The CKM matrix and CP Violation

合集下载

critical error detected redshift -回复

critical error detected redshift -回复

critical error detected redshift -回复解决redshift中的关键错误引言:Redshift是亚马逊Web服务(AWS)的一种数据仓库解决方案,它提供了快速且高效的查询和分析大数据集的能力。

然而,在使用Redshift进行数据处理和分析时,有时会遇到关键错误。

本文将重点讨论在Redshift 中检测到的关键错误,并提供一步一步的解决方案。

第一步:了解关键错误当Redshift检测到关键错误时,它通常会提供一条错误消息,以便我们可以更好地理解问题所在。

首先,我们需要仔细阅读错误消息,以确定具体的错误类型。

这些错误类型可能包括列丢失、表不存在、JOIN错误等。

通过了解错误类型,我们可以更有针对性地解决问题。

第二步:检查语法和查询在使用Redshift时,我们应该确保所有的语法和查询都是正确的。

常见的错误包括拼写错误、缺少必要的逗号、括号不匹配等。

我们应该仔细检查查询以及其参数、表名和列名,确保它们的拼写和语法是正确的。

此外,我们还应该检查查询是否合理。

有时,查询可能会因为性能问题而导致关键错误。

我们可以使用Redshift的性能工具来分析查询,并对其进行优化以提高性能。

第三步:检查表和列当Redshift检测到表或列的错误时,可能是因为它们不存在或被删除。

我们应该检查表和列的存在性,并确保它们的拼写和大小写是正确的。

在Redshift中,表和列的名称是区分大小写的。

如果表或列确实不存在,我们可以考虑重新创建它们。

在Redshift中,我们可以使用CREATE TABLE语句来创建表,使用ALTER TABLE语句来添加或删除列。

第四步:检查权限在使用Redshift时,我们应该确保我们拥有足够的权限执行所需的操作。

如果我们没有足够的权限,我们将无法查询、插入或修改表。

因此,我们应该使用具有足够权限的用户登录到Redshift,并确保我们具有所需的权限。

如果我们不确定我们拥有哪些权限,我们可以检查我们的用户角色和权限。

winedt package ckj error -回复

winedt package ckj error -回复

winedt package ckj error -回复问题描述:在使用WinEdt软件时安装了ckj插件后出现错误。

解决步骤如下:第一步:确保已经正确安装WinEdt软件在解决ckj插件出错之前,我们首先要确保已经正确安装了WinEdt软件。

要检查WinEdt是否正确安装,请按照以下步骤进行操作:1. 确认您已经从WinEdt官方网站(2. 双击执行该安装文件,并按照提示完成安装过程。

3. 安装完成后,打开WinEdt软件,如果能够成功运行并显示主界面,则说明WinEdt已经正确安装。

第二步:下载ckj插件在充分确保WinEdt软件已经正确安装之后,需要下载ckj插件并进行安装。

请按照以下步骤进行操作:1. 在浏览器中搜索“WinEdt ckj插件下载”。

2. 打开插件下载页面,并根据操作系统和WinEdt软件版本选择并下载合适的ckj插件安装文件。

3. 双击执行ckj插件安装文件,并按照提示完成安装过程。

第三步:解决ckj插件出错问题如果在使用WinEdt软件时安装了ckj插件后出现错误,可能是由于一些配置问题或插件本身存在的bug所致。

请按照以下步骤逐一解决该问题:1. 检查插件版本:确认下载的ckj插件与您使用的WinEdt软件版本兼容。

如果不兼容,您可以尝试下载其他适合的插件版本。

2. 升级WinEdt软件:有时,更新到最新的WinEdt软件版本可能会解决一些插件相关的问题。

请确保您使用的是WinEdt的最新版本。

3. 删除旧插件:如果您之前安装过其他版本的ckj插件,您需要删除旧插件后再重新安装最新版的ckj插件。

4. 检查插件配置:打开WinEdt软件,依次点击"Options"->"Options Interface",在左侧的树状结构中找到"CKJ",确认插件配置中未出现任何错误或冲突。

