正戊烷课程设计概要

合集下载

化工原理课程设计正戊烷和正己烷

化工原理课程设计正戊烷和正己烷

课程设计说明书题目: 分离正戊烷-正己烷用筛板精馏塔设计安徽理工大学课程设计(论文)任务书机械工程学院过控教研室目录前言 (5)1.概论1.1 设计目的 (5)1.2 塔设备简介 (6)2.流程简介................... 错误!未定义书签。

3.工艺计算 (7)3.1物料衡算 (8)3.2理论塔板数的计算 (9)3.2.1由正戊烷-正己烷的汽液平衡数据绘出x-y图, (9)3.2.2 q线方程 (9)3.2.3平衡线 (10)3.2.4求最小回流比及操作回流比 (11)3.2.5求精馏塔的气、液相负荷 (11)3.2.6操作线方程 (12)3.2.7逐板法求理论板 (11)3.2.8实际板层数的求取 (13)4.塔的结构计算 (13)4.1混合组分的平均物性参数的计算 (13)4.1.1平均温度t (13)m4.1.2平均摩尔质量 (14) (15)4.1.3平均压强pm4.1.4平均密度 (15)4.1.5液体的平均粘度 (17)4.1.6液相平均表面张力 (18)4.2塔高的计算 (18)4.2.1最大空塔气速和空塔气速 (18)4.2.2塔径 (19)4.2.3 塔径的圆整 (21) (21)4.2.4塔截面积AT4.2.5实际空塔气速u (21)4.3精馏塔有效高度的计算 (22)5.塔板主要工艺尺寸的计算 (22)5.1溢流装置计算 (22)5.1.1堰长lw (22)5.1.2溢流堰高度hw溢流堰高度计算公式 (22)5.1.3弓形降液管宽度Wd 及截面积Af (23)5.1.4降液管底隙高度h (24)5.2塔板布置筛板数目与排列 (24)5.2.1塔板的分块 (24)5.2.2边缘区宽度确定 (25)5.2.3开孔面积的计算 (25)5.2.筛孔计算及其排列............................. 错误!未定义书签。

6.筛板的流体力学验算 (24)6.1气相通过筛板塔板的压降...................... 错误!未定义书签。

换热器课程设计说明书

换热器课程设计说明书

一 设计任务与条件现试设计一台正戊烷冷凝器,实现正戊烷蒸汽由160C ︒冷却至40C ︒,正戊烷的流量为7200h kg /,操作压力为0.175MPa 。

水蒸气的入口水温为30C ︒,出口水温为40C ︒。

二 设计计算〈一〉 确定设计方案 (1) 选择换热器的类型正戊烷蒸汽: 160C ︒→40C ︒ 冷却水: 30C ︒→40C ︒因为壳体与传热管壁温差大于50C ︒,初步确定选用带有补偿圈的固定管板式换热器。

(2)管程安排考虑到冷却水若走壳程由于流速较低易结垢,确定水蒸气走管程正戊烷饱和蒸汽走壳程。

〈二〉确定物性数据正戊烷蒸汽定性温度: 100240160=+=T )(C ︒ 冷却水定性温度: 3524030=+=t )(C ︒正戊烷蒸汽在100℃,0.175MPa 条件下的有关物性数据如下:06.4)1000273(314.8072.01017531=+⨯⨯⨯==RT PM ρ)/(3m kg)/(1057.131,K kg J c p ⋅⨯= )/(0128..01K m W ⋅=λ s Pa ⋅⨯=-5110874.0μ水在35℃时的有关物性数据如下: 31/7.995m kg =ρ )/(10174.431,C kg J c p ︒⋅⨯=)/(6176.01C m W ︒⋅=λ s Pa ⋅⨯=-511075μ 〈三〉估算传热面积 (1)热流量8.376)40160(57.13600/7200,,=-⨯⨯=∆⋅⋅=T c q Q h p h m T )(kW(2)冷却水用量9.32709)3040(10147.43600108.37633,,=-⨯⨯⨯⨯=∆⋅=t c Q q c p T cm )/(h kg (3)平均传热温差,按逆流算3.44304040160ln)3040()40160(=-----=∆m t )(C ︒(4)初算传热面积 由于在高压力下操作,假设)/(1102C m W K ︒⋅=则估算的传热面积为3.773.44110108.3763=⨯⨯=∆=m T t K Q S 估)(2m 〈四〉工艺结构尺寸 (1)管径和管内流速选用mm mm 5.225⨯φ较高级冷拔传热管(碳钢),取管内流速为s m u i /6.0=。

正戊烷和异戊烷结构简式-概述说明以及解释

正戊烷和异戊烷结构简式-概述说明以及解释

正戊烷和异戊烷结构简式-概述说明以及解释1.引言1.1 概述概述正戊烷和异戊烷是两种常见的烷烃化合物,它们在有机化学中具有重要的地位。

正戊烷是一种直链烷烃,分子式为C5H12,由五个碳原子和十二个氢原子组成,其结构简式为CH3(CH2)3CH3。

而异戊烷是一种含有分支链的烷烃,也称为2-甲基丁烷,分子式为C5H12,由五个碳原子和十二个氢原子组成,其结构简式为CH3CH(CH3)CH2CH3。

本文将对正戊烷和异戊烷的结构简式进行详细介绍,并比较它们之间的结构差异,旨在加深读者对这两种化合物的理解和认识。

1.2 文章结构:本文主要分为三个部分,分别是引言、正文和结论。

在引言部分,我们将介绍正戊烷和异戊烷的基本概念,并说明本文的研究目的和意义。

在正文部分,我们将详细介绍正戊烷和异戊烷的结构简式,分析它们的构成和性质,并进行结构比较。

在结论部分,我们将总结正戊烷和异戊烷的结构特点,探讨它们的应用和意义,并展望未来研究方向。

1.3 目的本文旨在对正戊烷和异戊烷的结构进行简要介绍和比较。

通过对它们的结构式进行分析和对比,可以更好地了解它们在化学反应和性质上的差异。

同时,也可以帮助读者更深入地理解这两种烷烃的特点和应用领域。

通过本文的研究,希望能够为相关领域的研究和应用提供一定的参考和借鉴,促进该领域的发展和进步。

部分的内容2.正文2.1 正戊烷结构简式:正戊烷是一种由碳和氢组成的直链烷烃,化学式为C5H12。

其分子结构由五个碳原子按照链状排列,每个碳原子上连接着相应数量的氢原子,使得每个碳原子都能形成四个共价键,同时保持碳原子之间的单键连接。

简单来说,正戊烷的分子结构可以用简式表示为:CH3-CH2-CH2-CH2-CH3这种结构简式清晰地展示了每个碳原子之间的连接关系,同时也体现了每个碳原子的饱和状态,即每个碳原子都与足够数量的氢原子形成了化学键,使得整个分子稳定而且不具有双键或环状结构。

