2019年北京中考数学习题精选:与圆的有关计算-精编
2019年北京中考数学试题及答案
2019年北京中考数学试题及答案2019年北京中考数学试题及答案如下:一、选择题(每题2分,共8分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3.14答案:B2. 一个数的相反数是-5,这个数是:A. -5B. 5C. 0D. 10答案:B3. 一个等腰三角形的底角为45°,那么顶角的度数是:A. 45°B. 60°C. 90°D. 135°答案:C4. 一个二次函数的图象开口向上,且经过点(1,0),(3,0),则该二次函数的解析式为:A. y = (x-1)(x-3)B. y = (x+1)(x+3)C. y = (x-1)(x-3) + 1D. y = (x+1)(x+3) + 1答案:A二、填空题(每题3分,共24分)5. 一个数的绝对值是5,这个数可以是______。
答案:±56. 一个数的立方是-8,这个数是______。
答案:-27. 一个等腰三角形的周长是30cm,底边长是8cm,那么腰长是______。
答案:11cm8. 一个二次函数的顶点坐标是(2,-1),且经过点(0,3),则该二次函数的解析式为y = a(x-2)^2 - 1,其中a的值为______。
答案:19. 一个直角三角形的两直角边长分别为3和4,那么斜边长为______。
答案:510. 一个圆的半径是5cm,那么它的周长是______。
答案:10π cm11. 一个扇形的圆心角是60°,半径是4cm,那么它的面积是______。
答案:4π cm^212. 一个等差数列的首项是2,公差是3,那么第5项的值是______。
答案:17三、解答题(共78分)13. (本题满分8分)已知一个等腰三角形的底边长为10cm,腰长为13cm,求该三角形的面积。
解:首先,我们可以利用勾股定理求出底边上的高。
设高为h,则有:h^2 + (10/2)^2 = 13^2h^2 + 25 = 169h^2 = 144h = 12cm然后,我们可以利用三角形面积公式求出面积:面积 = (底边长× 高) / 2 = (10 × 12) / 2 = 60 cm^2所以,该等腰三角形的面积是60 cm^2。
08《圆》2008~2019北京中考数学分类汇编
一.解答题(共12小题)1.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.2.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.2008~2019北京中考数学分类汇编圆3.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O 的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.4.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.5.如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.6.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.7.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE的长.8.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.9.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.10.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.11.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cos C=时,求⊙O的半径.12.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.。
北京市2019年中考数学总复习题型突破03圆中的有关计算
解:(1)证明:连接 BE.∵AB 是直径,∴∠AEB=90° ,
∴∠CBE+∠ECB=90° ,∠EBA+∠EAB=90° . ∵点 E 是������������的中点,∴∠CBE=∠EBA, ∴∠ECB=∠EAB.∴AB=BC.
图 Z3-5
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
5 3
解:(1)证明:连接 OC,∵射线 DC 切☉O 于点 C,∴∠OCP=90° ,
∵DE⊥AP,∴∠DEP=90° ,∴∠P+∠D=90° ,∠P+∠COB=90° ,∴∠COB=∠D, ∵OA=OC,∴∠A=∠OCA,∵∠COB=∠A+∠OCA,∴∠COB=2∠A,∴∠D=2∠A.
图 Z3-3
图 Z3-2
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
2.[2018· 房山一模] 如图 Z3-2,AB,BF 分别是☉O 的直径和弦,弦 CD 与 AB,BF 分别相交于点 E,G,过点 F 的切线 HF 与 DC 的延长线相交于点 H,且 HF=HG. (2)若 sin∠HGF= ,BF=3,求☉O 的半径长.
∵C,D 分别为半径 OB,弦 AB 的中点,∴CD 为△ AOB 的中位线. ∴CD∥OA.∴∠E=90° .∴AE⊥CE.
图 Z3-7
类型1 运用勾股定理、三角函数计算线段长度(针对2018 21题,2017 24题,2015 24题)
7.[2018· 朝阳一模] 如图 Z3-7,在☉O 中,C,D 分别为半径 OB,弦 AB 的中点,连接 CD 并延长,交过点 A 的 切线于点 E. (2)若 AE= 2,sin∠ADE= ,求☉O 半径的长.
北京市2019年中考数学试题(解析版)
北京市2019年中考数学试题(解析版)2019年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共30分,每⼩题3分)第1-10题均有四个选项,符合题意的选项只.有.⼀个。
1. 如图所⽰,⽤量⾓器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:⽤量⾓器度量⾓。
解析:由⽣活知识可知这个⾓⼩于90度,排除C、D,⼜OB边在50与60之间,所以,度数应为55°。
2. 神⾈⼗号飞船是我国“神⾈”系列飞船之⼀,每⼩时飞⾏约28 000公⾥。
将28 000⽤科学计数法表⽰应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表⽰形式为10na?形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所⽰,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴⽐较数的⼤⼩。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内⾓和为540的多边形是答案:c考点:多边形的内⾓和。
n-??,当n=5时,内⾓和为540°,所以,选C。
解析:多边形的内⾓和为(2)1805. 右图是某个⼏何体的三视图,该⼏何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原⼏何体。
解析:该三视图的俯视为三⾓形,正视图和侧视图都是矩形,所以,这个⼏何体是三棱柱。
6. 如果,那么代数2()b aaa a b--g的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平⽅差公式。
解析:2()b aaa a b--g=22a b aa a b--g=()()a b a b aa a b-+-+=2。
7. 甲⾻⽂是我国的⼀种古代⽂字,是汉字的早期形式,下列甲⾻⽂中,不是轴对称的是答案:D考点:轴对称图形的辨别。
【精品初三数学】2019北京初三数学期末分类汇编-圆+答案
如图,△ABC 内接于⊙O ,过点C 作BC 的垂线交⊙O 于D ,点E 在BC 的延长线上,且∠DEC = ∠BAC(1)求证:DE 是 ⊙O 的切线(2)若AC ∥DE ,当AB = 8,CE = 2时,求⊙O 直径的长 2 丰台如图,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC . 过点B 作⊙O 的切线,交AC 的延长线于点D ,在AD 上取一点E ,使AE = AB ,连接BE ,交⊙O 于点F 请补全图形并解决下面的问题: (1)求证:∠BAE =2∠EBD (2)如果AB = 5,55sin =∠EBD ,求BD 的长 3 海淀如图,AB 是⊙O 的弦,半径OE AB ^,P 为AB 的延长线 上一点,PC 与⊙O 相切于点C ,CE 与AB 交于点F (1)求证:PC =PF(2)连接OB ,BC ,若//OB PC,BC =3tan 4P =,求FB 的长E如图,AB 是O e 的直径,过点B 作O e 的切线BM ,点 A ,C ,D 分别为O e 的三等分点,连接AC ,AD ,DC , 延长AD 交BM 于点E , CD 交AB 于点F. (1)求证://CD BM(2) 连接OE ,若DE=m ,求△OBE 的周长 5 通州如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的 两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂 足为E ,直径AB 与CE 的延长线相交于F 点 (1)求证:CF 是⊙O 的切线 (2)当185BD=,3sin 5F=时,求OF 的长 6 燕山如图,AB 是⊙O 的直径,C 为⊙O 上一点,过点C 作⊙O 的切线交AB 的延长线于点P ,过点A 作AD ⊥PC 于点D ,AD 与⊙O 交于点E(1) 求证:AC 平分∠DAB (2) 若AB =10,sin ∠CAB =25,请写出求DE 长的思路BA如图,AB ,AC 是⊙O 的两条切线,B ,C 为切点,连接CO 并延长交AB 于点D ,交⊙O 于点E ,连接BE ,连接AO(1)求证:AO ∥BE(2)若2=DE ,tan ∠BEODO 的长8 门头沟如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM , 交AB 于F ,»»AD DC =,连接AC 和AD ,延长AD 交BM 于点E (1)求证:△ACD 是等边三角形 (2)连接OE ,如果DE = 2,求OE 的长9 大兴如图,点C 是⊙O 直径AB 上一点,过C 作CD ⊥AB 交⊙O 于 点D ,连接DA ,延长BA 至点P ,连接DP ,使∠PDA=∠ADC (1) 求证:PD 是⊙O 的切线(2) 若AC =3,4tan 3PDC ∠=,求BC 的长ADBEM OFCA如图,点O 是Rt △ABC 的AB 边上一点,∠ACB =90°, ⊙O 与AC 相切于点D ,与边AB ,BC 分别相交于点E ,F(1)求证:DE=DF (2)当BC =3,sin A =35时,求AE 的长 11 朝阳如图,在ABE Rt ∆中,090=∠B ,以AB 为直径的⊙O 交 AE 于点C ,CE 的垂直平分线FD 交BE 于点D 连接CD (1)判断CD 与⊙O 的位置关系,并证明 (2)若12=⋅AE AC ,求⊙O 的半径CAE FOBD如图,AB 是⊙O 的直径,ABC ∆内接于⊙O ,点D 在⊙O 上,BD 平分ABC ∠交AC 于点E ,BC DF ⊥交BC 的延 长线于点F(1)求证:FD 是⊙O 的切线 (2)若BD=8,53sin =∠DBF 求DE 的长 13 顺义已知,如图,点C 是以AB 为直径的⊙O 上一点,直线AC 与过B 点的切线相交于D ,点E 是BD 的中点,直线CE 交 直线AB 于点F(1)求证:CF 是⊙O 的切线 (2)若ED=3,EF=5,求⊙O 的半径24. 如图,已知Rt △ABC 中,∠A CB =90°,E 为AB 上一点,以AE 为直径作⊙O 与BC 相切于点D ,连接ED 并延长交AC 的延长线于点F . (1)求证:AE =AF ;(2)若AE =5,AC =4,求BE 的长.15 石景山如图,AB 是⊙O 的直径,C 为AB 延长线上一点,过点C 作⊙O 的切线CD ,D 为切点,点F 是»AD 的中点,连接OF 并延长交CD 于点E ,连接BD ,BF . (1)求证:BD∥OE ; (2)若OE =3tan 4C =,求⊙O 的半径.EC1昌平 (1)连接BD∵DC ⊥BE ∴∠BCD =∠DCE =90° ∴BD 是⊙O 直径 ∴∠DEC +∠CDE =90°∵∠DEC =∠BAC ∴∠BAC +∠CDE =90° ∵»»BC BC = ∴∠BAC =∠BDC∴∠BDC +∠CDE =90° ∴DE 是⊙O 切线(2)∵AC ∥DE ,BD ⊥DE ∴BD ⊥AC ∵BD 是⊙O 直径 ∴AF =CF∴AB =BC =8 ∵BD ⊥DE ,DC ⊥BE ∴BD 2=BC ·BE =80 ∴BD= 2丰台 作图正确(1)证明:连接AF∵AB 是⊙O 的直径 ∴∠AFB =90° ∵AB = AE ∴∠BAE =2∠BAF ∵BD 是⊙O 的切线 ∴∠ABD =90° ∵∠BAF +∠ABF =90°,∠EBD +∠ABF =90° ∴∠BAF =∠EBD ∴∠BAE =2∠EBD (2)过点E 作EH ⊥BD 于H∵∠BAF =∠EBD ∴sin sin BAF EBD ∠=∠在Rt △ABF 中 ∵AB = 5∴BF =∴2BE BF == 在Rt △EBH 中 ∴sin 2EH BE EBH =⋅∠= ∴BH=4∵EH ∥AB ∴EH DH AB DB = ∴254DH DH =+,解得83DH =∴203BD BH HD =+=H3海淀(1)证明:如图,连接OC∵OE AB ⊥ ∴90EGF ∠=° ∵PC 与⊙O 相切于点C ∴=90OCP ∠° ∴90E EFG OCF PCF ∠+∠=∠+∠=° ∵OE OC = ∴E OCF ∠=∠ ∴EFG PCF ∠=∠ 又∵EFG PFC ∠=∠ ∴PCF PFC ∠=∠ ∴PC PF = (2)方法一:解:如图,过点B 作BH PC ⊥于点H∵OB PC ∥,90OCP ∠=︒ ∴90BOC ∠=︒ ∵OB OC = ∴45OBC OCB ∠=∠=° ∴45BCH OBC ∠=∠=° 在Rt BHC △中,BC =可得sin45BH BC =⋅°3=,cos45CH BC =⋅°3= 在Rt BHP △中,3tan 4P =可得4tan BHPH P==∴5BP == ∴7PC PH CH =+= ∴PF PC =∴2FB PF PB PC PB =-=-= 方法二:解:如图,过点C 作CH AP ⊥于点H∵OB PC ∥,90OCP ∠=︒ ∴90BOC ∠=° ∵OB OC = ∴45OBC OCB ∠=∠=° 在Rt OBC △中,BC = 可得sin45OB BC =⋅°3= ∴3OE OB ==∵GBO P ∠=∠,3tan 4P =∴3tan 4GBO ∠=在Rt GBO △中,tan OG GBO GB ∠=,3OB = ∴95OG =,125GB =∴65EG OE OG =-= 在Rt CHP △中,tan CHP PH=,222CH PH PC +=设3CH x =,则4PH x =,5PC x = ∵PC PF = ∴FH PF PH x =-= ∵EFG CFH ∠=∠,90EGF CHF ∠=∠=o ∴EGF △∽CHF △ ∴13FG FH EG CH == ∴1235FG EG ==∴2FB GB FG =-=PPP方法三:解:如图,过点C 作CH AP ⊥于点H ,连接AC ∵OB PC ∥,90OCP ∠=︒ ∴90BOC ∠=︒ ∴1452A BOC ∠=∠=° 在Rt CHP △中,3tan 4CH P PH == 设3CH x =,则4PH x =,5PC x =在Rt AHC △中,45A ∠=°,3CH x = ∴3AH CH x ==,32AC x = ∴7PA AH PH x =+= ∵P P ∠=∠,45PCB A ∠=∠=︒ ∴PCB PAC △∽△ ∴PB PC BC PC PA AC ==∵32BC = ∴75x =,7PC =,5PB = ∵PF PC = ∴7PF = ∴2FB PF PB =-=方法四:解:如图,延长CO 交AP 于点M∵OB PC ∥,90OCP ∠=︒ ∴90BOC ∠=︒ 在Rt OBC △中,32BC =,OB OC = 可得3OB =∵MBO P ∠=∠,3tan 4P =∴3tan 4MBO ∠=在Rt MBO △中,3tan 4OM MBO OB ∠== 可得94OM =,154BM = ∴214CM = 在Rt PCM △中,3tan 4CM P PC ==可得7PC =,354PM = ∴5PB PM BM =-=,7PF PC == ∴2FB PF PB =-=4怀柔(1)∵点A 、C 、D 为O e 的三等分点 ∴»»»AD DC AC == ∴AD=DC=AC ∵AB 是O e 的直径 ∴AB ⊥CD ∵过点B 作O e 的切线BM∴BE ⊥AB ∴//CD BM(2) 连接DB由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解G H F APCBE OABCDF M O得BE=2m ,m②在Rt △ADB 中利用30°角,解得AB=2m ,③在Rt △OBE 中,由勾股定理得出④计算出△OB E 周长为2m 5通州 (1)连接OC∵»»CB CB = ∴2BOC BAC ∠=∠∵∠ABD =2∠BAC ∴BOC ABD ∠=∠ ∴BD ∥OC ∵CE ⊥DB ∴CE ⊥OC ∴CF 是⊙O 的切线 (2)解:连接AD∵AB 为⊙O 的直径 ∴BD ⊥AD ∵CE ⊥DB ∴AD ∥CF ∴F BAD ∠=∠ 在Rt △ABD 中 ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB = ∴6AB = ∴3OC = 在Rt △COF 中 ∴3sin 5OC F OF == ∴335OF = ∴5OF = 另解:过点O 作OG ⊥DB 于点G 6燕山 (1)连接OC ,∵PD 切⊙O 于点C ∴OC ⊥PC ∵AD ⊥PC 于点D ∴OC ∥AD ∴∠1=∠3 又∵OA =OC ∴∠2=∠3 ∴∠1=∠2 即AC 平分∠DAB(2) 思路一:连接CE 可证Rt △CDE ∽Rt △ACB ∴DE CEBC AB=在Rt △ABC 中,由AB =10,sin ∠CAB =25,可求BC =4由∠1=∠2,得EC ⌒=BC ⌒ ∴EC =BC =4 故BC CEDE AB=g 可求 思路二:过点B 作BF ⊥l 于点F ,连接BE ,可证四边形DEBF 是矩形 ∴DE =BF 由AB 为⊙O 的直径,∠ACB =90°,且OC ⊥PC 可证∠BCF =∠3=∠2,在Rt △ABC 中,由AB =10,sin ∠2=25,可求BC =4 在Rt △BCF 中,由BC =4,sin ∠BCF =sin ∠2=25可求BF =85 ∴DE =BF =857房山)(1) 证明:连结BC∵AB ,AC 是⊙O 的两条切线,B ,C 为切点∴=AB AC ,平分∠OA BAC ∴OA ⊥BC ∵CE 是⊙O 的直径 ∴∠CBE =90° ∴ OA ∥BE (2)∵OA ∥BE ∴∠BEO =∠AOC ∵tan ∠BEO∴tan ∠AOC在Rt △AOC 中,设OC =r ,则AC, OA∴在Rt △CEB 中,EBr ∵BE ∥OA ∴△DBE ∽△DAO ∴DE EB DO OA =2DO =∴DO =3AA8门头沟(1)∵ AB 是⊙O 的直径,BM 是⊙O 的切线 ∴ AB ⊥BM∵ CD ∥BM ∴AB ⊥CD ∴»»AD AC = ∵»»AD DC = ∴ »»»AD AC DC== ∴ AD =AC =DC ∴△ACD 是等边三角形 (2)连接BD ,如图∵ AB 是⊙O 的直径 ∴∠ADB =90° ∵∠ABD =∠C =60°∴∠DBE =30° 在Rt △BDE 中,DE =2,可得BE =4,BD=在Rt △ADB 中,可得AB=∴ OB=在Rt △OBE 中,由勾股定理得OE=9大兴 (1)连接OD∵OD =OA ∴∠ODA=∠OAD ∵CD ⊥AB 于点C ∴∠OAD +∠ADC =90° ∴∠ODA +∠ADC = 90° ∵∠PDA =∠ADC ∴∠PDA +∠ODA =90° 即∠PDO =90° ∴PD ⊥OD ∵D 在⊙O 上 ∴PD 是⊙O 的切线(2) ∵∠PDO =90° ∴∠PDC +∠CDO =90° ∵CD ⊥AB 于点C∴∠DOC +∠CDO =90° ∴∠PDC =∠DOC 4tan 3PDC ∠=Q 4tan 3DOC ∴∠= 设DC = 4x ,CO = 3x ,则OD =5x ∵AC =3 ∴OA =3x+3 ∴3x+3=5x ∴x =32∴OC=3x=92, OD=OB=5x =152∴BC=1210(2019.1+++平谷+++初三上+++期末)无答案ABEM ABEMB11朝阳12西城。
