高中数学必修1 《对数函数》教学设计

合集下载

高一数学北师大版必修1教学教案第三章5-1对数函数的概念(4)

高一数学北师大版必修1教学教案第三章5-1对数函数的概念(4)

对数的概念教学设计《对数的概念》本节内容是高中数学中相当重要的一个基础知识点,在此之前,学生已经学习了指数、指数函数的内容,了解了指数运算是已知底数和指数求幂值,而对数是已知底数和幂值求指数的运算,两者是互逆的关系,对数的概念是学习对数函数的入门课,对数函数对于学生来说又是一个全新的函数模型,它是在指数函数的基础上,对函数类型的扩展,是本章的重点内容。

一、设计思路1、指导思想本节内容是高中数学中相当重要的一个基础知识点,为学习对数函数作好准备,起到了承上启下的作用.同时,也对培养学生对立统一,相互联系、相互转化的思想有着很重要的意义。

2、教学目标根据教学大纲的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:(1)知识与技能①理解对数的概念;②掌握对数式与指数式的互化;③理解对数的性质.(2)过程与方法在概念理解的过程中,培养学生分析转化的意识和逆向思维能力.(3)情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、勇于发现的求知精神,激发学生的学习兴趣,让学生感受成果的喜悦.在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的好习惯.(4)现代教学手段:应用多媒体、几何画板等工具来展示对数与指数的关系,使学生对对数的概念有进一步的认识。

3、重难及难点重点:对数的概念;对数式与指数式的相互转化。

难点:对数概念的理解;对数性质的理解。

4、教法和学法:教法:游戏教学法;引导发现法;讲练结合法;借助多媒体课件。

学法:自主学习;合作交流;思考探究。

在新课改的理念下,教师和学生的主体地位已经发生了改变,为了更好地体现以学生为主体的课堂教学。

二、教学准备教学资源上,制作课件,导学案,准备几何画板,三角板,彩色粉笔。

课堂教学中,注重师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识,充分调动学生的参与的积极性。

三、教学过程(一)游戏引入比一比,看谁算的又对又快:那么 ()25=的值为多少?设计意图:以游戏的形式教学,低起点,让学生在生动活泼的气氛中,不知不觉地体会对数运算与幂运算是互逆的,同时在()25=中遇到了困难,会激发学生的求知欲望。

对数函数及其性质教案完整版

对数函数及其性质教案完整版

对数函数及其性质教案完整版对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。

对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。

而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

也为解决函数总和问题及其在实际中的应用奠定良好的基础。

二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。

因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。

2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。

3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。

高中数学对数函数备课教案

高中数学对数函数备课教案

高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。

教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。

教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。

教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。

教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。

二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。

三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。

四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。

五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。

教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。

同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。

在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。

《对数函数》教学设计

《对数函数》教学设计

对数函数教学设计知识目标1.学生理解对数函数的定义;2.学生掌握对数函数的性质、特点和图像;3.学生能够应用对数函数解决实际问题;4.学生提高数学思维和解决问题的能力。

教学内容第一节:对数函数的定义1.引入对数函数的概念;2.介绍对数函数的定义和性质;3.给出许多实际问题,让学生了解对数函数的意义。

第二节:对数函数的特点和图像1.讲解对数函数的图像特点;2.教学对数函数的反函数的图像特点;3.比较对数函数和指数函数图像。

第三节:对数函数的应用1.应用对数函数解决实际问题;2.教学对数函数运用在生活、科学和工程中的技术;3.补充许多实际问题的解决方法。

教学方法1.演讲法:引领学生入门,提供新知识给学生认识和理解;2.询问题:针对不同学生需要的信息而产生的对话修改;3.小组讨论:激发学生的合作意识和实际操作能力;4.集体探究:选取与对数函数教学相应的问题,鼓励学生在自愿的情况下查阅信息、发表观点、对问题进行探讨;5.实验教学:在本节课中使用实验设备,让学生实际操作,以便更好地了解对数函数的图像特点。

教学评估1.平时评估:针对学生的课堂表现和作业;2.综合测评:期末考试等大型考试;3.学生评估:以温馨的声音,收回学生的课后反馈。

教学资源1.《高中数学教育》;2.电子版教材;3.课程讲义;4.PPT幻灯片;5.示范视频。

总结在上述对数函数的教学设计中,我们可以看到选取实例和图像进行教学是非常重要的。

学生从实例中发现问题,从图像中看到模式,从逐渐深化不断理解,这些解决问题的策略和思考方式,都是通过对数函数的学习所获得的知识,也是对现实生活有用的技能。

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计柏秀芳沁县实验中学一、教材分析本节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

对数函数是以指数函数作为基础知识。

本节课的主要任务是抓住对数函数与指数函数的互为反函数的关键,掌握对数函数的概念、图像性质并由对数函数的图像归纳出性质,能运用性质解决比较对数值大小。

为了能使学生理解和掌握教学内容,培养学生自主学习能力和数学建构思想,本节课使用多媒体教学,通过计算机辅助教学课件和网络系统良好的交互性能,适时得到学生的反馈信息,实现教学目标。

二、学情分析对数函数的学习以对数运算和指数函数作为基础,部分学生前面知识不熟练,加之函数概念的抽象性,学生对函数的理解比较困难,对于对数函数学习或多或少有些恐惧感。

学生又是从初中升入高一不久,在学习方法上还保留着初中的学习方法,考虑问题常常以形象思维为主,在教学中,注意培养学生由特殊到一般的归纳能力,让学生多观察,通过数形结合,来感受对数函数的图像和性质的关系。