正戊烷的结构简式不仅可以帮助我们更直观地理解其分子构造,同时也为我们后续对其性质和化学反应机理的研究提供了基础。

化工原理课程设计分离正戊烷—正己烷混合物

化工原理课程设计分离正戊烷—正己烷混合物

化工原理课程设计--分离正戊烷—正己烷混合物目录引言.............................................................................................................. .. (I)摘要 (1)Abstract (1)第1章设计条件与任务 (2)1.1 设计条件 (2)1.2 设计任务 (3)第2章设计方案的确定 (3)第3章精馏塔的工艺计算 (4)3.1 全塔物料衡算 (4)3.1.1 原料液、塔顶及塔底产品的摩尔分数 (4)3.1.2 原料液、塔顶及塔底产品的平均摩尔质量 (4)3.1.3 物料衡算进料处理量 (4)3.1.4 物料衡算 (4)3.2 实际回流比 (5)3.2.1 最小回流比及实际回流比确定 (5)3.2.2 汽、液相流率计算及操作线方程 (6)3.3 理论塔板数确定 (6)3.4 实际塔板数确定 (7)3.5 精馏塔的工艺条件及有关物性数据计算 (10)3.5.1 操作压力计算 (8)3.5.2 操作温度计算 (10)3.5.3 平均摩尔质量计算 (10)3.5.4 平均密度计算 (11)3.5.5 液体平均表面张力计算 (14)3.6 精馏塔的塔体工艺尺寸计算 (16)3.6.1 塔径计算 (16)3.6.2 精馏塔有效高度计算 (18)第4章塔板工艺尺寸的计算 (19)4.1精馏段、提馏段塔板工艺尺寸的计算 (19)4.1.1溢流装置计算 (19)4.1.2塔板设计 (19)4.2精馏段、提馏段塔板的流体力学性能验算 (24)4.3精馏段、提馏段塔板的负荷性能图 (27)第5章设计结果汇总 (32)设计小结与体会 (34)参考文献 (35)引言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

正戊烷-正己烷连续蒸馏塔的设计.doc

正戊烷-正己烷连续蒸馏塔的设计.doc

正戊烷-正己烷连续蒸馏塔的设计.设计师姓名:魏源讲师:尚(教授)板式精馏塔文字教材;广州大学化学化工学院《化工原理》课程设计;蒸馏塔设计项目;正戊烷-正己烷连续蒸馏塔的设计名称;魏源班:121班化学工程学生人数:120520081讲师:尚(教授)设计日期:从2015年1月5日至2015年1月14日,WORD教育材料在前面的第5段中列出。

化工原理课程设计任务书61.1概述71.2基本原理71.3确定设计原则81.4设计步骤81.5设计内容91.6操作压力91.7加热方法91.8进料状态10 1.9回流比111.10热能利用111.11工艺流程图12第2章工艺设计计算142.1设计任务和条件142.2工艺计算142.2.1物料平衡计算142 . 2 . 2 . 2 模拟253.1蒸馏塔的简单设计模块DSTWU 263.2蒸馏塔简单检查模块Distl 283.3蒸馏塔的严格计算模块RadFrac 29第4章蒸馏塔工艺条件和相关物理性质数据的计算394.1操作压力394.2操作温度394.3平均摩尔质量394.4平均密度404.4.1蒸馏段的平均密度404.4.2汽提段的平均密度414.5液体的平均表面张力计算424.6 蒸馏塔的工艺尺寸445.1塔直径的计算445.2蒸馏塔有效高度的计算47第六章塔板主要工艺尺寸的计算486.1蒸馏段主要工艺尺寸的计算486.1.1溢流堰486.1.2塔板布置和浮阀数量和布置的计算516 .2蒸馏段主要工艺尺寸的计算536.2.1溢流单元的计算536.2.2塔板布置和浮阀数量和布置54 塔板流体动力学检查577.1精馏段流体动力学检查577.1.1气相压降通过浮阀塔577.1.2浸没塔检查587.1.3雾沫夹带检查597.2精馏段流体动力学检查617.2.1气相压降通过浮阀塔617.2.2浸没塔检查617.2.3夹带检查62第8章塔盘负载性能图638.1精馏段塔盘负载性能图638.1.1夹带线638.1 658.2汽提段塔盘负负荷性能图表668.2.1夹带线668.2.2溢流线678.2.3液体负荷上限线688.2.4泄漏线688.2.5液体负荷下限线69蒸馏段浮阀塔盘工艺设计计算结果汇总表1 71蒸馏段浮阀塔盘工艺设计计算结果汇总表2 72第9章热平衡739.1热平衡739.1塔顶冷凝器冷热平衡739.1.2总塔盘热量结构设计8110.1整体结构8110.1.1基本结构8110.1.2塔的主要尺寸8110.1.3气缸和气缸盖8310.1.4塔的总有效高度-魏源讲师:尚(教授)板式精馏塔文字教材;广州大学化学化工学院《化工原理》课程设计;蒸馏塔设计项目;正戊烷-正己烷连续蒸馏塔的设计名称;魏源班:121班化学工程学生人数:120520081讲师:尚(教授)设计日期:从2015年1月5日至2015年1月14日,WORD教育材料在前面的第5段中列出。

