomposite. In summary, the research on the surface flashover performance and mechanism of nano-dielectric in vacuum under a wide time-scale range of applied voltage are insufficient. The influence of nano-particle and matrix on the characteristics of nano-dielectric in vacuum has not received enough attention and more effort should been made in future. It is still unclear that which factors affect the “interaction zone” and how. The reproducibility of surface flashover performance of nano-dielectric in vacuum is poor and the comparability of the results is not good due to various possible processes.3.2 BREAKDOWN PROPERTIES OFNANODIELECTRICSBD strength of dielectric is an extremely important electrical parameter for dielectric material in engineering. Lots of research works on nanodielectric BD properties under ac or dc voltage have been done so far [15-16, 53-61]. Many useful experimental data are obtained. It’s unfortunate that the BD mechanism of nanodielectric is less clear until now.In order to conveniently comment on the BD properties of nanocomposite, a ratio k 2 is defined as the previous section. Ratio k 2 versus nano-fillers loading under ac voltage is shown in Figure 4. When nanoparticles content lies in between 0.05 wt% and 2 wt%, it is conducive to the ac BD strength improvement. It has been claimed [53] that ac BD voltage of nano-Ag / epoxy resin composites is 40% higher than that of the base epoxy resin when nano Ag particle content is about 0.05wt%. The authors suggested that nano Ag particles as “Coulomb Island” in epoxy resin matrix can cause “Coulomb Blockade Effects”, which is useful to improve ac BD strength. However, when nanoparticles content is over a certain point (about 2wt% from Figure 5), ratio k 2 decreases with nanoparticles content increasing, meaning that nano-filler has a negative effect on ac BD properties. It appears that there is an optimal value of nanoparticle content for ac BD strength. Below this value, the quantum confinement effect of nanoparticles possibly dominates the ac BD properties, or the interface plays a key role. An interesting result is that the ac BD property of NMMC is superior to nanocomposite and microcomposite [15], which is the same as the surface flashover performance. It was assumed that an increase in the possibility of an electron scattered in NMMC prevents electrical treeing from propagating efficiently. A model had been put forward for the improvement of ac BD strength inNMMC [15].(a)(b)Figure 3. (a) Flashover voltage versus micro-Al(OH)3 loading with average diameter of 1 μm (impulse waveform is 65ns/600ns) and nano-Al(OH)3 loading with average diameter of 50 nm (inset figure, impulse waveform is 40ns/300ns). (b) Flashover performance of NMMC (impulse waveform is 40ns/2.5μs). All data from [52]. All samples with the same size of diameter 60mm and thickness 1mm. Both nanofillers and microfillers were treated by silane coupling KH550.Figure 4 The relation between ratio k 2 in ac BD and filler loading, ( ▲ from [53], BD measurements were performed at room temperature (RT) in transformer oil according to the IEC standard. Thickness of samples is about 50 μm. ■ from [54], BD measurements were performed at RT in silicon oil. Thickness of samples is 30 ± 2 μm. The voltage was increased by 1 kV/s. ● from [55], BD measurements were performed at 77 K in an open liquid nitrogen bath. Thickness of samples is about 50μm. The voltage was increased by 500 V/s . ▼ from [56], BD measurements were performed at RT in transformer oil according to the IEC standard. Thickness of samples is 40 - 49 μm. The voltage was increased by 2.5kV/s). Nanofillers in these papers were all untreated.Figure 5 Ratio k 2 in dc BD versus nano/micro-filler loading, (■ from [ 57-62 ], all nanofillers in these papers were treated ; ● from [ 57- 61 ]. ) [57] dc BD tests were performed with a ramp rate of 500 V/s. The thickness of specimens was ranging from 50 to 500 μm. [58] dc BD test using Mckeown type electrode was performed in silicone oil at 303 K with a ramp rate of 500 V/s. The thickness of sample was about 0.1 mm. The breakdown test using needle-plane was also carried out in silicone oil at 303 K with a ramp rate of 200 V/s and the thickness of samples was about 0.03 mm. [59] dc BD measurements were performed as the same as reference [58]. [60] dc BD tests were conducted with a ramp rate of 500 V/s and the thickness of sample was about 500 - 750 μm. [61] dc BD tests were measured at room temperature with a ramp rate of 1 kV/s. The thickness was about 200 μm. [62] dc strength measurements were carried out in mineral oil at 20 o C with a ramp rate of 5 kV/s. The thickness of specimens was about 400 μm. Nanofillers in these papers were all treated except [61] was unclear.Under dc applied voltage [57 - 61], the electric strength data is compiled and illustrated in Figure 5. With filler increasing, dc BD strength decreases for bothnanocomposite and microcomposite. Apparently, nanocomposite is superior to microcomposite in dc BD. Below a certain content (maybe 10 wt% from Figure 5), nanofillers indicates a positive effect on improving dc BD strength [57-62]. However, the dc BD strength is inferior to matrix for microfiller composite [57-61]. Microfillers presents a negative effect for dc BD. BD properties of nanodielectric under impulse voltage have been paid little attention and only a few literatures are available [57]. BD property of dielectrics depends on not only filler content, but also the applied voltage types. In the process of data compilation, an attractive phenomenon that needs to be pointed out is that the BD field stress presents a strong dependence on the applied voltage as shown in Figure 6. From Figure 6, it implies that nano-filler is beneficial to improve the BD strength of unidirectional voltage, whichwas affected by space charge [61].Figure 6. Ratio k 2 of nanocomposites in BD depend on the applied voltage type, (● from [53- 57], [57] ac BD tests were measured with a ramp rate of 500 V/s. The thickness of specimens was ranging from 50 to 500 μm ; ▲ from [57], impusle elecctric strength was measured using a standard impulse of 1/50 μs. The thickness of specimens was ranging from 50 to 500 μm ; ▼from [57-62]).Figure 7. The relation between BD properties and CED of matrix, ( ● from [58,59,61], ▲ from [62], ▼ from [53,57,60], ★ from [54, 56], ◆ from [55]).Many polymers have been used as matrix for nanocomposites, including epoxy resin (EP), polyethylene (PE), polypropylene (PP), polyimide (PI), polyvinyl alcohol (PVA), and polyamide (PA). The physical properties of these polymers vary considerably. For an example, the cohesive energy density (CED) of PE is about 250 MJ/m 3, while it is about 670 MJ/m 3 for PVA. The CED of polymer can characterize the intermolecular force between polymer molecules, but also characterize the flexibility of molecular chains. It was evident that pure polymeric materials having a high CED yielded high electric strengths [60]. For nanodielectrics, by collating the existing data, it shows that the CED of polymer matrix also strongly affects the BD properties of nanocomposites. The ratio k 2 firstly decreases and then increases with the CED as shown in Figure 7. Apparently, the CED dependence of electric strength of pure polymers is different from that of polymeric nanodielectrics. It is reasonably thought that it is caused by the existence of the interfacial region between polymeric matrix and nano-particles [13]. Thus it can speculate that the CED of polymeric matrix influence the interfacial bonding strength between polymer matrix and nano-particles. It should be mentioned that some further works are required to confirm the connection.In addition, the permittivity of polymer matrix also has a great influence on the ratio k 2 as shown in Figure 8. The result illustrates a similarity to the CED, it decreases initially, then increases with the permittivity. Thus, it could be concluded that the CED and the dielectric constant of matrix cooperativelydominate the short-term properties of nanocomposite.Figure 8. The influence of matrix dielectric constant on ratio k 2 in BD, ( ● from [58, 59, 61], ▲ from [62], ▼ from [53, 57, 60], ★ from [54, 56], ◆ from [55]).As mentioned above, the BD mechanism of nanodielectric is still less clear. Models on BD of nanodielectric chiefly consist of the following three: (1) Coulomb Blockade Effects (CBE) [53]. This model considers that nanoparticles scatter uniformly in polymer as “Coulomb Island”, which can raise electric strength of material. It is contrary to the conventional percolationtheory. (2) Space charge model [54]. Homopolar/ heteropolarity charges are accumulated to reduce / increase the electric field at the electrodes. (3) Multi-core model [13]. This model suggests that electrons lose the energy they gain from the applied voltage because they are scattered or attracted by the Coulombic force when electrons move inside the Debye shielding length. In this case, electrons are decelerated to increase breakdown voltage. Each model can explain some experimental results. The CBE model seems more suitable for nano metal particle - polymer matrix nanocomposite. The multi-core model is better to apply in nano oxide - polymer matrix composite and it’s more popular than the space charge model. It is commonly thought in both the CBE model and the multi-core model that the carrier mobility is restrained effectively by nano particles doping. Although several models have been proposed to illustrate the BD mechanism of nanocomposites, it’s still not enough.4 THE PROPERTIES OF LONG-TERM FAILURE IN NANODIELECTRICS4.1 ELECTRICAL AGEING OF NANO-DIELECTRICSAs mentioned in section two, the presence of “nano-hole” and LDAs caused by the molecular chain rearrangement or bond breaking will shorten the material life. Therefore, improving the ageing resistance of dielectric material can effectively extend the material life. For the same aim, we define ratio k 3 as electrical ageing performance of nanocomposite divided by that of matrix. A great deal of experimental data supported that [63-71], adding micro and nano particles could effectively improve the ageing resistance and with the ageing time prolonging, nano-composite is superior to micro-composite as shown in Figure 9. The same trends are observed in Figure 10 and Figure 11, with the filler loading increasing, the ratio k 3 monotonically increasing inthe EP matrix and the PI matrix.Figure 9. Electrical ageing performance of nano and micro composites at different ageing time (■ from [63], △ from [63], ▼ from [63], ▼ from [64], ● from [64],★ from [65], ★ from [65] ). Nanofillers were treated in [63, 64] while untreated in [65].The matrix polarity of nanocomposite plays an important role in electrical ageing performance. With the increase of matrix polarity, the ratio k 3 increases, as shown in Figure 12. As the 2rd section described, nanohole appears in material under eletrical field due to the break of chemical bond. Since the bigger the matrix polarity, the higher the bonding strength, which leads to a better electrical ageing performance. The matrix in this review is limited to PE, PI and EP, therefore, the influence of matrix polarity on electrical ageing performance remains to be further confirmed.4.2 PROPERTIES IN PD RESISTANCE OFNANODIELECTRICSIn this section, materials used as matrix mainly includes epoxy, polyolefin (such as PE, PP) and synthetic rubber (such as silicone rubber, PA and PI). Al 2O 3, MgO, TiO 2, SiO 2, SiC, clay and layered silicate are chosen to be fillers [72]. Researchers have tested the PD resistance [73-82], PDbreakdown [73-82] and PD lifetime [64, 82]. Ratio k 4 is the ratio of nanodielectrics to matrix in PD resistance performance. It is noticed that PD resistance has been improved in nanocomposites. Moreover, the longer the field stress applies, the better the PD resistance is observed (Figure 13). Figure 14 shows that PD resistance improves as the size of fillers decreases. The probability of electron collision with filler particles increases leading electron transport along the electric field in matrix becomes harder.Unlike the properties of electrical strength, CED of matrix has a positive effect on PD resistance of nanocomposites, as shown in Figure 15. With the CED increasing, PD resistance improves . Furthermore, the permittivity of the matrix is another important factor here. The PD resistance becomes better when the matrix has ahigher permittivity as shown in Figure 16.Figure 10. Electrical ageing performance of EP based resin composite, (■ from [65], ● from [65], ▲ from [68] filler was untreated).Figure 11. Electrical ageing performance of PI/Al 2O 3 nanocomposites under pulse voltage and dc voltage, (● from [71], ■ from [66],); nanofillers were treated in the two papers .Figure 12. Long-term electrical ageing resistance in composite, Electrical ageing performance versus the dielectric constant of matrix, (● from [67, 69], ▲ from [71], ■ from [65, 68]). Nanofillers were treated in [67, 69,71] while untreated in [65, 68].Figure 13. Ratio k 4 vs. time of PD discharge (■ from [15, 78], ● from [15, 76, 77, 79], ▲ from [15, 75, 77], ▼ from [77], ★ from [15, 75], ◆ from [75] ). Nanoparticles were treated in references [15, 78, 79], others were untreated. The sizes of samples in [75, 77, 78, 79] are 50 mm (length) × 50 mm (width) × 1 mm (thickness), 30 mm × 30 mm × 1 mm, 1 mm (thickness, slab), 50 mm (width) × 1mm (thinckness, slab), respectively.。
《岩石力学》名词解释
σij 应力张量
stress-dependent modulus 非线性弹性模量
Notches n. 换级触点;槽口;切痕;凹位(notch 的复数) v. 刻凹痕;用刻痕计算(notch 的第三人称单数)
本文中翻译成 痕裂 breakout notches 断裂缺口 Excavation n. 挖掘,发掘
,
其中, 是两个点电荷之间的距离, 是库仑常数[6]。
E 杨氏模量 V 泊松比
qu 无限制抗压强度 σci 形成裂缝压力 Nφ 在范围为 0.1–10 MPa 的限制压力中的强度包络线接近于摩尔-库伦材料中的正割斜坡 φ摩擦角 c 内聚力 σt Brazilian 强度
σ’ t 拉伸强度
σ’初始破裂 KIC 破裂韧性
把 D——扩散常数,和μp——粒子的迁移率联系起来;其中 是玻尔兹曼常数,T 是绝 对温度。 迁移率μp 是粒子的终极速度与作用力之比:μp = vd / F。 这个方程是涨落耗散定理的一个早期的例子。它在电致扩散的现象中经常使用。 库仑定律的标量形式只描述两个点电荷彼此相互作用的静电力的大小。一个电量为 的点 电荷作用于另一个电量为 的点电荷,其静电力 的大小,可以用方程表达为
在参考文献[53]中总结了随后的工作,它使用了表现为平行黏接胶节物的完整 BPM,如果平行黏结上最大的拉应力超过了特定的微小激活应力,可通过以一定 速率减小平行黏结键半径,从而使应力腐蚀期间能更近似的模拟微观机制。
During each iteration, the applied particle displacements are computed from the strain increment that is related by linear elasticity to the stress increment needed to reach the target stress.