三、设计思想:本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。

因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

对数函数及其性质教案1

对数函数及其性质教案1

对数函数及其性质(2)一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

高中数学教案《对数函数》

高中数学教案《对数函数》

教学计划:《对数函数》一、教学目标1.知识与技能:o学生能够理解对数函数的概念,掌握对数函数的一般形式及其性质。

o学生能够识别并绘制对数函数的图像,理解图像与函数性质之间的关系。

o学生能够运用对数函数解决简单的实际问题,如计算复利、对数增长等。

2.过程与方法:o通过与指数函数的对比,引导学生理解对数函数的概念和必要性。

o通过观察、分析对数函数图像,培养学生的数形结合能力和逻辑推理能力。

o通过小组合作探究,培养学生的协作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

o培养学生的耐心和细心,提高解决复杂问题的毅力。

o引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点●重点:对数函数的概念、一般形式、性质及其图像特征。

●难点:理解对数函数图像与函数性质之间的关系,以及运用对数函数解决实际问题。

三、教学过程1. 复习旧知,引入新课(5分钟)●复习指数函数:简要回顾指数函数的概念、性质和图像特征,为学习对数函数做好铺垫。

●生活实例引入:通过介绍天文学中的星等计算、地震震级等实例,引导学生思考这些实例中隐藏的数学规律,从而引出对数函数的概念。

●明确学习目标:阐述本节课将要学习的内容——对数函数,并明确学习目标。

2. 对数函数概念与性质讲解(15分钟)●定义讲解:详细讲解对数函数的概念,强调其与指数函数的互逆关系,并给出对数函数的一般形式(如y=log a x,其中a>0且a≠1,x>0)。

●性质探讨:引导学生根据对数函数的定义,探讨其定义域、值域、单调性、奇偶性等基本性质。

●对比分析:将对数函数与指数函数进行对比分析,帮助学生更好地理解两者的联系与区别。

3. 对数函数图像分析(10分钟)●图像绘制:利用多媒体设备展示不同底数下对数函数的图像,引导学生观察图像特征。

●特征归纳:引导学生根据图像特征归纳出对数函数的图像特征,如底数大于1时图像上升缓慢,底数在0和1之间时图像下降迅速等。

对数函数的概念教案学年高一上学期数学人教必修第一册全文

对数函数的概念教案学年高一上学期数学人教必修第一册全文

精选全文完整版(可编辑修改)4.4.1对数函数的概念(教案)课程地位本小节内容选自《普通高中数学必修第一册》人教A 版(2019)第四章《指数函数与对数函数》的第四节《对数函数》(第一课时),是后续内容学习的基础,至关重要. 学习目标1、通过具体实例,理解对数函数的概念,会求对数型函数的定义域;2、学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,了解对数函数在生产实际中的简单应用,感受数学建模思想;3、了解对数函数与指数函数之间的联系,培养学生观察、分析和归纳问题的思维能力;渗透类比等基本数学思想方法. 学习重难点重点:对数函数的概念;难点:从不同的问题情境中归纳对数函数,并掌握对数函数的定义域. 课前自主预习 1、复习函数的概念: P62 指数函数的图象: P117 指数和对数间的互化:P122对数的运算: P124 2、预习:本节所处教材的第130页.对数函数的概念: 对数函数的定义域: 教学过程一、复习回顾,问题导入【问题1】 (细胞分裂)细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……若某个细胞分裂后个数为x ,如何表示其分裂次数y ? (22log y x y x =⇒=)【问题2】(对半剪线)将长线两端对齐从中剪断,每段长度为原始的12,再次对齐剪断,每段长度为原始的14,继续对齐剪断,每段长度为原始的18.......若此时线的长度为原始的x ,如何表示它被对齐剪断的次数y ?(121()log 2y x y x =⇒=)观察比较问题1和问题2所得y 与x 之间的关系式,可以发现,y 与x 之间的关系式都形如log a y x =,根据指数和对数互化,以及指数函数的图象上x 与y 两者相互之间是完全一一对应的,所以这是函数。

【设计意图】由问题引入,凸显学习新概念的必要性,并再次理解函数的定义。

培养学生数学抽象的核心素养。

二、新知教学,概念应用 (一)对数函数的概念一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 为自变量,定义域为(0,)+∞。

