集合的基本运算——交集与并集(新课标)

合集下载

优质课教学设计《集合的基本运算--交集与并集》

优质课教学设计《集合的基本运算--交集与并集》
思考讨论:设有限集M所含元素的个数用card(M)表示,并规定card(Ф )=0.若A,B为两个有限集,讨论card(A),card(B),card(A∩B),card(A∪B)之间的关系.
学生课下完成
1.教材习题复习巩固知识;
2.课时作业题目稍难,提升分析理解能力及解题能力,书写过程要规范清晰;
②可借助韦恩图、数轴的直观性来求解
(2)写成集合的形式:
2.揭秘“魔术”:图1中扑克牌构成的集合与图2中扑克牌构成的集合,交集为空集。生活中的很多事物都可以用数学知识来表达.
学生动笔完成,给出答案,并归纳求解集合交集的一般方法,教师引导补充
学生讨论,对“小魔术”进行揭秘,用集合的语言描述问题
及时应用知识解决问题,加深对交集概念的理解。针对不同的问题,选择不同的解决方法.并及时归纳总结方法.
学以致用
例3、已知区间 ,求
学生完成,给出答案
学会求解交与并,体会二者的区别与联系
独立创设问题
你来问,我来答!
(1)由学生同桌之间互相出题并解决,展示个别小组的题目
(2)教师进一步深化问题
学生同桌之间互相出题,完成题目。
各组中若有没能解决的问题,大家一起探讨完成,也可以分享同学认为出的好的题目.
学生参与到课堂中,激发学生的探究、创新意识,激发学习数学的兴趣.
拓展视野
则图中阴影区域表示的集合为
学生探讨新题,识图填空,思考本题与集合的运算之间的关系
拓展学生视野,除了老师讲的两种集合的运算之外,还有其他类型的运算,等待学生探究,体会学无止境的道理
深化探究
小结:(1) (等价转换)
学生板演并讲解
学生讨论探究得出结论,总结方法及易错点
练习知识的变形式,深化拓展知识,提升综合应用能力及表达能力、归纳总结能力

集合的基本运算(1)-交集,并集

集合的基本运算(1)-交集,并集

一,并集 一般地,由所有属于集合A或属于集合B的元素所 组成的集合,叫做A,B的并集. 记作:A∪B(读作"A并B"), 即A∪B={x|x∈A,或x∈B}.
如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.可用Venn图表示:源自A BBA
B
A
集合A和B合并在一起得到的集合叫做集合A 和集合B的并(图中的阴影部分)
例6.设L1,L2分别是平面内两条直线l1和l2 上点的集合,试用集合的运算表示这两 条直线的位置关系。
解: 当两条直线l1、l2相交于一点P时,L1∩L2={点P}; 当两条直线l1、l2平行时,L1∩L2=Φ; 当两条直线l1、l2重合时,L1∩L2= L1=L2。
能力训练 设A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且 A∩B=C 求x,y。
解: 由A∩B=C知 7A ∴必然 x2-x+1=7 得 x1=-2, x2=3 由x=-2 得 x+4=2C ∴x-2 ∴x=3 x+4=7C 此时2y=-1 ∴y=-1/2 ∴x=3 , y=-1/2
四.小结 1.A∩B={x|x∈A,且x∈B}是同时属于A, B的两个集合的所有元素组成的集合. 2.A∪B={x|x∈A或x∈B}是属于A或者属于B 的元素所组成的集合.
考察下列各个集合,你能说出集合A、 B与集合C之 间的关系吗? (1) A={2,4,6,8,10},B={3,5,8,12},C={8};
(2) A={x|x是茂名十七中在校的女生},
B={ x|x是茂名十七中在校的高一女生}, C={ x|x是茂名十七中在校的高一女生}; 集合A、 B与集合C之间都具有这样一种关系:

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

新课标必修一示范教案(1.3 集合的基本运算第1课时)

新课标必修一示范教案(1.3  集合的基本运算第1课时)