5. 重启WinEdt软件:关闭WinEdt软件并重新打开,看是否能够正常加载ckj插件。

Autodesk Nastran 2023 参考手册说明书

Autodesk Nastran 2023 参考手册说明书
DATINFILE1 ........................................................................................................................................................... 9
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7

报错解决——精选推荐

报错解决——精选推荐

报错解决V ASP⾃旋轨道耦合计算错误汇总静态计算时,报错:VERY BAD NEWS! Internal内部error in subroutine⼦程序IBZKPT:Reciprocal倒数的lattice and k-lattice belong to different class of lattices. Often results are still useful (48)INCAR参数设置:对策:根据所⽤集群,修改INCAR中NPAR。

将NPAR=4变成NPAR=1,已解决!错误:sub space matrix类错误报错:静态和能带计算中出现警告:W ARNING: Sub-Space-Matrix is not hermitian共轭in DA V结构优化出现错误:WARNING: Sub-Space-Matrix is not hermitian in DA V 4 -4.681828688433112E-002对策:通过将默认AMIX=0.4,修改成AMIX=0.2(或0.3),问题得以解决。

以下是类似的错误:WARNING: Sub-Space-Matrix is not hermitian in rmm -3.00000000000000RMM: 22 -0.167633596124E+02 -0.57393E+00 -0.44312E-01 1326 0.221E+00BRMIX:very serious problems the old and the new charge density differ old charge density: 28.00003 new 28.06093 0.111E+00错误:WARNING: Sub-Space-Matrix is not hermitian in rmm -42.5000000000000ERROR FEXCP: supplied Exchange-correletion table is too small, maximal index : 4794错误:结构优化Bi2Te3时,log⽂件:WARNING in EDDIAG: sub space matrix is not hermitian 1 -0.199E+01RMM: 200 0.179366581305E+01 -0.10588E-01 -0.14220E+00 718 0.261E-01BRMIX: very serious problems the old and the new charge density differ old charge density: 56.00230 new 124.70394 66 F= 0.17936658E+01 E0= 0.18295246E+01 d E =0.557217E-02curvature: 0.00 expect dE= 0.000E+00 dE for cont linesearch 0.000E+00ZBRENT: fatal error in bracketingplease rerun with smaller EDIFF, or copy CONTCAR to POSCAR and continue但是,将CONTCAR拷贝成POSCAR,接着算静态没有报错,这样算出来的结果有问题吗?对策1:⽤这个CONTCAR拷贝成POSCAR重新做⼀次结构优化,看是否达到优化精度!对策2:⽤这个CONTCAR拷贝成POSCAR,并且修改EDIFF(⽬前参数EDIFF=1E-6),默认为10-4错误:WARNING: Sub-Space-Matrix is not hermitian in DA V 1 -7.626640664998020E-003⽹上参考解决⽅案:对策1:减⼩POTIM: IBRION=0,标准分⼦动⼒学模拟。