半导体纳米晶体介电常数的尺寸和成分效应
半导体纳米晶体介电常数的尺寸和成分效应马艳丽; 李明【期刊名称】《《淮北师范大学学报(自然科学版)》》【年(卷),期】2019(040)003【总页数】5页(P12-16)【关键词】介电常数; 半导体纳米晶体; 尺寸和成分效应【作者】马艳丽; 李明【作者单位】淮北师范大学物理与电子信息学院安徽淮北 235000【正文语种】中文【中图分类】O3410 引言由于低维纳米晶体(纳米粒子、纳米线、薄膜)具有不同于相应块体材料的物理化学性能,因此具有广泛的应用价值,从而引起学者们的广泛关注[1].介电常数ε是用来描述单元电荷产生电流的多少,作为一个重要的光电性能,学者们通过理论和实验方法对其进行广泛的研究[2].由于纳米材料约束电子的低屏蔽性,其介电常数小于相应的块体材料,即:ε(D)<ε(∞)[3-5].其中:D是纳米粒子和纳米线的直径、薄膜的厚度,∞则表示相应的块体材料.ε(D)的减小可以提高纳米器件中的电子、空穴和浅层杂质电离的库仑相互作用,并且改善光吸收和传输性能[2].比如:纳米闪存,纳米晶体通常是嵌入到栅极氧化物中作为一个电荷存储节点,纳米晶体的存在会对栅极电容产生影响[6-8].为得到所需性能的器件,首先要理解介电常数的基本原理.为得到所需的光电性能,大多数工作是通过改变尺寸来调整纳米晶体的介电常数,但在小尺寸范围内,尤其当尺寸下降到2~3 nm时,器件将不可避免地出现热稳定性问题[9].为解决小尺寸器件的热稳定性问题,可以用热稳定性高的多元合金[9],多元合金不仅具有相应的单相纳米晶体所具有的基本光电性能,同时还具有高的光致发光性能[10].为了描述ε(D),学者们在理论方面建立不同的模型,模型预测结果与实验结果保持一致,但模型中用到的可调参数限制了模型的应用[2,11].此外,由于对合金介电常数的成分效应研究很少,因此有必要建立一个定量的模型来描述介电常数的尺寸和成分效应.本文中,根据已建立的热力学模型,建立一个没有任何可调参数的模型来预测纳米晶体的介电常数.根据这个模型,对于化合物和合金,介电常数随着尺寸D的减小而减小.此外,通过选择适当的x,可以有效地对合金的ε(x,D)进行调整.通过与实验结果的比较证实模型的有效性,表明该模型可以为光电器件的开发、应用提供有效途径.1 模型根据近自由电子方法,Eg=2|V1|.其中:Eg是决定材料导电性能的带隙,V1是晶体场,取决于原子总数和固体原子间的相互作用[12].作为一级近似,将这种关系扩展到纳米尺寸,可以得到:其中Δ 表示差值,由于V∝Ec[12],Ec是原子结合能. 因此Ec(D)的函数可以表示为[13]:其中:Tm是熔化温度,Svib(∞)是振动熵,R是理想气体常数. 对于半导体,Svib(∞)≈Sm(∞)-R ,其中:Sm(∞)为熔化熵[14],D0是临界直径,此时低维材料中所有原子都位于表面.作为维数d和最近邻原子间距h的函数,D0可表示为[14]:其中d=0,1,2分别表示纳米粒子、纳米线和薄膜.介电常数来源于从价带到导带的电子极化或者电子跃迁过程.这个过程服从能量和动量守恒,并影响半导体的光电响应以及价带电子与激发的导带电子的耦合程度[2].因此,在室温下,半导体的介电常数与带隙Eg是直接相关的. 根据公式(1)~(3)以及的近似关系[2],尺寸依赖的磁化系数χ(D)可以表示为[χ(D)/χ(∞)]={2-[Tm(D)/Tm(∞)]}-2. 将ε=χ+1扩展到纳米尺寸,ε(D)可表示为对于纳米半导体合金,由于成分x对h(x)和Svib(x)产生影响,随着尺寸D的增加,ε(x,D)随成分的变化由直线变为曲线,表现出非线性关系.根据Fox方程h(x)和Svib(x)可表示为[15]:其中:Svib(0)、Svib(1)、h(0)和h(1)表示x=0或x=1时对应的块体值.表1 模型计算过程中用到的相关参数注aSvib(∞)∝Sm(∞)-R,其中:CdTe、CdSe的Sm(∞)分别是14.91 J/(g-atom·K)[18]、20.37 J/(g-atom·K)[18].CdSe CdTe ε(∞)[17]9.7 10.2 Svib(∞)/(J/(g-atom·K))6.59a 12.06ah[16]/nm 0.263 0.2812 结果与讨论计算中使用的参数如表1所示.图1是根据式(5)预测的CdTe和CdSe纳米粒子、纳米线的ε(D)与Tsu模型以及实验结果的比较.模型预测结果表明,随着尺寸D的减小,表面体积比(A/V)增大,ε(D)减小,模型预测结果和实验结果在整个范围内具有良好的一致性.而且,当纳米线的尺寸D<5 nm以及纳米粒子的尺寸D<10 nm时,ε(D)随着尺寸的变化变化明显;而当尺寸D>10 nm时,ε(D)随着尺寸的变化平缓,直至慢慢接近块体值.由于表面原子具有与内部原子不同的物理特性,随着尺寸的减小,表面体积比和表面原子数增多,因此,在决定纳米晶体的性能时,表面原子起主导作用.Wang等[5]提出介电常数的变化是由于表面的量子点而并不是所有的量子点,而Delerue等[3]认为,介电常数的减小是由表面极化键的断裂导致的,这正好支持Wang等的早期发现.研究表明,纳米晶体尺寸D 的减小导致晶格收缩和结合能减小[2].尽管晶格收缩会使单键能增加,但表面原子的低配位数(存在于表面的断裂建)导致纳米晶体的结合能随着表面原子的增大而减小.因此,配位数的缺失(结合能减小)导致可捕获到的哈密顿总量的改变,使得带隙增大,进而影响电子极化过程[19].根据以上分析以及介电常数和带隙的近似关系,ε(D)随着尺寸D的减小而减小是合理的.从图1还可以看出,纳米线介电常数的尺寸效应弱于纳米粒子.这种差异产生的原因是由于纳米粒子、纳米线的表面体积比分别是6/D、4/D.模型预测结果表明,可以通过改变尺寸来调节纳米合金的介电常数.相反,图1中Tsu的模型仅在D>10 nm时和实验结果存在一致性,而D<10 nm时,Tsu模型与实验结果存在偏差,这是由于Tsu的模型限定ΔEg(D)/Eg(∞)<0.56[11].实际上D<10 nm时,纳米晶体的ΔEg(D)/Eg(∞)值可以大于0.5[2].与Tsu的模型相比,模型预测的CdTe和CdSe纳米粒子、纳米线的ε(D)和实验结果有着良好的一致性.图1 模型预测的CdSe和CdTe的介电常数和Tsu模型以及实验结果的比较□[17]表示CdTe纳米线的实验结果;▼[20]、●[21]、◆[22]表示CdTe纳米粒子的实验结果;■[22]☆[23]表示CdSe纳米粒子的实验结果.图2 模型预测的CdSexTe1-x纳米合金的介电常数■、▲[24]表示实验结果图2是根据式(7)预测的不同尺寸的CdSexTe1-x的ε(x,D)随成分变化与实验结果的比较.从图2可以看出,一方面,对于固定的x,随着尺寸的变化,纳米合金的介电常数与化合物具有相同的变化趋势,即ε(x,D)随着D的减小而减小.另一方面,随着尺寸D的增加,纳米半导体合金的ε(x,D)随成分的变化由线性变成非线性,其介电常数随着尺寸D的增加表现出弯曲行为.D=4.9 nm时,ε(x,D)表现出近似线性关系,而D=14 nm时,ε(x,D)表现出非线性关系,而且随着D的增加弯曲行为越明显.当D增加到大尺寸范围时,比如D=40 nm和D=50 nm,ε(x,40)和ε(x,50)之间的差异很小,其介电常数接近于块体值,表明此时介电常数具有弱的尺寸效应.模型预测和实验结果的一致性证实该模型的有效性,并表明利用Fox方程来确定纳米半导体合金的热力学常数是合理的.值得一提的是,式(5)和式(8)只适用于具有自由表面或位于惰性基体的纳米晶体[24-27].对于通过气相沉积方法来制备的纳米晶体[9]与基底形成非共格、半共格和共格界面,这可能会导致不同的变化趋势,比如对于具有不同界面的纳米晶体,可能产生过冷或过热现象[13].因此,界面效应在以后的工作中会进一步进行讨论.3 结论通过已建立的熔化温度模型以及Fox方程,建立一个没有任何可调参数的热力学模型来预测半导体化合物和合金的ε(x,D).模型预测结果表明,纳米晶体的ε(x,D)随着尺寸D的减小而减小,纳米半导体合金的ε(x,D)随成分表现出弯曲行为.而且,由于表面体积比的不同,纳米粒子ε(x,D)的尺寸效应强于纳米线.模型预测结果和实验结果一致性表明模型的有效性和普适性,同时该模型为光电器件的开发、应用提供有效指导.参考文献:【相关文献】[1]CANHAM L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J].Applied Physics Letters,1990,57(10):1046-1048. [2]SUN C Q,SUN X,TAY B,et al.Dielectric suppression and its effect on photoabsorption of nanometric semiconductors[J].Journal of Physics D:Applied Physics,2001,34(15):2359.[3]DELERUE C,LANNOO M,ALLAN G.Concept of dielectric constant for nanosized systems[J].Physical Review B,2003,68(11):115411.[4]YOO H G,FAUCHET P M.Dielectric constant reduction in silicon nanostructures [J].Physical Review B,2008,77(11):115355.[5]WANG L W,ZUNGER A.Pseudopotential calculations of nanoscale CdSe quantum dots[J].Physical Review B,1996,53(15):9579.[6]DE SOUSA J S,PEIBST R,ERENBURG M,et al.Single-electron charging and discharging analyses in Ge-nanocrystal memories[J].IEEE Transactions on Electron Devices,2011,58(2):376-383.[7]PEIBST R,DE SOUSA J S,HOFMANN K.Determination of the Ge-nanocrystal/SiO2matrix interface trap density from the small signal response of charge stored in the nanocrystals[J].Physical Review B,2010,82(19):195415.[8]TIWARI S,RANA F,HANAFI H,et al.A silicon nanocrystals based memory[J].Applied Physics Letters,1996,68(10):1377-1379.[9]ZHU Y F,LANG X Y,JIANG Q.The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys[J].Advanced Functional Materials,2008,18(9):1422-1429.[10]SAKALAUSKA E,REUTERS B,KHOSHROO L R,et al.Dielectric function and optical properties of quaternary AlInGaN alloys[J].Journal of Applied Physics,2011,110(1):013102.[11]TSU R,BABIC D.Doping of a quantum dot[J].Applied Physics Letters,1994,64(14):1806-1808.[12]LANG X,ZHENG W,JIANG Q.Finite-size effect on band structure and photoluminescence of semiconductor nanocrystals[J].IEEE Transactions on Nanotechnology,2008,7(1):5-9.[13]JIANG Q,ZHANG Z,LI J.Melting thermodynamics of nanocrystals embedded in a matrix[J].Acta Materialia,2000,48(20):4791-4795.[14]ZHANG Z,ZHAO M,JIANG Q.Melting temperatures of semiconductor nanocrystals in the mesoscopic size range[J].Semiconductor Science and Technology,2001,16(6):33.[15]CHOW T.Molecular interpretation of the glass transition temperature of polymer-diluent systems[J].Macromolecules,1980,13(2):362-364.[16]Web Elements Periodic Table:the periodic table on the web[EB/OL].[2019-05-10].http://.[17]LI J,WANG L W.Band-structure-corrected local density approximation study of semiconductor quantum dots and wires[J].Physical Review B,2005,72(12):125325.[18]REGEL A,GLAZOV V.Entropy of melting of semiconductors[J].Semiconductors,1995,29:405-417.