2019年北京中考数学习题精选:与圆的有关计算
一、选择题 1.(2018北京市朝阳区一模)如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-答案D 2.(2018北京东城区一模)如图,O e 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是A .πB .3π2C .2πD .3π 答案D3、(2018北京朝阳区第一学期期末检测)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为(A) 2 (B) 2π (C) 4 (D) 4π答案:B4.(2018北京大兴第一学期期末)-在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为A. ︒10B. ︒60C. ︒90D. ︒120 答案:B5.(2018北京东城第一学期期末)A ,B 是O e 上的两点,OA =1, »AB 的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120° 答案:B6.(2018北京通州区第一学期期末)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A .6π B .π C .3πD . 32π答案:D7.(2018北京西城区第一学期期末)圆心角为60︒,且半径为12的扇形的面积等于( ). A. 48π B .24π C .4π D .2π 答案:B8.(2018北京朝阳区二模)如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2 为A'B(A )41312π- (B )4912π-(C )4136π+(D )6 答案:A二、填空题9.(2018北京海淀区二模)如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .答案:6π10.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为 .答案:π 11.(2018北京大兴第一学期期末)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是cm 2. 答案:36 π .12.(2018北京房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形.若开口∠1=60°,半径为 6 ,则这个“吃豆小人”(阴影图形)的面积为 .答案:5π13.(2018北京丰台区第一学期期末)半径为2的圆中,60°的圆心角所对的弧的弧长为 . 答案:2π314.(2018年北京海淀区第一学期期末)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为 .答案:6OFEDCBA1OCBA15.(2018北京怀柔区第一学期期末)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为米2.答案:16.(2018北京密云区初三(上)期末)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为___________________. 答案:60︒ 17.(2018北京平谷区第一学期期末)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值).答案:4π 18.(2018北京石景山区第一学期期末)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 弧AB 的三等分点,则图中所有阴影部分的面积之和是________cm 2.答案:2π 19.(2018北京西城区二模)如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 . 答案:43π三、解答题20.(2018年北京昌平区第一学期期末质量抽测)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线;(2)如果半径的长为3,tan D=34,求AE 的长.OF B A答案:(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分 (2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分 ∴OD =22OC CD +=5.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35, ∴AE=245.……………………………6分21.(2018北京顺义区初三上学期期末)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm ,∠O =∠O ’=90°,计算图中中心虚线的长度.答案:20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分OF B A22.(2018北京燕山地区一模)如图,在△ABC 中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交 AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 的直径. (1)求证:AM 是⊙O 的切线(2)当BE =3,cosC=52时,求⊙O 的半径.解: (1)连结OM. ∵BM 平分∠ABC∴∠1 = ∠2 又OM=OB ∴∠2 = ∠3∴ OM ∥ BC …………………………………2′ AE 是BC 边上的高线∴AE ⊥BC,∴AM ⊥OM∴AM 是⊙O 的切线…………………………………3′(2)∵AB=AC∴∠ABC = ∠C AE ⊥BC,∴E 是BC 中点 ∴EC=BE=3 ∵cosC=52=AC EC ∴AC=25EC= 215…………………………………4′∵OM ∥ BC ,∠AOM =∠ABE ∴△AOM ∽△ABE ∴ABAOBE OM =又∠ABC = ∠C ∴∠AOM =∠C 在Rt △AOM 中cos ∠AOM = cosC=52 52=AO OM ∴AO=OM 25AB=OM 25+OB=OM 27而AB= AC= 215∴OM 27=215OM=715∴⊙O 的半径是715…………………………………6′23.(2018北京通州区一模)EO M G F ABC321O M GF AB C答案24.(2018北京延庆区初三统一练习)如图,AB 是⊙O 的直径,D 是⊙O上一点,点E 是AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C . (1)求证:AB BC =; (2)如果AB =5,1tan 2FAC ∠=,求FC 的长. 证明:(1)连接BE .∵AB 是直径, ∴∠AEB =90°.∴∠CBE +∠ECB =90°∠EBA +∠EAB =90°. ∵点E 是AD )的中点, ∴∠CBE =∠EBA .∴∠ECB =∠EAB . ……1分 ∴AB =BC . ……2分 (2)∵FA 作⊙O 的切线, ∴FA ⊥AB . ∴∠FAC +∠EAB =90°. ∵∠EBA +∠EAB =90°,∴∠FAC =∠EBA .∵1tan 2FAC ∠= AB =5,∴5AE 25BE = ……4分 过C 点作CH ⊥AF 于点H , ∵AB =BC ∠AEB =90°, ∴AC =2AE=25. ∵1tan 2FAC ∠=, ∴CH =2. ……5分 ∵CH ∥AB AB =BC=5, ∴255FCFC =+. ∴FC=310.…6分25.(2018北京西城区九年级统一测试)如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D 为CB 延长线上一点,AD 与⊙O 相切,切点为A . (1)求点B 到半径OC 的距离(用含r 的式子表示).OFED CAHC DEFOA C DEFO(2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值. AOB C解:(1)如图4,作BE ⊥OC 于点E .∵ 在⊙O 的内接△ABC 中,∠BAC=15︒,∴ =230BOC BAC ∠∠=︒.在Rt △BOE 中,∠OEB=90︒,∠BOE=30︒,OB=r ,∴ 22OB rBE ==. ∴ 点B 到半径OC 的距离为2r.……………………………………………2分 (2)如图4,连接OA .由BE ⊥OC ,DH ⊥OC ,可得BE ∥DH . ∵ AD 与⊙ O 相切,切点为A ,∴ AD ⊥OA .………………………………3分 ∴ 90OAD ∠=︒. ∵ DH ⊥OC 于点H , ∴ 90OHD ∠=︒.∵ 在△OBC 中,OB=OC ,∠BOC=30︒,∴ 180752BOCOCB ︒-∠∠==︒.∵ ∠ACB=30︒,∴ 45OCA OCB ACB ∠=∠-∠=︒.∵ OA=OC ,∴ 45OAC OCA ∠=∠=︒.∴ 180290AOC OCA ∠=︒-∠=︒.∴ 四边形AOHD 为矩形,∠ADH=90︒.…………………………………… 4分 ∴ DH =AO=r .∵ 2rBE =,∴ 2D BE H=. ∵ BE ∥DH ,∴ △CBE ∽△CDH .∴ 12CB BE D DH C ==.…………………………………………………………… 5分26.(2018北京平谷区中考统一练习)如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB =2∠C ;图4(2)若AB=6,3cos5B=,求DE的长.D EOACB(1)证明:∵AC是⊙O的切线,∴∠BAC=90°. (1)∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC, (2)∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C. (3)(2)解:连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB= 6,3 cos5B=,∴BD=185. (4)在Rt△ABC中,AB=6,3 cos5B=,∴BC=10.∵点E是BC边的中点,∴BE=5. (5)∴75DE=. (6)27.(2018北京顺义区初三练习)如图,等腰△ABC是⊙O的内接三角形,AB=AC,过点A作BC的平行线AD交BO的延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为15,sin∠D=35,求AB的长.(1)证明:连接AO,并延长交⊙O于点E,交BC于点F.∵AB=AC,∴»»=AB AC.∴AE⊥BC.∵AD∥BC,∴AE⊥AD.∴AD是⊙O的切线.……………2分(2)解法1:∵AD∥BC,∴∠D=∠1.D EOAC BDAOB C1FDCOAB∵sin ∠D =35, ∴sin ∠1=35. ∵AE ⊥BC , ∴OF OB =35. ∵⊙O 的半径OB =15, ∴OF =9,BF =12. ∴AF =24.∴AB =125.……………………………………………………… 5分 3解法2:过B 作BH ⊥DA 交DA 延长线于H .∵AE ⊥AD ,sin ∠D =35,∴OA OD =35. ∵⊙O 的半径OA =15, ∴OD =25,AD =20. ∴BD =40.∴BH =24,DH =32. ∴AH =12.∴AB =125 5分28.(2018北京石景山区初三毕业考试)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O 的半径是23D 是OC 中点,15CBE ∠=°,求线段EF 的长.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分DEOAC H 321F DEOAC HF DCOAB∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°,∴3230F CBE ∠=∠=∠=°.∵⊙O 的半径是23,点D 是OC 中点, ∴3OD =.在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴232HE =-. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴3623EF EH ==-. ………………5分 29.(2018北京市朝阳区一模)如图,在△ABC 中,AB =BC ,∠A =45°,以AB 为直径的⊙O 交CO 于点D . (1)求证:BC 是⊙O 的切线;(2)连接BD ,若BD =m ,tan ∠CBD =n ,写出求直径AB 的思路.解(1)证明:∵AB =BC ,∠A =45°,∴∠ACB =∠A =45°.∴∠ABC =90°. …………………………………………………………1分 ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. …………………………………………………2分 (2)求解思路如下:①连接AD ,由AB 为直径可知,∠ADB =90°,进而可知∠BAD =∠CBD ;……3分②由BD =m ,tan ∠CBD =n ,在Rt △ABD 中,可求AD =mn;………………………4分 ③在Rt △ABD 中,由勾股定理可求AB 的长. ……………………………………5分 30.(2018北京市朝阳区综合练习(一))如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的 切线于点E .(1)求证:AE ⊥CE . (2)若AE =,sin ∠ADE =31,求⊙O 半径的长.EF HBOD APCEF HBODAPC(1)证明:连接OA ,∵OA 是⊙O 的切线,∴∠OAE =90º. ………………………………1分 ∵ C ,D 分别为半径OB ,弦AB 的中点, ∴CD 为△AOB 的中位线. ∴CD ∥OA .∴∠E =90º. ∴AE ⊥CE . …………………………………2分(2)解:连接OD ,∴∠ODB =90º. ………………………………………………3分∵AE =,sin ∠ADE =31, 在Rt △AED 中,23sin =∠=ADEAEAD .∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD .………………………4分 设OD =x ,则OA =3x , ∵222OA AD OD =+,∴()()222323x x =+. 解得 231=x ,232-=x (舍).∴293==x OA . ………………………………………5分即⊙O 的半径长为29.31. (2018北京门头沟区初三综合练习)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H .(1)求证:∠D =2∠A ; (2)若HB =2,cos D =35,请求出AC 的长. (1)证明:连接OC ,∵射线DC 切⊙O 于点C , ∴∠OCP =90° ∵DE ⊥AP ,∴∠DEP =90°∴∠P +∠D =90°,∠P +∠COB =90°∴∠COB =∠D …………………1分 ∵OA =OC , ∴∠A =∠OCA∵∠COB=∠A +∠OCA ∴∠COB =2∠A∴∠D =2∠A …………………2分 (2)解:由(1)可知:∠OCP =90°,∠COP =∠D ,∴cos ∠COP =cos ∠D =35, …………………3分12E CBOD∵CH ⊥OP ,∴∠CHO =90°, 设⊙O 的半径为r ,则OH =r ﹣2. 在Rt △CHO 中,cos ∠HOC =OH OC =2r r -=35, ∴r =5, …………………4分 ∴OH =5﹣2=3,∴由勾股定理可知:CH =4,∴AH =AB ﹣HB =10﹣2=8.在Rt △AHC 中,∠CHA =90°,∴由勾股定理可知:AC =45.…………………5分32.(2018北京东城区一模) 如图,AB 为O e 的直径,点C ,D 在O e 上,且点C 是»BD的中点.