1.1.3 集合的基本运算整体设计三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?图1-1-3-1②观察集合A与B与集合C={1,2,3,4}之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素所组成了集合C.③C={x|x∈A,或x∈B}.④如图1131所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用Venn图表示,如图1132所示.图1-1-3-2应用示例思路11.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.图1-1-3-3活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.答案:{-1,1,2,3,5,6,7} ∅2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.-,0.因m=1不合题意,故舍去.分析:由题意得m2=1或2或m,解得m=-1,1,2,2-,0答案:-1,2,23.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为( )A.2B.5C.7D.9分析:∵A∪B={0,2},∴A⊆{0,2}.则A=∅或A={0}或A={2}或A={0,2}.当A=∅时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=∅或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.答案:D4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8分析:转化为求集合A子集的个数.很明显3∉A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.答案:C2.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A={x|-1<x<2}及B={x|1<x<3}在数轴上表示出来.如图1134所示的阴影部分即为所求.图1-1-3-4由图得A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3},A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.变式训练1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.答案:A∪B=R,A∩B={x|2<x<3}.2.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.[0,2]B.[1,2]C.[0,4]D.[1,4]分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].图1-1-3-5答案:A课本P11例6、例7.思路21.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0<x<5}, B∪C={x|x>0},A∩B∩C=∅.图1-1-3-6点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn图)写出结果.变式训练1.设A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.而10∈B但10∉A,即A B,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a-1=9或a2=9,a=10或a=±3,当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意.当a=-3时,a-1=-4不合题意.故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于( )A.{x|-3<x<1}B.{x|1<x<2}C.{x|x>-3}D.{x|x<1}分析:集合A={x|2x+1<3}={x|x<1},观察或由数轴得A∩B={x|-3<x<1}.答案:A2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.活动:明确集合A、B中的元素,教师和学生共同探讨满足A∩B=B的集合A、B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,B⊆A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A、B均是方程的解集,通过画Venn图发现集合A、B的关系,从数轴上分析求得a的值.解:由题意得A={-4,0}.∵A∩B=B,∴B⊆A.∴B=∅或B≠∅.当B=∅时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,则Δ=4(a+1)2-4(a 2-1)<0,解得a<-1.当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a+1)2-4(a 2-1)=0,解得a=-1,此时,B={x|x 2=0}={0}⊆A,即a=-1符合题意.若集合B 含有两个元素,则这两个元素是-4,0,即关于x 的方程x 2+2(a+1)x+a 2-1=0的解是-4,0.则有⎩⎨⎧=⨯+=+ 1.-a 04-1),-2(a 04-2 解得a=1,则a=1符合题意.综上所得,a=1或a≤-1.变式训练1.已知非空集合A={x|2a+1≤x≤3a -5},B={x|3≤x≤22},则能使A ⊆(A∩B)成立的所有a 值的集合是什么?解:由题意知A ⊆(A∩B),即A ⊆B,A 非空,利用数轴得⎪⎩⎪⎨⎧≤-≥+-≤+.2253,312,5312a a a a 解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A ∪B=A,试求实数m 的取值范围. 分析:由A ∪B=A 得B ⊆A,则有B=∅或B≠∅,因此对集合B 分类讨论.解:∵A ∪B=A,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅.当B=∅时,有m+1>2m-1,∴m<2.当B≠∅时,观察图1-1-3-7:图1-1-3-7由数轴可得⎪⎩⎪⎨⎧≤-+≤--≤+.512,12,121m m m m 解得-2≤m≤3.综上所述,实数m 的取值范围是m<2或-2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.知能训练课本P 11练习1、2、3.【补充练习】1.设a={3,5,6,8},B={4,5,7,8},(1)求A∩B,A ∪B.(2)用适当的符号(⊇、⊆)填空:A∩B ________A,B________A∩B,A ∪B________A,A ∪B________B,A∩B ________A ∪B. 解:(1)因A 、B 的公共元素为5、8,故两集合的公共部分为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A、B两集合的元素3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)由文氏图可知A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.2.设A={x|x<5},B={x|x≥0},求A∩B.解:因x<5及x≥0的公共部分为0≤x<5,故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分. 所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2), (2,1)}.7.2006江苏高考,7若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆CB.C⊆AC.A≠CD.A=∅分析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;(2)当A=∅时,A∩B,A∪B这两个运算结果与集合A,B的关系;(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.图1-1-3-8解:A∩B=A⇔A⊆B⇔A∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A∪B=B∪A,A⊆(A∪B),B⊆(A∪B);A∪A=A,A∪∅=A,A⊆B⇔A∪B=B;A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A⊆B⇔A∩B=A.课堂小结本节主要学习了:1.集合的交集和并集.2.通常借助于数轴或Venn图来求交集和并集.作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本P12习题1.1A组6、7、8.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.(设计者:尚大志)。