[19]GOH E S,CHEN T,YANG H,et al.Size-suppressed dielectrics of Ge nanocrystals:skin-deep quantum entrapment[J].Nanoscale,2012,4(4):1308-1311.[20]MASUMOTO Y,SONOBE K.Size-dependent energy levels of CdTe quantum dots [J].Physical Review B,1997,56(15):9734.[21]ARIZPE-CHAVEZ H,RAMIREZ-BON R,ESPINOZA-BELTRAN F,et al.Quantum confinement effects in CdTe nanostructured films prepared by the RF sputtering technique[J].Journal of Physics and Chemistry of Solids,2000,61(4):511-518. [22]VOSSMEYER T,KATSIKAS L,GIERSIG M,et al.CdS nanoclusters:synthesis,characterization,size dependent oscillator strength,temperature shift of the excitonic transition energy,and reversible absorbance shift[J].The Journal of Physical Chemistry,1994,98(31):7665-7673.[23]GORER S,HODES G.Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J].The Journal of Physical Chemistry,1994,98(20):5338-5346.[24]LI Y,ZHONG H,LI R,et al.High yield fabrication and electrochemical characterization of tetrapodal CdSe,CdTe,and Cd-SexTe1-xnanocrystals[J].Advanced Functional Materials,2006,16(13):1705-1716.[25]ZHONG X,HAN M,DONG Z,et position-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability[J].Journal of the American Chemical Society,2003,125(28):8589-8594.[26]PETROV D,SANTOS B,PEREIRA G,et al.Size and band-gap dependences of the first hyperpolarizability of CdxZn1-xS nanocrystals[J].The Journal of Physical Chemistry B,2002,106(21),5325-5334.[27]SWAFFORD L A,WEIGAND L A,BOWERS M J,et al.Homogeneously alloyed CdSxSe1-xnanocrystals:synthesis,characterization,and composition/size-dependentband gap[J].Journal of the American Chemical Society,2006,128(37):12299-12306.。
非对称混合电解质体系中恒电荷颗粒表面与stern电位的测定_樊会敏赵艳刘新敏李航
土壤/水界面电位是一个基本的电化学性质参数,对土壤中物理、化学以及生物过程具有重要 影响。胶体颗粒的表面电位在研究离子-表面相互作用[1]、颗粒间相互作用[2]、颗粒的运动速率[3]以 及电化学性质[4]等方面均具有重要意义。 离子在带电颗粒表面上的吸附力除了静电引力外,还存在特性吸附力。由特性吸附在表面的离 子与颗粒结合非常紧密,能够与颗粒一起运动。由于离子有一定大小,离子与表面的特殊吸附层具 有一定的厚度(约为一个离子直径),这一吸附层称为 Stern 层。吸附反离子中心构成的平面称为 Stern 面或扩散层起始面。Stern 面上的电位即为 Stern 电位或扩散层起始面的电位。目前已经存在一 些 Stern 电位测定的理论和方法,例如通过测定表面电荷密度,利用双电层理论计算 Stern 电位[5], 用 zeta 电位代替 Stern 电位[6],负吸附法[7],pH 指示分子法[8]等等。基于测定表面电荷密度来计算 Stern 电位,此方法不能适用于同时含有可变电荷与恒电荷的体系,因为 H+会强烈影响电荷密度[9]。 负吸附法又不容易控制测定误差[10],从而导致实验数据比较分散[7]。Zeta 电位远远小于 Stern 电位 [7,11] 。因此用 zeta 电位代替 Stern 电位计算蒙脱石-水体系的膨胀压完全偏离实验值[12]。二次谐波产 生法[13]是测定 Stern 电位的经验方法,而且只能适用于恒电荷体系。此外,还有一些扩展的方法来 测定 Stern 电位,比如 pH 指示分子法[8],原子力显微镜法[14],遗憾的是这些方法会对表面产生破坏 [13] 。 近年来,Hou 和 Li[9]、Li 等[15-16]及 Liu 等[17]在双电层理论的基础上建立了测定 Stern 电位的方 法并不断完善。此方法基于离子正吸附原理,实验误差容易控制,适用于包括恒电荷与可变电荷在
MS电荷密度图
MS电荷密度图、能带结构、态密度的分析如何分析第一原理的计算结果用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(deformation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
能带结构分析现在各个领域的第一原理计算工作中用得非常普遍了。
但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。
关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。
首先当然可以看出这个体系是金属、半导体还是绝缘体。
判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。
对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。
Confined Polymers Big World in a Small Space密闭的聚合物大世界在一个小空间
9/4 des Cloizeaux P
plus 3/4 elastic grafting constraints
Data from Kenworthy et al. BJ (2019)
Test tube
~cm
vs.
~nm
grafted,
between bilayers
vs. inside a pore
Rudi Podgornik, et al., et al.
Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health
Fit by Hansen et al. BJ (2019)
% PEG-grafted lipids
Des Cloizeaux 9/4 limit
Normal
exp(-df/3A)
hydration forces
Data from Kenworthy et al. BJ (2019)
De Gennes, Adv. Coll. & Interf. Sci. 27:189 (1987)
How big (small) to fill a channel without any leftover? (S. Bezrukov, personal communication, last Thursday)
1) Consider 30 wt % PEG solu, just at the concentration to fill the pore: 2) 300 (gm/liter) /44 (gm/mole) = 6.8 molar monomer PEG x 6x1023 x 103 litre/m3 ==> 4.1 monomers/nanometer3 2) Channel volume: radius = 1 nm, length = 5 nm; v = 5 = 16 nm3 1) 3) 4.1 monomers/nm3 x 16 nm3 = 66 monomers/channel volume 2) 4) 66 monomers x 44 gm/mole monomer =
核电专业英语词汇
衰变 钡 硼 铋 铀 钚 钍 锂
decay barium boron bismuth uranium plutonium thorium lithium
仅重氢,氘
heavy hydrogen, deuterium 钠
sodium
重氢核,氘核 deuterion
核反应
nuclear reaction
超重氢,氚 tritium
nucleinuclear质子proton中子neutron电子electron核子nucleon化学性质chemicalidentity带正电的positivelycharged带负电的negativelycharged不带电的uncharged电中性的electricallyneutral元素周期表periodictable原子序数atomicnumber质量数massnumber轨道电子orbitalelectron同位素isotope天然存在的naturallyoccurring人工的artificial化学键chemicalbond化合物compound上标superscript下标subscripthydrogen重氢氘heavyhydrogendeuterium重氢核氘核deuterion超重氢氚tritiumhelium放射性的radioactive加权平均weightedmean质量mass动量momentum能量energy单位机组unit国际单位制systeminternationalsi千克kilogramkg伏特volt摩尔molemol库仑coulomb电子伏特electronvoltev兆电子伏特megaelectronvoltmev质量亏损massdefect结合能bindingenergy动能kineticenergy势能potentialpotentialenergy跃迁jump核力nuclearforce排斥repulsion吸引attraction轰击bombardment发射出emission能级energylevel裂变fission聚变fusion衰变decaysodium核反应nuclearreaction链式反应chainreaction辐射射线radiation超铀元素transuraniumelement可裂变的fissionable易裂变的fissile碎片fragment宏观的macroscopic微观的microscopicmesoscopic激发excite静电的electrostatic库仑力coulombforce电磁辐射electromagneticradiation二放射性宇宙射线cosmicray电离ionization韧致辐射bremsstrahlungbrakingradiation辐射射线radiation正比于inverselypro
岩石力学名词解释
HMU hysteresis mesoscopic unit 滞回细观单元摩尔-库伦模型:一个基于工程常用土体参数的非线性模型,但不包含土体的所有非线性特性。
摩尔-库伦模型可应用于地基的实际承载能力和失效荷载的计算,以及其它以土体破坏为关键因素的计算。
LEFM线弹性断裂力学(Linear Elastic Fracture Mechanics)en echelon雁列式PFC2D Particle Flow Code In 2 Dimension 用二维颗粒流程序颗粒流模型(Particle Flow Code 2d)基于非线性Hoek–Brown破坏准则,对均质各向同性的岩石介质建立岩石极限分析非线性理论。
根据非线性准则的切线方程,构造静力容许的应力场和机动容许的速度场,在整个应力场和速度场,切线方程的强度参数值保持不变,作用在单位面积的正应力、剪应力不变,但大小未知。
二维颗粒流程序(partical flow code in 2 demension,PFC2D)是通过离散单元法来模拟圆形(圆盘形)颗粒介质的运动及其相互作用。
它是利用显式差分算法和离散元理论开发的微/细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质的在不同应力条件下的基本特性主要取决粒子之间接触状态的变化。
PFC是以介质内部结构为基本单元(颗粒和接触)、从介质结构力学行为角度研究介质系统的力学特征和力学响应。
PFC中有效的接触探测方式和显式求解方法保证可以精确快速地进行大量不同类型问题的模拟—从快速流动到坚硬固体的脆性断裂问题。
单轴抗压强度简称抗压强度(compressive strength),是在单向受压条件下,岩石试件破坏时的极限压应力值。
以表示,单位为MPa。
R=F/A,式中:F为试件压破时的总压力(N);A为试件面积。
工程上常用的抗压强度指标有干燥抗压强度、饱和抗压强度、冻结后抗压强度等。
SOI硅微剂量计物理结构设计中的电荷收集及能量沉积特性模拟研究