过点C 作 AD 的垂线EF 交直线AD 于点E . (1)求证:EF 是O e 的切线;(2)连接BC . 若AB =5,BC =3,求线段AE 的长.(1)证明:连接OC .∵»»CDCB = ∴∠1=∠3. ∵OA OC =, ∴∠1=∠2. ∴∠3=∠2. ∴AE OC ∥. ∵AE EF ⊥, ∴OC EF ⊥.∵ OC 是O e 的半径,∴EF 是O e 的切线. ----------------------2分 (2)∵AB 为O e 的直径, ∴∠ACB =90°.根据勾股定理,由AB =5,BC =3,可求得AC =4. ∵AE EF ⊥ , ∴∠AEC =90°. ∴△AEC ∽△ACB .GC DE B OAFH ∴AE ACAC AB=. ∴445AE =. ∴165AE =. ----------------------5分 33.(2018北京怀柔区一模)如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA=BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠(1)求证:BE=CE ;(2)若⊙O 的直径长8,sin ∠BCE=45,求BE 的长.23.解:(1)∵BA=BC ,AO=CO, ∴BD ⊥AC.∵CE 是⊙O 的切线, ∴CE ⊥AC.∴CE ∥BD. ……………………………………1分 ∴∠ECB=∠CBD. ∵BC 平分∠DBE, ∴∠CBE=∠CBD. ∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分 (2)解:作EF ⊥BC 于F. …………………………3分 ∵⊙O 的直径长8, ∴CO=4.∴sin ∠CBD= sin ∠BCE= 45=OCBC. …………………………………………………………4分 ∴BC=5,OB=3. ∵BE=CE, ∴BF=1522BC =. ∵∠BOC=∠BFE =90°,∠CBO=∠EBF, ∴△CBO ∽△EBF.∴BE BFBC OB =. ∴BE=256. ……………………………………………………………………………………5分34.(2018北京房山区一模)如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =HG . (1)求证:AB ⊥CD ;(2)若sin ∠HGF =43,BF =3,求⊙O 的半径长.DOACB第23题图FEDOAC BEDOAC B解:(1)连接OF .∵OF =OB ∴∠OFB =∠B ∵HF 是⊙O 的切线∴∠OFH =90°…………………………………………………………………1分 ∴∠HFB +∠OFB =90° ∴∠B +∠HFB =90°∵HF =HG ∴∠HFG =∠HGF又∵∠HGF =∠BGE∴∠BGE =∠HFG∴∠BGE +∠B =90°∴∠GEB =90°∴AB ⊥CD ………………………………………………………………………2分 (2)连接AF∵AB 为⊙O 直径∴∠AF B =90°…………………………………………………………………3分 ∴∠A +∠B =90° ∴∠A =∠BGE 又∵∠BGE =∠HGF∴∠A =∠HGF …………………………………………………………………4分∵sin ∠HGF =34∴sin A =34∵∠AFB =90°,BF =3 ∴ AB =4∴ O A =O B =2…………………………………………………………………5分 即⊙O 的半径为235.(2018北京丰台区一模)如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F . (1)求证:EF =ED ;(2)如果半径为5,cos ∠ABC =35,求DF 的长. (1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3.∵BC 是⊙O 的切线,∴∠BDF =90°.∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF =DE . …….…….……………2分 (2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°.GD C OE FO AB C E312E C B AO ∵DE ∥AB ,∴∠DEF =∠ABC . ∵cos ∠ABC =35,∴在Rt △ECD 中,cos ∠DEC =CE DE =35. 设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x . 在Rt △CFD 中,由勾股定理得DF =25x . ∵半径为5,∴BD =10. ∵BF ×DC = FD ×BD ,∴1041025x x x =g g ,解得5x =.∴DF =5x =5. …….…….……………5分 (其他证法或解法相应给分.)36.(2018北京西城区二模)如图,AB 是⊙O 的直径,C 是圆上一点,弦CD ⊥AB 于点E ,且DC=AD .过点A 作⊙O 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1)求证:FG 与⊙O 相切; (2)连接EF ,求tan EFC ∠的值.(1)证明:如图6,连接OC ,AC .∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴ CE=DE ,AD=AC .∵ DC=AD ,∴ DC=AD= AC .∴ △ACD 为等边三角形.∴ ∠D =∠DCA=∠DAC =60︒. ∴ .∵ FG ∥DA ,∴ 180DCF D ∠+∠=︒. ∴ .∴ .∴ FG ⊥OC .∴ FG 与⊙O 相切.……………………………………………………… 3分(2)解:如图6,作EH ⊥FG 于点H .设CE= a ,则DE= a ,AD=2a . ∵ AF 与⊙O 相切, ∴ AF ⊥AG . 又∵ DC ⊥AG , 可得AF ∥DC . 又∵ FG ∥DA ,图6∴四边形AFCD为平行四边形.∵DC =AD,AD=2a,∴四边形AFCD为菱形.∴AF=FC=AD=2 a,∠AFC=∠D = 60︒.由(1)得∠DCG= 60︒,3sin60EH CE a=⋅︒=,1cos602CH CE a=⋅︒=.∴52FH CH CF a=+=.∵在Rt△EFH中,∠EHF= 90︒,∴332tan52aEHEFCFH a∠===.……………………………………5分。
2019年北京市中考数学试卷和答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3 B.﹣2 C.﹣1 D.15.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3 B.﹣1 C.1 D.37.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.38.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<10 10≤t<20 20≤t<30 30≤t<40 t≥40 时间t人数学生类型性别男7 31 25 30 4女8 29 26 32 8 学段初中25 36 44 11高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)(2019•北京)解不等式组:19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO 的长.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83 AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00 在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)(2019•北京)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.28.(7分)(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)(2019•北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示为4.39×105.故选:C.2.(2分)(2019•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)(2019•北京)正十边形的外角和为()A.180°B.360°C.720°D.1440°【考点】多边形内角与外角.【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)(2019•北京)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3 B.﹣2 C.﹣1 D.1【考点】数轴.【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)(2019•北京)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【考点】全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)(2019•北京)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3 B.﹣1 C.1 D.3【考点】分式的化简求值.【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n )=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【考点】命题与定理.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b ,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)(2019•北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分0≤t<10 10≤t<20 20≤t<30 30≤t<40 t≥40 时间t人数学生类型性别男7 31 25 30 4女8 29 26 32 8 学段初中25 36 44 11高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【考点】频数(率)分布表;频数(率)分布直方图;算术平均数;中位数.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)(2019•北京)分式的值为0,则x的值是 1 .【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)(2019•北京)如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9 cm2.(结果保留一位小数)【考点】三角形的面积.【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.11.(2分)(2019•北京)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)(2019•北京)如图所示的网格是正方形网格,则∠PAB+∠PBA=45 °(点A,B,P是网格线交点).【考点】勾股定理;勾股定理的逆定理.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.13.(2分)(2019•北京)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0 .【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)(2019•北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12 .【考点】菱形的性质;正方形的性质.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)(2019•北京)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【考点】算术平均数;方差.【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)(2019•北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【考点】平行四边形的判定与性质;菱形的判定与性质;矩形的判定与性质;正方形的判定.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)(2019•北京)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)(2019•北京)解不等式组:【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m 的值及此时方程的根.【考点】根的判别式.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO 的长.【考点】全等三角形的判定与性质;菱形的性质;解直角三角形.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)(2019•北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17 ;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8 万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【考点】近似数和有效数字;用样本估计总体;频数(率)分布直方图.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)(2019•北京)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【考点】角平分线的性质;圆周角定理;三角形的外接圆与外心.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)(2019•北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6 ;(3)7天后,小云背诵的诗词最多为23 首.【考点】规律型:数字的变化类.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83 AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【考点】动点问题的函数图象.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;。
2019年北京中考数学习题精选:与圆的有关计算-推荐
2019年北京中考数学习题精选:与圆的有关计算一、选择题1.(2018北京市朝阳区一模)如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E , 则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-答案D2.(2018北京东城区一模)如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是A .πB .3π2C .2πD .3π 答案D3、(2018北京朝阳区第一学期期末检测)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为(A) 2 (B) 2π (C) 4 (D) 4π答案:B4.(2018北京大兴第一学期期末)-在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为 A. ︒10 B. ︒60 C. ︒90 D. ︒120 答案:B5.(2018北京东城第一学期期末)A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120° 答案:B6.(2018北京通州区第一学期期末)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A .6π B .π C .3πD . 32π答案:D7.(2018北京西城区第一学期期末)圆心角为60︒,且半径为12的扇形的面积等于( ). A. 48π B.24π C.4π D.2π答案:B8.(2018北京朝阳区二模)如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交BAB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为(A )41312π- (B )4912π-(C )4136π+(D )6 答案:A二、填空题9.(2018北京海淀区二模)如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .答案:6π10.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为 .答案:π11.(2018北京大兴第一学期期末)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是cm 2. 答案:36 π .12.(2018北京房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形.若开口∠1=60°,半径为 6 ,则这个“吃豆小人”(阴影图形)的面积为 .答案:5π13.(2018北京丰台区第一学期期末)半径为2的圆中,60°的圆心角所对的弧的弧长为 . 答案:2π3FCBA14.(2018年北京海淀区第一学期期末)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.答案:615.(2018北京怀柔区第一学期期末)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为 米2.答案:16.(2018北京密云区初三(上)期末)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为___________________. 答案:60︒17.(2018北京平谷区第一学期期末)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值). 答案:4π18.(2018北京石景山区第一学期期末)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 弧AB 的三等分点,则图中所有阴影部分的面积之和是________cm 2.答案:2π19.(2018北京西城区二模)如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 . 答案:43π三、解答题20.(2018年北京昌平区第一学期期末质量抽测)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D .(1)求证:DE 是⊙O 的切线; (2)如果半径的长为3,tan D=34,求AE 的长.答案:(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分 (2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分 ∴OD.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35, ∴AE=245.……………………………6分21.(2018北京顺义区初三上学期期末)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm , ∠O =∠O ’=90°,计算图中中心虚线的长度.答案:20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分22.(2018北京燕山地区一模)如图,在△ABC 错误!未找到引用源。