中国石油大学课程设计-曹震-正戊烷-正己烷-正庚烷-正辛烷

中国石油大学课程设计-曹震-正戊烷-正己烷-正庚烷-正辛烷

化工原理课程设计之巴公井开创作说明书设计题目:设计连续精馏分离装置(分离正戊烷,正己烷,正庚烷,正辛烷混合物)班级:化工06-2班姓名:曹震指导老师:马庆兰设计成果:日期:2009年6月8日——2009年7月1日目录设计方案简介 (2)工艺流程简图 (3)第一章塔的工艺计...4§ (4)§ (5)§ (9)§ (11)§ (11)§ (13)§ (14)§....................................................................................14§ (18)§ (21)第二章塔板的结构设计 (22)§2.1塔板的安插 (22)§2.2塔板流体力学计算 (23)§2.3塔板负荷性能图 (30)第三章塔体结构设...33§3.1塔体的尺寸、资料及开孔 (33)§ (34)§...........................................................................35计算结果汇总表 (41)自我评述 (44)工艺流程简图设计方案简介所设计的任务是:设计连续精馏分离装置,分离正戊烷、正己烷、正庚烷和正辛烷,是一个多元精馏过程,轻关键组分是正己烷,重关键组分是正庚烷.根据工艺把持条件和分离任务,初步确定精馏方案,画收工艺流程草图.确定方案流程后,逐步计算和确定多元混合物精馏塔的把持条件及装备设施.首先,通过清晰分割法以及全塔物料衡算,确定塔顶、塔底的组分及其组成,根据回流罐的温度及泡露点方程,计算出塔顶、塔底和进料的压力和温度,进而确定精馏把持条件.通过经验估算出到达分离目的所需的最少理论板数,再结合全塔把持条件,得出最小回流比,通过作理论板数与回流比的关系曲线图,得出适宜回流比,即可确定理论板数和实际板数,并得出实际加料位置.其次,进行全塔热量衡算,算出塔顶冷凝器和塔底再沸器的热负荷,然后算出精馏段和提馏段的流量,确定塔径,即可以进行塔体的设计了.我们先从塔板入手,通过计算开孔率,设计并选择出最佳塔板,并进行合理布图.通过塔板水力学计算来验证塔板的设计是否合理,是否会发生过量雾沫夹带、过量漏液和淹塔等现象,并作出塔板负荷性能图,进一步验证计算结果的合理性.接下来,在设计条件下,为精馏塔定出尺寸、资料和规格:选择筒体壁厚和资料,选择适宜的封头,确定人孔的数目和位置,塔体的高度和裙座的形式、尺寸.完成这以后,就可以确定各接管的管径,塔顶冷凝器、塔底再沸器和回流泵等辅助设备的型号,并将所设计的精馏塔反映在图纸上,使设计更加清晰明了.最后,将计算的结果汇总,整理出一份完整的设计说明书.第一章 塔的工艺计算§产物的组成及产物量简直定采纳清晰分割法.已知进料组成1,F 2,F 3,F 4,F x =0.15,x =0.3,x =0.4,x =0.15,轻关键组分是正己烷,重关键组分是正庚烷,现将已知和未知列入下表中:可见需要求1,D x 、2,D x 、3,W x 、4,W x .列全塔总物料衡算及组分1、2、3、4的全塔物料衡算可得:1,D2,D3,W 4,W 1,D 2,D 3,W 4,W F =D +W 0.15F =Dx 0.3F =Dx +0.04W0.4F =0.04D +Wx 0.15F =Wxx +x +0.04=10.04+x +x =1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ 已知进料平均摩尔质量72015860.31000.41140.1593.7kg kmol i i M M x ==⨯+⨯+⨯+⨯=∑进料 则 进料的摩尔流率12000kg h128.07kg kmol 93.7kg kmolF F M ===质量流率进料代入方程组可求得:1,0.34D x =,2,0.62D x =,3,0.69W x =,4,0.27W x =57.07kg kmol D =,71kg kmol W =由此可以求出塔顶、塔底产物的平均摩尔质量:720.34860.621000.04114081.8kg kmol i i M M x ==⨯+⨯+⨯+⨯=∑顶720860.041000.691140.27103.22kg kmol i i M M x ==⨯+⨯+⨯+⨯=∑底 由以上结果得出全塔物料衡算表:§把持温度与压力简直定一般保证塔顶冷凝器与冷却介质之间的传热温差:20t ∆=℃已知冷却剂温度为31℃,则t =t +Δt =30+20=50回流罐冷却水℃已知°°°°111222333444=γp x +γp x +γp x +γp x (1)P 回流罐式中p ︒为组分饱和蒸汽压,γ为组分活度系数.因所求混合物可视为理想组分,故γ取1,又因回流罐中液体即为塔顶产物的组成,所以上式可化为:11,22,33,44, (2)D D D D P p x p x p x p x ︒︒︒︒=+++回流罐由安托因公式求饱和蒸汽压,查文献得:12477.07lnP 15.833339.94T ︒=--22697.55lnP 15.836648.78T ︒=--32911.32lnP 15.873756.51T ︒=--43120.29lnP 15.942663.63T ︒=--P i ︒——各组分饱和蒸汽压,mmHgT ——温度,K已知回流罐温度为50℃,代入安托因公式求得1P 1196.19mmHg 1.574atm ︒==2P 405.37mmHg 0.533atm ︒== 3P 141.91mmHg 0.187atm ︒==4P 50.37mmHg 0.066atm ︒==代入(2)式求得11,22,33,44, 1.5740.340.5330.620.1870.04 0.8733atm 1atmD D D DP p x p x p x p x ︒︒︒︒=+++=⨯+⨯+⨯=<回流罐 因此,取一个年夜气压,使其常压把持.塔顶管线及冷凝器的阻力可以近似取作0.1atm,则:0.110.1 1.1atm P P =+=+=塔顶回流罐即求塔顶露点温度.采纳试差法,先假设一个温度,由安托因公式求得该温度下各组分的饱和蒸汽压值,并分别求出平衡常数K,用露点方程nii=1i y =1 K i i P P ︒∑ 塔顶(K =) 检验等式是否成立,若成立则该温度为塔顶温度,若不成立,继续假设.试差结果如下表:℃时,nii=1iy =1.000K ∑,℃.P =P +ΔP ΔP =N ΔP =225mmHg =0.138atm P =1.1+0.138=1.238atm⨯塔顶塔底全塔全塔实际单板塔底 故塔底压力为1.238atm.即求塔底泡点温度.采纳试差法,先假设一个温度,由安托因公式计算出该温度下各组分的饱和蒸汽压,并分别求出平衡常数K,由泡点方程:11 ()ni i i i i P K x K P ︒===∑塔底 检验等式是否成立,若成立,则该温度即为塔底温度,若不成立,继续假设.试差结果如下表:℃时,11.0011ni i i K x ==≈∑,故塔底温度为℃.设计时,取近似1.1 1.238 1.169atm 22P P P ++===塔顶塔底进料进料为泡点进料,此时进料温度即进料泡点温度,同样采纳试差法,先假设一个温度,由安托因公式计算出该温度下各组分的饱和蒸汽压,并分别求出平衡常数K,由泡点方程:11 ()ni i i i i P K x K P ︒===∑进料 检验等式是否成立,若成立,则该温度即为进料温度,若不成立,继续假设.试差结果如下表:℃时,10.99731ni i i K x ==≈∑,因此进料温度为℃.§最小回流比简直定计算最小回流比的公式如下:1min 11 (3)1 (4)nij Fii ij nij Dii ij x q x R ααθααθ===--=+-∑∑ 取温度为塔顶塔底平均温度66.6109.688.12t C +==︒,求得该温度下的相对挥发度ij α,以最重组分正辛烷为比较组分j ,计算结果如下:(3)式中的θ应介于轻、重关键组分的相对挥发度之间,由于已知轻、重关键组分相邻,故式(3)、(4)仅有一个通根,且5.727 2.367θ>>由于泡点进料,1q =,10q -=,设3θ=,代入(3)式得114.3760.15 5.7270.3 2.3670.410.1514.3763 5.7273 2.367313 =0.75nij Fi i ij x ααθ=⨯⨯⨯⨯=+++------∑ 此值与(1q -)值0相差较年夜,因此继续假设,采纳试差法,得出下表结果:可以看出,当θ=3.435时,10.001840.005nij Fii ijx ααθ==≤-∑,因此取θ=3.435,将θ代入(3)式,得min114.3760.34 5.7270.62 2.3670.041 114.376 3.435 5.727 3.435 2.367 3.435 =0.9073nij Di i ij x R ααθ=⨯⨯⨯=-=++-----∑§最小理论板数简直定对多元混合物系,有下式:minlg 1 ()lg l h h l D W mx x x x N α⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=-不包括再沸器式中,l x 、h x 为轻组分和重组分的摩尔分率,m α=轻重关键组分于塔顶、塔底条件下的相对挥发度见下表:于是 2.435m α==,由之前所得塔顶塔底的组成可算出:min0.620.69lg 0.040.041 5.28lg 2.435N ⎛⎫⨯ ⎪⎝⎭=-= 故最小理论塔板数为5.28,但不包括再沸器.§适宜回流比简直定如果R 增加,理论板数下降,塔高下降,设备费用下降,但液相、气相流率增加,再沸器、冷凝器的热负荷增年夜,把持费用也会增加,因此选择适宜的回流比,获得最经济的方案.用以下方法求得适宜回流比及理论板数.所分离混合物系可以视作理想溶液,有如下经验关联式:()0.567min min 0.751 12Y X R R N N X Y R N =---==++ 式中N 及N min 不包括再沸器.根据上式,回流比R 从R min =0.9073至6取一组数,获得相应的X 及Y 值,最终获得N 与R 的一组关系数据,如下表:—R/R min 图,如下:2.作N(R+1)—R/R min 图,如下:3.从图中获得回流比的适宜区,取R/R min =1.478,即R=1.3413,相应的N=11.4.因此适宜回流比为1.3413,理论板数为11.4. §理论板数及理论加料位置简直定设N R 为理论精馏板数.N S 为理论提镏板数,对泡点进料多元混合物,有如下计算公式:0.20621h Wl RS l Dh F R S T x x N W N x x D N N N ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥= ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦+=+式中,N T 为理论板数,求适宜回流比时已得出理论板数为11.4,将已知代入上式,解得N R =6.79,N S =5.61.因此,理论加料位置应为6.79块板上. §实际板数及实际加料位置简直定根据O′connell 经验关联式:0.49() T m L L Fi LiE x αμμμ=•=•∑可确定全塔效率E T .已知 2.435m α=.根据全塔平均温度t m =88.1℃查得该温度下正戊烷、正己烷、正庚烷和正辛烷的粘度分别为···s 和0.29mPa ·s,由经验关联式可得0.150.1450.30.1790.40.2300.150.290.211mPa sL Fi Li x μμ=•=⨯+⨯+⨯+⨯=•∑代入公式,得()0.2450.49()0.49 2.4560.2110.5757T m L E αμ-=•=⨯⨯=由全塔效率可知,实际板数11.419.80.5757T P T N N E === 取整得,实际板数为20块.(不包括再沸器)实际精馏段板数6.7911.790.5757R RP T N N E ===⇒取整,为12块。