人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案

人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案

4.4.1 对数函数的概念教学目标:通过具有现实背景的具体实例,经历数学抽象,理解对数函数的概念,了解对数函数的实际意义.教学重点:对数函数的概念,包括定义、底数a的取值范围、定义域.教学难点:由指数函数(a>0,且a≠1),能想到x也是y的函数,总结归纳出对数函数的概念.教学过程:引导语:在4.2节中,我们用指数函数模型研究了呈指数增长或衰减变化规律的问题.对这样的问题,在引入对数后,我们还可以从另外的角度,对蕴含的规律作进一步的研究.1.形成定义问题1:在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律是函数(x≥0).进一步地,死亡时间x是碳14的含量y的函数吗?追问1:解决这个问题,显然要依据函数的定义.那么依据定义应该怎样进行判断呢?师生活动:教师引导学生先回忆函数的定义,然后确定判断方法.函数的定义:设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.所以要判断死亡时间x是否是碳14的含量y的函数,就要确定,对于任意一个y∈(0,1],是否都有唯一确定的x与其对应.追问2:若已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?如图1,观察(x≥0)的图象,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,与(x≥0)的图象有几个交点?这说明对任意一个y∈(0,1],都有几个x与其对应?能否将x看成是y的函数?师生活动:按照追问1确定的办法,先由学生分析,之后教师用软件进行演示,直观呈现对任意一个y∈(0,1],都有唯一确定的x与其对应.根据函数的定义,可知能将x看成是y的函数.追问3:能否求出生物死亡年数随体内碳14含量变化的函数解析式?师生活动:学生应该有足够能力解决此问题.通过指数与对数的运算关系,可以将这种对应关系,改写为.习惯上用x表示自变量,用y表示函数值,于是就得到函数,x∈(0,1],刻画时间y随碳14含量x的衰减而变化的规律.设计意图:通过再次分析4.2.1的问题2,并与指数函数进行比较,形成对比,从另外的角度刻画其中蕴含的规律,引出用函数的方式描述问题,为抽象得到对数函数做准备.问题2:对于一般的指数函数(a>0,且a≠1),根据指数与对数的运算关系,转换成(a>0,且a≠1),能否将x看成是y的函数?师生活动:利用解决问题1的经验,先由学生解答这个问题,之后师生一起完善.教师讲授:通常,我们用x表示自变量,y表示函数.为此,可将(a>0,且a≠1)改写为:(a>0,且a≠1).这就是对数函数.追问1:通过与指数函数对比,函数的定义域是什么?师生活动:根据指数函数的定义可知,在对数函数中,自变量x的取值范围是(0,+∞).于是就得到了:定义:一般地,函数(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).设计意图:通过从特殊到一般的过程,抽象出对数函数的基本形式,得出对数函数的概念.并在与指数函数对比的基础上,建立关联,得出对数函数的定义域.2.应用定义例1求下列函数的定义域:追问:求解的依据是什么?据此求解的步骤是什么?师生活动:教师利用追问引导学生,一切从定义出发.对数函数(a>0,且a≠1)的定义域是(0,+∞),那么(1)中的和(2)中的(4-x)的取值范围就是(0,+∞),于是得到不等式,将定义域问题转化为解不等式问题,进而求出定义域.设计意图:通过求函数定义域,进一步理解对数函数定义域的特殊性.在中学阶段,对数函数是为数不多的定义域不是实数集R的函数,这属于一个特殊情况.此前遇到的特殊情况还包括分母不能为0,二次根式下不能为负数.可以前后形成对比,加深对函数定义域和一些特殊情况的理解.练习1.求下列函数的定义域:练习2.画出下列函数的图象:设计意图:通过对数函数与分式、绝对值等多种形式的结合,并利用函数的解析式法、图象法,从不同角度推动学生对对数函数定义域的理解,进一步明确概念,体会对数函数定义域的特殊性.例2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.师生活动:教师引导学生,顺着题意,理清思路,进行解答.对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换为y关于x的函数.对于(2),利用计算工具,快速填好表格,探索发现,随着x的增长,y的增长在减缓.由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增加1倍所需要解:观察集合A和集合B的数据,猜测其对应关系为以2为底的指数函数,将数据依次代入函数进行检验,发现都满足该函数的解析式,所以选①.(1)先通过4.2.1的问题2中所阐述的实际问题,利用图象上x与y的对应关系,理解x也是y的函数,再利用指数与对数的运算关系,依据函数的定义,从交换自变量与函数值“地位”的方向进行研究,得到对数函数的概念.(2)对数函数与指数函数是密不可分的.对于呈指数增长或衰减变化的问题,我们可以用指数函数进行描述,还可以从对数函数的角度进行描述,从而能够更全面地研究其中蕴含的规律.设计意图:(1)得到对数函数概念的基本过程,是函数研究套路“背景-概念-图象与性质-应用”中的“背景-概念”环节.通过不断重复这一过程,使学生逐步掌握研究一个数学对象的基本套路.(2)明确对数函数的现实背景,可以使学生明白这类函数区别于其他初等函数的主要特征,为对数函数的图象性质和应用奠定基础.4.布置作业根据课堂教学情况,从教科书习题4.4中选择合适的题目,可选题目为第1,3,5,9,10题.(五)目标检测设计1.设对数函数y=f(x)的底数为a,如果f(9)=2,f(27)=3,那么a=____ ,f(81)=_____ .设计意图:考查对数函数的概念.。

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。

2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。

3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。

教学重点,难点重点是理解对数函数的定义,掌握图像和性质。

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。

教学方法启发研讨式教学用具投影仪教学过程一。

引入新课今天我们一起再来研究一种常见函数。

前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。

这个熟悉的函数就是指数函数。

提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。

并由一个学生口答求反函数的过程:由得。

又的值域为,所求反函数为。

那么我们今天就是研究指数函数的反函数__对数函数。

2.8对数函数(板书)一。

对数函数的概念1、定义:函数的反函数叫做对数函数。

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。

如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。

在此基础上,我们将一起来研究对数函数的图像与性质。

二。

对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。

同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。

(完整版)对数函数及其性质教案完整版

(完整版)对数函数及其性质教案完整版

对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。

对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。

而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

也为解决函数总和问题及其在实际中的应用奠定良好的基础。

二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。

因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。

2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。

3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。

数学教案高中对数函数

数学教案高中对数函数

数学教案高中对数函数
1. 了解对数函数的基本概念和性质。

2. 学会求解对数函数的基本运算和应用问题。

3. 能够分析对数函数的图像及性质。

教学重点:
1. 对数函数的定义和性质。

2. 对数函数的运算。

3. 对数函数的图像分析。

教学难点:
1. 对数函数与指数函数的关系。

2. 对数函数的变化规律。

教学准备:
1. 教材《高中数学》。

2. 教学课件。

3. 实例题目。

教学过程:
第一步:引入
通过举例引入对数函数的定义和性质,让学生了解对数函数的基本概念。

第二步:基本性质
讲解对数函数的基本性质,包括对数的定义、性质和常用公式等内容。

第三步:基本运算
讲解对数函数的基本运算,包括对数的加减乘除运算,以及对数方程的解法。

第四步:应用问题
通过实例题目,让学生掌握对数函数在实际问题中的应用方法。

第五步:图像分析
讲解对数函数的图像及性质,包括对数函数的增减性和极限性质等内容。

第六步:练习与总结
让学生进行练习题目,巩固对数函数的基本知识,并对本节课进行总结和归纳。

教学反思:
通过本节课的教学,学生应该能够掌握对数函数的基本概念、性质和运算方法,以及对数函数的图像分析方法,从而提高数学思维能力和解题能力。

同时,教师还应该注重引导学生进行思维训练和实际问题的应用,提高学生的分析和解决问题的能力。

高中数学教案 必修1 第八讲:对数函数

高中数学教案 必修1 第八讲:对数函数

博途教育学科教师辅导讲义(一)学员姓名: 年 级:高 一 日期: 辅导科目:数 学 学科教师:刘云丰 时间: 课 题 第七讲:对数函数 授课日期教学目标1、初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2、能够画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;教学内容对数函数〖教学重点与难点〗◆教学重点:掌握对数函数的图象和性质。