2019年北京中考数学习题精选:与圆的有关计算.doc
12019年北京中考数学习题精选:与圆的有关计算一、选择题 1.(2018北京市朝阳区一模)如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-答案D 2.(2018北京东城区一模)如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是A .πB .3π2C .2πD .3π 答案D3、(2018北京朝阳区第一学期期末检测)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为(A) 2 (B) 2π (C) 4 (D) 4π答案:B4.(2018北京大兴第一学期期末)-在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为 A. ︒10 B. ︒60 C. ︒90 D. ︒120 答案:B5.(2018北京东城第一学期期末)A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120°答案:B6.(2018北京通州区第一学期期末)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A .6π B .π C .3πD . 32π答案:D7.(2018北京西城区第一学期期末)圆心角为60︒,且半径为12的扇形的面积等于( ). A. 48π B .24π C .4π D .2π 答案:B8.(2018北京朝阳区二模)如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2 为B2(A )41312π- (B )4912π-(C )4136π+(D )6 答案:A二、填空题9.(2018北京海淀区二模)如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .答案:6π10.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为 .答案:π 11.(2018北京大兴第一学期期末)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是cm 2. 答案:36 π .12.(2018北京房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形.若开口∠1=60°,半径为 6 ,则这个“吃豆小人”(阴影图形)的面积为 .答案:5π13.(2018北京丰台区第一学期期末)半径为2的圆中,60°的圆心角所对的弧的弧长为 . 答案:2π314.(2018年北京海淀区第一学期期末)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为 .答案:6FCBA315.(2018北京怀柔区第一学期期末)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为 米2.答案:16.(2018北京密云区初三(上)期末)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为___________________. 答案:60︒ 17.(2018北京平谷区第一学期期末)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值). 答案:4π18.(2018北京石景山区第一学期期末)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 弧AB 的三等分点,则图中所有阴影部分的面积之和是________cm 2.答案:2π 19.(2018北京西城区二模)如图,等边三角形ABC 内接于⊙O ,若⊙O的半径为2,则图中阴影部分的面积等于 . 答案:43π三、解答题20.(2018年北京昌平区第一学期期末质量抽测)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线;(2)如果半径的长为3,tan D=34,求AE 的长.4答案:(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分 (2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分 ∴OD.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35, ∴AE=245.……………………………6分21.(2018北京顺义区初三上学期期末)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm ,∠O =∠O ’=90°,计算图中中心虚线的长度.答案:20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 30005002300010ππ+⨯=+…………………4分5=30001000 3.14=6140+⨯……………………………………………..…5分22.(2018北京燕山地区一模)如图,在△ABC 错误!未找到引用源。
2019年北京中考数学习题精选:与圆的有关计算
4一、选择题 1 . (2018北京市朝阳区一模) 则图中阴影部分的面积为 5 1 —+— H 2 4 5 1 -—Ji2 2 如图, 正方形ABCD 的边长为2,以BC 为直径的半圆与对角线 AC 相交于点E,(A ) (B ) (C ) (D ) 3 2 5 21 --H 4i 1 -—n :4 答案D 2. (2018北京东城区一模)如图, L O 是等边△ ABC 的外接圆,其半径为 3.图中阴影部分的面积是A . n C. 2n D . 3n 答案D 3、( 2018北京朝阳区第一学期期末检测)如图,在△AB=AC=4,以点C 为中心,把厶ABC 逆时针旋转45 部分的面积为 (A ) 2 (C) 4 aABC 中, ,得到△ A ' B',C/ BAC=90°, 则图中阴影(D) 4 n (B) 2 n 答案:B 4. (2018北京大兴第一学期期末) A 10B. 60 答案:B -在半径为12cm 的圆中,长为4二cm 的弧所对的圆心角的度数为C. 90D. 1205. (2018北京东城第一学期期末) A , B 是L O 上的两点,1OA=1, AB 的长是一n ,则/ AOB 的度数是3A . 30 答案:B B . 60 ° C. 90 ° D . 120 ° 6(2018北京通州区第一学期期末)已知一个扇形的半径是 JiA .6 答案:D 7. ( 2018北京西城区第一学期期末)圆心角为 A. 48 n B. 24 n C. 4 n 答案:B 8. ( 2018北京朝阳区二模)如图,矩形 ABCD 径作弧交AB 于点 为兀 C.— 3 1 ,圆心角是120 °则这个扇形的弧长是 60,且半径为12的扇形的面积等于( D. 2n 中,AB = 4, BC = 3, F 是AB 中点,以点 E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差A 为圆心, AD 为半S 1-S 2(A) 12 13■:(B) (C ) 124 6空(D) 6 答案:A二、填空题9.(2018北京海淀区二模)如图,AB是o O的直径,C是o O上一点,OA = 6,.B=30,则图中阴影部分的面积为________________ •答案:6 n10. (2018年北京昌平区第一学期期末质量抽测)如图,o O的半径为3,正六答案:n11. (2018北京大兴第一学期期末)圆心角为 ______________ 160°的扇形的半径为9cm,则这个扇形的面积是2___ cm •答案:36 n .12. (2018北京房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形. 若开口/ 1=60°,半径为,6,则这个“吃豆小人”(阴影图形)的面积为 ______________答案:5 n13. (2018北京丰台区第一学期期末)半径为2的圆中,60。
北京2019年中考圆的证明与计算
北京中考圆的证明与计算1.(2018•北京)如图,A B是⊙O的直径,过⊙O外一点P作⊙O的两条切线P C,P D,切点分别为C,D,连接O P,C D.(1)求证:O P⊥C D;(2)连接A D,B C,若∠D A B=50°,∠C B A=70°,O A=2,求O P的长.2.(2017•北京)如图,A B是⊙O的一条弦,E是A B的中点,过点E作E C⊥O A于点C,过点B作⊙O的切线交C E的延长线于点D.(1)求证:D B=D E;(2)若A B=12,B D=5,求⊙O的半径.3.(2016•北京)如图,A B为⊙O的直径,F为弦A C的中点,连接O F并延长交̂A C于点D,过点D作⊙O的切线,交B A的延长线于点E.(1)求证:A C∥D E;(2)连接C D,若O A=A E=a,写出求四边形A C D E面积的思路.4.(2015•北京)如图,A B是⊙O的直径,过点B作⊙O的切线B M,弦C D∥B M,交A B于点F,且̂D A=̂D C,连接A C,A D,延长A D交B M于点E.(1)求证:△A C D是等边三角形;(2)连接O E,若D E=2,求O E的长.5.(2014•北京)如图,A B是⊙O的直径,C是̂A B的中点,⊙O的切线B D交A C的延长线于点D,E是O B的中点,C E的延长线交切线B D于点F,A F交⊙O于点H,连接B H.(1)求证:A C=C D;(2)若O B=2,求B H的长.6.(2018•海淀区一模)如图,A B是⊙O的直径,弦E F⊥A B于点C,过点F作⊙O的切线交A B的延长线于点D.(1)已知∠A=α,求∠D的大小(用含α的式子表示);(2)取B E的中点M,连接M F,请补全图形;若∠A=30°,M F=7,求⊙O的半径.7.(2018•昌平区二模)如图,A B是⊙O的直径,弦C D⊥A B于点E,过点C的切线交A B的延长线于点F,连接D F.(1)求证:D F是⊙O的切线;(2)连接B C,若∠B C F=30°,B F=2,求C D的长.8.(2019•淮阴区一模)如图,A B为⊙O的直径,点C,D在⊙O上,且点C是̂B D的中点,过点C作A D的垂线E F交直线A D于点E.(1)求证:E F是⊙O的切线;(2)连接B C,若A B=5,B C=3,求线段A E的长.9.(2018•海淀区二模)如图,A B是⊙O的直径,M是O A的中点,弦C D⊥A B于点M,过点D作D E⊥C A交C A的延长线于点E.(1)连接A D,则∠O A D=°;(2)求证:D E与⊙O相切;(3)点F在̂B C上,∠CD F=45°,D F交A B于点N.若D E=3,求F N的长.10.(2018•朝阳区二模)A B为⊙O直径,C为⊙O上的一点,过点C的切线与A B的延长线相交于点D,C A=C D.(1)连接B C,求证:B C=O B;(2)E是̂A B中点,连接C E,B E,若B E=2,求C E的长.11.(2018•西城区一模)如图,⊙O的半径为r,△A B C内接于⊙O,∠B A C=15°,∠A C B =30°,D为C B延长线上一点,A D与⊙O相切,切点为A.(1)求点B到半径O C的距离(用含r的式子表示).(2)作D H⊥O C于点H,求∠A D H的度数及C BC D的值.12.(2017•西城区二模)如图,A B是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与A C延长线交于点D,连接B C,O E∥B C交⊙O于点E,连接B E交A C于点H.(1)求证:B E平分∠A B C;(2)连接O D,若B H=B D=2,求O D的长.13.(2017•仙游县模拟)如图,A B为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交B A的延长线交于点D,过点B作B E⊥B A,交D C延长线于点E,连接O E,交⊙O于点F,交B C于点H,连接A C.(1)求证:∠E C B=∠E B C;(2)连接B F ,C F ,若C F =6,s i n ∠F C B =35,求A C 的长.北京中考圆的证明与计算参考答案与试题解析一.解答题(共15小题)1.(2018•北京)如图,A B是⊙O的直径,过⊙O外一点P作⊙O的两条切线P C,P D,切点分别为C,D,连接O P,C D.(1)求证:O P⊥C D;(2)连接A D,B C,若∠D A B=50°,∠C B A=70°,O A=2,求O P的长.【解答】解:(1)方法1、连接O C,O D,∴O C=O D,∵P D,P C是⊙O的切线,∵∠O D P=∠O C P=90°,,在R t△O D P和R t△O C P中,{O D=O CO P=O P∴R t△O D P≌R t△O C P,∴∠D O P=∠C O P,∵O D=O C,∴O P⊥C D;方法2、∵P D,P C是⊙O的切线,∴P D=P C,∵O D=O C,∴P,O在C D的中垂线上,∴O P⊥C D(2)如图,连接O D,O C,∴O A=O D=O C=O B=2,∴∠A D O =∠D A O =50°,∠B C O =∠C B O =70°,∴∠A O D =80°,∠B O C =40°,∴∠C O D =60°,∵O D =O C ,∴△C O D 是等边三角形,由(1)知,∠D O P =∠C O P =30°,在R t △O D P 中,O P =O D c o s 30°=433.2.(2017•北京)如图,A B 是⊙O 的一条弦,E 是A B 的中点,过点E 作E C ⊥O A 于点C ,过点B 作⊙O 的切线交C E 的延长线于点D .(1)求证:D B =D E ;(2)若A B =12,B D =5,求⊙O 的半径.【解答】(1)证明:∵A O =O B ,∴∠O A B =∠O B A ,∵B D 是切线,∴O B ⊥B D ,∴∠O B D =90°,∴∠O B E +∠E B D =90°,∵E C ⊥O A ,∴∠C A E +∠C E A =90°,∵∠C E A =∠D E B ,∴∠E B D =∠B E D ,∴D B =D E .(2)作D F ⊥A B 于F ,连接O E .∵D B =D E ,A E =E B =6,∴E F =12B E =3,O E ⊥A B ,在R t △E D F 中,D E =B D =5,E F =3,∴D F =52-32=4,∵∠A O E +∠A =90°,∠D E F +∠A =90°,∴∠A O E =∠D E F ,∴s i n ∠D E F =s i n ∠A O E =A E A O =45,∵A E =6,∴A O =152.∴⊙O 的半径为152.3.(2016•北京)如图,A B 为⊙O 的直径,F 为弦A C 的中点,连接O F 并延长交̂A C于点D ,过点D 作⊙O 的切线,交B A 的延长线于点E .(1)求证:A C ∥D E ;(2)连接C D,若O A=A E=a,写出求四边形A C D E面积的思路.【解答】(1)证明:∵E D与⊙O相切于D,∴O D⊥D E,∵F为弦A C中点,∴O D⊥A C,∴A C∥D E.(2)解:作D M⊥O A于M,连接C D,C O,A D.首先证明四边形A C D E是平行四边形,根据S平行四边形A C D E=A E•D M,只要求出D M即可.(方法二:证明△A D E的面积等于四边形A C D E的面积的一半)∵A C∥D E,A E=A O,∴O F=D F,∵A F⊥D O,∴A D=A O,∴A D=A O=O D,∴△A D O是等边三角形,同理△C D O也是等边三角形,∴∠C D O=∠D O A=60°,A E=C D=A D=A O=D O=a,∴A O∥C D,又A E=C D,∴四边形A C D E是平行四边形,易知D M=3 2a,∴平行四边形A C D E面积=3 2a2.4.(2015•北京)如图,A B是⊙O的直径,过点B作⊙O的切线B M,弦C D∥B M,交A B于点F ,且̂D A=̂D C,连接A C ,A D ,延长A D 交B M 于点E .(1)求证:△A C D 是等边三角形;(2)连接O E ,若D E =2,求O E 的长.