数学新课标人教A版必修1教学课件:1.1.3.1 并集、交集

数学新课标人教A版必修1教学课件:1.1.3.1 并集、交集

必修1 第一章 集合与函数的概念
栏目导引 第二十一页,编辑于星期日:十一点 三十三分。
2.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B= {x|-1<x<3},求a的取值范围.
必修1 第一章 集合与函数的概念
栏目导引 第二十二页,编辑于星期日:十一点 三十三分。
解析: 如下图所示, 由A∪B={x|-1<x<3}知1<a≤3.
必修1 第一章 集合与函数的概念
栏目导引 第十六页,编辑于星期日:十一点 三十三分。
1.①若本例(1)中问题改为求A∪B; ②本例(2)中,问题改为求M∩N. 解析: ①由例1中的数轴表示知A∪B={x|x≥1}.故 选B. ②由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 答案: ①B ②C
必修1 第一章 集合与函数的概念
栏目导引 第三十页,编辑于星期日:十一点 三十三分。
4.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B =B,求a的值.
必修1 第一章 集合与函数的概念
栏目导引 第三十一页,编辑于星期日:十一点 三十三分。
解析:∵A∩B=B,∴B⊆A. ∵A={-2}≠∅, ∴B=∅或 B≠∅. 当 B=∅时, 方程 ax+1=0 无解,此时 a=0. 当 B≠∅时,
必修1 第一章 集合与函数的概念
栏目导引 第二十九页,编辑于星期日:十一点 三十三分。
(2)解决上述问题时需注意什么问题?
求出参数值后,务必代入集合中检验是否满足元素的 互异性及其它条件.
(3)常见集合间关系的等价转换 ①∅ (A∩B)⇔A∩B≠∅,∅ (A∪B)⇔A∪B≠∅; ②A∩B=A⇔A⊆B,A∪B=A⇔B⊆A; ③A∩B=∅⇔A,B中没有公共元素,且A,B都有可能 为∅.