正己烷和正戊烷课程设计

正己烷和正戊烷课程设计

正己烷和正戊烷课程设计一、教学目标本节课的教学目标是让学生掌握正己烷和正戊烷的结构、性质、同分异构体以及它们的物理和化学性质。

通过学习,学生能理解烷烃的基本概念,并能运用这些知识解决相关问题。

1.掌握正己烷和正戊烷的结构特点。

2.掌握正己烷和正戊烷的同分异构体。

3.理解正己烷和正戊烷的物理和化学性质。

4.学会用化学式表示正己烷和正戊烷的结构。

5.学会用化学式判断正己烷和正戊烷的同分异构体。

6.学会运用正己烷和正戊烷的性质解释实际问题。

情感态度价值观目标:1.培养学生对化学学科的兴趣和好奇心。

2.培养学生勇于探索、积极思考的科学精神。

3.培养学生珍惜资源、保护环境的意识。

二、教学内容本节课的教学内容主要包括正己烷和正戊烷的结构、性质、同分异构体以及它们的物理和化学性质。

具体包括以下几个方面:1.正己烷和正戊烷的结构特点。

2.正己烷和正戊烷的同分异构体。

3.正己烷和正戊烷的物理性质,如沸点、熔点、密度等。

4.正己烷和正戊烷的化学性质,如燃烧、卤代等。

三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。

1.讲授法:教师通过讲解正己烷和正戊烷的结构、性质、同分异构体等基本概念,使学生掌握相关知识。

2.讨论法:学生分组讨论正己烷和正戊烷的物理和化学性质,培养学生的合作精神和口头表达能力。

3.案例分析法:教师给出实际问题,引导学生运用所学知识解决问题,提高学生的应用能力。

4.实验法:学生动手进行实验,观察正己烷和正戊烷的性质,培养学生的实验操作能力和观察能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:正己烷和正戊烷的相关内容。

2.参考书:提供正己烷和正戊烷的详细介绍,以便学生课后拓展学习。

3.多媒体资料:正己烷和正戊烷的结构模型、实验视频等,帮助学生更直观地理解知识。

4.实验设备:用于进行正己烷和正戊烷的实验操作,让学生亲身体验和学习。

正戊烷正己烷精馏分离板式塔设计

正戊烷正己烷精馏分离板式塔设计

河西学院Hexi University化工原理课程设计题目: 正戊烷正己烷精馏分离板式塔设计学院:化学化工学院专业:化学工程与工艺学号:::2016年11月20日化工原理课程设计任务书一、设计题目正戊烷-正己烷混合液筛板(浮阀)精馏塔设计二、设计任务及操作条件1.设计任务生产能力(进料量)80000 吨/年操作周期7200 小时/年进料组成40% (正戊烷质量分率)塔顶产品组成≥98.5% (正戊烷质量分率)塔底产品组成≥98% (正己烷质量分率)2.操作条件料液初温20℃操作压力塔顶4 kpa(表压)单板压降≦0.7kPa冷却水温度20℃饱和水蒸汽压力0.25Mpa(表压)3.设备型式筛板(浮阀)塔4.厂址珠海(压力:1atm )三、设计内容1.设计方案的选择及流程说明2.塔的工艺计算3.主要设备工艺尺寸设计(1)塔径、塔高及塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降及接管尺寸的确定4.辅助设备选型与计算5.设计结果汇总6.工艺流程图及精馏工艺条件7.设计评述目录1 设计方案的确定 (1)1.1概述 (1)1.2设计方案确定原则 (1)1.3设计方案内容 (2)1.3.1 操作压力 (2)1.3.2 加热方式 (2)1.3.3 进料状态 (2)1.3.4 板式塔的常用塔型及其选用 (3)1.3.4 回流比 (4)1.3.5 热能利用 (4)2 精馏塔的工艺设计计算 (4)2.1设计任务和条件 (4)2.1.1 设计任务 (4)2.1.2 操作条件 (5)2.2工艺计算 (5)2.2.1 精馏塔的物料衡算 (5)2.3塔板数的确定 (6)的确定 (6)2.3.1 理论层数NT2.3.2 最小回流比的计算 (6)2.4操作线方程 (7)2.4.1 图解法求理论板层数 (7)2.5实际板数的计算 (8)3 工艺条件及有关物性的计算 (9)3.1操作压力 (9)3.2操作温度 (9)3.3平均摩尔质量 (9)3.3.1 塔顶汽液混合物平均摩尔质 (9)3.3.2 进料板汽、液混合物平均摩尔质量 ................................ 9 3.3.3 塔底汽液混合物平均摩尔质量 .................................... 9 3.3.4 精馏段汽、液混合物平均摩尔质量 ............................... 10 3.3.5 提馏段汽、液混合物 ........................................... 10 3.4 平均密度 ......................................................... 10 3.4.1 气相平均密度 ................................................. 10 3.4.2 液相平均密度 ................................................. 10 3.5 液相平均表面张力 ................................................. 11 4 精馏塔工艺尺寸计算 .................................................. 13 4.1 塔径的计算 ....................................................... 13 4.2 精馏塔有效高度的计算 ............................................. 15 4.3 溢流装置计算 ..................................................... 15 4.3.1 堰长 ......................................................... 15 4.3.2 溢流堰高度 ................................................... 15 4.3.3 弓形降液管的宽度d W 和横截面f A 的计算 ......................... 16 4.3.4 降液管底隙高度 ............................................... 17 4.3.5 塔板布置及筛孔数目的计算 ..................................... 17 4.3.6 边缘区宽度确定 ............................................... 17 4.3.7 开孔面积的计算 ............................................... 17 4.3.8 筛孔计算及其排列 ............................................. 18 5 筛板的流体力学验算 .................................................. 18 5.1 塔板压降 ......................................................... 18 5.1.1 精馏段 ....................................................... 18 5.2 气体通过液层的阻力计算 ........................................... 19 5.3 液体表面张力的阻力计算 ........................................... 19 5.4 液面落差 ......................................................... 20 5.5 液沫夹带 ......................................................... 20 5.6 漏液 . (20)5.7液泛验算 (20)6 塔板负荷性能图 (21)6.1漏液线 (21)6.2液沫夹带 (22)6.3液相负荷下限线 (24)6.4液相负荷上限线 (24)6.5液泛线 (24)7 塔附件设计 (27)7.1接管——进料管 (27)7.2筒体与封头 (27)7.2.1 筒体 (27)7.2.2 封头 (28)7.3人孔 (28)7.4裙座 (28)7.5塔釜料液排出管管径 (28)7.6回流管管径 (28)7.7塔顶蒸汽出料管 (29)7.8塔底进气管 (29)7.9法兰 (29)8 设计一览表 (29)设计评述 (31)参考文献 (31)致谢 (32)正戊烷-正己烷混合液筛板(浮阀)精馏塔设计杨鹏岳摘要:本设计任务为分离正戊烷一正己烷二元混合物,通过图解法计算得出理论板数为13块,取回流比为1.5,算出全塔效率为0.4263,实际板数为31块,进料位置为第13块塔板,在浮阀塔主要工艺尺寸的设计计算中得出塔径为1.6米,塔高20.525米,通过流体力学验算,证明各指标数据均符合标准。