【解答】(1)证明:∵A B 是⊙O 的直径,B M 是⊙O 的切线,∴A B ⊥B E ,∵C D ∥B E ,∴C D ⊥A B ,∴̂A D=̂A C,∵̂D A=̂D C,∴̂A D=̂A C =̂C D,∴A D =A C =C D ,∴△A C D 是等边三角形;(2)解:连接O E ,过O 作O N ⊥A D 于N ,由(1)知,△A C D 是等边三角形,∴∠D A C =60°∵A D =A C ,C D ⊥A B ,∴∠D A B =30°,∴B E =12A E ,O N =12A O ,设⊙O 的半径为:r ,∴O N =12r ,A N =D N =32r ,∴E N =2+32r ,B E =12A E =3r +22,在R t △N E O 与R t △B E O 中,O E 2=O N 2+N E 2=O B 2+B E 2,即(r 2)2+(2+3r 2)2=r 2+(3r +22)2,∴r =23,∴O E 2=(3)2+25=28,∴O E =27.5.(2014•北京)如图,A B 是⊙O 的直径,C 是̂A B的中点,⊙O 的切线B D 交A C 的延长线于点D ,E 是O B 的中点,C E 的延长线交切线B D 于点F ,A F 交⊙O 于点H ,连接B H .(1)求证:A C =C D ;(2)若O B =2,求B H 的长.【解答】(1)证明:连接O C ,∵C 是̂A B的中点,A B 是⊙O 的直径,∴C O ⊥A B ,∵B D 是⊙O 的切线,∴B D ⊥A B ,∴O C ∥B D ,∵O A =O B ,∴A C =C D ;(2)解:∵E 是O B 的中点,∴O E =B E ,在△C O E 和△F B E 中,{∠C E O =∠F E B O E =B E ∠C O E =∠F B E,∴△C O E ≌△F B E (A S A ),∴B F =C O ,∵O B =2,∴B F =2,∴A F =A B 2+B F 2=25,∵A B 是直径,∴B H ⊥A F ,∴△A B F ∽△B H F ,∴A B B H =A F B F,∴A B •B F =A F •B H ,∴B H =A B ⋅B F A F =4×225=455.6.(2018•海淀区一模)如图,A B是⊙O的直径,弦E F⊥A B于点C,过点F作⊙O的切线交A B的延长线于点D.(1)已知∠A=α,求∠D的大小(用含α的式子表示);(2)取B E的中点M,连接M F,请补全图形;若∠A=30°,M F=7,求⊙O的半径.【解答】解:(1)连接O E,O F,如图,∵E F⊥A B,A B是⊙O的直径,∴∠D O F=∠D O E.∵∠D O E=2∠A,∠A=α,∴∠D O F=2α,∵F D为⊙O的切线,∴O F⊥F D.∴∠O F D=90°.∴∠D+∠D O F=90°,∴∠D=90°﹣2α;(2)连接O M,如图,∵A B为⊙O的直径,∴O为A B中点,∠A E B=90°.∵M为B E的中点,∴O M ∥A E ,∵∠A =30°,∴∠M O B =∠A =30°.∵∠D O F =2∠A =60°,∴∠M O F =90°,设⊙O 的半径为r ,在R t △O M B 中,B M =12O B =12r ,O M =3B M =32r ,在R t △O M F 中,O M 2+O F 2=M F 2.即(32r )2+r 2=(7)2,解得r =2,即⊙O 的半径为2.7.(2018•昌平区二模)如图,A B 是⊙O 的直径,弦C D ⊥A B 于点E ,过点C 的切线交A B 的延长线于点F ,连接D F .(1)求证:D F 是⊙O 的切线;(2)连接B C ,若∠B C F =30°,B F =2,求C D 的长.【解答】(1)证明:连接O D ,如图,∵C F 是⊙O 的切线∴∠O C F =90°,∴∠O C D +∠D C F =90°∵直径A B ⊥弦C D ,∴C E =E D ,即O F 为C D 的垂直平分线∴C F =D F ,∴∠C D F =∠D C F ,∵O C =O D ,∴∠C D O =∠O C D∴∠C D O +∠C D B =∠O C D +∠D C F =90°,∴O D ⊥D F ,∴D F 是⊙O 的切线;(2)解:∵∠O C F =90°,∠B C F =30°,∴∠O C B =60°,∵O C =O B ,∴△O C B 为等边三角形,∴∠C O B =60°,∴∠C F O =30°∴F O =2O C =2O B ,∴F B =O B =O C =2,在R t △O C E 中,∵∠C O E =60°,∴O E =12O C =1,∴C E =3O E =3,∴C D =2C E =23.8.(2019•淮阴区一模)如图,A B 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是̂B D的中点,过点C 作A D 的垂线E F 交直线A D 于点E .(1)求证:E F 是⊙O 的切线;(2)连接B C ,若A B =5,B C =3,求线段A E 的长.【解答】(1)证明:连接O C ,∵O A =O C ,∴∠O C A =∠B A C ,∵点C 是̂B D的中点,∴∠E A C =∠B A C ,∴∠E A C =∠O C A ,∴O C ∥A E ,∵A E ⊥E F ,∴O C ⊥E F ,即E F 是⊙O 的切线;(2)解:∵A B 为⊙O 的直径,∴∠B C A =90°,∴A C =A B 2-B C 2=4,∵∠E A C =∠B A C ,∠A E C =∠A C B =90°,∴△A E C ∽△A C B ,∴A E A C =A C A B,∴A E =A C 2A B =165.9.(2018•海淀区二模)如图,A B 是⊙O 的直径,M 是O A 的中点,弦C D ⊥A B 于点M ,过点D 作D E ⊥C A 交C A 的延长线于点E .(1)连接A D ,则∠O A D =60°;(2)求证:D E 与⊙O 相切;(3)点F 在̂B C 上,∠C D F =45°,D F 交A B 于点N .若D E =3,求F N 的长.【解答】解:(1)如图1,连接O D ,A D∵A B 是⊙O 的直径,C D ⊥A B∴A B 垂直平分C D∵M 是O A 的中点,∴O M =12O A =12O D ∴c o s ∠D O M =O M O D =12∴∠D O M =60°又:O A =O D∴△O A D 是等边三角形∴∠O A D =60°故答案为:60°(2)∵C D⊥A B,A B是⊙O的直径,∴C M=M D.∵M是O A的中点,∴A M=M O.又∵∠A M C=∠D M O,∴△A M C≌△O M D.∴∠A C M=∠O D M.∴C A∥O D.∵D E⊥C A,∴∠E=90°.∴∠O D E=180°﹣∠E=90°.∴D E⊥O D.∴D E与⊙O相切.(3)如图2,连接C F,C N,∵O A⊥C D于M,∴M是C D中点.∴N C=N D.∵∠C D F=45°,∴∠N C D=∠N D C=45°.∴∠C N D=90°.∴∠C N F=90°.由(1)可知∠A O D=60°.∴∠A C D=12∠A O D=30°.在R t △C D E 中,∠E =90°,∠E C D =30°,D E =3,∴C D=D E s i n 30°=6.在R t △C N D 中,∠C N D =90°,∠C D N =45°,C D =6,∴C N=C D ⋅s i n 45°=32.由(1)知∠C A D =2∠O A D =120°,∴∠C F D =180°﹣∠C A D =60°.在R t △C N F 中,∠C N F =90°,∠C F N =60°,C N=32,∴F N=C N t a n 60°=6.10.(2018•朝阳区二模)A B 为⊙O 直径,C 为⊙O 上的一点,过点C 的切线与A B 的延长线相交于点D ,C A =C D .(1)连接B C ,求证:B C =O B ;(2)E 是̂A B中点,连接C E ,B E ,若B E =2,求C E 的长.【解答】(1)证明:连接O C .∵A B 为⊙O 直径,∴∠A C B =90°,∵C D 为⊙O 切线∴∠O C D =90°,∴∠A C O =∠D C B =90°﹣∠O C B ,∵C A =C D ,∴∠C A D =∠D .∴∠C O B =∠C B O .∴O C =B C .∴O B =B C ;(2)解:连接A E ,过点B 作B F ⊥C E 于点F .∵E 是A B 中点,∴̂A E =̂B E,∴A E =B E =2.∵A B 为⊙O 直径,∴∠A E B =90°.∴∠E C B =∠B A E =45°,A B=22.∴C B=12A B=2.∴C F =B F =1.∴E F =3.∴C E =1+3.11.(2018•西城区一模)如图,⊙O 的半径为r ,△A B C 内接于⊙O ,∠B A C =15°,∠A C B =30°,D 为C B 延长线上一点,A D 与⊙O 相切,切点为A .(1)求点B 到半径O C 的距离(用含r 的式子表示).(2)作D H ⊥O C 于点H ,求∠A D H 的度数及C B C D的值.【解答】解:(1)如图,作B E ⊥O C 于点E .∵在⊙O 的内接△A B C 中,∠B A C =15°,∴∠B O C =2∠B A C =30°.在R t △B O E 中,∠O E B =90°,∠B O E =30°,O B =r ,∴B E =O B 2=r 2,∴点B 到半径O C 的距离为r 2.(2)连接O A .由B E ⊥O C ,D H ⊥O C ,可得B E ∥D H .∵A D 于⊙O 相切,切点为A ,∴A D ⊥O A ,∴∠O A D =90°.∵D H ⊥O C 于点H ,∴∠O H D =90°.∵在△O B C 中,O B =O C ,∠B O C =30°,∴∠O C B=180°-∠B O C 2=75°.∵∠A C B =30°,∴∠O C A =∠O C B ﹣∠A C B =45°.∵O A =O C ,∴∠O A C =∠O C A =45°,∴∠A O C =180°﹣2∠O C A =90°,∴四边形A O H D 为矩形,∠A D H =90°,∴D H =A O =r .∵B E =r 2,∴B E =D H 2.∵B E ∥D H ,∴△C B E ∽△C D H ,∴C BC D=B ED H=12.12.(2017•西城区二模)如图,A B是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与A C延长线交于点D,连接B C,O E∥B C交⊙O于点E,连接B E交A C于点H.(1)求证:B E平分∠A B C;(2)连接O D,若B H=B D=2,求O D的长.【解答】(1)证明:∵A B为⊙O的直径,∴∠A C B=90°,∵O E∥B C,∴O E⊥A C,∴̂A E=̂C E,∴∠1=∠2,∴B E平分∠A B C;(2)解:∵B D是⊙O的切线,∴∠A B D=90°,∵∠A C B=90°,B H=B D=2,∴∠C B D=∠2,∴∠1=∠2=∠C B D,∴∠C B D =30°,∠A D B =60°,∵∠A B D =90°,∴A B =23,O B =3,∵O D 2=O B 2+B D 2,∴O D =7.13.(2017•仙游县模拟)如图,A B 为⊙O 的直径,C 为⊙O 上一点,过点C 作⊙O 的切线,交B A 的延长线交于点D ,过点B 作B E ⊥B A ,交D C 延长线于点E ,连接O E ,交⊙O 于点F ,交B C 于点H ,连接A C .(1)求证:∠E C B =∠E B C ;(2)连接B F ,C F ,若C F =6,s i n ∠F C B =35,求A C 的长.【解答】(1)证明:∵B E ⊥O B ,∴B E 是⊙O 的切线,∵E C 是⊙O 的切线,∴E C =E B ,∴∠E C B =∠E B C .(2)解:连接C F 、C O 、A C .∵E B =E C ,O C =O B ,∴E O ⊥B C ,∴∠C H F =∠C H O =90°,在R t △C F H 中,∵C F =6,s i n ∠F C H =35,∴F H =C F •s i n ∠F C H =185,C H =C F 2-F H 2=245,设O C =O F =x ,在R t △C O H 中,∵O C 2=C H 2+O H 2,∴x 2=(245)2+(x -185)2,∴x =5,∴O H =75,∵O H ⊥B C ,∴C H =H B ,∵O A =O B ,∴A C =2O H =145.。
2019北京中考数学一模——23圆专题
2019北京中考数学一模———————————————————————————————————圆专题【2019东城一模】23.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.【2019西城一模】23.如图,AB是⊙O的直径,CB与⊙O相切于点B.点D在⊙O上,且BC=BD,连接CD交⊙O于点E.过点E作EF⊥AB于点H,交BD于点M,交⊙O于点F.(1)求证:∠MED=∠MDE.(2)连接BE.若ME=3, MB=2.求BE的长.【2019海淀一模】22.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,在⊙O 的切线CM 上取一点P ,使得∠CPB =∠COA .(1)求证:PB 是⊙O 的切线; (2)若CD =6,求PB 的长.【2019朝阳一模】22.如图,四边形ABCD 内接于⊙O ,点O在AB 上,BC =CD ,过点C 作⊙O 的切线,分别交AB ,AD 的延长线于点E ,F .(1)求证:AF ⊥EF ; (2)若cos A =,BE =1,求AD 的长.AB =452019北京中考数学一模———————————————————————————————————圆专题【2019丰台一模】【2019石景山一模】22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF .(1)求证:; (2)连接BC ,若⊙O 的半径为,,求BC 的长.12CE AF =5tan 2CAF Ð=【2019门头沟一模】23.如图,点D 在⊙O 上,过点D 的切线交直径AB 的延长线于点P ,DC ⊥AB 于点C .(1)求证:DB 平分∠PDC ;(2)如果DC = 6,,求BC 的长.【2019房山一模】22. 如图,在△ABC 中,AB = AC ,以AB 为直径的⊙O 分 别交AC ,BC 于点 D ,E ,过点B作⊙O 的切线, 交 AC 的延长线于点F .(1)求证:∠CBF=∠CAB ; (2)若CD = 2,,求FC 的长.3tan 4P Ð=PA121tan 2CBF Ð=2019北京中考数学一模———————————————————————————————————圆专题【2019大兴一模】22. 如图,AB 为⊙O 的直径, CB 与⊙O 相切于点B ,连接AC 交⊙O 于点D . (1)求证:∠DBC =∠DAB ;(2)若点E 为AD 的中点,连接BE 交AD 于点F ,若BC =6,,求AF 的长.【2019通州一模】23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点E,在弦BC 上取一点F ,使AF =AE ,连接AF 并延长交⊙O 于点D . (1)求证:;(2)若CE =2,,求AD 的长.sin ABD Ð=B CAD Ð=Ð30B Ð=°【2019顺义一模】22.已知:如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点P 在AB 的延长线上,且∠A=∠P=30 . (1)求证:PC 是⊙O 的切线;(2)连接BC ,若AB=4,求△PBC 的面积.【2019密云一模】24.如图,AB 为⊙O 的直径,E 为OB 中点,过E 作AB 垂线与⊙O 交于C、D 两点.过点C 作⊙O 的切线CF 与DB 延长线交于点F. (1)求证:CF⊥DF (2)若OF 长.FA2019北京中考数学一模———————————————————————————————————圆专题【2019延庆一模】24.如图,是的直径,点在上,点是上一动点,且与点分别位于直径的两侧,,过点作交PB 的延长线于点Q ; (1)当点P 运动到什么位置时,CQ 恰好是⊙O 的切线?(2)若点P 与点C 关于直径AB 对称,且AB =5,求此时CQ 的长.【2019平谷一模】24.如图,AB 是⊙O 的直径,AC 切⊙O 于点A ,连接BC 交⊙O 于点D ,点E 是的中点,连接AE 交BC 于点F . (1)求证:AC=CF ;(2)若AB =4,AC =3,求∠BAE 的正切值.AB ⊙O C ⊙O P AB C AB tan ∠CPB =43C CQ ⊥CPBABD【2019燕山一模】22.如图,Rt△ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交BD 的延长线于点E ,CE =BC .(1) 求证:CE 是⊙O 的切线;(2) 若CD =2,BD =O 的半径.【2019怀柔一模】22. 如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是的中点. 连接AC ,过点C 作⊙O 的切线EF 交射线AD 于点E .(1)求证:AE⊥EF ; (2)连接BC . 若,AB=5,求BC 的长.ABD 165AE =F。
2019年中考数学知识点《与圆的有关计算》精选考题练习(含答案解析)
D. 19
2
8
8
【答案】B 【解析】AC边在旋转过程中所扫过的图形的面积=S△OCA+S扇形OAB- S扇形OCD- S△ODB①,由旋转知:△OCA≌△ODB,
∴S△OCA=S△ODB,∴①式=S扇形OAB-
S扇形OCD=
90 32
360
9012
-
360
=2π,故选B.
5.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能 形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近( )
OA 2
180
2. (2019·枣庄)如图,在边长为 4 的正方形 ABCD 中,以点 B 为圆心,AB 为半径画弧,交对角线 BD 与点 E,则图中阴
影部分的面积是(结果保留)
A.8-
B.16-2
C.8-2
D.8- 1
2
【答案】C
【解析】在边长为 4 的正方形 ABCD 中,BD 是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=
1 AD AB =8,S 扇形 ABE= 45 42 =8-2,故选 C.
2
360
3. (2019·巴中)如图,圆锥的底面半径 r=6,高 h=8,则圆锥的侧面积是( )
A.15
B.30
C.45
D.60
【答案】D
【解析】圆锥的高,母线和底面半径构成直角三角形,其中 r=6,h=8,所以母线为 10,即为侧面扇形的半径,底面周长
A. 1
B.