㊀第43卷㊀第5期2023年㊀9月㊀辐㊀射㊀防㊀护Radiation㊀ProtectionVol.43㊀No.5㊀㊀Sep.2023㊃辐射防护监测㊃SOI 硅微剂量计物理结构设计中的电荷收集及能量沉积特性模拟研究闫学文1,2,靳海晶1,2,李㊀华1,2,李德源1,2,乔㊀霈1,2,牛蒙青1,2(1.中国辐射防护研究院,太原030006;2.核药研发转化与精准防护山西省重点实验室,太原030006)㊀摘㊀要:采用TCAD 软件和蒙特卡罗方法对SOI 硅微剂量计的电荷收集特性与能量沉积特性进行了研究㊂分析了电场分布随探测单元形状㊁尺寸㊁电极注入深度㊁入射粒子种类和能量的变化情况以及微剂量谱随探测单元形状以及聚甲基丙烯酸甲酯(PMMA )转换层厚度的变化情况㊂模拟结果表明,在10μm 的范围内,硅探测单元采用圆柱型或立方体结构对电荷收集效率和能量沉积的影响均很小,探测单元高度越高㊁半径越小,电荷收集效率越高,PMMA 转换层的厚度对微剂量谱有一定的影响,随着PMMA 厚度增加,中子和γ射线与PMMA 作用产生的次级粒子被阻止在硅灵敏区内的份额增加,导致了微剂量谱峰值的增高㊂关键词:SOI 硅微剂量计;电荷收集;能量沉积;微剂量谱中图分类号:TL8文献标识码:A㊀㊀收稿日期:2023-02-16基金项目:山西省应用基础研究计划(20210302124486)㊂作者简介:闫学文(1990 ),男,2014年毕业于南华大学核技术专业,2017年毕业于兰州大学核技术及应用专业,获硕士学位,助理研究员㊂E -mail:yanxw1228@通信作者:李华㊂E -mail:lihua_7559@㊀㊀放射治疗是癌症治疗最常用的手段,常规X㊁γ射线放疗在人体组织内的剂量分布不理想,在杀死癌细胞的同时,周围健康组织也受到了较大损伤,造成明显副效应乃至一些并发症㊂与常规X㊁γ射线相比,质子㊁重离子以及中子等高传能线密度(linear energy transfer,LET)粒子具有倒转的深度剂量分布及Bragg 峰附近相对较高的生物效应,通过束流调制㊁适形调强等技术选择性地将剂量集中分布在目标靶区,能够减少在周围正常组织中的能量沉积,从而降低放疗副作用[1-4]㊂在评估高LET 粒子辐射对人体组织的损伤作用时,除了从宏观层面考虑离子束在目标靶区内的吸收剂量外,还需要考虑在微尺度空间离子随机作用产生的能量沉积,即微剂量分布,以评价其相对生物效应㊂微剂量测量对揭示辐射生物效应的微观本质至关重要㊂想要了解辐射对细胞的影响,必须在与细胞结构相当的尺度下对沉积能量的分布情况进行研究㊂Bradley 等人[5-6]在1998年设计开发了一种能够真实模拟细胞尺度的SOI 硅微剂量计,用于微剂量的精确测量㊂但由于微纳加工技术以及探测效率的限制,至今仍未形成特别实用的产品㊂因此,本文就SOI 硅微剂量计的电荷收集及能量沉积特性进行模拟研究,以期明确微剂量计物理结构设计的影响因素,有助于后续SOI 硅微剂量计的设计研发㊂1㊀SOI 硅微剂量计的结构及工作原理㊀㊀SOI 硅微剂量计是通过将硅半导体蚀刻成细胞大小的探测单元来记录辐射粒子在其中的能量转移和沉积,具有空间分辨率高㊁响应快㊁输出信号强并且能从物理层面真实模拟细胞尺度的突出优势[7-9]㊂SOI 硅微剂量计大致包括5个部分:Si灵敏区㊁SiO 2埋氧层㊁Si 基底以及n +㊁p +电极和聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)转换层,具体结构如图1所示㊂具体工作原理[10]:当载能粒子入射到剂量计的灵敏区(图1圆柱型Si 灵敏区范围内)时,在灵敏区内沉积能量,电离产生大量电子-空穴对,这些电子-空穴对在外加电场的作用下漂移,最后电子和空穴分别被n +极㊃344㊃㊀辐射防护第43卷㊀第5期和p +极收集,产生瞬时电流,通过对电流信号的读取来获得剂量信息㊂图1㊀SOI 硅微剂量计结构图Fig.1㊀Structure of SOI-Si microdosimeter2㊀电荷收集特性模拟㊀㊀SOI 硅微剂量计是从物理结构出发真实模拟细胞尺寸的半导体阵列探测器,目的是获取每个细胞内部的能量沉积,而对能量沉积的探测需要转化为对电荷的收集㊂因此,SOI 硅微剂量计的物理结构设计中需要避免相邻硅灵敏区之间的电荷共享,对微剂量计的电荷收集特性进行模拟研究对其物理结构的设计具有极其重要的指导意义㊂2.1㊀SOI 硅微剂量计的TCAD 建模㊀㊀如图1所示,利用TCAD (technology computeraided design)软件对圆柱型硅探测单元进行建模㊂由于人体细胞的尺寸大部分是在10μm 甚至小于10μm 的范围内,且目前微纳加工技术能很好地实现10μm 左右的半导体蚀刻工艺,因此初始建模参数如下:硅单元高10μm,直径10μm;埋氧层(SiO 2)厚度为2μm,硅衬底厚度为400μm,埋氧层和衬底宽度均为20μm;中间n +电极(阳极)注入深度2μm,宽度2μm,磷掺杂峰值浓度1ˑ1020cm -3,外圈p +电极(阴极)注入深度1μm,宽度1μm,硼掺杂峰值浓度1ˑ1020cm -3;阴㊁阳Al 电极厚度均为0.2μm,边长均为1μm㊂利用TCAD 软件对SOI 硅微剂量计进行相关电参数的模拟,主要涉及到不同硅探测单元尺寸对应的电场变化㊁电极注入深度不同时对应的电场变化以及重离子入射到灵敏体积内产生的电荷分布等㊂图2所示为圆柱型探测单元n +端加10V 反向偏压时的电场分布,从图2可以看出,电场基本集中分布在硅单元内的n +电极和p +电极之间,在埋氧层及硅衬底部分也有电场分布㊂本文主要目的就是要通过改变物理结构设计减少电荷在硅衬底中的分布,提高硅探测单元对电荷的收集效率㊂图2㊀圆柱型探测单元加10V 反向偏压时的电场分布Fig.2㊀Electric field distribution of cylindricaldetection unit with 10V reverse bias2.2㊀结构形状对电荷收集的影响㊀㊀通过TCAD 软件分别建立了立方体和圆柱型两种形状的硅微剂量计物理模型㊂其中立方体硅探测单元尺寸为10μm ˑ10μm ˑ10μm,圆柱型硅探测单元尺寸为ϕ10μm ˑ10μm,埋氧层㊁硅衬底以及电极注入情况均相同,具体参照图1所示结构㊂对立方体和圆柱型两种结构形状的微剂量计进行了电场空间分布的模拟计算,在n +端加10V反向偏压后得到两种结构形状下同一位置处(图2中显示的距探测单元顶部1μm)电场的具体分布,如图3所示㊂图3㊀立方体和圆柱型n +端加10V 偏压时距顶部1μm 处的电场分布Fig.3㊀Electric field distribution at 1μm from the topof cube and cylinder with 10V bias voltage for n +end㊃444㊃闫学文等:SOI 硅微剂量计物理结构设计中的电荷收集及能量沉积特性模拟研究㊀从图3中可知,直径和边长相同㊁高度相同的圆柱型和立方体硅探测单元在10V 反向偏压的情况下,电场分布几乎完全一致㊂这说明备选的两种初始结构对电场的影响几乎可以忽略㊂因此,基于SOI 硅基微剂量计的结构设计中采用圆柱或立方体均可,对电荷收集影响甚微㊂对不同尺寸的圆柱型硅探测单元进行模拟计算㊂保持圆柱型硅探测单元的高度10μm 不变,圆柱型结构半径从2~5μm 逐渐改变,得到如图4所示的电场分布;保持圆柱型硅探测单元的半径5μm 不变,圆柱型结构高度从4~10μm 逐渐改变,得到如图5所示的电场分布㊂图4㊀圆柱型探测单元半径变化时的电场分布Fig.4㊀Electric field distribution of cylindrical detectionelements with varying radiusdimension图5㊀圆柱型探测单元高度变化时的电场分布Fig.5㊀Electric field distribution of cylindricaldetection elements with varying height dimension从图4可知,当圆柱型硅探测单元高度保持10μm 不变,半径从5μm 逐渐减小到2μm 时,由于电压不变,距离缩短,导致了n +端和p +端之间形成的电场强度逐渐升高,说明半径越小对电荷的收集效率越高㊂从图5可知,当圆柱型硅探测单元半径保持5μm 不变,高度从10μm 逐渐减小到4μm 时,n +端和p +端之间的电场变化趋势在8~10μm 之间较为平缓,当高度减小到6μm 时,电场开始发生变化,直到减小到4μm 时发生了剧烈变化,在n +的远端发生了骤减㊂但由于高度减小㊁半径不变等效于相邻探测单元之间的物理距离减小,因此在p +往外的位置电场强度逐渐升高,这会降低硅探测单元的电荷收集率㊂因此,说明半径为5μm的圆柱型硅探测单元对应8~10μm 的高度时对电荷收集是有利的㊂综上所述,在10μm 的尺寸范围内,硅探测单元采用圆柱型或立方体结构对电荷收集效率的影响不大,探测单元高度越高㊁半径越小,电荷收集效率越高㊂应综合考虑现有微纳加工技术的成熟度选择硅探测单元的尺寸,尽量做到半径小㊁高度高㊂2.3㊀电极注入深度对电荷收集的影响㊀㊀电极注入深度的不同也可能影响n +端和p +端之间形成的电场分布㊂因此,仿真模拟了硅探测单元电极注入深度不同时的电场分布情况,结果如图6所示㊂仿真采用了圆柱型硅探测单元,结构尺寸为ϕ10μm ˑ10μm,埋氧层㊁硅衬底保持如图1所示结构不变,电极注入深度从2~10μm 逐渐改变㊂图6㊀电极注入深度变化时的电场分布Fig.6㊀Electric field distribution of cylindrical detectionelements with varying depth of electrode injection㊃544㊃㊀辐射防护第43卷㊀第5期从图6中可看出,电极注入的深度大于6μm时,n +端和p +端之间的电场变化基本趋于缓和,电极注入深度小于6μm 时,电场变化相对较大㊂但是,当电极注入深度小于8μm 时,由于相邻探测单元p +电极和p +电极之间未建立完全物理隔离,p +端向外产生的电场强度随着电极注入深度的减小逐渐升高,这会降低硅探测单元的电荷收集㊂因此,在10μm 的探测单元中,电极注入深度应选择大于8μm 较佳㊂2.4㊀重离子入射灵敏区域的电荷收集状况㊀㊀仿真模拟了3MeV 的α粒子和2MeV 的质子入射到灵敏体积时空间电荷在不同时刻的空间分布情况㊂α粒子和质子分别从n +极和p +极中间的硅灵敏区入射,位置如图7所示箭头方向㊂硅探测单元尺寸为ϕ10μm ˑ10μm 和ϕ20μm ˑ10μm,n +端加10V 偏压,得到的各时间点的电势分布如图7所示㊂图7㊀不同粒子入射到不同灵敏体积后不同时刻的电势分布Fig.7㊀Potential distribution at different time after different particles incident on the sensitive volume㊀㊀从图7中可看出,当硅探测单元直径为10μm时,在粒子入射后约1ns 的时间内,电势基本回归到与入射时的状态一致,说明1ns 的时间内电荷几乎全部被收集㊂而将硅探测单元直径增大到20μm 时,粒子入射1ns 的时刻,由于相邻探测单元对其电荷产生的影响还未完全消失,在p +端外延处还存在一定的电势,此时电荷收集未完成㊂另外,对中子的探测实际上是对中子与物质相互作用后产生的α㊁质子等重离子的探测,以上仿真结果同样适用于中子㊂综上可知,硅探测单㊃644㊃闫学文等:SOI硅微剂量计物理结构设计中的电荷收集及能量沉积特性模拟研究㊀元的半径越小,越有利于在较短的时间内完成电荷收集㊂3㊀能量沉积特性模拟3.1㊀SOI硅微剂量计的蒙特卡罗建模㊀㊀按照设计参数,基于蒙卡方法初步建立了硅探测阵列(11ˑ11)模型,如图8所示,模拟在SOI 晶体上蚀刻出直径9μm,高度9μm的圆柱型探测单元,探测单元之间和顶部均使用PMMA转换层进行填充,圆柱轴心注入n+电极,圆周注入p+电极,上接铝电极后包裹一层SiO2以形成保护层㊂具体如图8所示㊂为显示效果,本文建模图片中硅衬底厚度并非实际建模厚度㊂3.2㊀能量沉积模拟㊀㊀针对圆柱型和立方体两种结构的探测单元,利用中子㊁质子和α粒子轰击硅敏感单元获取其能量沉积情况㊂模拟计算中硅探测单元尺寸:圆㊀㊀㊀㊀㊀图8㊀基于蒙卡的硅探测阵列建模Fig.8㊀Modeling of silicon detectorarray based on Monte Carlo柱型ϕ9μmˑ9μm,立方体9μmˑ9μmˑ9μm,周围用PMMA包裹㊂入射粒子方向垂直于硅探测单元平面,在9μmˑ9μm的范围内均匀入射,中子㊁质子和α粒子的能量均为5MeV㊂图9是α粒子㊁质子和中子入射粒子轰击硅探测单元的能量沉积情况,图中均只显示了探测单元横截面的1/4部分㊂图9㊀入射粒子轰击硅探测单元(圆柱型和立方体)的能量沉积Fig.9㊀Energy deposition of incident particles bombarding silicon detection units(cube and cylinder)㊀㊀由图9可知,中子㊁质子和α粒子轰击探测单元,较大的能量沉积基本发生在硅敏感单元内,在PMMA中的能量沉积明显较少㊂因此,针对能量沉积特性分析,模拟中的硅基微剂量计结构符合实际需求㊂3.3㊀结构形状对微剂量谱的影响为实现设计结构对微剂量的高效测量,对圆柱型和立方体探测单元两种结构进行了60Co 和137Cs源的微剂量谱的仿真模拟,仿真中计算中入射粒子方向垂直于硅探测单元平面,在9μmˑ9μm的范围内均匀入射㊂圆柱型硅探测单元尺寸为ϕ9μmˑ9μm,立方体硅探测单元尺寸为9μmˑ9μmˑ9μm,微剂量谱的仿真结果如图10和图11所示㊂㊃744㊃㊀辐射防护第43卷㊀第5期图10㊀立方体与圆柱型硅探测单元微剂量谱对比(60Co )Fig.10㊀Comparison of microdose spectrum betweencube and cylindrical silicon detector (60Co)图11㊀立方体与圆柱硅探测单元微剂量谱对比(137Cs )Fig.11㊀Comparison of microdose spectrum betweencube and cylindrical silicon detector (137Cs )由图10和图11可知,针对60Co,立方体和圆柱型两种结构下积分面积偏差为1.86%;针对137Cs,立方体和圆柱型两种结构下积分面积偏差为3.79%㊂以上结果充分说明在立方体与圆柱型两种硅探测单元结构下,微剂量谱基本重合,立方体与圆柱型的设计结构在实际应用中均可㊂这与本文2.2节中尺寸为10μm ˑ10μm ˑ10μm 的立方体与ϕ10μm ˑ10μm 的圆柱型结构的电荷收集仿真结果一致㊂3.4㊀PMMA 转换层对微剂量谱的影响㊀㊀PMMA 转换层在SOI 硅微剂量计中的作用是将中子和γ等不带电粒子转换成相应的次级带电粒子,然后这些带电粒子经过SOI 硅灵敏区产生脉冲信号,从而得到相应的线能谱数据[11]㊂因此,PMMA 的厚度对中子和γ等不带电粒子的微剂量测量会产生一定的影响㊂为了得到PMMA 转换层厚度对硅基微剂量计微剂量谱的影响,模拟了60Co 和137Cs 的γ微剂量谱在不同厚度的PMMA 转换层下的变化情况㊂模拟过程中采用圆柱型硅探测单元,尺寸为ϕ9μm ˑ9μm,PMMA 厚度从0.0~5.0mm 逐渐增加,入射粒子方向垂直于硅探测单元平面,在9μm ˑ9μm的范围内均匀入射㊂图12㊀PMMA 转换层厚度对微剂量谱的影响(60Co )Fig.12㊀Effect of PMMA conversion layerthickness on microdose spectrum (60Co)图13㊀PMMA 转换层厚度对微剂量谱的影响(137Cs )Fig.13㊀Effect of PMMA conversion layerthickness on microdose spectrum (137Cs )由图12和图13可知,随着PMMA 厚度的增㊃844㊃闫学文等:SOI 硅微剂量计物理结构设计中的电荷收集及能量沉积特性模拟研究㊀加,SOI 硅微剂量计探测到的60Co 和137Cs 的γ能谱分布变化基本一致,但是谱峰值发生了一定的变化㊂随着转换层厚度的增加,在1~10keV /μm区间呈现出峰位向右偏移且峰值逐渐增高的结果㊂这可能是因为当转换层厚度较小时,γ射线与转换层相互作用产生的次级电子大部分可穿过硅灵敏区,随着厚度增加,部分次级电子被阻止在硅灵敏区的份额逐渐增加,使得相应的峰值增加㊂采用同样尺寸的圆柱型硅探测单元模拟了252Cf 中子微剂量谱,入射粒子方向垂直于硅探测单元平面,在9μm ˑ9μm 范围内均匀入射㊂PMMA 厚度从0.0~3.0mm 逐渐增加,不同转换层厚度下的谱分布如图14所示㊂图14㊀PMMA 转换层厚度对微剂量谱的影响(252Cf )Fig.14㊀Effect of PMMA conversion layerthickness on microdose spectrum (252Cf )㊀㊀由图14可知,随着PMMA 转换层厚度的增加,在10~100keV /μm 区间内谱峰同样发生了右移以及增高,说明中子与转换层相互作用产生的次级质子被阻止在硅灵敏区的份额随着PMMA 厚度的增加而逐渐增加㊂4㊀结论㊀㊀本文采用TCAD 和蒙特卡罗方法分别对SOI 硅微剂量计物理结构设计中的电荷收集特性和能量沉积特性进行了模拟研究,结果表明在10μm 的尺寸内,(1)SOI 硅微剂量计的结构形状对电荷收集和能量沉积的影响均很小;(2)对圆柱型结构进行模拟,探测单元的半径越小㊁高度越高,其电荷收集效率越高,在1ns 的时间内基本能达到100%的电荷收集率;(3)当探测单元高度为10μm 时,电极注入深度达到8μm 对电荷收集更有利;(4)PMMA 转换层厚度的增加将中子和γ射线产生的次级粒子更多地阻止在了硅灵敏区内,导致了微剂量谱的峰值增高㊂以上结论将对SOI 硅微剂量计的物理结构设计起到一定的指导意义㊂参考文献:[1]㊀朱煜和,易忠诚,肖明勇.放射治疗剂量验证的现状及进展[J].生物医学工程学杂志,2013,30(6):1358-1361.ZHU Yuhe,YI Zhongcheng,XIAO Mingyong.Present situation and progress of dose verification in radiotherapy [J ].Journal of Biomedical Engineering,2013,30(6):1358-1361.[2]㊀王文,程梦云,杨琪,等.基于MCNP 源子程序的放射治疗剂量计算验证方法[J].中国医学物理学杂志,2015,32(1):13-16.WANG Wen,CHENG Mengyun,YANG Qi,et al.A dose verification method based on MCNP source subroutine forradiotherapy[J].Chinese Journal of Medical Physics,2015,32(1):13-16.[3]㊀LD Marzi,A Patriarca,N Scher,et al.Exploiting the full potential of proton therapy:An update on the specifics andinnovations towards spatial or temporal optimisation of dose delivery[J].Cancer,2020(24):691-698.[4]㊀Laura De Nardo.Development of a multiple microdosimetric detector based on gem (gas electron multiplier)for hadron-therapy applications[D].Universit degli studi di Padova,2014.[5]㊀Bradley P D,Rosenfeld A B,Zaider M,et al.Solid state microdosimetry[J].Nuclear Instrument and Methods in PhysicsResearch B,2001,184(1-2):135-157.㊃944㊃㊀辐射防护第43卷㊀第5期[6]㊀Anatoly B Rosenfeld.Novel detectors for silicon based microdosimetry,their concepts and applications [J ].Nuclear Instruments and Methods in Physics Research A,2016,809:156-170.[7]㊀Rossi H H,Zaider M.Microdosimetry and its applications[M].London:Springer,1996:1-13.[8]㊀Bradley P D,Rosenfeld A B,Zaider M,et al.Solid state microdosimetry[J].Nuclear Instrument and Methods in PhysicsResearch B,2001,184(1-2):135-157.[9]㊀闫学文,李华,李德源,等.基于SOI 微剂量实验测量技术的研究现状与展望[J].辐射防护,2022,42(1):1-10.YAN Xuewen,LI Hua,LI Deyuan,et al.Research status and prospects of microdose experimental measurement technology based on SOI [J].Radiation Protection,2022,42(1):1-10.[10]㊀唐杜,刘书焕,李永宏,等.Si SOI 微剂量探测器电荷收集特性数值模拟[J].辐射防护,2012,10(5):616-620.TANG Du,LIU Shuhuan,LI Yonghong,et al.Numerical simulation of charge collection characteristics of Si SOI microdosimeter [J].Radiation Protection,2012,10(5):616-620.[11]㊀雷鸣,刘书焕,宗鹏飞,等.SOI 硅微剂量探测器对中子和伽马辐射场线能谱测量的GEANT4模拟研究[J].辐射防护,2017,37(3):169-173.LEI Ming,LIU Shuhuan,ZONG Pengfei,et al.GEANT4simulation of silicon-on-insulator microdosimeter for monitoringlineal spectra of neutron and gamma mixed field[J].Radiation Protection,2017,37(3):169-173.Simulation of charge collection and energy deposition characteristicsin physical structure design of SOI-Si microdosimeterYAN Xuewen 1,2,JIN Haijing 1,2,LI Hua 1,2,LI Deyuan 1,2,QIAO Pei 1,2,NIU Mengqing 1,2(1.China Institute for Radiation Protection,Taiyuan 030006;2.Shanxi Provincial Key Laboratory for TranslationalNuclear Medicine and Precision Protection,Taiyuan 030006)Abstract :The charge collection characteristics and energy deposition characteristics of SOI-Si microdosimeterwere studied by using TCAD and Monte Carlo method.The variation of electric field distribution with the shapeand size of detection unit,electrode injection depth,incident particle type and energy was analyzed.And thevariation of the micro dose spectrum with the shape and size of the detection unit and the thickness of the PMMAconversion layer was also analyzed.The simulation results showed that in the range of 10μm,the cylindrical or cubic structure of the silicon detection unit had little influence on the charge collection efficiency and energy deposition.The higher the detection unit height and the smaller the radius,the higher the charge collectionefficiency.The thickness of PMMA conversion layer had a certain influence on the microdose spectrum.Withthe increase of PMMA thickness,the proportion of secondary particles generated by neutron and γ-ray that were stopped in the silicon sensitive region will increase,which leads to the increase of the peak value of the microdose spectrum.Key words :SOI-Si microdosimeter;charge collection;energy deposition;microdose spectrum㊃054㊃。
纳米发电机 nanogenerator
Displacive charge voltage For ideal insulator:
Generation of piezoelectric charge can be considered equivalent to the generation of a potential
Current and emission intensity of a carbon nanotubes film as a function of gate voltage (Vd was 1V) Chen J. et al, Science 2005, 310, p1171
A generator providing 10 to 50nW is required to power such a cross NW FET
Device size: 2mm2 Power generated: 1pW Estimated power per NW: 1-4 fW Power density after optimization (109 active NW per cm2): 1-4 µW/ cm2
Current, bias and resistance of the generator as a function of time
Discharge occurs when tip contacts with compressed side
Science, 312 (2006) 242-246.