集合的交集与并集运算

集合的交集与并集运算

集合的交集与并集运算集合是数学中的一种基本概念,用于表示一组具有共同特征的对象的结合体。

在集合的运算中,交集与并集是两个重要的操作。

本文将围绕集合的交集与并集运算展开讨论。

1. 交集运算交集运算是指将多个集合中共同拥有的元素提取出来形成一个新的集合。

记作A∩B,表示集合A与集合B的交集。

例如,设有集合A={1,2,3,4},集合B={3,4,5,6},则A∩B={3,4}。

这意味着集合A与集合B中,只有元素3和元素4同时存在于两个集合中。

交集运算的特点:(1)交换律:A∩B = B∩A。

即,两个集合的交集不受集合的顺序影响。

(2)结合律:(A∩B)∩C = A∩(B∩C)。

即,多个集合的交集按任意顺序进行运算,结果不变。

(3)分配律:A∩(B∪C) = (A∩B)∪(A∩C)。

即,集合的交集与并集的运算可以相互分配。

2. 并集运算并集运算是指将多个集合中的所有元素合并到一个新的集合中。

记作A∪B,表示集合A与集合B的并集。

例如,设有集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。

这意味着集合A与集合B中的所有元素组成了一个新的集合。

并集运算的特点:(1)交换律:A∪B = B∪A。

即,两个集合的并集不受集合的顺序影响。

(2)结合律:(A∪B)∪C = A∪(B∪C)。

即,多个集合的并集按任意顺序进行运算,结果不变。

(3)分配律:A∪(B∩C) = (A∪B)∩(A∪C)。

即,集合的并集与交集的运算可以相互分配。

需要注意的是,交集与并集运算的结果仍然是一个集合,并且不重复计算元素。

例如,在集合A={1,2,3},集合B={2,3,4}的交集运算中,元素2和元素3只会计算一次。

综上所述,交集与并集运算是集合运算中的两个重要操作。

它们在解决实际问题中具有广泛的应用,能够帮助我们准确描述集合中的共同元素或合并多个集合的元素。

在数学推理和逻辑推演中,交集与并集的概念也是不可或缺的。

集合的基本运算--并集交集

集合的基本运算--并集交集
校的高一年级同学}, = {|是立德中学今年在校的高一年级女同学}.
问题3 集合,集合与集合之间有什么关系?
概念3:
一般地,由所有属于集合且属于集合的
元素组成的集合,称为集合与的交集,
记为⋂(读作“A交B”)
即⋂ = {| ∈ ,且 ∈ }
可用图表示.
概念1:
全集:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么
就称这个集合为全集,通常记作.(通常也把给定的集合作为全集)
集合{, , − }是例题中的全集
补集:对于一个集合,由全集中不属于集合的所有
元素组成的集合称为集合相对于全集的补集,简称
为集合的补集,记作
即 = {| ∈ ,且 ∉ },可用图/数轴表示.
集合,之间的关系吗?
概念1:
一般地,由所有属于集,记为
∪ (读作“并”),即 ∪ = {| ∈ ,
或 ∈ },可用韦恩图表示如有图所示:
在上面的问题(1)(2)中,集合与的并集是,即 ∪ = .
课堂例题
(3)直线1 ,2 重合可表示为1 ∩ 2 = 1 = 2 .
情景四:
下列关系式成立吗?为什么?
(1) ∩ = ;(2) ∩ = .
概念4:
交集的性质:
• ∩ = ; ∩ = .
• ( ∩ ) ⊆ ;( ∩ ) ⊆ ;
• = ∩ ; ∩ = ∩ ;
情景一:
问题1
请同学们动手求方程( − )( − ) = 在实数集中的解集。
问题2
请同学们动手求方程( − )( − ) = 在有理数集中的解集。
问题3
(1){}和{ , − }分别和集合{, , − }是什么关系?

人教新课标版数学高一必修1学案集合的基本运算(一)

人教新课标版数学高一必修1学案集合的基本运算(一)

1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于() A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2} (2)若将(1)中A改为A={x|x>a},求A∪B,A∩B.(1)答案 A解析画出数轴,故A∪B={x|x>-2}.(2)解如图所示,当a<-2时,A∪B=A,A∩B={x|-2<x<2};当-2≤a<2时,A∪B={x|x>-2},A∩B={x|a<x<2};当a≥2时,A∪B={x|-2<x<2或x>a},A∩B=∅.已知集合的交集、并集求参数【例2】已知A={x|2a≤x≤a+3},B={x|x<-1或x>5}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=R,求a的取值范围.解(1)由A∩B=∅,①若A=∅,有2a>a+3,∴a>3.②若A≠∅,如图:∴⎩⎪⎨⎪⎧2a≥-1a+3≤52a≤a+3,解得-12≤a≤2.综上所述,a的取值范围是{a|-12≤a≤2或a>3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑. 变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧ 1a≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2} C .{x |x <1} D .{x |x ≤2} 答案 A2.下列四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 ②③④正确.3.设A ={x |1≤x ≤3},B ={x |x <0或x ≥2},则A ∪B 等于( ) A .{x |x <0或x ≥1} B .{x |x <0或x ≥3} C .{x |x <0或x ≥2} D .{x |2≤x ≤3} 答案 A解析 结合数轴知A ∪B ={x |x <0或x ≥1}.4.已知A ={x |x ≤-1或x ≥3},B ={x |a <x <4},若A ∪B =R ,则实数a 的取值范围是( ) A .3≤a <4 B .-1<a <4 C .a ≤-1 D .a <-1 答案 C解析 结合数轴知答案C 正确.5.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。

集合的基本运算(一)交集、并集

集合的基本运算(一)交集、并集

课时计划年级班第周星期第节月日教材 1.1.3 集合的基本运算(一)交集、并集教学目的理解交集与并集的概念,掌握交集与并集的区别与联系,会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题。

重点难点交集与并集的概念,数形结合的思想。

理解交集与并集的概念、符号之间的区别与联系。

教具教法教学内容与步骤一、复习准备:1.已知A={1,2,3}, S={1,2,3,4,5},则A S, {x|x∈S且x∉A}= 。

2.用适当符号填空:0 {0} 0 ΦΦ {x|x2+1=0,X∈R}{0} {x|x<3且x>5} {x|x>6} {x|x<-2或x>5} {x|x>-3} {x>2}二、讲授新课:1.教学交集、并集概念及性质:①探讨:设{4,5,6,8}A=,{3,5,7,8}B=,试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并).②讨论:如何用文字语言、符号语言分别表示两个集合的交、并?③定义交集:一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集。