◆教学难点:对数函数的定义,对数函数的图象和性质及应用。

〖教学过程〗一、对数的运算性质1.提出问题,导入新课:根据对数的定义及对数与指数的关系解答下列问题: ○1 设m a =2log ,n a =3log ,求n m a +;○2 设m M a =log ,n N a =log ,试利用m 、n 表示M a (log ·)N . 运算性质:如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a(log ·=)N M a log +N a log ;○2 =NMa log M a log -N a log ; ○3 n aM log n =M a log )(R n ∈.2.换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 学生活动○1 根据对数的定义推导对数的换底公式.○2 利用换底公式推导下面的结论 (1)b mnb a n a m log log =;(2)ab b a log 1log =.3.课堂练习○1 知的值。

试求:12lg ,4771.03lg ,3010.02lg ==○2 求:5lg 5lg 2lg 2lg 2+⋅+的值。

○3 的值。

,试求:333335lg 2lg 35lg 2lg b a ab b a ++⋅++=+○4 设a =2lg ,b =3lg ,试用a 、b 表示12log 5二、对数函数(一)情境引入最近两年,我们国家发生地震的次数非常多,带来的灾害更是让人感到深痛.由于地震的震级不同,带来的破坏性也就不同的.那怎样来测地震的震级的呢?20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-.其中A 是被测地震的最大振幅, 0A 是“标准地震”的振幅.根据对数的运算性质将0lg lg M A A =-变为0lgAM A =.在这里都有唯一确定的M 与0A A 对应.若设0Ax A =,则lg M x =.称M 为x 的函数.这是什么函数呢?这就是今天我们要学习的对数函数.(二)探究新知 1.定义函数log (0a y x a =>,且1)a ≠叫做对数函数.其中x 是自变量,函数的定义域是(0,)+∞. 提问:在对数函数的定义中,为什么其定义域为(0,)+∞?(前面学习的对数里规定真数必须大于0)例1 求下列函数定义域:(1)2log a y x =; (2)log (4)a y x =-.解:(1)由对数函数的定义域知20x >,解出0x ≠.所以所求定义域为{|0}x x ≠ (2)由对数函数的定义域知(4)0x ->,解出4x <.所以所求定义域为{|4}x x <. 2. 图象与性质提问:同学们想到用什么方法来作图?请同学们完成以2log y x =的图象,再完成以12log y x =的图象.请同学们用描点法来画函数2log y x =的图象.我们先完成下表:1)列表 x ... 14121 2 4 … y … -2 -112…2) 描点 3)连线画好函数2log y x =的图象后,同学怎样来画的函数12log y x =呢?我们看函数12log y x =是不是可以用换底公式log log log c a c bb a =将函数12log y x =化为2log y x =-? 函数2log y x =与函数2log y x =-的图象是关于x 轴对称的.所以我们就可以画出函数12log y x =的图象. 现在我们再来画函数3log y x =与13log x y =的大致图象.画好后请同学们观察所画的全部图象,你能够归纳总结出对数函数log a y x =(0a >,且1)a ≠的图象和性质吗?(提示:可以根据类比指数函数来学习) 请同学来回答他所看出的函数图象有些什么特征?请同学们回答函数具有哪些基本性质?(回答:单调性、奇偶性、最值)根据这些性质,我们一一来讨论对数函数log a y x =(0a >,且1)a ≠的性质:1.单调性:当01a <<时,在(0,)+∞上是减函数:当1a >时,在(0,)+∞上是增函数.2.奇偶性:非奇非偶.3.最值:无最大值也无最小值.一般地,对数函数log a y x =(0a >,且1)a ≠的图象与性质如下表所示: 01a <<1a >图象定义域 (0,)+∞(0,)+∞ 值域RR性质(1)过定点(1,0)(2)在(0,)+∞上是减函数(1)过定点(1,0)(2)在(0,)+∞上是增函数例2 比较下列各组数中两个值的大小:(1)23.4log ,28.5log ; (2)0.31.8log ,0.32.7log .解:(1)分析:两个对数函数底数相同,构造以2为底的对数即2log y x =,由函数的性质知该函数为单调递增的.解题步骤如下:因为函数2log y x =在(0,)+∞上是增函数,且3.48.5<,所以23.4log <28.5log ; (2)仿照(1)的分析做此题.因为函数0.3log y x =在(0,)+∞上是减函数且,1.8 2.7<,所以0.31.8log >0.32.7log .(三)巩固练习比较log 5.1a 与log 5.9a 的大小,其中(0a >,且1)a ≠.(四)总结提炼对数函数的定义,图象与性质.并着重强调数形结合来记忆对数函数的性质.并将上表中相同的性质归纳到一起.变为下表:01a <<1a >图象定义域 (0,)+∞ 值域R性质恒过定点(1,0) 在(0,)+∞上是减函数在(0,)+∞上是增函数三、本课小结本节课我们学习了哪些内容呢?1.对数的运算性质和换底公式及换底公式的应用;2.对数函数的定义;3.对数函数的图像及其基本性质。

(完整版)对数函数教学设计

(完整版)对数函数教学设计

《对数函数》教学设计河北定州实验中学杨丽先一、教材分析本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。

同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二、学情分析大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.三、设计思路学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四、教学目标1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. .3、通过学生分组探究进行活动,掌握对数函数的重要性质。

通过做练习,使学生感受到理论与实践的统一.4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.五、重点与难点重点:(1)对数函数的概念;(2)对数函数与指数函数的相互转化.难点:(1)对数函数概念的理解;(2)对数函数性质的理解.六、过程设计(一)复习导入(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何?学生回答,并用课件展示指数函数的图象和性质。