化工原理课程设计---利用浮阀塔分离正戊烷与正己烷的工艺设计

化工原理课程设计---利用浮阀塔分离正戊烷与正己烷的工艺设计

安徽理工大学课程设计说明书设计题目:化工原理课程设计学院、系:机械工程学院专业班级:过程装备与控制工程11-2 学生姓名:指导教师:李雪斌成绩:2013年12月23日设计任务书(一)设计题目: 利用浮阀塔分离正戊烷与正己烷的工艺设计分离要求:试设计一座正戊烷—正己烷连续精馏浮阀塔,要求年产纯度98%的正己烷4.0万吨,塔顶馏出液中含正己烷不得高于2%,塔底釜液含正己烷不低于98%,原料液中含正戊烷60%(以上均为质量分数)。

(二)操作条件:塔顶压力:4kPa(表压)进料状态:泡点进料回流比:1.4Rmin塔釜加热蒸汽压力:0.5MPa(表压)单板的压降: 0.7kPa全塔效率:52%(3)塔板类型:浮阀塔板(F1型)(4)工作日: 330天/年(一年中有一个月检修)(5)厂址:淮南地区(六)设计内容①精馏塔的物料衡算②塔板数的确定③精馏塔的工艺条件及有关物性数据的计算④塔体工艺条件尺寸⑤塔板负荷性能图目录第1章序言 (3)第2章精馏塔的物料衡算 (6)2.1. 物料衡算 (6)2.2. 常压下正戊烷—正己烷气、液平衡组成与温度的关系 (7)第3章塔板数的确定 (8)N的确定 (8)3.1. 理论板数T3.2. 实际板数的确定 (9)第4章精馏塔的工艺条件及有关物性数据 (9)4.1. 操作压力的计算 (9)4.2. 密度的计算 (10)4.3. 表面张力的计算 (11)4.4. 混合物的粘度 (12)4.5. 相对挥发度 (12)第5章塔体工艺条件尺寸 (13)5.1. 气、液相体积流量计算 (13)5.2. 塔径的初步设计 (14)5.3. 溢流装置 (15)5.4. 塔板布置及浮阀数目与排列 (17)第6章塔板负荷性能图 (20)6.1. 物沫夹带线 (20)6.2. 液泛线 (21)6.3. 液相负荷上限 (22)6.4. 漏液线 (22)6.5. 液相负荷下限 (23)第7章结束语 (24)正戊烷—正己烷连续精馏浮阀塔的设计第1章序言精馏是分离液体混合物,一种利用回流使液体混合物得到高度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛应用与石油、化工、轻工、食品、冶金等部门。

课程设计---正戊烷冷凝器的设计

课程设计---正戊烷冷凝器的设计

江汉大学化工原理课程设计说明书化学与环境工程学院化工系化学工程与工艺专业题目:2.0×104 吨/年正戊烷冷凝器的设计名:学号:指导老师:周富荣老师起止时间: 2012.12.31—2013.1.13任务安排设计任务和操作条件1.操作条件(1)正戊烷冷凝温度为51.7℃,冷凝液于饱和液体下离开冷凝器;(2)冷却介质为地下水,流量为70000kg/h,入口温度: 24℃;(3)允许压强降不大于105Pa;(4)每年按300天计;每天24 h连续运转。

2.处理能力:2.0×104t/a正戊烷3.设备型式:卧式列管冷凝器设计内容1、设计方案简介;2、换热器的工艺计算;3、换热器的主要结构尺寸的设计计算;4、校核计算。

设计说明书内容1. 目录2. 概述3. 热力计算(包括选择结构,传热计算,压力核算等)4. 结构设计与说明5. 设计总结6. 参考文献7. 附工艺流程图及冷凝器装配图一张目录1.1概述 (1)1.2 确定物性数据 (2)1.2.1 确定流体流动空间 (2)1.2.2 流体定性温度,确定流体流动的物性数据 (2)1.3 估算传热面积 (3)1.3.1 热负荷 (3)1.3.2 有效平均温度差 (3)1.3.3 估算传热面积 (3)1.4 工艺结构尺寸 (3)1.4.1 管径和管内流速 (3)1.4.2 管程数和传热管数 (4)1.4.3 传热管排列和分程方法 (4)1.4.4 壳体内径 (4)1.4.5 接管 (5)1.4.6其他附件 (5)1.5 初选换热器规格 (6)1.6 换热器核算 (7)1.6.1 计算总传热系数 (7)1.6.2 传热面积裕度 (8)1.6.3 核算壁温 (8)1.6.4 计算压降和核算 (9)1.7 汇总表 (10)设计总结 (12)参考文献 (13)附换热器装配图 (13)1.1概述换热器是化学工业,石油工业及其他一些行业中广泛使用的热量交换设备,它不仅可以单独作为加热器、冷却器等使用,而且是一些化工单元操作的重要附属设备,因此在化工生产中占有重要的地位。