记作A∩B,读“A交B”,即:A∩B={x|x∈A且x∈B}。

④讨论:A∩B与A、B、B∩A的关系?→ A∩A= A∩Φ=⑤图示五种交集的情况:…A BA(B) A B BAB A教学内容与步骤⑥练习(口答):A={x|x>2},B={x|x<8},则A∩B=;A={等腰三角形},B={直角三角形},则A∩B=。

⑦定义并集:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集。

记作:A∪B,读作:A并B。

用描述法表示是:A∪B={x|x∈A或x∈B}⑧分析:与交集比较,注意“且”与“或”条件;“x∈A或x∈B”的三种情况。

⑨讨论:A∪B与集合A、B的关系?→ A∪A= A∪Ф= A∪B与B∪A⑩练习(口答):A={3,5,6,8},B={4,5,7,8},则A∪B= ;A={锐角三角形},B={钝角三角形},则A∪B= ;A={x|x>3},B={x|x<6},则A∪B=,A∩B=。

《集合的基本运算》说课稿

《集合的基本运算》说课稿

《集合的基本运算》说课稿一、教材分析集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。

根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:二、教学目标1、知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集的表示法以及求解两个集合并集与交集的方法。

2、过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。

3、情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。

根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。

针对上述情况可作专项训练:三、教学重点与难点重点:并集与交集的概念的理解,以及并集与交集的求解。

尊重学生、尊重学生的学习感受,教学为学生的学习服务,让学生畅谈学习收获和遗憾,使学习的氛围和谐,在和谐中发展。

难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。

为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;四、教学方法与学法《公仪休拒收礼物》是四年级上册的一篇课文,下面是关于《公仪休拒收礼物》说课稿的范文,希望对大家有帮助!本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。

集合间的基本运算—交集、并集的性质【新教材】人教A版高中数学必修第一册课件

集合间的基本运算—交集、并集的性质【新教材】人教A版高中数学必修第一册课件
⑸ 若A∩B=A,则AB. ⑹ 若A∪B=A,则AB.
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
课堂探究四:分类讨论
1.设a常数 R, A {x | (x -1)(x - a) 0}, B {x | x a 1} 若A B R, 求实数a的取值范围.
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
课堂探究三:等价转化 1.已知A {x | 3 x 7}, B {x | 2a 1 x 2a 1} (1)若A B A,求实数a的取值范围; (2)若A B A,求实数a的取值范围.
说明:两个集合求并集,结果还是一个集合,是由集合A与B
的所有元素组成的集合(重复元素只看成一个元素).
Venn图表示:
AB
A∪B
A
B
A∪B
A
B
A∪B
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
2.交集概念
一般地,由属于集合A且属于集合B的所有元素组 成的集合,称为A与B的交集(intersection set).
注意:集合A可以是空集
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
集合间的基本运算—交集、并集的性 质【新 教材】 人教A版 高中数 学必修 第一册 课件
2.已知A {x | x2 3x 2 0}, B {x | x2 ax a 1 0} 若A B A, 求实数a的值.

集合的基本运算并集和交集新教材人教版高中必修第一册

集合的基本运算并集和交集新教材人教版高中必修第一册
(2)同时读了a,b两本书的有哪些同学?
提示 (1)至少读过一本书的有学号为2,3,4,6,8,9,10,12,14,15,16, 18,20的同学. (2)同时读了a,b两本书的有学号为6,12,18的同学.
2
课前预习
课堂互动
素养达成
1.并集 学习概念时要注意“三种语言”之间的转化 (1)自然语言:由所有属于集合A__或___属于集合B的元素组成的集合,称为集合A 与B的__并__集__. (2)符号语言:A∪B=__{_x_|x_∈__A_,__或__x_∈__B_}___. (3)图形语言:如图所示.
提示 A∪B={1,2,3,4}. 3.若x∈(A∩B),则x∈(A∪B).( √ ) 4.若x∈(A∪B),则x∈(A∩B).( × )
提示 不一定成立,x不一定是A,B的公共元素.
5
课前预习
课堂互动
素养达成
[微训练] 1.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B等于________.
解析 A∪B={x|x>0}∪{x|-1≤x≤2}={x|x≥-1}. 答案 {x|x≥-1} 2.若P={x|x≥1},Q={x|-1<x<4},则P∩Q=________. 解析 如图所示,P∩Q={x|1≤x<4}.
答案 {x|1≤x<4}
6
课前预习
课堂互动
素养达成
[微思考]
1.并集定义中“x∈A或x∈B”包含三种情况,你知道有哪三种情况吗?
18
课前预习
课堂互动
素养达成
(2)若A∪B=A,则B⊆A, ∵A={1,2},∴B=∅或B={1}或{2}或{1,2}. 若B=∅,则Δ=4(a-1)2-4(a2-5)=24-8a<0,