对数教学设计优秀10篇

对数教学设计优秀10篇

对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。

【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册

【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册

课时教学设计(第 1 课时/总3课时)课题 4.4.1对数函数的概念课型新课1、教学内容分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》.对数函数是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这个重要数学思想的进一步理解与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决相关自然科学领域中实际问题的重要工具,是学生今后学习对数函数的性质的基础.3、学习目标确定 1.理解对数函数的定义,会求对数函数的定义域;2.了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3.在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣.4、学习重点和难点教学重点:对数函数的概念、求对数函数的定义域教学难点:对数函数与指数函数的关系.5、学习评价设计1.对数函数的概念及其应用2.会求与对数函数有关的定义域问题3.会应用对数函数模型6、学习活动设计教师活动学生活动设计意图一、情景导入我们已经研究了死亡生物体内碳14的含量思考、讨论并交流温故知新,通过对上节指数函数问题的回顾,提出新的问题,构建对数函数的概念.培养和发展逻y随死亡时间t的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?辑推理和数学抽象的核心素养.二、获得新知阅读课本130-131页,思考并完成以下问题1. 对数函数的概念是什么?2. 对数函数解析式的特征?总结并板书对数函数的概念,及解析式的特征. 学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.体现学生的主体地位.三、例题精讲课本P130例1 例2创新设计P84例1 例2 例3 完成课本131页练习1、2、3及创新设计对应的训练1、训练2、训练3概念深化,例题讲解四、小结1.对数函数的概念2.对数函数有关的定义域的求法五、作业分层训练209页必做:1-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.1 对数函数的概念对数函数的概念例题小结8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.五、课时教学设计(教师)课时教学设计(第2课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型新课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点: 对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图(一)回顾旧知 思考:我们该如何去研究对数函数的性质呢?问题 1. 利用“描点法”作函数xy 2log =x y 21log =的图像.回顾思考并自由发言.独立作出两个函数图象.温故知新,通过对上节指数函数问题的回顾,提出新的问题,提出研究对数函数图像与性质的方法.培养和发展逻辑推理和数学抽象的核心素养.(二)获得新知 问题2:课本132页思考问题3:课本132页探究引导归纳总结对数函数的性质.小组合作,讨论交流 通过画出特殊的对数函数的图形,观察归纳出对数函数的性质,发展学生逻辑推理,数学抽象、数学运算等核心素养.(三)例题精讲,跟踪训练课本P193 例3课本例4引导得出反函数的概念完成P135练习1,2完成练习3通过典例问题的分析,让学生进一步熟悉对数函数的图像与性质.培养逻辑推理核心素养.(四)小结1.对数函数的图象及性质2.反函数(五)作业必做:习题4.4第1,2,5,7选做:12,13 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数的性质3.反函数8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.课时教学设计(第3课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型习题课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点:对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计 1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图回顾对数函数的图象和性质.创新设计P86例1 回顾思考并回答.完成创新设计P86的自主检测训练1温故知新,回顾对数函数图像与性质的方法.检验上节课所学,会识别对数函数图象.创新设计例2 完成训练2会应用对数函数的图象.创新设计例3 完成训练3 利用对数函数的图象和性质解决比较大小的问题.小结1.对数函数的图象2.比较对数值大小的方法作业必做:分层训练P2111-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数比较大小的方法8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.。