Mechanism of ZnO Nanogenerator
Transport is governed by metal-semiconductor Schottky barrier for PZ ZnO NW
_4-巯基苯甲酸-Ag20表面增强拉曼散射的化学增强电荷转移机理研究(英文)
收稿日期:2014-05-14作者简介:张美霞(1976-),辽宁沈阳人,讲师,主要从事飞秒激光与原子分子的超快过程研究,E-mail :ldzmx999@163.com.辽宁大学学报自然科学版第41卷第4期2014年JOURNAL OF LIAONING UNIVERSITY Natural Sciences Edition Vol.41No.420144-巯基苯甲酸-Ag20表面增强拉曼散射的化学增强电荷转移机理研究张美霞,付喆,刘晶(辽宁大学物理学院,辽宁沈阳110036)摘要:采用含时密度泛函理论(TD -DFT )和多维可视化技术研究了4-巯基苯甲酸(4-MBA )-Ag20复合物的表面增强拉曼散射(SERS )的化学增强机理.通过对比和分析4-MBA 与4-MBA -Ag20分子在基态与激发态的性质,发现在4-MBA -Ag20中的4-MBA 与Ag20之间存在分子间电荷转移过程,这使该复合物的拉曼振动模式得到显著增强.该结论有助于进一步研究在SERS 检测技术中吸附物与吸附衬底之间的相互作用机制.关键词:4-巯基苯甲酸-Ag20;表面增强拉曼散射;电荷转移中图分类号:O 657.37文献标志码:A 文章编号:1000-5846(2014)04-0324-06Direct Visual Evidence for the Surface-enhanced Raman ScatteringChemical Enhancement Mechanism of 4-MBA-Ag20Complex Via Charge TransferZHANG Mei-xia ,FU Zhe ,LIU Jing(School of Physics ,Liaoning University ,Shenyang 110036,China )Abstract :In this paper ,the SERS chemical enhancement mechanism of 4-MBA-Ag20complex has beeninvestigated using time-dependent density functional theory (TD-DFT )and a range of extensive multidimensional visualization techniques.By comparing the ground and excited state properties of the 4-MBA with 4-MBA-Ag20complex ,it has been found that the intermolecular charge transfer process can be promoted by forming complex between 4-MBA molecule and Ag20nanoparticels ,which significantly enhance the Raman vibration modes.Our study is helpful for further research on the interaction mechanism between adsorbate and adsorption substrate for SERS detection.Key words :4-MBA-Ag20;SERS ;charge transfer1IntroductionSurface-enhanced Raman scattering (SERS )is widely used in catalysts chemistry ,biology ,physicsand material science ,since it can enhance the inherently low Raman scattering cross sections at the level of single molecules [1-3].SERS enhancement is known to be especially significant when analyte molecules are adsorbed onto the surface of noble metallic nanoparticles.Electromagnetic enhancement (EM )and chemical enhancement (CE )mechanisms are generally accepted for interpreting the enormous enhancement of the SERS signal [4].The former one originates from the local field enhancement caused by the surface plasmon resonance ,which enhance the Raman spectrum over a large frequency range [5-8].Recently ,M .T.Sun and co-workers found a new way to design a highly efficient HV-TERS system ,which used a sharp metal tip coupled to the metal substrate as a controlled plasmon antenna to excite the localized surface plasmons and consequently enhance the electromagnetic field in the vicinity of the tip apex [9].Most importantly ,they also experimentally achieved remotely excited Raman optical activity (ROA )imaging by selecting a single vibrational mode propagating along a nanowire ,which use a chiral plasmon propagating in Ag nanowires [10].For the CE mechanism ,the chemical reaction between metallic surface and the adsorbate will induce the change of molecular polarizability ,which directly affects the Raman intensity when the analyte molecules adsorb on the surface of metal.According to the current understanding ,the CE mechanism can be divided into three forms [11]:(1)the formation of chemical bond between the adsorbed molecule andmetal causing partial charge transfer ,(2)the formation of the new molecular system (surface complexes )composed by partial negatively charged molecules and partial positively charged metal atom ,(3)the photo-induced charge-transfer (PICT )between the adsorbed molecule and metal excited the incident light ,due to the difference of energy between the Fermi level of metal and the HOMO or LUMO energy level of molecule.Recently ,M .T.Sun et al.successfully obtained DMAB from PATP by selectivecatalytic coupling reaction on silver nanoparticles experimentally [12].In addition ,they clarified its SERS enhancement mechanisms by so-called “b2modes ”occur by using the visual charge difference density method theoretically.These selective enhancements of “b2modes ”of PATP in metal-molecules complexes and in metal /molecule /metal junctions are due to the effect of PICT chemical enhancement.Most recently ,P.Song and co-wokers have developed a new route for preparing flower-like SERSsubstrates ,which was performed by etching commercial 0.3nm molecular sieves with dilute hydrofluoric acid ,followed by the deposition of silver nanoparticles onto this support [13].When using 4-mercaptobenzoic acid (4-MBA )as a model adsorbate ,the SERS enhancement factor is about 1.4ˑ106[13].Unfortunally ,its SERS enhancement mechanism still remains unanswered.In this paper ,the SERS chemical enhancement mechanism via the photo-induced intermolecular charge-transfer for 4-MBA as a model adsorbate molecule on silver nanoparticels (tetrahedral Ag20)have been investigated.2Computational MethodsAll the quantum chemical calculations were carried out using Gaussian 09software.The geometries 523第4期ZHANG Mei-xia ,et al :Direct Visual Evidence for the Surface-enhanced Raman ScatteringChemical Enhancement Mechanism of 4-MBA-Ag20Complex Via Charge Transferof 4-MBA and 4-MBA-Ag20complex at ground state were fully optimized using DFT with B3PW91functional and the LANL2DZ basis set for Ag ,and the 6-31G (d )basis set for C ,N and H [14].The SERSof the 4-MBA-Ag20complex was calculated with the same method as at zero frequency ,which is normal Raman scattering (NRS )of the 4-MBA-Ag20complex.TD-DFT with t the same functional and basis set were used in the excited state properties calculations.The charge-transfer mechanisms were investigated with the three-dimensional cube representation of charge difference density which indicates the result of intra-and intermolecular charge-transfer during electronic transition.In addition ,the electron-hole coherence are analysed by using two-dimensional contour plots of transition density matrix [12].3Results and DiscussionFor the tetrahedral Ag20,two different binding sites (surface complex and vertex complex )have been used for combining the pyridine and Ag20[14].The former comprises the N of pyridine binding to one of four faces in tetrahedral Ag20,and the latter comprises binding to one of its vertexes [15].While ,the combination between 4-MBA with Ag20is found to be significantly different due to the steric hindrance ,following the optimized structure of 4-MBA-Ag20complex.From Figure 1,we can see that the binding mode of 4-MBA-Ag20complex is between the S-complex and V-complex.图1Optimized configuration of 4-MBA-Ag20complexes3.1Ground state properties of 4-mercaptobenzoic-Ag20complexThe Raman performance of 4-MBA can be clearly seenfrom Figure 2a.In which ,five vibrational modes can beattributed to 1714cm -1(C-C stretch ),1424cm -1(ringdeformation ),1197cm -1,1117cm -1and 1165cm -1(ringbreathing ),respectively.Moreover ,due to the couplinginteraction between 4-MBA and Ag20clusters ,the SERSspectrum of 4-MBA-Ag20complex were simulated and shownin Figure2b.Further analysis from Figure 3reveals that all theenhanced peaks can be attributed to 4-MBA adsorbed on silversubstrates ,and can be described as the static chemical (SC )enhancement.In detail ,by comparing Figure 2and Figure 3,thestrong peak at about 1063cm -1and its adjacent peak 1096cm -1arise from aromatic-ring vibrations that is called ring breathing with S moving toward silver.The peak at about 1650cm -1is due to aromatic-ring vibrations possessing C-C stretching characteristics with the carbons next to S vibrating toward the silver.And other bands can also owe to proper ring modes [16],that is ,the orientation of charge redistribution between 4-MBA and the Ag20clusters.It predicts that the orientation of charge distribution in the ground state is equivalent to that of molecular vibrations in the ground state ,which is the selection rule of the SC enhancement.623辽宁大学学报自然科学版2014年3.2Excited-State Properties of the 4-MBA-Ag20complexThe excited state properties of the 4-MBA and 4-MBA-Ag20complex were further examined.The significantly different electrostatic distribution between the 4-MBA and 4-MBA-Ag20complex can be clearly found in Figure 4by analyzing their charge difference densities (CDD ).For the first excited state (S1),we can see 4-MBA involves excited electrons and holes delocalized on the chain with chargetransfer.While for the 4-MBA-Ag20complex ,there are many excited electrons appearing on the Ag20cluster ,and the 4-MBA part of the complex involves many holes mainly arising in the linker ,resulting in intermolecular charge transfer between 4-MBA and Ag20.For the second excited state (S2),4-MBA involves excited electrons and holes delocalized on the two sides of the chain with charge transfer ,respectively.This is similar to the first excited state.However ,for the 4-MBA-Ag20complex ,the distribution of electrons and holes in 4-MBA is different from the S1state.In this case ,most excited electrons delocalized in the Ag20and there are only a few holes in the linker of 4-MBA ,which can evidently explain with the charge transfer between 4-MBA and Ag20in the 4-MBA-Ag20complex.Due to this kind of charge transfer ,the molecular polarizability can be changed ,which will directly affect the Ramanintensity.图2(a )The simulated SERS (normal Raman scattering )spectrum of 4-MBA.(b )The simulatedSERS (normal Raman scattering )spectrum of 4-MBA-Ag20723第4期ZHANG Mei-xia ,et al :Direct Visual Evidence for the Surface-enhanced Raman ScatteringChemical Enhancement Mechanism of 4-MBA-Ag20Complex Via Charge Transfer图3The vibration modes of4-MBA and4-MBA-Ag20under the simulated SERS(normalRaman scattering)图4The charge difference densities(CDD)of the selected excited states for4-MBA and4-MBA-Ag204ConclusionsIn summary,we have theoretically investigated the SERS chemical enhancement mechanism of4-MBA-Ag20complex using density functional theory calculation method and visualized real-space analytical methods.By analyzing the ground and excited state properties of the complex,we found that 823辽宁大学学报自然科学版2014年the intermolecular charge transfer can occur between the 4-MBA and Ag20due to the 4-MBA adsorbed on the Ag20cluster ,which significantly enhance the Raman vibration modes.Also our conclusion issupported by the properties of silver nanoparticles ,which is one of the best substrates for SERS chemical enhancement.References :[1]Fang Y R,Li Y Z ,Xu H X ,Sun M T.Ascertaining ,dimercaptoazobenzene produced from-aminothiophenol byselective catalytic coupling reaction on silver nanoparticles [J ].Langmuir ,2010,26(11):7737-7746.[2]Mulvihill M J ,Ling X Y ,Henzie J ,et al.Anisotropic etching of silver nanoparticles for plasmonic structures capableof single-particle SERS [J ].J.Am.Chem.Soc.,2010,132(1):268-274.[3]Liu Z ,Zhang F L ,Yang Z B ,et al.Gold mesoparticles with precisely controlled surface topographies forsingleparticle surface-enhanced Raman spectroscopy [J ].J.Mater.Chem.,2013,C1:5567-5576.[4]Kneipp K ,Kneipp H ,Moskovits M (Eds ).Two-photon excited surface-enhanced Raman scattering [M ].Topics inapplied physics ,2006,103:183-196.[5]Moskovits M ,Surface-enhanced spectroscopy [J ].Rev.Mod.Phys.,1985,57(3):783-825.[6]Kerker M ,Wang D S ,Chew H.Surface enhanced Raman scattering (SERS )by molecules adsorbed at sphericalparticles [J ].Appl Opt.,1980,19(24):4159-4174.[7]Kreibig U ,Genzel L.Optical absorption of small metallic particles [J ].Sur Sci ,1985,156(Part 2):678-700.[8]Kreibig U ,Voller M .Optical Properties of Metal Clusters [M ].Springer Series in Materials Science ,1995,25.[9]Sun M T ,Zhang Z L ,Li C ,et al.Plasmonic Gradient Effects on High Vacuum Tip-Enhanced Raman Spectroscopy[J ].Adv.Optical Mater.,2014,2(1):74-80.[10]Sun M T ,Zhang Z L ,Wang P J ,et al.Remotely excited Raman optical activity using chiral plasmon propagation inAg nanowires [J ].Light :Science &Applications ,2013,2,e112.[11]Ding S Y ,Wu D Y ,Yang Z L ,et al.Some Progresses in Mechanistic Studies on Surface-Enhanced RamanScattering [J ].Chem.J.Chin.Univ.,2008,29(12):2569-2581.[12]Sun M T ,Xu H X.Direct Visualization of the Chemical Mechanism in SERRS of 4-Aminothiophenol /MetalComplexes and Metal /4-Aminothiophenol /Metal Junctions [J ].ChemPhysChem ,2009,10(2):392-399.[13]Xia J R,Song P ,et al.Synthesis of large flower-like substrates for surface-enhanced Raman scattering [J ].Chem.Eng.J.,2014,244:252-257.[14]Sun M T ,Liu S S ,Chen M D ,et al.Direct visual evidence for the chemical mechanism of surface-enhancedresonance Raman scattering via charge transfer [J ].J Raman Spectrosc ,2009,40(2):137-143.[15]Zhao L L ,Jensen L ,Schatz G C.Pyridine-Ag20Cluster :A Model System for Studying Surface-Enhanced RamanScattering [J ].J.Am Chem.Soc ,2006,128,2911.[16]Michota A ,Bukowska J.Surface-enhanced Raman scattering (SERS )of 4-mercaptobenzoic acid on silver and goldsubstrates [J ].J.Raman Spectrosc ,2002,34(1):21-25.(责任编辑郑绥乾)923第4期ZHANG Mei-xia ,et al :Direct Visual Evidence for the Surface-enhanced Raman ScatteringChemical Enhancement Mechanism of 4-MBA-Ag20Complex Via Charge Transfer。
LAMMPS系统入门
迹,从而判断台球是否能够进袋。
三维:考虑宇宙中只存在太阳和太阳系的八大行星。我们是否能够通过万有引力去预测所
有行星的轨迹。只是此时我们知道某个行星除了来自太阳的引力,还有来自其他行星的应