集合的基本运算(第1课时)交集与并集

集合的基本运算(第1课时)交集与并集

新课标A版 ·数学 ·必修1
7.已知集合M={x|y=x2-1},N={y|y=x2-1},那么
M∩N等于( )
A.∅
B.N
C.M
D.R
答案 B
解析 ∵M=R,N={y|y≥-1},∴M∩N=N.
第35页
第一章 1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
8.满足条件M∪{1}={1,2,3}的集合M的个数是________.
(3)设A={(x,y)|x+y=0},B={(x,y)|x-y=4},求A∩B.
第17研
新课标A版 ·数学 ·必修1
【解析】 (1)A={正偶数},B={正奇数}, ∴A∪B=N*,A∩B=∅. (2)A={2,3},B={2,4}, ∴A∪B={2,3,4},A∩B={2}.
合A∩B=( )
A.{0,1,2}
B.{0,1,2,3}
C.{0,1,3}
D.B
答案 A
第32页
第一章 1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
5.设集合A={x|-5≤x<1},B={x|x≤2},则A∩B等于
() A.{x|-5≤x<1} B.{x|-5≤x≤2}
C.{x|x<1}
高考调研
新课标A版 ·数学 ·必修1
思考题3 设A={x|a≤x≤a+3},B={x|x<-1,或x>5}, 当a为何值时,
(1)A∩B=∅; (2)A∩B≠∅; (3)A∩B=A.
【答案】 (1)-1≤a≤2 (2)a<-1或a>2 (3)a<-4或a>5
第27页
第一章 1.1 1.1.3 第1课时

示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算-并集、交集)一、教学目标:1. 让学生理解并集和交集的定义。

2. 让学生掌握并集和交集的基本运算方法。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 并集的定义和运算方法。

2. 交集的定义和运算方法。

3. 并集和交集的性质。

三、教学重点与难点:1. 教学重点:并集和交集的定义及其运算方法。

2. 教学难点:并集和交集的性质。

四、教学方法:1. 采用问题驱动法,引导学生思考并探索并集和交集的概念及运算方法。

2. 通过例题讲解,让学生掌握并集和交集的基本运算技巧。

3. 利用小组讨论,培养学生的合作能力和解决问题的能力。

五、教学准备:1. 教案、PPT、黑板。

2. 练习题及答案。

3. 学生分组合作的材料。

教案内容请稍等,我需要更多时间来为您编写。

六、教学过程:1. 导入:通过复习集合的基本概念,引导学生进入并集和交集的学习。

2. 新课讲解:讲解并集和交集的定义,通过示例演示并集和交集的运算方法。

3. 练习巩固:让学生独立完成练习题,检验对并集和交集的理解和掌握程度。

七、课堂练习:1.1 集合A = {1, 2, 3}, 集合B = {3, 4, 5},求A∪B和A∩B。

1.2 集合C = {2, 4, 6}, 集合D = {4, 5, 6},求C∪D和C∩D。

八、小组讨论:1. 让学生分组讨论并集和交集的性质,如:1.1 集合A∪B = 集合B∪A。

1.2 集合A∩B = 集合B∩A。

1.3 集合A∪B = 集合A + 集合B 集合A∩B。

九、总结与拓展:1. 总结并集和交集的概念及运算方法。

2. 引导学生思考并集和交集在实际生活中的应用。

3. 提出拓展问题,激发学生的学习兴趣:如何求两个无限集合的并集和交集?十、布置作业:1.1 集合E = {1, 2, 3, 4}, 集合F = {3, 4, 5, 6},求E∪F和E∩F。