C.2
2
D.3
【答案】C 【解析】连接 OA,OB,过点 O 作 OD⊥AB 交 AB 于点 E,由题可知 OD=DE= 1 OE= 1 OA,在 Rt△AOD 中,sinA=
北京市各区2019届中考数学一模试卷精选汇编圆简答题专题
圆简答题专题东城区23.如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD 于点E.(1)求证:EF是O的切线;(2)连接BC. 若AB=5,BC=3,求线段AE的长.23. (1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴445AE =. ∴165AE =. ----------------------5分 西城区24.如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D 为CB 延长线上一点,AD 与⊙O 相切,切点为A .(1)求点B 到半径OC 的距离(用含r 的式子表示). (2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值. AB C【解析】(1)如图4,作BE OC ⊥于点E . ∵在⊙O 的内接ABC △中,15BAC ∠=︒, ∴230BOC BAC ∠=∠=︒.在Rt BOE △中,90OEB ∠=︒,30BOE ∠=︒,OB r =, ∴22OB rBE ==, ∴点B 到半径OC 的距离为2r. (2)如图4,连接OA .由BE OC ⊥,DH OC ⊥,可得BE DH ∥. ∵AD 于⊙O 相切,切点为A , ∴AD OA ⊥, ∴90OAD ∠=︒. ∵DH OC ⊥于点H , ∴90OHD ∠=︒.∵在OBC △中,OB OC =,30BOC ∠=︒,∴180752BOCOCB ︒-∠∠==︒.∵30ACB ∠=︒,∴45OCA OCB ACB ∠=∠-∠=︒. ∵OA OC =,∴45OAC OCE ∠=∠=︒, ∴180290AOC OCA ∠=︒-∠=︒, ∴四边形AOHD 为矩形,90ADH ∠=︒, ∴DH AO r ==. ∵2r BE =, ∴2DHBE =. ∵BE DH ∥, ∴CBE CDH ∽△△, ∴12CB BE CD DH ==. 图4CB A海淀区23.如图,AB 是O 的直径,弦EF AB ⊥于点C ,过点F 作O 的切线交AB 的延长线于点D . (1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A∠=︒,MF ,求O 的半径.DA23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径, ∴DOF DOE =∠∠. ∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O 的切线, ∴OF FD ⊥. ∴90OFD ︒=∠.∴+90D DOF ︒=∠∠.902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点, ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O 的半径为r . ∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.DADA∴OM .………………5分 ∵FM∴222)+r =. 解得=2r .(舍去负根)∴O 的半径为2. ………………6分 丰台区23.如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F . (1)求证:EF =ED ;(2)如果半径为5,cos ∠ABC =35,求DF 的长.23.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3. ∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF =DE . …….…….……………2分 (2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°. ∵DE ∥AB ,∴∠DEF =∠ABC . ∵cos ∠ABC =35,∴在Rt △ECD 中,cos ∠DEC =CE DE =35. 设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x .在Rt △CFD 中,由勾股定理得DF =. ∵半径为5,∴BD =10. ∵BF ×DC = FD ×BD ,∴1041025x x x=,解得x =.∴DF ==5. …….…….……………5分(其他证法或解法相应给分.) 石景山区23.如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F . (1)求证:12CBE F ∠=∠;(2)若⊙O 的半径是,点D 是OC 中点,15CBE ∠=°,求线段EF 的长.23.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°, ∴3230F CBE ∠=∠=∠=°.∵⊙O 的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3OD OH∠=,∴2OH =. ………………3分∴2HE =. 在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==-………………5分 朝阳区23. 如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的 切线于点E .(1)求证:AE ⊥CE . (2)若AE =,sin ∠ADE =31,求⊙O 半径的长.23. (1)证明:连接OA ,∵OA 是⊙O 的切线,∴∠OAE =90º. ………………………………1分 ∵ C ,D 分别为半径OB ,弦AB 的中点, ∴CD 为△AOB 的中位线. ∴CD ∥OA . ∴∠E =90º.∴AE ⊥CE . …………………………………2分(2)解:连接OD ,∴∠ODB =90º. ……………………………………………………3分 ∵AE =,sin ∠ADE =31,在Rt △AED 中,23sin =∠=ADEAEAD .∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD .…………………………………4分 设OD =x ,则OA =3x ,∵222OA AD OD =+, ∴()()222323x x =+.解得 231=x ,232-=x (舍). ∴293==x OA . ……………………………………………5分 即⊙O 的半径长为29. 燕山区25.如图,在△ABC 中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交 AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 的直径. (1)求证:AM 是⊙O 的切线 (2)当BE =3,cosC=52时,求⊙O 的半径.25.解: (1)连结OM. ∵BM 平分∠ABC∴∠1 = ∠2 又OM=OB ∴∠2 = ∠3∴ OM ∥ BC …………………………………2′ AE 是BC 边上的高线∴AE ⊥BC,∴AM ⊥OM∴AM 是⊙O 的切线…………………………………3′ (2)∵AB=AC∴∠ABC = ∠C AE ⊥BC, ∴E 是BC 中点 ∴EC=BE=3 ∵cosC=52=ACEC ∴AC=25EC= 215…………………………………4′ ∵OM ∥ BC ,∠AOM =∠ABE ∴△AOM ∽△ABE ∴ABAOBE OM = 又∠ABC = ∠C ∴∠AOM =∠C 在Rt △AOM 中cos ∠AOM = cosC=5252=AO OM ∴AO=OM 25AB=OM 25+OB=OM 27而AB= AC= 215门头沟区23. 如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ;(2)若HB =2,cos D =35,请求出AC 的长.(1)证明:连接OC ,∵射线DC 切⊙O 于点C , ∴∠OCP =90° ∵DE ⊥AP ,∴∠DEP =90° ∴∠P +∠D =90°,∠P +∠COB =90°∴∠COB =∠D …………………1分ABCDEO∵OA =OC , ∴∠A =∠OCA∵∠COB=∠A +∠OCA ∴∠COB =2∠A∴∠D =2∠A …………………2分 (2)解:由(1)可知:∠OCP =90°,∠COP =∠D ,∴cos ∠COP =cos ∠D =35, …………………3分 ∵CH ⊥OP ,∴∠CHO =90°, 设⊙O 的半径为r ,则OH =r ﹣2. 在Rt △CHO 中,cos ∠HOC =OH OC =2r r-=35,∴r =5, …………………4分 ∴OH =5﹣2=3,∴由勾股定理可知:CH =4,∴AH =AB ﹣HB =10﹣2=8.在Rt △AHC 中,∠CHA =90°,∴由勾股定理可知:AC=…………………5分 大兴区23.已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D,且与BO 的延长线交于点E ,连接EC CD ,.(1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若1tan 2E =,⊙O 的半径为3,求OA 的长.23. (1)AB 与⊙O 的位置关系是相切证明:如图,连接OC . OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ······················· 2分 (2)ED 是直径,90ECD ∴∠=.∴90E ODC ∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠. 又CBD EBC ∠=∠, ∴BCD BEC △∽△.BC BDBE BC∴=. ∴2BC BD BE =⋅. ························ 3分1tan 2E ∠=, ∴12CD EC =. BCD BEC △∽△,∴12BD CD BC EC ==.························· 4分 设BD x =,则2BC x =. 又2BC BD BE =⋅, ∴2(2)(6)x x x =+. 解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ·················· 5分平谷区24.如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE .(1)求证:∠AEB =2∠C ; (2)若AB =6,3cos 5B =,求DE 的长.24.(1)证明:∵AC 是⊙O 的切线,∴∠BAC =90°. ······················ 1 ∵点E 是BC 边的中点,∴AE=EC.∴∠C=∠EAC, (2)∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C. (3)(2)解:连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB= 6,3 cos5B=,∴BD=185. (4)在Rt△ABC中,AB=6,3 cos5B=,∴BC=10.∵点E是BC边的中点,∴BE=5. (5)∴75DE=. (6)怀柔区23.如图,AC是⊙O的直径,点B是⊙O内一点,且BA=BC,连结BO并延长线交⊙O于点D,过点C作⊙O的切线CE,且BC平分∠DBE.(1)求证:BE=CE;(2)若⊙O的直径长8,sin∠BCE=45,求BE的长.23.(1)∵BA=BC,AO=CO, ∴BD⊥AC.∵CE是⊙O的切线, ∴CE⊥AC.E∴CE∥BD. ……………………………………1分∴∠ECB=∠CBD.∵BC平分∠DBE,∴∠CBE=∠CBD.∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分(2)解:作EF⊥BC于F. …………………………3分∵⊙O 的直径长8,∴CO=4.∴sin∠CBD= sin∠BCE= 45=OCBC. …………………………………………………………4分∴BC=5,OB=3. ∵BE=CE,∴BF=15 22 BC=.∵∠BOC=∠BFE=90°,∠CBO=∠EBF, ∴△CBO∽△EBF.∴BE BF BC OB=.∴BE=256. ……………………………………………………………………………………5分延庆区23.如图,AB是⊙O的直径,D是⊙O上一点,点E是弧AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB BC=;(2)如果AB=5,1tan2FAC∠=,求FC的长.23.证明:(1)连接BE.∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE =∠EBA.∴∠ECB =∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FAC∠=AB=5,∴AE=BE=……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.∵1 tan2FAC∠=,∴CH=2.……5分∵CH∥AB AB=BC=5,∴255FCFC=+.∴FC=310.…6分顺义区24.如图,等腰△ABC是⊙O的内接三角形,AB=AC,过点A作BC的平行线AD交BO的延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为15,sin∠D=35,求AB的长.A BCDEFOHA BCDEFO24.(1)证明:连接AO,并延长交⊙O于点E,交BC于点F.∵AB=AC,∴AB AC.∴AE⊥BC.∵AD∥BC,∴AE⊥AD.∴AD是⊙O的切线.…………… 2分(2)解法1:∵AD∥BC,∴∠D=∠1.∵sin∠D=35,∴sin∠1=35.∵AE⊥BC,∴OFOB=35.∵⊙O的半径OB=15,∴OF=9,BF=12.∴AF=24.∴AB= 5分3解法2:过B作BH⊥DA交DA延长线于H.∵AE⊥AD,sin∠D=35,∴OAOD=35.∵⊙O的半径OA=15,∴OD=25,AD=20.∴BD=40.∴BH=24,DH=32.∴AH=12.∴AB= 5分。
北京市2019年中考数学复习圆课时训练(三十)与圆有关的计算
精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!课时训练(三十) 与圆有关的计算(限时:30分钟)|夯实基础|1.[2018·东城期末]A,B是☉O上的两点,OA=1,的长是π,则∠AOB的度数是()A.30°B.60°C.90°D.120°2.如图K30-1,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,将△ABC绕直角顶点C逆时针旋转60°得到△A'B'C,则点B 转过的路径长为()图K30-1A. B. C. D.π3.如图K30-2,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,以AB长为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()图K30-2A.6B.7C.8D.94.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.365.[2018·丰台期末]半径为2的圆中,60°的圆心角所对的弧的弧长为.6.[2018·海淀期末]若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.7.[2018·密云期末]扇形半径为3 cm,弧长为π cm,则扇形圆心角的度数为.8.[2018·石景山期末]如图K30-3,扇形的圆心角∠AOB=60°,半径为3 cm.若点C,D是的三等分点,则图中所有阴影部分的面积之和是cm2.图K30-39.[2018·顺义初三上学期期末]制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.图K30-4是一段管道,其中直管道部分AB的长为3000 mm,弯形管道部分BC,CD弧的半径都是1000 mm,∠O=∠O'=90°,计算图中中心虚线的长度.(π取3.14)图K30-4|拓展提升|10.[2018·朝阳一模]如图K30-5,正方形ABCD的边长为2,以BC为直径的半圆与对角线AC相交于点E,则图中阴影部分的面积为()图K30-5A.+πB.-πC.-πD.-π11.[2018·朝阳二模]如图K30-6,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD长为半径作弧交AB于点E,以点B为圆心,BF长为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()图K30-6A.12-B.12-C.6+D.6参考答案1.B2.B3.D4.C5.π6.67.60°8.9.解:的长=的长===500π.中心虚线的长度为3000+500π×2=3000+1000π=3000+1000×3.14=6140(mm).10.D11.A。
2019年北京中考数学习题精选:与圆的有关计算-推荐
-在半彳空为12cm 的圆中,长为4兀cm 的弧所对的圆心角的度数为 C.90D.1201............ .A, B 是。
上的两点,OA =1, AB 的长是一冗,则/ AOB 勺度数是3C .90°D , 120°答案:B6. (2018北京通州区第一学期期末)已知一个扇形的半径是 1,圆心角是120。
,则这个扇形的弧长是(2 二A. — B . 冗 C . — D .答案:D7. (2018北京西城区第一学期期末)圆心角为 60°,且半径为12的扇形的面积等于()答案:B2019年北京中考数学习题精选:与圆的有关计算如图,正方形ABCD 勺边长为2,以BC 为直径的半圆与对角线 AC 相交于点E,5 1 3 1(A) 2 +—n 4 (B) ---H2 4 5 15 1 (C) 2 —H 2 (D) --n2 4一、选择题 1. (2018北京市朝阳区一模) 则图中阴影部分的面积为 答案D 2. (2018北京东城区一模)如图, |_0是等边△ ABC 勺外接圆,其半径为3.图中阴影部分的面积是A.兀 B . 3JSC . 2兀 D答案D 3、(2018北京朝阳区第一学期期末检测)如图,在4 ABC 中, ZBA (=90 , AB=AC=4,以点C 为中心,把^ ABC 逆时针旋转45° ,得到△ A B' C ,则图中阴影部分的面 积为 (A)2(B) 2 T t (C) 4 (D) 4 T tA. 48冗B. 24冗C. 4冗D. 2冗 答案:B4. (2018北京大兴第一学期期末)A. 10° B. 60°答案:B5. (2018北京东城第一学期期末)8.(2018北京朝阳区二模)如图,矩形ABC由,AB= 4, BO 3, F是AB中点,以点A为圆心,AD为半径作弧交AB 于点E,以点B 为圆心,BF 为半径作弧交BC 于点G,则图中阴影部分面积的差 S-Sa 为答案:冗11. (2018北京大兴第一学期期末)圆心角为 160。
2019北京中考数学 专题训练 第6讲 圆
2019北京中考数学 专题训练 第6讲 圆一、选填题【2018·昌平二模】1.如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .【2018·朝阳二模】2.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,弧BD =弧CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = .【答案】2【2018·房山二模】3. 如图,AB 为⊙O 的直径,弦CD AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = .【答案】2 ;【2018·海淀二模】4.如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是 A . GH B. EF C.CD D. ABCB【答案】A【2018·石景山二模】5.如图,⊙O 的半径为2,切线AB的长为点P 是⊙O 上的动点,则AP 的长的取值范围是__________.【答案】26AP ≤≤.【2018·西城二模】6. 如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.【答案】54【2018·东城二模】7. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.【答案】2E D【2018·海淀二模】8.如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .【答案】6π【2018·西城二模】9. 如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 .【答案】π34【2018·朝阳二模】10.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )6 【答案】D【2018·东城二模】11. 在平面直角坐标系xOy 中,若点()3,4P 在O e 内,则O e 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >5 【答案】D 二、解答题【2018·昌平二模】1. 如图,AB 是⊙O 的直径,弦CD AB ⊥ 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是⊙O 的切线;(2)连接BC ,若BCF ∠=30°,2BF =,求CD 的长.BA【答案】(1)证明:连接OD ∵CF 是⊙O 的切线∴∠OCF=90°………………………………………1分 ∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD 错误!未定义书签。