正戊烷—正己烷连续精馏塔的设计教案

正戊烷—正己烷连续精馏塔的设计教案

设计者姓名:魏渊指导老师:尚小琴(教授)广州大学化学化工学院《化工原理》课程设计精馏塔设计设计项目:正戊烷—正己烷连续精馏塔的设计姓名:***班级:化工121班学号:**********指导教师:尚小琴(教授)设计日期:2015.01.05~2015.01.14目录前言 (5)化工原理课程设计任务书 (6)1.1 概述 (7)1.2 基本原理 (7)1.3 确定设计方案原则 (8)1.4 设计步骤 (8)1.5 设计方案的内容 (9)1.6 操作压力 (9)1.7 加热方式 (9)1.8 进料状态 (10)1.9 回流比 (11)1.10 热能利用 (11)1.11 工艺流程示意图 (12)第二章精馏塔的工艺设计计算 (14)2.1 设计任务和条件 (14)2.2 工艺计算 (14)2.2.1 精馏塔的物料衡算 (14)2.2.2 塔板数的确定 (15)第三章ASPEN PLUS精馏塔分离单元模拟 (25)3.1精馏塔的简捷设计模块DSTWU (26)3.2精馏塔的简捷校核模块Distl (28)3.3精馏塔的严格计算模块RadFrac (29)第四章精馏塔的工艺条件及有关物性数据的计算 (39)4.1 操作压力 (39)4.2 操作温度 (39)4.3 平均摩尔质量 (39)4.4 平均密度 (40)4.4.1精馏段平均密度 (40)4.5 液体平均表面张力的计算 (42)4.6 液体平均黏度计算 (43)第五章精馏塔的塔体工艺尺寸计算 (44)5.1 塔径的计算 (44)5.2 精馏塔有效高度计算 (47)第六章塔板主要工艺尺寸计算 (48)6.1精馏段主要工艺尺寸计算 (48)6.1.1 溢流堰 (48)6.1.2 溢流装置计算 (49)6.1.3 塔板布置及浮阀数目与排列 (51)6.2提馏段主要工艺尺寸计算 (53)6.2.1 溢流装置计算 (53)6.2.2 塔板布置及浮阀数目与排列 (54)第七章塔板流体力学验算 (57)7.1 精馏段流体力学验算 (57)7.1.1 气相通过浮阀塔的压降 (57)7.1.2 淹塔校核 (58)7.1.3 雾沫夹带校核 (59)7.2 提馏段流体力学验算 (61)7.2.1气相通过浮阀塔的压降 (61)7.2.2 淹塔校核 (61)7.2.3 雾沫夹带校核 (62)第八章塔板负荷性能图 (63)8.1 精馏段塔板负荷性能图 (63)8.1.1雾沫夹带线 (63)8.1.2 液泛线 (63)8.1.3 液相负荷上限线 (64)8.1.4 漏液线 (65)8.2 提馏段塔板负荷性能图 (66)8.2.1 雾沫夹带线 (66)8.2.2 液泛线 (67)8.2.3 液相负荷上限线 (68)8.2.4 漏液线 (68)8.2.5 液相负荷下限线 (69)精馏段浮阀塔板工艺设计计算结果汇总表1 (71)提馏段浮阀塔板工艺设计计算结果汇总表2 (72)第九章热量衡算 (73)9.1热量衡算 (73)9.1.1 塔顶冷凝器的热量衡算 (73)9.1.2 全塔热量衡算 (77)第十章精馏塔结构设计 (81)10.1 总体结构 (81)10.1.1基本结构 (81)10.1.2塔体的主要尺寸 (81)10.1.3 筒体与封头 (83)10.1.4塔体总有效高度 (89)10.2 塔板结构 (91)10.3 接管结构 (92)10.3.1 进料管 (92)10.3.2 塔顶蒸汽出料管 (93)10.3.3 回流管 (93)10.3.4 釜液排出管 (94)10.3.5 全凝器冷凝水管 (94)10.3.6 再沸器蒸汽管 (94)10.3.7 法兰 (95)10.4 辅助设备结构 (95)10.4.2再沸器 (98)第十一章校核部分 (100)11.1塔的质量载荷的计算 (100)11.1.1 筒体圆筒、封头、裙座质量 (100)11.1.2 塔内构件质量 (100)11.1.3 保温层质量 (100)11.1.4 人孔、接管、法兰等附件质量 (102)11.1.5 充液质量 (102)11.1.6 偏心质量 (102)11.1.7 各种质量载荷汇总 (102)11.2 自振周期的计算 (103)11.3 风载荷与风弯矩的计算 (103)11.3.1 风力 (104)11.3.2 风弯矩 (105)11.3.3 最大弯矩 (106)附录1 (107)附录2 (112)附录3 (115)参考文献 (117)结束语 (118)前言化工生产常需进行二元液相混合物的分离以达到提纯或回收有利用价值组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分液化或多次部分冷凝达到轻重组分分离目的的方法。

正戊烷的饱和蒸汽压

正戊烷的饱和蒸汽压

正戊烷的饱和蒸汽压1.引言1.1 概述概述正戊烷是一种常见的烷烃化合物,具有较低的熔点和沸点,在常温常压下为无色液体。

它是石油中常见的组分之一,也是石油产品中广泛应用的溶剂。

正戊烷的饱和蒸汽压是研究其物理性质和应用特性的重要参数。

本文旨在研究正戊烷的饱和蒸汽压及其相关性质,并探讨影响饱和蒸汽压的因素。

为了更好地理解正戊烷的饱和蒸汽压行为,我们将首先介绍正戊烷的性质,包括其分子结构、物理性质和化学性质。

随后,我们将详细阐述饱和蒸汽压的定义,并探讨影响正戊烷饱和蒸汽压的因素,如温度、压力和化学成分。

为了验证理论分析结果的准确性,我们将进行实验测定正戊烷的饱和蒸汽压。

通过采用适当的实验方法和设备,我们将收集实验数据,并进行数据处理和分析。

最后,我们将总结实验结果,并对未来研究的方向进行展望。

通过对正戊烷的饱和蒸汽压的研究,我们可以更好地了解正戊烷的物理性质和应用特性,为相关领域的研究和应用提供有益的参考。

同时,我们也将通过实验测定的方式验证理论模型的准确性,为进一步探索和研究提供基础数据和理论依据。

文章结构本文主要包括引言、正文和结论三个部分。

1. 引言:1.1 概述- 简要介绍正戊烷和饱和蒸汽压的基本概念,并提出研究正戊烷饱和蒸汽压的目的和重要性。

1.2 文章结构- 介绍文章的整体结构和各个部分的内容安排。

1.3 目的- 阐明正戊烷饱和蒸汽压的实验测定方法和结果,以及预测和控制正戊烷蒸汽压的意义和应用。

2. 正文:2.1 正戊烷的性质- 探讨正戊烷的物理性质、化学性质和应用领域,为后续讨论建立基础。

2.2 饱和蒸汽压的定义和影响因素- 解释饱和蒸汽压的概念和计量单位,并介绍影响饱和蒸汽压的因素,如温度、压力和分子间相互作用等。

通过深入研究这些因素,可以更好地理解正戊烷的饱和蒸汽压规律。

3. 结论:3.1 正戊烷的饱和蒸汽压的实验测定- 介绍实验方法和步骤,以及实验结果。

通过实验测定正戊烷饱和蒸汽压的数值,验证之前所述的影响因素,并加深对正戊烷饱和蒸汽压规律的理解。

换热器设计

换热器设计

二、正戊烷冷凝器的工艺设计任务书(一)设计名称正戊烷冷凝器的设计(二)设计条件1.正戊烷、冷凝温度为51.7℃,冷凝液于饱和液体下离开冷凝器;正戊烷年处理能力15760t/a。

2.冷却介质,井水,流量为70000kg/h,入口温度:32℃;3.允许压强降,不大于500000Pa;4.每年按300天计;每天24 h连续运转。

(三)设计任务1.合理的参数选择和结构设计2.传热计算和压降计算:设计计算和校核计算(四)设计说明书内容1.标题页2.目录3.确定设计方案4.传热面积计算5.工艺结构尺寸计算6.换热器校核7.换热器主要结构参数和设计结果一览表8.换热器工艺条件图9.自设计使用该换热器的工艺流程图10.对本设计的评价11.参考文献|化工原理课程设计报告一 设计题目:正戊烷冷凝器的设计二 课题条件(文献资料,仪器设备,指导力量) (一)设计任务设计一冷凝器,冷凝正戊烷蒸气; 1) 处理能力:15760kg/a 。