1.2 集合G = {x | x 是正整数}, 集合H = {x | x 是偶数},求G∪H和G∩H。

集合的交集与并集

集合的交集与并集

集合的交集与并集集合是数学中一个重要的概念,用于描述具有共同特征的对象的集合。

在集合论中,我们经常会用到两个基本的运算,即交集和并集。

交集是指由两个或多个集合中具有相同元素的元素组成的新的集合,而并集则是由两个或多个集合中所有的元素组成的新的集合。

本文将着重介绍集合的交集与并集,并探讨它们在数学中的应用。

1. 交集的定义与性质交集是指由两个或多个集合中共同元素组成的新的集合。

假设A和B是两个集合,则它们的交集表示为A∩B。

交集的定义可以用集合间的元素关系来描述:若元素x同时属于集合A和集合B,则x属于A∩B。

交集具有以下几个性质:(1)交换律:对于任意集合A和B,有A∩B = B∩A。

即交换交集的操作次序不会改变结果。

(2)结合律:对于任意集合A、B和C,有(A∩B)∩C = A∩(B∩C)。

即交集的计算满足结合律,可以按照任意次序进行计算。

(3)分配律:对于任意集合A、B和C,有A∩(B∪C) =(A∩B)∪(A∩C)。

即交集与并集满足分配律。

2. 并集的定义与性质并集是指由两个或多个集合中所有元素组成的新的集合。

假设A和B是两个集合,则它们的并集表示为A∪B。

并集的定义可以用集合间的元素关系来描述:若元素x属于集合A或属于集合B,则x属于A∪B。

并集具有以下几个性质:(1)交换律:对于任意集合A和B,有A∪B = B∪A。

即交换并集的操作次序不会改变结果。

(2)结合律:对于任意集合A、B和C,有(A∪B)∪C =A∪(B∪C)。

即并集的计算满足结合律,可以按照任意次序进行计算。

(3)分配律:对于任意集合A、B和C,有A∪(B∩C) =(A∪B)∩(A∪C)。

即并集与交集满足分配律。

3. 交集与并集的应用交集和并集在数学中有广泛的应用,特别是在集合论、逻辑学、概率论等领域。

在集合论中,交集和并集是集合运算的基础。

通过交集和并集的组合运算,可以构建更复杂的集合关系,如补集、差集等。

在逻辑学中,交集和并集可以用来表示命题之间的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的基本运算——交集与并集
教学目标:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集
与交集;
(2))能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

教学过程:
一、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
二、 新课教学
1、并集
一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )
记作:A ∪B 读作:“A 并B ” 即: A ∪B={x|x ∈A ,或x ∈B} Venn 图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

例题1求集合A 与B 的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x ≤2} B={x|0≤x ≤3}
(过度)问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。

2、交集
一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B 读作:“A 交B ”
即: A ∩B={x|∈A ,且x ∈B}
交集的Venn 图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题2求集合A 与B 的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x ≤2} B={x|0≤x ≤3}
拓展:求下列各图中集合A 与B 的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解:
A
例1:设{}{}{}7,1,4,4,2,1,1,22-=+-=+--=C x y B x x A 且A ∩B=C 求y x ,。

解:由A ∩B=C 知 7 A ∴必然 x 2-x+1=7 得 3,221=-=x x
由2-=x 得 C x ∉=+24 ∴2-≠x
∴3=x C x ∈=+74 此时 12-=y ∴21-=y ∴21,3-==y x 例2:已知{}(){}026|,2|22=+++=-==r x s x x B r sx x x A 且A ∩B={2
1
}求A ∪B 。

解: ∵
21
A 且 21
B ∴⎪⎩⎪⎨⎧=+++-=0)2(21232121r s r s ⇒⎩⎨⎧521
2-=+=-s r s r
解之得 232
-=-=r s ∴A={,21
23} B={,2121}
∴A ∪B=⎭
⎬⎫⎩⎨⎧--21,23,21 思考题:设集合{}{}⎭⎬⎫⎩
⎨⎧≥≤=≤≤-=≤≤-=250|,31|,24|x x x C x x B x x A 或, 求A ∩B ∩C, A ∪B ∪C 。

4、集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A A ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A 若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B ),则x ∈A ,或x ∈B。

相关文档
最新文档