2019年北京中考数学习题精选:圆的基本性质(含答案)
一、选择题1.(2018北京朝阳区二模)5.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )6 答案:D2.(2018北京市朝阳区一模)如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,若∠ADE =110°,则∠AOC 的度数是(A )70° (B )110° (C )140° (D )160°答案C 3.(2018北京顺义区初三练习)如图所示圆规,点A 是铁尖的端点,点B 是铅笔芯尖的端点,已知点A 与点B 的距离是2cm ,若铁尖的端点A 固定,铅笔芯尖的端点B 绕点A 旋转一周,则作出的圆的直径..是 A .1 cm B .2 cm C .4 cm D . cm 答案:C4.(2018北京海淀区二模)如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是A . GH B. EF C. CDD. AB答案:A5.(2018北京房山区一模)如图,在⊙O 中,AC 为⊙O 直径,B 为圆上一点,若∠OBC =26°,则∠AOB 的度数为A .26°B .52°C .54°D .56°答案B6.(2018北京市大兴区检测)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=6,则CD 的长为 A.3B.C.6D.答案D7.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°答案:D8.(2018北京朝阳区第一学期期末检测)如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是 (A) 15° (B) 30° (C) 45° (D) 60°9.(2018北京大兴第一学期期末)如图,点A ,B ,P 是⊙O 上的三点,若︒=∠40AOB , 则APB ∠的度数为A. ︒80B. ︒140C. ︒20D. ︒50答案:C10.(2018北京东城第一学期期末)边长为2的正方形内接于M ,则M 的半径是A .1B .2CD .答案:C11.(2018北京房山区第一学期检测)7.如图,在⊙O 中,AB AC =,∠AOB=50°,则∠ADC 的度数是A .50°B .45°C .30°D .25°答案:D12.(2018北京丰台区第一学期期末)如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如A果∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°答案:D13.(2018北京怀柔区第一学期期末)如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的大小为 ( ) A .40︒B .50︒C .80︒D .100︒答案:B14.(2018北京怀柔区第一学期期末)某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.A .2B .23分米答案:B15.(2018北京门头沟区第一学期期末调研试卷) 如图,DCE∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是A .65︒B .75︒C .85︒D .105︒ 答案:B16.(2018北京密云区初三(上)期末)如图,ABC ∆内接于O ,80AOB ∠=︒,则ACB ∠的大小为A. 20︒B. 40︒C. 80︒D. 90︒答案:B17.(2018北京平谷区第一学期期末)如图,△ABC 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是(A )100° (B )80° (C )50° (D )40°答案:C 18.(2018北京石景山区第一学期期末)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则B O D ∠的度数为(A )︒100(B )︒120(C )︒130(D )︒150答案:C19.(2018北京石景山区第一学期期末)如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O 的半径为4,则弦AB 的长为(A )32 (B )34(C )52(D )54答案:B20.(2018北京顺义区初三上学期期末)如图,已知⊙O 的半径为6,弦AB 的长为8, 则圆心O 到AB 的距离为A 5B .5C .27D .10答案:B 21.(2018北京通州区第一学期期末)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则B C D ∠的度数为( )BABA .︒25B .︒30C .︒35D .︒40 答案:C22.(2018北京通州区第一学期期末)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 34 答案:D 23.(2018北京西城区第一学期期末)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( ). A .34° B .46° C .56° D .66°答案:C24.(2018北京燕山地区第一学期初四年级期末)如图,圆心角 ∠AOB=25°,将 AB 旋转 n °得到 CD ,则∠ COD 等于A . 25°B . 25°+ n °C . 50°D . 50°+ n °答案: A.二、填空题25.(2018北京房山区二模)如图,AB 为⊙O 的直径,弦CD ⊥AB E ,连结OC ,若OC =5,CD =8,则AE = .答案:226.(2018北京东城区二模)如图,在△ABC 中,AB =AC ,BC =8. O e ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.答案: 227.. (2018北京西城区二模)如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.答案:5428.(2018北京朝阳区二模)如图,△ABC 内接于⊙O ,AB 是⊙O的直径,点D 在圆O 上,弧BD =弧CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = .答案:229.(2018北京昌平区二模)如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .答案:330..(2018北京延庆区初三统一练习)如图,AB 是⊙O 的弦,∠AOC =42°,那么∠CDB的度数为____________.答案:21°31..(2018北京西城区九年级统一测试)如图,AB 为⊙O 的直径,C 为AB 上一点,50BOC ∠=︒,AD OC ∥,AD 交⊙O 于点D ,连接AC ,CD ,那么ACD ∠=__________.DCC答案:4032.(2018北京市朝阳区综合练习(一)) 如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD = 度.答案15第13题图33. (2018北京门头沟区初三综合练习)如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若∠C =32°,则∠A =_____________ °. 答案26°34.(2018北京平谷区中考统一练习)如图,AB 是⊙OAB ⊥弦CD 于点E ,若AB =10,CD =8,则BE = . 答案235.(2018北京石景山区初三毕业考试)如图,AB 是⊙O 的直径,CD 是弦,C D A ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .C答案:236.(2018北京丰台区一模)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .如果∠A = 15°,弦CD = 4,那么AB 的长是 .答案837.(2018北京朝阳区第一学期期末检测)如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为3,则正六边形ABCDEF 的边长为 .答案:338.(2018北京大兴第一学期期末)如图,在半径为5cm 的⊙O 中,如果弦AB 的长为8cm ,OC ⊥AB ,垂足为C ,那么OC 的长为 cm .答案: 3.39.(2018北京东城第一学期期末)如图,AB 是O 的弦,C 是AB 的中点,连接OC 并延长交O 于点D .若CD =1,AB =4,则O 的半径是.答案: 2.540.(2018北京东城第一学期期末)O 是四边形ABCD 的外接圆,AC 平分∠BAD ,则正确结论的序号是 .①AB =AD ; ②BC =CD ; ③AB AD =; ④∠BCA =∠DCA ; ⑤BC CD =A B答案:②⑤41.(2018北京房山区第一学期检测)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是.答案:842.(2018北京丰台区第一学期期末)如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为.答案:143.(2018北京丰台区第一学期期末)在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.答案:(2,0)44.(2018北京门头沟区第一学期期末调研试卷)如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=那么⊙O的半径为________.答案:245.(2018北京平谷区第一学期期末)13.“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是我国古代著名数学家刘徽在《九章算术注》中提到的“如何求圆的周长和面积”的方法,即“割圆术”.“割圆术”的主要意思是用圆内接正多边形去逐步逼近圆.刘徽从圆内接正六边形出发,将边数逐次加倍,并逐次得到正多边形的周长和面积.如图,AB 是圆内接正六边形的一条边,半径OB =1,OC ⊥AB 于点D ,则圆内接正十二边形的边BC 的长是 (结果不取近似值).答案:221312322⎛⎫⎛⎫+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭46.(2018北京石景山区第一学期期末)如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC =________.答案:3547.(2018北京通州区第一学期期末)⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为______________.答案:45°或135°48.(2018北京西城区第一学期期末)如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 .答案:249.(2018北京西城区第一学期期末)如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B 在⊙O 内,4tan 3APB ∠=,AB AP ⊥.如果OB ⊥OP ,那么OB 的长为 .答案:150.(2018北京燕山地区第一学期初四年级期末)如图,AB 、AC 是⊙O 的弦,OM ⊥ AB ,ON ⊥ AC ,垂足分别为 M 、N .如果 MN=2.5,那么 BC=答案: 551.(2018北京丰台区二模)数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线. 晓龙同学的画图步骤如下:(1)延长OD 交»BC于点M ; (2)连接AM 交BC 于点N.所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是 .答案:垂径定理,等弧所对的圆周角相等52.(2018北京燕山地区第一学期初四年级期末)如图,量角器的直径与直角三角尺 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿 顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于 点 E ,则第 20 秒点 E 在量角器上对应的读数是 °答案 :120° 三、解答题53.(2018北京海淀区第二学期练习)如图,AB 是⊙O 的直径,弦EF AB ⊥于点C ,过点F 作⊙O 的切线交AB 的延长线于点D .(1)已知A α∠=,求D ∠的大小(用含α的式子表示); 30A ∠=︒,(2)取的中点M ,连接MF ,请补全图形;若MF =,求⊙O 的半径.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径, ∴DOF DOE =∠∠.∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O 的切线, ∴OF FD ⊥.∴90OFD ︒=∠.∴+90D DOF ︒=∠∠. 902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点,DADADACA ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O 的半径为r .∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM .………………5分 ∵FM∴222)+r =. 解得=2r .(舍去负根) ∴O 的半径为2.54.(2018年北京昌平区第一学期期末质量抽测)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC . (1)求证:A BCD ∠=∠; (2)若AB =10,CD =8,求BE 的长.答案:(1)证明:∵ 直径AB ⊥弦CD ,∴弧BC =弧BD . …………………… 1分∴A BCD ∠=∠.…………………… 2分(2)解:连接OC∵ 直径AB ⊥弦CD ,CD =8, ∴CE =ED =4. …………………… 3分∵ 直径AB =10,∴CO =OB =5.在Rt △COE 中3OE ==…………………… 4分∴2BE =.…………………… 5分55.(2018北京朝阳区第一学期期末检测)如图,四边形ABCD 是⊙O 的内接四边形,对角线AC 是⊙O 的直径,AB=2, ∠ADB =45°. 求⊙O 半径的长. 答案:18.解:∵AC 是⊙O 的直径,∴∠ABC =90°. ………………分∵∠ADB =45°, ∴∠ACB =∠ADB =45°. ∵AB=2,∴B C =A B =2. ………………………………………………3分∴2222=+=BC AB AC .…………………………………………………………4分∴⊙O 半径的长为2. ………………………………………………………………5分A56.(2018北京大兴第一学期期末)已知: 如图,⊙O 的直径AB 的长为5cm ,C 为⊙O 上的一个点,∠ACB 的平分线交⊙O 于点D ,求BD 的长.答案:21. 解:∵ AB 为直径,∴ ∠ADB =90°, ……………………………… 1分 ∵ CD 平分∠ACB , ∴ ∠ACD =∠BCD ,∴ AD⌒ =BD ⌒ .………………………………… 2分 ∴ AD =BD ……………………………………… 3分 在等腰直角三角形ADB 中, BD =AB sin45°=5× 2 2 =52 2 ……………… 5分∴ BD =522 . 57.(2018北京大兴第一学期期末)已知:如图,AB 为半圆O 的直径,C 是半圆O 上一点,过点C 作AB 的平行线交⊙O 于点E ,连接AC 、BC 、AE ,EB . 过点C 作CG ⊥AB 于点G ,交EB 于点H. (1)求证:∠BCG=∠E BG ; (2)若55sin =∠CAB ,求GB EC的值.答案: 证明:(1)∵AB 是直径,∴∠ACB =90°.………………………………………………..1分 ∵CG ⊥AB 于点G , ∴∠ACB=∠ CGB =90°.∴∠CAB =∠BCG . .………………………………………………..2分 ∵CE ∥AB , ∴∠CAB =∠ACE . ∴∠BCG =∠ACE 又∵∠ACE =∠EBG∴∠BCG =∠EBG . .………………………………………………..3分 (2)解:∵sin 5CAB ∠=∴1tan 2CAB ∠=,………………………………………………..4分由(1)知,∠HBG =∠EBG =∠ACE =∠CAB∴在Rt △HGB 中,1tan 2GH HBG GB ∠==.由(1)知,∠BCG =∠CABD在Rt △BCG 中,1tan 2GB BCG CG ∠==. 设GH=a ,则GB=2a ,CG=4a .CH =CG -HG =3a . ……………..6分 ∵EC ∥AB ,∴∠ECH =∠BGH ,∠CEH =∠GBH∴△ECH ∽△BGH .……………………………………………..7分 ∴33EC CH a GB GH a ===.…………………………………………8分58.(2018北京东城第一学期期末) 已知等腰△ABC 内接于O , AB =AC ,∠BOC =100°,求△ABC 的顶角和底角的度数.解:如图1,当点A 在优弧上时, ∠A =50°,∠ABC =∠ACB =65°;--------------------3分 如图2,当点A 在劣弧上时, ∠A =130°,∠ABC =∠ACB =25°. -------------------5分59.(2018北京密云区初三(上)期末)21. 如图,AB 是O 的弦,O 的半径OD AB ⊥ 垂足为C.若AB =,CD=1 ,求O 的半径长.答案:21.解:AB 是O 的弦,O 的半径OD AB ⊥ 垂足为C,AB =∴…………………………………………………..2分 连接OA.设O 半径为r ,则222OA AC OC =+图1 图2即222(r 1)r =+- …………………………………..4分解得:2r = …………………………………………………………………5分60.(2018北京平谷区第一学期期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠A =15°,AB =4.求弦CD 的长.答案:解:∵∠A =15°,∴∠COB =30°. ........................................................................................................... 1 ∵AB =4,∴OC =2. ..................................................................................................................... 2 ∵弦CD ⊥AB 于E ,∴CE =12CD . ............................................................................................................. 3 在Rt △OCE 中,∠CEO =90°,∠COB =30°,OC =2,∴CE =1. ..................................................................................................................... 4 ∴CD =2. (5)61.(2018北京顺义区初三上学期期末)已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .答案:证明: 延长CE 交⊙O 于点G .∵AB 为⊙O 的直径,CE ⊥AB 于E ,∴BC =BG ,∴∠ G =∠2,……………………………………………..2分 ∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G =∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)62.(2018北京通州区第一学期期末)如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.答案:63.(2018北京燕山地区第一学期初四年级期末)如图,A B 为⊙ O 的直径,弦 CD ⊥ A B 于点 E ,连 接 BC .若 A B = 6,∠ B = 30°,求:弦 CD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京中考数学习题精选:与圆的有关计算一、选择题 1.(2018北京市朝阳区一模)如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-答案D 2.