2) 正戊烷饱和温度为:51.7C ︒,蒸发潜热为。

kJ/kg 5.347=r3) 冷却剂:井水,进口温度C 321︒=t 出口温度C 43.34o 2=t (二)操作条件: (1)生产方式:连续操作(2)生产时间:每年以300天计算,每天24小时(3)冷凝器操作压力为常压,管程和壳程的压力均不大于500kpa 三.设计任务1.确定设计方案,绘制工艺流程图。

2.热力学计算2.1热力学数据的获取 2.2估算传热面积 2.3工艺尺寸的计算 2.4面积核算 2.5壁温校核 2.6压降校核3.结构设计3.1冷凝器的安装3.2管设计3.3管心距设计3.4管板设计3.5折流板设计 3.6壳体设计3.7接管设计3.8封头设计3.9法兰设计3.10支座设计3.11其他4.设计计算结果汇总表5.设计结果评价6.绘制装配图7.编制设计说明书设计流程图裕度过大或过小1.热力学数据的获取正戊烷液体在定性温度(51.7℃)下的物性数据(查化工原理附录)。

正戊烷 标准

正戊烷 标准

正戊烷标准全文共四篇示例,供读者参考第一篇示例:正戊烷,是一种无色、无味、无臭的液态烷烃。

它是一种常见的烷烃类化合物,分子式为C5H12,由五个碳原子和十二个氢原子组成。

正戊烷是一种碳氢化合物,属于直链烷烃之一,具有较高的燃烧热值,可以作为重要的工业原料,被广泛用于化工、石油、燃料等领域。

正戊烷是一种稳定性较高的化合物,具有良好的热稳定性和化学稳定性。

它在常温下为无色透明的液体,密度较小,熔点较低,易挥发。

正戊烷具有较好的溶解性,可溶于许多有机溶剂,如醇类、醚类等,而不溶于水。

它常被用作有机溶剂,用于溶解各种有机化合物,如树脂、油漆、涂料等。

在化工行业中,正戊烷被广泛用于聚合反应的溶剂,可以用来制备聚丁烯、聚烯烃等高分子化合物。

它还可以用作清洗剂、萃取剂和分离剂,用于化工生产中的萃取和装置清洗。

正戊烷还可以作为燃料,应用于石油化工和燃料添加剂的生产过程中。

正戊烷作为工业化合物,需要符合一定的标准才能保证产品的质量和安全性。

正戊烷的生产和质量控制通常要遵循相关的国家标准和行业标准,以确保产品符合生产和使用的要求。

在中国,正戊烷的标准主要包括产品质量标准、安全生产标准、环境保护标准等方面。

中国《正戊烷标准》规定了正戊烷的基本技术要求、产品规格和检验方法等内容。

该标准明确了正戊烷的外观、成分、密度、溶解度、燃烧性能等指标,要求产品应符合国家标准规定的相关要求,确保产品的质量和安全性。

该标准还对正戊烷的生产过程和质量控制提出了具体要求,以保证产品生产的有效性和可靠性。

在实际应用中,正戊烷的标准化生产和应用可以提高产品的质量和稳定性,降低生产成本,保证产品的安全性和环保性。

正戊烷标准的制定和执行对化工行业的规范化发展起到了积极的促进作用,有利于提高产品的竞争力和市场占有率。

正戊烷是一种重要的化工原料,具有广泛的应用领域和市场需求。

正戊烷标准的制定和实施是保证产品质量和安全性的重要手段,有助于化工行业的健康发展和可持续发展。

化工原理课程设计---正戊烷_正己烷常压精馏塔设计

化工原理课程设计---正戊烷_正己烷常压精馏塔设计

化工原理课程设计题目:正戊烷—正己烷常压精馏塔设计专业:姓名:指导教师:xxx学院xxx年xxx月目录前言 (3)任务书 (4)1 概论1.1 塔设备在化工生产中的作用和地位 (3)1.2 塔设备的分类及一般构造 (3)1.3 对塔设备的要求 (3)1.4 塔设备的发展及现状 (4)1.5 塔设备的用材 (4)1.6 板式塔的常用塔型及其选用 (4)1.6.1 泡罩塔: (5)1.6.2 筛板塔: (5)1.6.3 浮阀塔: (6)1.6.4 舌形塔及浮动舌形塔: (6)1.6.5 穿流式栅板塔: (7)1.7 塔型选择一般原则 (7)1.7.1 与物性有关的因素 (7)1.7.2 与操作条件有关的因素 (7)1.7.3 其他因素 (8)1.8 板式塔的强化 (8)2 塔板计算 (10)2.1 设计任务与条件 (10)2.2 设计计算 (10)2.2.1 设计方案的确定 (10)2.2.2 精馏塔的物料衡算 (10)2.2.3 塔板数的确定 (11)2.2.4 精馏塔的工艺条件及有关物性数据的计算 (13)2.2.5 精馏塔的塔体工艺尺寸计算 (18)2.2.6 塔板主要工艺尺寸计算 (20)2.2.7 塔板流体力学验算 (24)2.2.8 塔板负荷性能图 (26)3 塔附件设计 (30)3.1 接管——进料管 (30)3.2 法兰 (30)3.3 筒体与封头 (30)3.4 人孔 (30)参考文献 (31)附录 (32)前言化工原理课程设计是高等学校的一门专业必修课,通过本课程学习,有利于培养学生的独立工作、独立思考和运用所学知识解决实际工程技术问题的能力,是提高学生综合素质,使大学生向工程师转化的一个重要的教学环节。

蒸馏单元操作自古以来就在工业生产中用于分离液体混合物。

它是利用液体混合物中各组分的挥发度不同进行组份分离的,多用于分离各种有机混合液,蒸馏有许多操作方式,按有没有液体回流,可分为有回流蒸馏与无回流蒸馏,有回流的蒸馏称为精馏。