力。计算某个行星的受力时,要考虑该行星与其余所有天体之间的受力。
高分子势: all-atom, united-atom, bead-spring, breakable
水分子势: TIP3P, TIP4P, SPC, SPC/E and variants
石墨烯和同类物的层间势
金属有机框架势 (QuickFF, MO-FF)
隐式溶剂势: hydrodynamic lubrication, Debye
分子动力学基本原理
分子动力学实际上就是一只拉普拉斯兽。分子动力学的基本任务就是获取物体在任意时刻
组成原子的所有位置和动量然后利用统计力学知识理解物体的性质和行为。
掌握组成物体内部原子的行为就可解释和理解物体的性
质和行为。大量原子在一起表现出来的整体特性,而不
我将分子动力学研究科学问题分为三个部分:软件使用,分子动力学理论,科学问题发现。
只有用深厚的内功催动精妙的招式,才能打败可敬的对手,受到江湖传颂。
分子动力学基本原理
分子动力学的基础是牛顿力学,也即经典力学。经典力学中有三个主要内容:质点、力和
运动。牛顿第二定律是经典力学的核心。
有两个质点放置在光滑的地面上,我们要问的问题是在后续的时间中两个质点是怎么运动
极化模型: QEq, core/shell model, Drude dipole model
电荷平衡:QEq via dynamic, point, shielded, Slater methods
核磁共振中常用的英文缩写和中文名称
NMR 中常用的英文缩写和中文名称收集了一些NMR 中常用的英文缩写,译出其中文名称,供初学者参考,不妥之处请指出,也请继续添加.相关附件NMR 中常用的英文缩写和中文名称APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR Broad Band Double Resonance 宽带双共振BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY ( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP Cross Polarization 交叉极化CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波DD Dipole-Dipole 偶极-偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR Dynamic NMR 动态NMRDNP Dynamic Nuclear Polarization 动态核极化DQ(C) Double Quantum (Coherence) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波DQF-COSY Double Quantum Filtered COSY 双量子滤波COSYDRDS Double Resonance Difference Spectroscopy 双共振差谱EXSY Exchange Spectroscopy 交换谱FFT Fast Fourier Transformation 快速傅立叶变换FID Free Induction Decay 自由诱导衰减H,C-COSY 1H,13C chemical-shift COrrelation SpectroscopY 1H,13C 化学位移相关谱H,X-COSY 1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X- 核化学位移相关谱HETCOR Heteronuclear Correlation Spectroscopy 异核相关谱HMBC Heteronuclear Multiple-Bond Correlation 异核多键相关HMQC Heteronuclear Multiple Quantum Coherence 异核多量子相干HOESY Heteronuclear Overhauser Effect Spectroscopy 异核Overhause 效应谱HOHAHA Homonuclear Hartmann-Hahn spectroscopy 同核Hartmann-Hahn 谱HR High Resolution 高分辨HSQC Heteronuclear Single Quantum Coherence 异核单量子相干INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR Internuclear Double Resonance 核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE H,X correlation via 1H detection 检测1H 的H,X 核相关IR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J-分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C)Multiple-Quantum ( Coherence )多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser 效应(NOE)NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE 谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE 谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy 自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Tran sform Spectroscopy (with J modulati on)(J-调制)自旋回波傅立叶变换谱SELINCOR SELINQUATE SFORD SNR or S/NSelective Inverse Correlation 选择性反相关Selective INADEQUA TE 选择性双量子(实验)Single Frequency Off-Resonance Decoupling 单频偏共振去偶Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SRTCF TOCSY TORO TQF WALTZ-16 Saturation-Recovery 饱和恢复Time Correlation Function 时间相关涵数Total Correlation Spectroscopy 全(总)相关谱TOCSY-ROESY Relay TOCSY-ROESY 接力Triple-Quantum Filter 三量子滤波A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFTZQ(C) ZQF T1T2 tmWater Eliminated Fourier Transform 水峰消除傅立叶变换Zero-Quantum (Coherence) 零量子相干Zero-Quantum Filter 零量子滤波Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋- 晶格)弛豫时间Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间T C rotational correlation time 旋转相关时间。
Confined Polymers Big World in a Small Space密闭的聚合物大世界在一个小空间共33页文档
Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
= .48 +- .01 = .161 +-.002
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
is n o t s u p p o rte d
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
Plot PN9/5 vs. Cp/Cp*
Scaled forms
Cross at places different from Cp = Cp*
Fit by Hansen et al. BJ (2019)
% PEG-grafted lipids
Des Cloizeaux 9/4 limit
Normal
exp(-df/3A)
hydration forces
Data from Kenworthy et al. BJ (2019)
De Gennes, Adv. Coll. & Interf. Sci. 27:189 (1987)
Big guy tough push, otherwise no go
构造地质学双语joints
Chapter 4 JointKeywordsFractures are surfaces along which rocks or minerals have broken. Joints, be one of the most commonly found pervasive mesoscopic structure, are the fractures without apparent displacement in rocks. These discontinuities will be encountered in many engineering tasks involving national and local needs. Cracks in rocks carry ground water far more efficiently than the bulk rock with its relativelylow permeability. In contrast the recovery of geothermal energy requires cracks in hot rock so that heat fluids pumped along the cracks can act as the medium with which heated water is transported to the surface. The recovery of petroleum is best accomplished when wells cut a fractured network containing large amounts of petroleum. The property, orientation and distribution of joints are closely related to the folds, faults and regional structures. So , the studies of joints are very helpful to analyze the geological structure.1. Classification of jointsThe classification of joints is based on two main factors: (1) the geometrical relationship with other related structures. (2) Mechanisms of the joint’s forming.Joints are relatively belonging to small-scale structures. The orientations of joints often have geometrical relationship with other structures.(1) A: The relationship between joints strike and sense ofassociated strata.Strike joints. Strike of the joint is parallel to the strike direction of bed.Dip joints. The strike of the joint is perpendicular to the strike of bed.Oblique joints. The strike of the joint is oblique to the strike of bed.Bedding joints. Joint plane is parallel to the bedding planes.B: The relationship between joint and fold axisLongitudinal joints: Strike of the joint is parallel to the fold axes.Transverse joints: Strike of the joint is perpendicular to fold axes.Diagonal joint: Strike of the joint is a oblique to fold axes.(2)According to the mechanism of jointsShear joint. In compression, joints develop in theconjugate shear directions (the orientation of symmetricfracture planes) making the lower angle with the majorprincipal stress direction. Shear joints are often grooved,striated, polished or slickensided by even small amountsof shear displacement.Conjugate shear fractures may be used to map maximumprincipal stress in the vicinity of a fault zone.Shear joint Tensile jointIn tension, joints develop by stretching normal to thetensile stress direction which is usually the minorprincipal stress. Tension joints are rough (unlesssubsequently weathered). In coarse grained rocks suchsurfaces may be very rough. Tensional joint includecolumnar joints in basalts, dykes and sills, tensiongashes, calcite and quartz filled veins. Extension jointsare not one long discontinuity but rather several jointsthat form end-to-end in a joint zone.(3)Joint sets and joint systemsJoint sets: many adjacent joints with similar geometry andorientation. Systematic joints: roughly planar,sub-parallel orientations, regular spacing.Non-systematic joints: curved and irregular in geometry,usually terminate against systematic joints.Joint system: made up of two or more sets of joints, maybe persistent over large regions. The geometry of jointsystems are described with the following measurements andobservations: orientation, scale and shape, spacing andaperture, intersections and terminations, spatialpatterns .3. Surface morphologySome joint surfaces display beautiful surface ornamentation, that is plume structure. Plumose structure consists of a number of morphological components: plume axis, hackles, and fringe zone. Curved hackle marks radiate outward from the point (origin) where the joint originated. These structures indicate the propagation direction of the joint. The fringe of a joint may be marked by closely spaced en-echelon joints oblique to the main joint face.3.En echelon veinsVeins are fracture filled with a precipitate, commonly quartz or calcite, rarely mud. En echelon vein is kind of vein which can be found in many rocks, especially in carbonate rocks. En echelon are parallel or subparallel, closely-spaced, overlapping or step-like minor structural features in rock, such as faults and tension fractures, that are oblique to the overall structural trend Sigmoidal tension gashes, generally S- or Z-shaped, form along zones of ductile shear. This type of extensional fracture is usually mineral-filled and form en echelon arrays along the shear zone. En Echelon tension fractures(gashes) may indicate the direction of displacement by two features: 1) Sigmoidal profiles of fractures, and 2) offset direction of vein-filled fractures "The sigmoidal profiles of fractures are cross-sectional views that aid in determining the direction of rotation. The profiles resemble an S-shaped feature with the tips pointing in the directionof rotation, either clockwise or counter-clockwise.The gash fractures form as extensional fractures that are perpendicular to the minimum compressive stress, sigma 3 (see diagram). The fractures may be rotated by ductile deformation either during or after formation. As gash fractures develop at different times of ductile shearing they show different amounts of rotation. Since sigma 3 is normal to the unrotated portion of the gash fracture, either the tips of the sigmoidal fracture or the newly formed fractures tells the stress orientation. The youngest fractures may not show any or very little rotation. (see diagram).4. StylolitesStylolites are irregular surfaces that commonly appear as dark, jagged lines on exposed surfaces of carbonate rock. Their origin is usually attributed to solution that occurs after the host rock was formed. The dark layers are insoluble residues. Stylolites often cross the whole rock, cutting grains ,matrix and cement stylolites belong to pressure solution structures formed at strain localisation sites within rocks, and can be used to indicate the stress direction.4. Relationships Between Joints and Other StructuresColumnar joints: polygonal fractures formed during cooling of lava flows and shallow intrusions. Due to tensile stresses set up as igneous rock contracts during cooling.Sheet(or exfoliation) joints: curved joints that are sub-parallel to the topography. Earth surfaces is eroded and relieves vertical stress but lateral stress is not reduced proportionally. Therefore vertical stress becomes minimum principal stress and joints form perpendicular to land surface.Shrinkage of cooling plutons (large homogenous igneous masses ) may also produce sheeting joints or exfoliation.Joints associated with folds: Several sets of joints may develop in response to folding. Conjugate shear joints oblique to the fold axis are develpoed by compression. Tension jointscan develop due to bending, particularly in the vicinity of the fold hinge. Joints parallel to the strike of the fold axisare called strike joints; those parallel to the limb dip are known as dip joints. Such joints are generally tensile fractures.Joints associated with faults: high stress levels in the hangingwall and footwall of a fault can result in the formation of conjugate shear joints, with one set parallel to the fault plane and the other set at an oblique angle of about 65? . Joints in plutonic rocks: several joint sets are commonly observed in plutons. Such joints are thought to be related to stresses set up during cooling of the rock mass within a regional stress field.Regional joint sets: remarkably consistent sets of joints are observed at the regional scale, particularly in weakly deformed sedimentary "platform sequences". Such joints are usually tectonic joints: that is extensional joints formed due to horizontal tectonic compression under conditions of elevated pore fluid pressure.with Joints and Veins in the FieldStudy way of joints varies with different purposes, but in general, all of the studies on joints are based on the measurement, observation, and statistics.(1)Localities . The observation localities should have the followingfeatures:Well exposed outcropsClearly observable structureBeddings with table orientationClear relationship of joint sets and joint systems.(2)Contents of observationGeological background observation. Including the orientation and rock types of beddings, the features of fault and folding .Classification of joints, joint sets and joint systems.Describing the intersection and termination of differentjoint sets.Timing : Younger joints commonly terminate into older, existing joints. Because fracture stops at free surface of the preexisting joint and cannot propagate across it. Also, joints tend to become parallel or more commonly perpendicular to the free surface because the free surface cannot support shear stress.Measurement of joint density. The joint density can be measured by joint numbers in unit length or total unit lengths in unit area.Observation of joint surface. Special attention should be paid to striation, plume structure and other small scale structures.Whether the joint has been filled with minerals. The distribution and scale of veins.(3)RecordsUsing specially designed tables to records the result of measurement and observation.