高中数学《对数函数》教学设计_1396

高中数学《对数函数》教学设计_1396

§2.8.1对数函数一、教学目标:(一)知识目标 : 对数函数的概念,图象和性质.(二)能力目标 : 通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想.(三)情感目标 : 通过对对数函数有关性质的一系列探究过程,培养学生用联系的观点分析和解决问题,使学生认识事物之间的相互转化,体验发现的快乐,形成积极的情感.二、教学重点:在理解对数函数的定义的基础上,掌握对数函数的图像和性质.三、教学难点:由对数函数与指数函数互为反函数的关系,利用指数函数的图像和性质得到对数函数的图像和性质.四、教学关键:由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是突出重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,采取直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点.五、教学方法:学导式.本节知识是反函数、指数函数及对数的知识的延伸,是反函数知识的实质研究.因此本节课运用多媒体辅助教学手段,采用“引导发现”与“讨论探究”等方法组织教学,以学生为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨,唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻.六、教具准备:自制几何画板七、教学程序:Ⅰ、导入新课:我们研究指数函数时,曾经讨论过某种细胞分裂问题,某种细胞分裂时,得到的细胞个数 y 是分裂次数x的函数,这个函数可以用指数函数y2x表示.现在我们研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到 1 万个, 10 万个, ,, 细胞,那么细胞的分裂次数x 就是得到的细胞个数y 的函数.由对数的定义,这个函数可以写成对数的形式为:x log 2 y .如果用 x 表示自变量,y表示函数,这个函数就是y log 2 x .由反函数的概念可知,函数y log 2 x 与指数函数 y2x互为反函数.这节课,我们就一起来研究指数函数的反函数——对数函数.Ⅱ、讲授新课:1、对数函数的定义:函数 y log a x(a 0, a 1) 叫做对数函数,其中x是自变量.函数的定义域是(0, ).2、以对数函数y log 2 x 和ylog 1x为例画图(用几何画板展示).2问题①:如何绘制对数函数图象(类比指数函数的学习方法)?问题②:对数函数y log a x(a 0, a 1) 与指数函数y a x (a 0, a1) 的定义域、值域之间有什么关系?问题③:一般地, a 0 且 a 1时对数函数y log a x 与指数函数 y a x的图象之间有什么关系?问题④:对数函数的图象有哪些特点(类比指数函数的学习方法)?问题⑤:观察对数函数 y log 2 x 和y log 1x 的图象,由从特殊到一般2的规律,你可以归纳出对数函数y log a x (a 0,且a1)的图象性质吗?设计意图:(1)通过图象的对比,使图象直观、准确,便于学生理解图象之间的共同点和不同点.( 2)通过提问和分析,开拓学生的思路,使学生对问题的讨论不拘泥于某一点上,全方位的,多层次,多角度的考察对数函数的图象和性质,使问题的解决由粗到细,由无序到有序.( 3)符合学生的认知规律,由特殊到一般,从具体到抽象.( 4)充分发挥学的能动性,以学生为主体,展开课堂教学.3、对数函数 ylog a x(a 0, 且a 1)的图像和性质:一般地,对数函数 y log a x 在其底数 a1及 0 a 1 这两种情况的图象和性质如下表所示:对数函数 y log a x(a0,a 1)a 10 a 1图象11(1)定义域: (0, )(2)值域: R性(3)过点 (1,0)质0 x时,y0; (4)x时,y0;(4)11x 时,y0.x时,y 0.11(5)在 (0,) 上是增函数. (5)在 (0, ) 上是减函数.Ⅲ、例题讲解:例 1 求下列函数的定义域:(1) y loga x 2( ) y log a (4 x)( ) y log (9 x 2 ) 2 3 a设计意图:通过学生动手,由老师指导一起寻找解题方法和解题规律,以便加深对性质的理解,强化概念,明确定义域和 a 的取值无关.例 2 比较下列各组数中两个值的大小:(1)log23.4,log28.5(2)log0.3 1.8,log0.3 2.7(3)log a 5.1, log a 5.9(a0, a1)变式训练:比较下列各组数中两个值的大小:(1)log log0.8(2)log67,log 76(3) log 3 , log 43,2设计意图:(1)例 2 使学生能根据对数函数的单调性,来比较同底的两个对数的大小.(2)例 2 中的题( 3)加深学生对对数的性质的理解,当底数出现字母时,应根据字母的分类,再来比较大小,即渗透分类讨论的思想.(3)变式训练可充分调动学生解题的积极性,调动学生思维,使学生能产生类比联想,而不是就题论题.(4)通过变式训练,启发学生思维,底数不同的对数可转化为同底数的对数来比较,也可与特殊值作比较,即引入一个已知数(如0或1等)间接比较两个对数的大小.Ⅳ、课堂练习:P94 练习 1、2 题Ⅴ、课时小结:通过本节课的学习,应逐步掌握对数函数的图象和性质,并能利用对数函数的性质解决一些简单问题,如求对数形式的复合函数的定义域问题,利用对数函数的单调性比较两个数的大小.思路:学对数想指数,反函数是桥梁,观图象想性质,细考察是根本,用性质想解题,变形活是关键.Ⅵ、课后作业:P94习题2.8第 1、2题思考:在同一个直角坐标系中作出函数:y log 2x, y log 1x, y log 3x, y log 1x 的图象,并观察其变化情况.23设计意图 : 作业按循序渐进的原则布置,使学生既巩固本节课所学知识,又培养自觉学习的习惯,在解题能力方面也得到锻炼.。

高中数学必修第一册对数函数的定义教案

高中数学必修第一册对数函数的定义教案

2.8(第一课时 对数函数的定义、图象和性质)教学目的:1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系; 2.会求对数函数的定义域;3.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。

教学重点:对数函数的定义、图象、性质 教学难点:对数函数与指数函数间的关系. 教学形式:计算机辅助教学 教学过程: 一、复习引入:对于函数y =x 2,根据对数的定义,可以写成对数的形式,就是y x 2log = 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log = 由反函数概念可知, x y 2log =与指数函数x y 2=互为反函数。

二、新授内容: 1.对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数;它是指数函数xa y = )10(≠>a a 且的反函数。

对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞。

2.对数函数的图象由于对数函数x y a log =与指数函数x a y =互为反函数,所以x y a log =的图象与xa y =的图象关于直线x y =对称。