(2018北京东城区一模)如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是A .πB .3π2C .2πD .3π 答案D3、(2018北京朝阳区第一学期期末检测)如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A’B’C ,则图中阴影部分的面积为(A) 2 (B) 2π (C) 4 (D) 4π答案:B 4.(2018北京大兴第一学期期末)-在半径为12cm 的圆中,长为4πcm 的弧所对的圆心角的度数为 A. ︒10 B. ︒60 C. ︒90 D. ︒120 答案:B5.(2018北京东城第一学期期末)A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120° 答案:B6.(2018北京通州区第一学期期末)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A .6π B .π C .3πD . 32π答案:D7.(2018北京西城区第一学期期末)圆心角为60︒,且半径为12的扇形的面积等于( ). A. 48π B.24π C.4π D.2π 答案:B8.(2018北京朝阳区二模)如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2B为(A )41312π- (B )4912π-(C )4136π+(D )6 答案:A二、填空题9.(2018北京海淀区二模)如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .答案:6π10.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 的半径为3,正六边形ABCDEF 内接于⊙O ,则劣弧AB 的长为 .答案:π 11.(2018北京大兴第一学期期末)圆心角为160°的扇形的半径为9cm ,则这个扇形的面积是 cm 2.答案:36 π .12.(2018北京房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形.若开口∠1=60°,半径为 6 ,则这个“吃豆小人”(阴影图形)的面积为 .答案:5π13.(2018北京丰台区第一学期期末)半径为2的圆中,60°的圆心角所对的弧的弧长为 . 答案:2π314.(2018年北京海淀区第一学期期末)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.答案:6FCBA15.(2018北京怀柔区第一学期期末)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为 米2.答案:16.(2018北京密云区初三(上)期末)扇形半径为3cm ,弧长为πcm ,则扇形圆心角的度数为___________________. 答案:60︒17.(2018北京平谷区第一学期期末)圆心角为120°,半径为6cm 的扇形的弧长是 cm (结果不取近似值). 答案:4π18.(2018北京石景山区第一学期期末)如图,扇形的圆心角︒=∠60AOB ,半径为3cm .若点C 、D 是 弧AB 的三等分点,则图中所有阴影部分的面积之和是________cm 2.答案:2π19.(2018北京西城区二模)如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于 . 答案:43π三、解答题20.(2018年北京昌平区第一学期期末质量抽测)如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是⊙O 的切线;(2)如果半径的长为3,tan D=34,求AE 的长.答案:(1)证明:连接OC ,∵点C 为弧BF 的中点, ∴弧BC =弧CF .∴BAC FAC ∠=∠.…………… 1分∵OA OC =, ∴OCA OAC ∠=∠.∴OCA FAC ∠=∠.……………………2分∵AE ⊥DE ,∴90CAE ACE ︒∠+∠=.∴90OCA ACE ︒∠+∠=. ∴OC ⊥DE .∴DE 是⊙O 的切线. …………………… 3分 (2)解:∵tan D=OC CD =34,OC =3, ∴CD =4.…………………………… 4分 ∴OD=5.∴AD= OD+ AO=8.…………………………… 5分 ∵sin D=OC OD =AE AD =35, ∴AE=245.……………………………6分21.(2018北京顺义区初三上学期期末)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm , ∠O =∠O ’=90°,计算图中中心虚线的长度.答案:20.901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 30005002300010ππ+⨯=+…………………4分 =30001000 3.14=6140+⨯……………………………………………..…5分22.(2018北京燕山地区一模)如图,在△ABC 错误!未找到引用源。
中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交 AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 的直径.(1)求证:AM 是⊙O 的切线(2)当BE =3,cosC=52时,求⊙O 的半径.解: (1)连结OM. ∵BM 平分∠ABC∴∠1 = ∠2 又OM=OB ∴∠2 = ∠3∴ OM ∥ BC …………………………………2′ AE 是BC 边上的高线∴AE ⊥BC,∴AM ⊥OM∴AM 是⊙O 的切线…………………………………3′(2)∵AB=AC∴∠ABC = ∠C AE ⊥BC,∴E 是BC 中点 ∴EC=BE=3 ∵cosC=52=AC EC∴AC=25EC= 215 …………………………………4′∵OM ∥ BC ,∠AOM =∠ABE ∴△AOM ∽△ABE ∴ABAOBE OM =又∠ABC = ∠C ∴∠AOM =∠C 在Rt △AOM 中cos ∠AOM = cosC=52 52=AO OM ∴AO=OM 25AB=OM 25+OB=OM 27而AB= AC= 215 ∴OM 27=215OM=715∴⊙O 的半径是715…………………………………6′23.(2018北京通州区一模)答案24.(2018北京延庆区初三统一练习)如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C . (1)求证:AB BC =; (2)如果AB =5,1tan 2FAC ∠=,求FC 的长. 证明:(1)连接BE .∵AB 是直径, ∴∠AEB =90°.∴∠CBE +∠ECB =90°∠EBA +∠EAB =90°. ∵点E 是AD 的中点, ∴∠CBE =∠EBA .∴∠ECB =∠EAB . ……1分 ∴AB =BC . ……2分 (2)∵FA 作⊙O 的切线, ∴FA ⊥AB . ∴∠FAC +∠EAB =90°. ∵∠EBA +∠EAB =90°, ∴∠FAC =∠EBA .AHA∵1tan 2FAC ∠= AB =5,∴AE =BE = ……4分 过C 点作CH ⊥AF 于点H , ∵AB =BC ∠AEB =90°,∴AC =2AE=25. ∵1tan 2FAC ∠=, ∴CH =2. ……5分 ∵CH ∥AB AB =BC=5, ∴255FCFC =+. ∴FC=310.…6分25.(2018北京西城区九年级统一测试)如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D 为CB 延长线上一点,AD 与⊙O 相切,切点为A . (1)求点B 到半径OC 的距离(用含r 的式子表示). (2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值. AB C解:(1)如图4,作BE ⊥OC 于点E .∵ 在⊙O 的内接△ABC 中,∠BAC=15,∴ =230BOC BAC ∠∠=︒.在Rt △BOE 中,∠OEB=90,∠BOE=30,OB=r ,∴ 22OB rBE ==. ∴ 点B 到半径OC 的距离为2r.……………………………………………2分 (2)如图4,连接OA .由BE ⊥OC ,DH ⊥OC ,可得BE ∥DH . ∵ AD 与⊙ O 相切,切点为A ,∴ AD ⊥OA .………………………………3分 ∴ 90OAD ∠=︒. ∵ DH ⊥OC 于点H , ∴ 90OHD∠=︒.∵ 在△OBC 中,OB=OC ,∠BOC=30,∴ 180752BOCOCB ︒-∠∠==︒.∵ ∠ACB=30,∴ 45OCA OCB ACB ∠=∠-∠=︒. ∵ OA=OC ,∴ 45OAC OCA ∠=∠=︒.∴ 180290AOC OCA ∠=︒-∠=︒.∴ 四边形AOHD 为矩形,∠ADH=90.…………………………………… 4分 ∴ DH =AO=r .∵ 2rBE =,∴ 2D BE H=.∵ BE ∥DH ,∴ △CBE ∽△CDH .∴ 12CB BE D DH C ==.…………………………………………………………… 5分26.(2018北京平谷区中考统一练习)如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB =2∠C ; (2)若AB =6,3cos 5B =,求DE 的长.(1)证明:∵AC 是⊙O 的切线,∴∠BAC =90°. ······················ 1 ∵点E 是BC 边的中点, ∴AE=EC .∴∠C =∠EAC , ······················ 2 ∵∠AEB =∠C +∠EAC ,∴∠AEB =2∠C . (3)(2)解:连结AD .∵AB 为直径作⊙O , ∴∠ABD =90°. ∵AB = 6,3cos 5B =,∴BD =185. ······· 4 在Rt △ABC 中,AB =6,3cos 5B =,∴BC =10.∵点E 是BC 边的中点,∴BE =5. ········· 5 ∴75DE =. ······· 6 27.(2018北京顺义区初三练习)如图,等腰△ABC 是⊙O的内接三角形,AB =AC ,过点A 作BC 的平行线AD 交BO 的延长线于点D .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为15,sin ∠D =35,求AB 的长.(1)证明:连接AO ,并延长交⊙O 于点E ,交BC 于点F .∵AB =AC , ∴=AB AC . ∴AE ⊥BC . ∵AD ∥BC , ∴AE ⊥AD .∴AD 是⊙O 的切线.…………… 2分(2)解法1:∵AD ∥BC , ∴∠D =∠1. ∵sin ∠D =35, ∴sin ∠1=35. ∵AE ⊥BC , ∴OF OB =35. ∵⊙O 的半径OB =15, ∴OF =9,BF =12. ∴AF =24.∴AB= 5分 3解法2:过B 作BH ⊥DA 交DA 延长线于H .∵AE ⊥AD ,sin ∠D =35,∴OA OD =35. ∵⊙O 的半径OA =15, ∴OD =25,AD =20. ∴BD =40.∴BH =24,DH =32. ∴AH =12.∴AB= 5分28.(2018北京石景山区初三毕业考试)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBE F ∠=∠;(2)若⊙O的半径是,点D 是OC 中点,15CBE ∠=°,求线段EF 的长.(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径, ∴OE ⊥EF . ∴190F ∠+∠=°. ∵FD ⊥OC , ∴3290∠+∠=︒. ∵12∠=∠,∴3F ∠=∠. ………………1分 ∵132CBE ∠=∠,∴12CBE F ∠=∠. ………………2分(2)解:∵15CBE ∠=°, ∴3230F CBE ∠=∠=∠=°.∵⊙O的半径是D 是OC 中点,∴OD = 在Rt ODH ∆中,cos 3ODOH∠=,∴2OH =. ………………3分∴2HE =.在Rt FEH ∆中,tan EH F EF∠=. ………………4分∴6EF ==- ………………5分 29.(2018北京市朝阳区一模)如图,在△ABC 中,AB =BC ,∠A =45°,以AB 为直径的⊙O 交CO 于点D .(1)求证:BC 是⊙O 的切线;(2)连接BD ,若BD =m ,tan ∠CBD =n ,写出求直径AB 的思路.解(1)证明:∵AB =BC ,∠A =45°,∴∠ACB =∠A =45°.∴∠ABC =90°. …………………………………………………………1分 ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. …………………………………………………2分 (2)求解思路如下:①连接AD ,由AB 为直径可知,∠ADB =90°,进而可知∠BAD =∠CBD ;……3分②由BD =m ,tan ∠CBD =n ,在Rt △ABD 中,可求AD =mn;………………………4分 ③在Rt △ABD 中,由勾股定理可求AB 的长. ……………………………………5分 30.(2018北京市朝阳区综合练习(一))如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的 切线于点E .(1)求证:AE ⊥CE . (2)若AE =,sin ∠ADE =31,求⊙O 半径的长.(1)证明:连接OA ,∵OA 是⊙O 的切线,∴∠OAE =90º. ………………………………1分 ∵ C ,D 分别为半径OB ,弦AB 的中点, ∴CD 为△AOB 的中位线. ∴CD ∥OA . ∴∠E =90º.∴AE ⊥CE . …………………………………2分(2)解:连接OD ,∴∠ODB =90º. ………………………………………………3分∵AE =,sin ∠ADE =31, 在Rt △AED 中,23sin =∠=ADEAEAD .∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD .………………………4分 设OD =x ,则OA =3x , ∵222OA AD OD =+,∴()()222323x x =+. 解得 231=x ,232-=x (舍).∴293==x OA . ………………………………………5分即⊙O 的半径长为29.31. (2018北京门头沟区初三综合练习)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ;(2)若HB =2,cos D =35,请求出AC 的长.(1)证明:连接OC ,∵射线DC 切⊙O 于点C , ∴∠OCP =90° ∵DE ⊥AP ,∴∠DEP =90°∴∠P +∠D =90°,∠P +∠COB =90°∴∠COB =∠D …………………1分 ∵OA =OC , ∴∠A =∠OCA∵∠COB=∠A +∠OCA ∴∠COB =2∠A∴∠D =2∠A …………………2分 (2)解:由(1)可知:∠OCP =90°,∠COP =∠D ,∴cos ∠COP =cos ∠D =35, …………………∵CH ⊥OP ,∴∠CHO =90°, 设⊙O 的半径为r ,则OH =r ﹣2. 在Rt △CHO 中,cos ∠HOC =OH OC =2r r -=35, ∴r =5, …………………4分∴OH=5﹣2=3,∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8.在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=…………………5分32.(2018北京东城区一模)如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是O的切线;(2)连接BC. 若AB=5,BC=3,求线段AE的长.(1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.A∴445AE =. ∴165AE =. ----------------------5分 33.(2018北京怀柔区一模)如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA=BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠(1)求证:BE=CE ;(2)若⊙O 的直径长8,sin ∠BCE=45,求BE 的长. 23.解:(1)∵BA=BC ,AO=CO, ∴BD ⊥AC.∵CE 是⊙O 的切线, ∴CE ⊥AC.∴CE ∥BD.……………………………………1分 ∴∠ECB=∠CBD. ∵BC 平分∠DBE, ∴∠CBE=∠CBD. ∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分 (2)解:作EF ⊥BC 于F. …………………………3分 ∵⊙O 的直径长8, ∴CO=4.∴sin ∠CBD= sin ∠BCE= 45=OC BC. …………………………………………………………4分 ∴BC=5,OB=3. ∵BE=CE, ∴BF=1522BC =. ∵∠BOC=∠BFE =90°,∠CBO=∠EBF,∴△CBO ∽△EBF.∴BE BFBC OB=. ∴BE=256. ……………………………………………………………………………………5分34.(2018北京房山区一模)如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =HG . (1)求证:AB ⊥CD ;(2)若sin ∠HGF =43,BF =3,求⊙O 的半径长.E解:(1)连接OF . ∵OF =OB ∴∠OFB =∠B ∵HF 是⊙O 的切线∴∠O F H =90°…………………………………………………………………1分 ∴∠HFB +∠OFB =90° ∴∠B +∠HFB =90° ∵HF =HG ∴∠HFG =∠HGF 又∵∠HGF =∠BGE ∴∠BGE =∠HFG ∴∠BGE +∠B =90° ∴∠GEB =90°∴A B ⊥C D ………………………………………………………………………2分 (2)连接AF ∵AB 为⊙O 直径∴∠A F B =90°…………………………………………………………………3分 ∴∠A +∠B =90° ∴∠A =∠BGE 又∵∠BGE =∠HGF∴∠A =∠H G F …………………………………………………………………4分∵sin ∠HGF =34∴sin A =34∵∠AFB =90°,BF =3 ∴ AB =4∴ O A =O B =2…………………………………………………………………5分 即⊙O 的半径为235.(2018北京丰台区一模)如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F . (1)求证:EF ED ;(2)如果半径为5,cos ∠ABC =35,求DF 的长.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3. ∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF =DE . …….…….……………2分 (2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°. ∵DE ∥AB ,∴∠DEF =∠ABC .∵cos ∠ABC =35,∴在Rt △ECD 中,cos ∠DEC =CE DE =3. 设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x . 在Rt △CFD 中,由勾股定理得DF =. ∵半径为5,∴BD =10. ∵BF ×DC = FD ×BD , ∴1041025x xx =,解得x =∴DF ==5. …….…….……………5分(其他证法或解法相应给分.)36.(2018北京西城区二模)如图,AB 是⊙O 的直径,C 是圆上一点,弦CD ⊥AB 于点E ,且DC=AD .过点A 作⊙O 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G . (1)求证:FG 与⊙O 相切; (2)连接EF ,求tan EFC ∠的值.(1)证明:如图6,连接OC ,AC . ∵ AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴ CE=DE ,AD=AC .∵ DC=AD ,∴ DC=AD= AC .∴ △ACD 为等边三角形.∴ ∠D =∠DCA=∠DAC =60. ∴ . ∵ FG ∥DA ,∴ 180DCF D ∠+∠=︒.∴ .∴ .∴ FG ⊥OC .∴ FG 与⊙O 相切.……………………………………………………… 3分(2)解:如图6,作EH ⊥FG 于点H .设CE= a ,则DE= a ,AD=2a .图6∵ AF 与⊙O 相切, ∴ AF ⊥AG . 又∵ DC ⊥AG , 可得AF ∥DC . 又∵ FG ∥DA ,∴ 四边形AFCD 为平行四边形. ∵ DC =AD ,AD=2a , ∴ 四边形AFCD 为菱形.∴ AF=FC=AD=2 a ,∠AFC=∠D = 60. 由(1)得∠DCG= 60,sin60EH CE =⋅︒=,1cos602CH CE a =⋅︒=. ∴ 52FH CH CF a =+=. ∵ 在Rt △EFH 中,∠EHF= 90,∴2tan 52EH EFC FH a ∠=== …………………………………… 5分。