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /9802296v 1 [c o n d -m a t .m e s -h a l l ] 27 F eb 1998Mesoscopic Charge Density Wave in a Magnetic FluxGilles MontambauxLaboratoire de Physique des Solides,associ´e au CNRSUniversit´e Paris–Sud 91405Orsay,France (February 1,2008)The stability of a Charge Density Wave (CDW)in a one-dimensional ring pierced by a Aharonov-Bohm flux is studied in a mean-field picture.It is found that the stability depends on the parity of the number N of electrons.When the size of the ring becomes as small as the coherence length ξ,the CDW gap increases for even N and decreases for odd N .Then when N is even,the CDW gap decreases with flux but it increases when N is odd.The variation of the BCS ratio with size and flux is also calculated.We derive the harmonics expansion of the persistent current in a presence of a finite gap.I.INTRODUCTIONIt has been proposed recently that a Aharonov-Bohm (AB)flux φshould affect the stability of a Charge Density Wave (CDW)in a one-dimensional ring geometry 1,2,3as it may have been seen in a recent experiment on CDW pierced by AB flux lines trapped in columnar defects 4.One possible cause for the modulation of the CDW sta-bility is the discreteness of the spectrum and the modula-tion of the position of the energy levels with the flux 2,3.Indeed,it has been predicted that the CDW gap and the critical temperature oscillate with the flux φ,with a period φ0=h/e and that they are maxima at φ=0and minima at φ=φ0/2.When the perimeter L of the ring becomes of the order of the correlation length ξ,i.e.when the CDW order parameter becomes of the order of the mean level spacing,the CDW can even be destroyed when |φ−nφ0|is larger than a critical value 2,3.In this paper,we elaborate on these ideas and we show that the stability of the CDW depends crucially on the parity of the number N of particles in the 1D ring (con-sidering here spinless particles),an effect which has not been properly considered in previous works.When this number N is odd,the CDW is destabilized by decreas-ing the length of the ring.But when N is even,it we find that the CDW is stabilized.When N is even,the effect of an AB flux is to destabilize the CDW,as found in refs.2.But when N is odd ,we find that the CDW can be stabilized by the flux ,contrary to the conclusions of refs.2,3.This effect is reminiscent of the parity effect for the persistent current in one-dimensional rings 5,6,7.In the following,we shall consider the case of spinless electrons.In the next section,we establish the thermodynamic equations for the CDW in a finite 1D system,with em-phasis on the parity effect.In section III,we calculate the flux variation of the order parameter in the form of a Fourier series.In section IV,the same is done for the critical temperature.Finally we calculate the persistent current in the last section.II.CDW IN A MAGNETIC FLUXConsider a one-dimensional ring of perimeter L .The periodic boundary conditions fix the wave vector of the eigenstates.In the presence of a flux,the possible wave vectors are:k =2πLand the Fermi energy ǫF is:ǫF =¯h2L 2.(1)It is important to stress that with this choice of k F andǫF ,the number of electrons is independent of the flux ,Fig.(1).EvenEFεOddkEFεFIG.1.Dispersion relation in the metallic phase,a)whenthe number N of particles is even(do not forget the state k=0),b)when N is odd.The horizontal line gives the position of the Fermi level.Although the chemicalpotential is in principlefixed by a reservoir in ref.2,we shall see later that their results correspond actually to afixed even number of particles. The theory of the CDW ordering is well known.In the presence of a periodic potential with wave vector Q,the Hamiltonian is:H=H0+2∆cos(Qr+θ)where the eigenenergiesǫk of H0are known.Because of the periodic potential,the states k are in principle cou-pled to states k±nQ where n=1,2,3,....We consider the case of a weak potential.Neglecting commensura-bility effects,one has to diagonalize a2×2matrix:the states with wave vector k≃k F are coupled to states with wave vector k−Q≃−k F:ǫ(k)∆e iθ∆e−iθǫ(k−Q)The eigenvalues are given by E=ǫk+ǫk−Q ǫk−ǫk−Q2 where the mean level spacingδnear the Fermi level is given byπ¯h v F/L.Writing the nesting vector Q in the form Q=2πq/L,where q is an integer,the eigenvalues in the CDW phase are:E p=(q−N)δ± 2+ϕ)2+∆2.The nesting condition implies q=N so that the nesting vector isQ=2k F=2Nπ4δ2(p−N(p−NλL−k B T Log Zwhereλis the interaction parameter and Z is thegrand canonical partition function,the well-known self-consistency condition is obtained:1= p g2E p)where g=λ/2π¯h v F.When N is even,the introductionof a new variable n=p−N/2reduces this equation to:1=g n tanh(β′(n+ϕ)2+Λ2)(n+ϕ)2+Λ2(3)whereβ′=2βδ.This is the result found in ref.2.How-ever,when the number N is odd,n=p−(N−1)/2andthe self-consistency equation becomes:1=g n tanh(β′(n−12 2+ϕ)2+Λ2(4)Thus the stability of the CDW depends on the parity of the number of electrons.Theflux dependence for the even and odd parities are deduced from each other by a translation ofφ0/2.We stress the fact that the results of ref.2correspond to afixed even number of particles,once the chemical potential isfixed to the value of eq.(1).If the chemical potential wasfixed to any other value,the number of particles would vary with thefield leading to discontinuities of the persistent current6and of the CDW stability.III.GROUND STATEWefirst study the evolution of the CDW order param-eter∆ϕat zero temperature,as a function of the size and of the ABflux.When N is even,it is given by1=gg =ln2E∗g=ln2E∗∆b=2 m>0(−1)Nm K0(2πm∆0∆b=2 m>0(−1)Nm K0(2πm∆ϕthis effect being larger for small sizes.Actually the case ϕ=1/2with an even number of particles is equivalent to the case ϕ=0with an odd number of particles.This is obvious in Figs.(3)and (4)and in the structure of the gap equation (7).b∆ϕ∆Λϕ=0b0.20.40.60.810.511.522.53Evenϕ=1/2FIG.4.Variation of the dimensionless gap ∆ϕ/∆b with Λb ,for different fluxes ϕ=0,0.1,0.2,0.3,0.4,0.5.Fig.(5)shows the flux dependence of ∆ϕ/∆b with the flux for different parameters ∆b /2δ∝L/ξb .For an even number of particles,the order parameter is enhanced at zero flux and is reduced for large flux.When ∆b /2δbecomes too small,the order parameter can even van-ish near ϕ=1/2.This happens for a critical value of Λb =1/2γ=.280.For smaller rings,i.e.when Λb is smaller,the CDW disappears at a critical flux given by:ψ(ϕc )+ψ(1−ϕc )=2ln Λb /2where ψis the digamma function.∆ϕ∆b 0.10.20.30.40.50.20.40.60.811.21.4Evenϕ1.Λ =.25b.282.35.5∆ϕ∆b 0.10.20.30.40.50.20.40.60.811.21.4Oddϕ1.Λ =.25b.282.35.5FIG.5.Dimensionless gap ∆ϕ/∆b versus flux for differentsystem sizes a)with even N ,b)with odd N .For the case of even N,the figure (5.a)is consistent with the figure 2of ref.2where ∆ϕ/∆0was plotted in-stead of ∆ϕ/∆b here.That figure could not show the interesting result that in low flux the gap increases when the size decreases.For odd N ,the order parameter increases in a finite magnetic flux and it is maximum at ϕ=1/2.This contradicts the arguments of ref.2who argues that the suppression of the CDW order is due to pair-breaking in-duced by the field.There is indeed no pair-breaking effect since the field does not couple to the phase of the electron-hole pair .The field effect here is simply to change the position of the energy levels and thus to either reduce or enhance the stability of the CDW.This can be simply understood from the schematic Figs.(2).For a ring of large size,the modulation of the gap given by eq.10becomes weak and harmonic.It is given by:∆ϕ=∆b (1±1Λ0e−2πΛ0cos 2πϕ)which explicitely displays the exponential decrease of the modulation with the size of the ring.IV.TRANSITION TEMPERATUREThe dependence of the critical temperature with thesize and the flux reflects those of the gap.At the transition,∆=Λ=0.As in ref.2,the self-consistency equation can be written as,for even N :12ntanh[β′ϕn +ϕDoing the same Poisson summation as above,the self consistency equation for the critical temperature T ϕis found to be,taking into account the parity:1T ϕ+m>0(−1)Nm F (m/β′ϕ)cos(2πmϕ)(11)where the function F is:F (x )=lncosh(2π2x )+1g=ln 1.14E ∗T b=m>0(−1)Nm FmT bcos 2πmϕ(13)The result is shown on Fig.(6).For zero flux,the vari-ation is very similar to that of the gap (Fig.3).When the size decreases,the critical temperature increases,in apparent contradiction with the figure (4)of ref.2who found a decrease of the critical temperature.However their temperature is normalized to the gap,∆0which is itself size dependent,and not to ∆b .What is actually found in ref.2is an increase of the BCS ratio ∆ϕ/T ϕ.This is in agreement with our calculation of this ratio shown in Fig.(7)and exhibits the 12%increase found in ref.2.T bT 00.20.40.60.810.511.522.53EvenOdd ΛbFIG.6.Variation of the critical temperature with the size,in zero flux.Λ0.20.40.60.810.20.40.60.81OddEven r FIG.7.Variation of the normalized BCS ratio r =(∆0/T 0)/(∆b /T b )with the size,in zero fluxFinally,we plot in Fig.(8)the variation of the critical temperature with the flux,for different sizes.ϕT bΛ =.25T b10.10.20.30.40.50.20.40.60.811.21.4Evenϕ.282.35.5FIG.8.Variation of the dimensionless critical temperature T ϕ/T b with the flux,for different system sizes,when N is even.The case where N is odd deduces by the same symmetry as in Fig.5In the limit of a large system,the oscillations of the critical temperature become exponentially small as:T ϕ=T b (1±2e −1.14L/ξcos 2πϕ)V.PERSISTENT CURRENTThe persistent current in the CDW phase is given by:I (ϕ)=−n2I 0φ0=ev Fis the maximal current in one dimension.Eq.(14)for the persistent current is exact for a quadratic dispersion relation 9.The first term is the persistent current I N (ϕ)in the normal state:I N (ϕ)=−2I 0ϕwhen N is odd and I N (ϕ)=−I 0(2|ϕ|−1)when N is even.10After summation by parts and Poisson summation,the flux dependence of the total current can be conveniently cast in the Fourier expansion which is parity dependent:I (ϕ)=4I 0Λϕm>0(−1)Nm K 1(2πm Λϕ)sin 2πmϕK 1is a modified Bessel function of the second kind 8.The persistent current depends on the gap which is itself flux dependent.For pedagogical purpose,we first show the flux variation of the current assuming a constant gap ,Fig.(9).IϕΛ =0-0.4-0.20.20.4-1-0.75-0.5-0.2500.250.50.751EvenΛ =.25Λ =.50FIG.9.Persistent current with a constant gap ∆0,for aneven number of particles.When the gap goes to zero,K 1(x )→1/x and one recovers the current of the normal state 6:I (ϕ)=2msin 2πmϕWhen the gap becomes larger than the interlevel spacing,the current is reduced exponentially as:I (ϕ)=(−1)N I 0e −1.14L/ξsin 2πϕThe variation of the gap itself with the flux must be taken into account.Fig.(10a)shows the variation of the current with the flux for Λ0=.35.When the flux in-creases,the gap decreases so that the current becomes larger (full line)than if the gap were constant (dashed line).When Λ0=.25,the CDW gap vanishes at a crit-ical flux and the current recovers continuously its value in the metallic phase.This results constradicts those of ref.3who found a discontinuity in the current.When N is odd,the current is trivially shifted by half a period φ0/2,at variance with the conclusion of ref.3.I0.10.20.30.40.50.20.40.60.81ϕΛ =.35Ιϕ0.10.20.30.40.50.20.40.60.81Λ =.25cϕFIG.10.Persistent current in the CDW phase (full line),for two values of the size L ,in the case of even N .The dashed line shows the current if the gap were constant and the dotted-dashed line shows the current in the metallic phase.VI.CONCLUSIONSWe have derived the mean-field thermodynamics of a CDW in a small 1D clean system in the presence of a magnetic flux.The stability of the CDW depends on the parity of the number N of particles.When the size de-creases and becomes of the order of the coherence length ξ=¯h v F /π∆,the CDW order parameter increases if N is even,it decreases if N is odd.The CDW is stabilized by the magnetic flux when N is odd and it is destabilized when N is even.These results correct those of refs.2,3who found that the flux always tends to suppress the Peierls instability.These are the results for a one dimensional ring.They can be in principle generalized to the case of a many channel ring.Ref.2suggests that the current is simply multiplied by the number of chains.This is not true,as it is already known for the metallic phase that the cur-rent results from a subtle addition of the contributionsof the different channels11.Such rings with few number of channels can be synthetized using thin-film growth of blue bronze oxydes12,13.The case of a1D ring with short range interaction and impurities,a disordered Luttinger liquid,has been studied recently14.It would be interest-ing to see how the discretness of the spectrum affects the obtained results.Note added in proof:After this paper was accepted, I have been informed by F.Von Oppen of the existence of a related work with similar conclusions15.Here I have found the analytical expressions of the harmonics expan-sion of the critical temperature,gap and persistent cur-rent.They agree with previous numerical calculations. Ref.15addresses thefluctuation effect.。