正戊烷冷凝器的设计汇总

正戊烷冷凝器的设计汇总

正戊烷冷凝器的设计目录第一章前言............................................................... 1...第二章概述............................................................... 2...2.1 列管式换热器的概述................................................. 2..2.2 列管式换热器的结构组成............................................. 2..第三章正戊烷立式列管式换热器的设计和计算.................................3.3.1 设计方案的论述..................................................... 3..3.1.1 列管式换热器形式的选择 ....................................... 3..3.1.2流体流动通道的选择 (4)3.1.3 换热器的安装方式 (4)3.1.4流体流速的选择 (4)3.2 工艺计算和设备结构的设计计算....................................... 6..3.2.1计算冷、热载体的定性温度 (6)3.2.2计算热负荷 (6)323选取经验传热系数K值 (6)3.2.4初选换热器的规格 (7)3.2.5核算总传热系数KO (8)3.2.6计算压降 (10)第四章换热器材料和主要参数 (11)4.1换热器材料选用 (11)第五章设计总结 ........................................................... 1..2.5.1本设计的优点及存在问题............................................. 1..25 . 2设计过程中的体会.................................................. 1..2附录 .................................................... 错.. 误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计说明书化学与生物工程学院应化系应用化学专业题目:正戊烷冷凝器设计姓名:学号:指导老师:起止时间:目录一、化工原理课程设计书1、正戊烷冷凝器的工艺设计任务书二、概述1、换热器概述2、列管式换热器结构三、设计内容1、换热器类型初选2、确定物性计算传热面积3、传热系数校正4、压力降校核5、换热器结构尺寸设计一览四、换热器设备图五、参考文献六、化工原理课程设计心得一、化工原理课程设计书一、正戊烷冷凝器的设计二、设计条件1.操作条件(1)生产能力:正戊烷2万t/a,冷凝水流量70000kg/h. (2)操作压力:常压(3)正戊烷的冷凝温度51.7℃,冷凝水入口温度32℃.(4)每年按330天计;每天24 h连续生产.(5)要求冷凝器允许压降不大于105Pa. 2.设备型式管壳式立式列管冷凝器三、设计步骤及要求1、确定设计方案;(1)选择列管换热器的类型(2)选择冷却剂的类型和进出口温度(3)查阅介质的物性数据(4)选择冷热流体流动的空间及流速2、初步估算换热器的传热面积;3、初选换热器的规格;4、校核:(1)核算换热器的传热面积(2)核算管程和壳程的流体阻力损失5、附属结构如封头、管箱、分程隔板、缓冲板、拉杆、定距管、人孔或手孔、法兰、补强圈等的选择.6、将计算结果列表四、设计说明书内容1. 目录2. 概述3. 热力计算(包括选择结构,传热计算,压力核算等)4. 结构设计与说明5. 设计总结6. 参考文献7. 附工艺流程图及冷凝器装配图一张二、概述第一节换热器概述1.1换热器简介不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在工程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与前一种情形并无本质上的差别。

英语翻译:heat exchanger换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

列管式换热器的应用已有很悠久的历史。

现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。

1.2列管式换热器的种类列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:1.固定管板式换热器:2.1-挡板 2-补偿圈 3-放气嘴3.固定管板式换热器的示意图这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。

一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

2.浮头式换热器:优点:1)管束可以抽出,以方便清洗管程、壳程;2)壳程壁与管壁不受温差限制;3)可在高温、高压下工作,一般温度T≤450℃,P ≤6.4MPa;4)可用于结垢比较严重的场合;5)可用于管程腐蚀场合.缺点:1)浮头端易发生内漏;2)金属材料耗量大,成本高20%;3)结构复杂。

可用的场合:1)管壳程金属温差很大场合;2)壳程介质易结垢要求经常清洗的场合;换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

4.填料函式换热器:这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

5.U型管式换热器:优点:1)管束可抽出来机械清洗;2)壳体与管壁不受温差限制;3)可在高温、高压下工作,一般适用于T≤500℃,P ≤10MPa;4)可用于壳程结垢比较严重的场合;5)可用于管程易腐蚀场合.缺点:1)在管子的U型处易冲蚀,应控制管内流速;2)管程不适用于结垢较重的场合;可用的场合:1)管程走清洁流体;2)管程压力特别高;3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法满足要求的场合.U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。

管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。

其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

优点是结构简单,质量轻,适用于高温高压条件。

1.3列管式换热器的设计步骤本设计按以下几个阶段进行:(1)设计方案确定和说明。

根据给定任务,对列管式换热器的操作条件、主要设备型式及其材质的选取等进行论述(2)列管式换热器的工艺计算。

(3)列管式换热器设计:计算列管式换热器各主要工艺尺寸,进行流体力学校核计算,并画出列管式换热器的操作性能图。

(4)抄写说明书。

(5)绘制列管式换热器的设备图。

第二节设计方案的确定2.1流动空间的选择在管壳式换热器的计算中,首先需决定和中流体走管程,何种流体走壳程,这需遵守一些一般原则。

(1)应尽量提高两侧传热系数较小的一个,使传热面两侧的传热系数接近。

(2)在运行高温的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失。

(3)管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。

(4)应减小管子的壳体因受热不同而产生的热应力。

从这个角度来说,顺流式就是优于逆流式,因为顺流式进出口端的温度比较平均,不像逆流式那样,热、冷流体的高温部分均集中于一端,易于因两端涨缩不同而产生热应力。

(5)对于有毒的介质或气相介质,必使其不泄漏,应特别注意其密封,密封不仅要可靠,而且还应要求方便及简单。

(6)应尽量避免采用贵金属,以减低成本。

2.1.1宜于通入管内空间的流体(1)不洁净的流体。

(2)体积小的流体。

(3)有压力的流体。

(4)腐蚀性强的流体。

(5)与外界温差大的流体。

2.1.2易于通入管间空间的流体(1)当两流体温度相差较大时,a值大的流体走管间。

(2)若两流体给热性能相差较大时a值小的流体走管间。

(3)饱和蒸汽。

(4)黏度大的流体。

(5)泄漏后危险性大的流体。

2.2.流速的确定冷、热流体流动通道的选择在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。

b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。

c) 压力高的流体宜在管内,以免壳体承受压力。

d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。

e) 流量小而粘度大()的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。

但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。

f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。

g) 需要被冷却物料一般选壳程,便于散热。

以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。

流速的选择流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。

因此选择适宜的流速是十分重要的。

当流体不发生相变时,介质的流速高,换热强度大,从而可使患热面积减少、结构紧凑、成本降低,一般也可以抑制污垢的产生。

但流速大也会带来一些不利的影响,诸如压强降p增加,泵功率增大,且加剧了对传热面的冲刷。

换热器常用流速的范围见下表表:2-1循环水新鲜水一般液体易结垢液体低黏度油高黏度油气体管程流速,m/s 1.0~2.00.8~1.50.5~3 >1.0 0.8~1.80.5~1.55~30壳程流速,m/s 0.5~1.50.5~1.50.2~1.5>0.5 0.4~1.00.3~0.82~152.3加热剂、冷却剂的选择在换热过程中加热剂和冷却剂的选用根据实际情况而定。

除应满足加热和冷却温度外,还应考虑来源方便,价格低廉,使用安全。

在化工生产中常用的加热剂有饱和水蒸气、导热油,冷却剂有水。

2.4流体出口温度的确定工艺流体的进出口温度是由工艺条件决定的,加热剂或冷却剂的进出口温度也是确定的,出口的温度是由设计者自己确定的。

该温度直接影响加热剂或冷却剂的消耗和换热器的大小,所以此温度的确定有一个优化问题。

2.5流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。

当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。

但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。

因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。

当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见计算过程2.6材质的选择在进行换热器设计时,换热器各种零件部件的材料,应根据设备的操作压力,操作温度、流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。

还要考虑材料的经济合理性。

一般换热器常采用的材料,有碳钢和不锈钢。

碳钢价格低,强度较高对碱性介质的化学腐蚀比价稳定,很容易被酸腐蚀在无耐腐蚀性要求的环境中应用合理。

不锈钢具有良好的耐腐蚀性和冷加工性能。

第三节列管式换热器的结构3.1管程结构介质流经传热管内的通道部分称为管程。

3.1.1换热管布置和排列间距常用换热器规格有19*2mm、25*2mm、25*2.5mm.换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列。

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。

相关文档
最新文档