因此,我们只要画出和x a y =的图象关于x y =对称的曲线,就可以得到x y a log =的图象,然后根据图象特征得出对数函数的性质。

3.对数函数的性质先回顾指数函数)10(≠>=a a a y x且的图象和性质。

由由反函数的性质和对数函数的图象,观察得出对数函数的性质.质 4.函数值分布x>1时,y>0;0<x<1时, y<00<x<1时, y<0; x>1时,y>0.5.单调性 在 (0,+∞)上是增函数在(0,+∞)上是减函数三、例题:例1求下列函数的定义域:[(1)—(3) 课本P83例1] (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -= (4)2x x y lg(2322)=-+⋅-解:(4)2x x x 23220,122,0x 1-+⋅->∴<<∴<< 故函数2xxy lg(2322)=-+⋅-的定义域为(0,1).例2求下列函数的反函数(1)121-⎪⎭⎫⎝⎛=xy (2)3)21(12+=+x y )0(<x解:(1) 121+=⎪⎭⎫⎝⎛y x∴)1(log )(211+=-x x f )1(->x(2) 3)21(12-=+y x ∴112()log (3)1f x x -=--- )273(<<x四、练习:同性质和不1.画出函数y=3log x 及y=x 31log 的图象,并且说明这两个函数的相同性质.解:相同性质:两图象都位于y 轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.的曲线,这不同性质:y=3log x 的图象是上升的曲线,y=x 31log 的图象是下降说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数. 2.求下列函数的定义域:(1)y=3log (1-x) (2)y=x2log 1(3)y=x311log 7- x y 3log )4(= 五、作业:习题2.8 1,22.8(第二课时 对数函数性质的应用)教学目的:1.巩固对数函数性质,掌握比较同底数对数大小的方法; 2.,能够运用对数函数的性质解决具体问题; 教学重点:对数函数性质的应用教学难点:对数函数性质的应用. 教学过程: 一、复习引入: 1.对数函数的性质:a>10<a<1图象642-2-4-6-5510x=1642-2-4-6-551015x=1性质定义域:(0,+∞)值域:R过定点(1,0),即当1=x 时,0=y)1,0(∈x 时 0<y ),1(+∞∈x 时 0>y)1,0(∈x 时 0>y ),1(+∞∈x 时0<y二、例题:例1比较下列各组数中两个值的大小:(课本P83 例2) ⑴5.8log ,4.3log 22; ⑵7.2log ,8.1log 3.03.0; ⑶)1,0(9.5log ,1.5log ≠>a a a a例2 比较下列各组中两个值的大小:(课本P84 例3) ⑴6log ,7log 76; ⑵8.0log ,log 23π 例3 求下列函数的定义域、值域: ⑴41212-=--xy ⑵)52(log 22++=x x y ⑶)54(log 231++-=x x y ⑷)(log 2x x y a --=)10(<<a解:⑴要使函数有意义,则须: 041212≥---x 即:11212≤≤-⇒-≥--x x ∵11≤≤-x ∴012≤-≤-x 从而 1122-≤--≤-x∴2124112≤≤--x ∴41412012≤-≤--x ∴210≤≤y ∴定义域为[-1,1],值域为]21,0[⑵∵44)1(5222≥++=++x x x 对一切实数都恒成立 ∴函数定义域为R从而24log )52(log 222=≥++x x 即函数值域为),2[+∞ ⑶要使函数有意义,则须:5105405422<<-⇒<--⇒>++-x x x x x 由51<<-x ∴在此区间内 9)54(max 2=++-x x∴ 95402≤++-≤x x从而 29log )54(log 31231-=≥++-x x 即:值域为2-≥y∴定义域为[-1,5],值域为),2[+∞-⑷要使函数有意义,则须:⎩⎨⎧≥-->--)2(0)(log )1(022x x x x a由①:01<<-x由②:∵10<<a 时 则须 12≤--x x ,R x ∈ 综合①②得 01<<-x 当01<<-x 时 41)(max 2=--x x ∴4102≤--<x x ∴41log )(log 2aa x x ≥-- ∴ 41log a y ≥∴定义域为(-1,0),值域为)41log [∞+,a 三、练习:比较大小 ⑴3.0log 7.0log 4.03.0<⑵216.04.3318.0log 7.0log -⎪⎭⎫⎝⎛<<⑶1.0log 1.0log 2.03.0> 四、作业:习题2.8 3,42.8(第三课时 对数形式的复合函数)教学目的:1.掌握对数形式的复合函数单调性的判断及证明方法;2.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《对数函数》教学设计一、教材分析《对数函数》是在人教版高中数学第一册(上)第二章第2.8节。

函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用。

学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用。

“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、学情分析学生在初中已经学习过二次函数及其图象,又刚刚学习了指数函数的定义、图象的画法并掌握了相关的性质,有了一定的读图能力,能够根据函数图象抽象概括出一些简单的性质。

经过两个多月的教学观察,所教班级的学生数学能力及数学思想的形成还很欠缺,逻辑思维能力也有待加强训练。

本节课课前布置学生带着问题预习,让学生找出指数函数与对数函数之间的关系,采用多媒体,采取“诱思探究”的教学方法进行教学,充分发挥学生的积极性和主动性,在独立思考与讨论中获取知识,实现教学目标。

三、设计理念按照认知规律,从感性认识再到理性研究,由浅入深得出对数函数的概念。

然后引导学生利用对称作图法和描点作图法比较作出函数图像。

通过观察图象、分析图象特征,得出函数的基本性质。

整个教学过程始终贯彻学生为主体、教师为引导的教学理念,综合培养学生动手、动眼、动脑的能力,培养学生的探究合作意识和创新能力。

四、学习三维目标1、知识目标:⑴、通过求指数函数的反函数,了解对数函数的概念。

⑵、能画出具体对数函数的图像,掌握对数函数的图像和性质。

⑶、能应用对数函数的性质解有关问题。

2、能力目标:⑴、培养学生数形结合的意识。

⑵、让学生学会用比较和联系的观点分析问题,认识事物间的相互转化。

⑶、了解对数函数在实际问题中的简单应用。

⑷、通过学生相互讨论,培养学生合作学习,探究学习的能力。

3、情感、态度、价值观⑴、激发学生学习数学的兴趣,培养学生严谨的科学态度,训练学生的逻辑思维能力。

⑵、了解数学知识在实际生活中的应用,增强学生的求知欲。

五、教学重点和难点:重点:对数函数的图像和性质。

难点:数函数与指数函数的关系。

六、资源准备:多媒体课件、黑板。

七、教学过程(一)复习旧知,引入课题(1)前提诊测:问题1:什么叫指数函数?它的图像和性质是什么?多媒体展示:看图象,填表格a>1 0<a<1图象性质(1)定义域:(2)值域:(3)过定点:(4)在 R上是(4)在R上是设计意图:指数函数与对数函数互为反函数,而互为反函数的两个函数在图像以及性质方面都存在着很大的联系,因此,从指数函数的图像入手,直观地让学生回忆指数函数的性质,为下面学习对数函数的图像与性质作好铺垫。

简要实录:通过以上图像,学生能很快地进入独立思考的状态,遇到思维中断的时候,能自觉地通过翻阅课本,体现了自主学习、探究学习。

多媒体展示:动脑思考,口答。

问题2:互为反函数的两个函数的图象有什么关系?问题3:点(a,b)关于直线y=x对称点坐标是什么?点(0,1)关于直线y=x对称点坐标是什么?(2)对数函数的引入:多媒体展示:1、对数的定义。

2、当函数y =f (x )的反函数存在,求其反函数的步骤。

3、设问:求指数函数)1,0(≠>=a a a y x 的反函数。

设计意图:本节教学的关键是抓住对数函数是指数函数的反函数这一要领,学生已学过如何求反函数及指数式如何变对数式。

因此,这一小环节让学生通过求反函数的方法求出对数函数。

简要实录:解决以上两个小问题需要前面所学的知识,由于学生对前面所学知识的掌握较好,所以能很快地解决以上问题。

(二)理性研究,把握性质多媒体展示:(1)对数函数的定义设问:对数函数的定义域和值域分别是什么?(2)对数函数的图象和性质1、作出对数函数x y 2log =和x y 21log =的图象(对称法)。

2、用列表、描点、连线的方法作对数函数x y 2log =和x y 21log =的图象。

3、请同学们根据对数函数x y 2log =和x y 21log =的图像做出x y a log =(a >1)和x y a log =(0<a <1)的草图。

学生活动:分别用对称法和描点法动手作图。

设计意图:从特殊到一般,培养学生作图的能力,让学生通过作图发现对数函数的性质,为下一步学习对数函数的性质作铺垫。

通过两种作图方法的演练,培养学生用比较的观点分析问题。

简要实录:学生动手自主学习画图,然后由教师在多媒体上演示动态画图过程,帮助学生订正答案。

通过作图,学生要清楚地知道互为反函数间的两个函数的图像关系,图像解决了,通过观察图像,对数函数的性质即呼之欲出。

多媒体展示:(3)根据对数函数x y a log (a >1)和(0<a <1)这两种情况下的图象,写出对数函数的性质。

(4)请同学们运用联系和比较的观点对指数函数和对数函数进行分析、比较。

(提示:图像、定义域、值域、定点、单调性)学生活动:学生分小组讨论填写表格并对两种函数进行比较。

实物投影:展示学生所填的表格,分析,并用课件给出标准答案,并给时间学生记忆。

设计意图:通过现象得出本质是哲学上的问题,学习数学,我们经常利用数形结合,由图像得出性质。

鼓励学生运用联系、比较的观点,对数学知识进行分析和比较。

让学生自主学习,在独立思考的基础上进行小组讨论——合作性学习。

通过填写以上表格,让学生掌握对数函数的图像与性质。

通过对两种函数的对比,对数函数与指数函数之间的关系将在学生脑海里形成初步的印象。

简要实录:表格是这一节课的核心所在,老师给学生时间进行记忆,能让学生在脑海中对对数函数的性质有一个总体的印象。

(三)学以致用,迁移深化多媒体展示:例1:求下列函数的定义域(其中1,0≠>a a )()2log 1x y a = ()()x y a -=4log 2 ()()29log 3x y a -=请同学们合上课本,把以上题目的解答过程写在练习本上,写完后,请打开课本进行核对并小结做此类题的根据是什么。

设计意图:这一例题是课本中的例题,主要是运用对数函数中定义域:{}0>x x 这一性质进行做题,是对数函数性质的简单应用。

简要实录:有前面解不等式的基础,学生大部分都能做得出来,但解题过程书写的规范化还有待加强。

例2:求下列函数的值域(1) 函数)1(log 2≥=x x y 的值域为 ;(2)函数)410(log 21≤<=x x y 的值域为 ; 设计意图:这一例题主要是运用对数函数中当0>x 时,函数值域为R ,随着函数定义域的改变,则值域也发生改变。

简要实录:在黑板上演算,让学生纠正自己的错误,第二问提示学生可以借助图象来求值域。

例3:(1)函数)3(log -=x y a 恒过定点 ;(2)函数1)2(log +-=x y a 恒过定点 ;设计意图:让学生利用函数)1,0(log ≠>=a a x y a 恒过定点(1,0)的这一性质解决实际学习中遇到的过定点问题。

简要实录:学生对这两问都很容易回答出来,教师在学生练习完成后引导其归纳求定点问题的解题步骤。

例4:比较下列各组数的大小(1)4.3log 2,5.8log 2 (2)8.1log 3.0,7.2log 3.0(3)1.5log a ,)1,0(9.5log ≠>a a a (4)7log 6,6log 7(5)π3log ,8log 2设计意图:前三道练习主要是让学生利用对数函数的单调性来解题,后面两道练习是让学生利用1log =a a 和01log =a 这两个重要结论,借助其作为中间量来比较数的大小。

简要实录:对前三道题目学生很容易做得出来,后面两道题目需要老师适当的点拨引导其解答出来。

八、教学评价1、教学设计说明⑴、针对所教的是高一的学生,数学逻辑思维能力还很欠缺,采用以图象及联系比较的方法进行教学,让学生从已有的知识出发,进行延伸过渡,自然地接受新知识。

⑵、根据有效教学理念,教师首先需要确立学生的主体地位,树立“一切为了学生的发展的思想”,激发学生的学习动机,调动学生学习的积极性,让学生“跳一跳摘到桃子”。

因此,本节课主要尝试使用诱思探究的教学方法,尽量作到让学生满堂学,充分发挥学生的主体作用,使学生真正成为学习的主体,教师只是一个引导作用。

⑶、借助多媒体辅助教学,让课堂内容更加直观形象,增加学生学习兴趣,并让课堂容量有所提高。

⑷、增加小组合作性学习,引导学生学会合作,培养学生的团队精神。

2、课后反思本节课分感性认识、理性研究、迁移应用三步走,符合认知规律。

利用指数函数的图象和性质创设情境,激发学生探求新知的欲望。

由特殊到一般,加深对概念的理解。

学生通过自己作图和观察图象,小组讨论、补充,得出函数的性质。

同时训练学生数形结合思想在解决函数问题的应用意识。

课堂使用多媒体教学,能够及时纠正学生的练习中的解答错误,达到及时反馈学生学习情况的效果。

3、教学点评:本节课是比较成功的。

其最大的成功之处在于:教师知道要教会学生什么东西,课堂设计意图明确,课堂练习针对性强,学生上完课后,掌握了对数函数的定义、图象和性质,具备一定的解题能力,数学逻辑思维也得到一定的训练,让学生树立了数形结合的思想。

相关文档
最新文档