用QCD因子化方法研究B→PV两体弱衰变过程

用QCD因子化方法研究B→PV两体弱衰变过程

第26卷 增刊 高能物理与核物理V o1.26,Supp. 2002年12月HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS Dec.,2002 Two-Body B Decays to Pseudoscalar and Vector Mesonsin QCD Factorization ApproachYANG Mao-Zhi1 YANG Ya-Dong21 (Institute of High Energy Physics, CAS, Beijing 100039, China)2 (Department of Physics, Technion, Haifa 32000, Israel)Abstract Motivated by recent CELO measurements and the progress of the theory of B decays,B→PV(P=π, K; V= K*, ρ, ω) decay modes are studied in the framework of QCD factorization.All the measured branching ratios are well accommodated in the reasonable parameter space andpredictions for other decay modes are well below the experimental upper limits.Key words factorization, weak decay, mesonB physics is one of the most important fields nowadays because it is of great help for testing the quark flavor mixing theory of the standard model and exploring the source of CP violation. Most of the theoretical studies of B decays to pseudocalar and vector final states are based on the popular Naive Factorization approach[1]. As it was ponited out years ago in Ref. [2], the dominant contribution in B decays comes from the so-called Feynman mechanism, where the energetic quark created in the weak decay picks up the soft spectator softly and carries nearly all of the final-state meson's momentum. It is also shown that Pion form factor in QCD at intermediate engery scale is dominated by Feynman mechanism[3—5]. From this point, we can understand why the naive factorization approach have worked well for B and D decays, and the many existing predictions for B decays based on naive factorization and spectator ansatz do have taken in the dominant physics effects although there are shortcommings. However, with the many new data available from CLEO and an abundance of data to arrive within few years from the B factories BaBar and Belle, it is demanded highly to go beyond the naive factorization approach.Recently, Beneke et al., have formed an interesting QCD factorization formula for B exclusive nonleptonic decays[6,7]. The factorization formula incorporates elements of the naive factorization approach (as leading contribution) and the hard-scattering approach (as subleading corrections), which allows us to calculate systematically radiative(subleading nonfactorizable) corrections to naive factorization for B exclusive nonleptonic decays. An important product of the formula is that the strong final-state interaction phases are calculable, which arise from the2 高能物理与核物理(HEP &NP) 第26卷hard-scattering kernel and hence process dependent. The strong phases are very important for studying CP violation in B decays.The amplitude of B decays to two light mesons, say M 1 and M 2, is obtained through the hadronic matrix element <M 1(p 1) M 2(p 2)⏐O i ⏐B (p )>, here M 1 denotes the final meson that picks up the light spectator quark in the B meson, and M 2 is the another meson which is composed of the quarks produced from the weak decay point of b quark. Since the quark pair, forming M 2, is ejected from the decay point of b quark carrying the large energy of order of m b , soft gluons with the momentum of order of ΛQCD decouple from it at leading order of ΛQCD /m b in the heavy quark limit. As a consequence any interaction between the quarks of M 2 and the quarks out of M 2 is hard at leading power in the heavy quark expansion. On the other hand, the light spectator quark carries the momentum of the order of ΛQCD , and is softly transferred into M 1 unless it undergoes a hard interaction.Any soft interaction between the spectator quark and other constituents in B and M 1 can be absorbed into the transition form factor of B →M 1. The non-factorizable contribution to B →M 1 M 2 can be calculated through the diagrams in Fig.1.Fig. 1. Order αs non-factorizable contributions in B →M 1M 2 decays.The O i 's incorporated in Fig.1 are the operators in the effective Hamiltonian for B decays [8], ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====21103g g ccqcb 21103g g uuq ub F eff2i i i i i i *i i i i i i *O C O C O C V V O C O C O C V V G H , (1)Where()()A V A V O --ββααu 1b u u q ⋅=, ()()A V A V O --αββαu 2b u u q ⋅=, ()()A V A V O --ββααc 1b c c q ⋅=, ()()A V A V O --αββαc 2b c c q ⋅=,()()AV A V O --ββq αα3q q b q ′′⋅=∑′,()()AV A V O --αβq βα4q q b q ′′⋅=∑′,()()AV A V O +′′′⋅=∑ββq αα5q q b q -, ()()A V A V O +′′′⋅=∑αβq βα6q q b q -, ()()A V A V e O +′′′′⋅=∑ββq q αα7q q b q 23-, ()()A V A V e O +′′′′⋅=∑αq q b q 23βq q βα8-,增 刊 杨茂志等:用QCD 因子化方法研究B →PV 两体弱衰变过程 3()()A V A V e O --ββq q αα9q q b q 23′′⋅=∑′′, ()()A V A V e O --αβq q βα10q q b q 23′′⋅=∑′′, ()()AA a g G b R m g O µνβαβµνλσ2/d π8/b 2s =. (2)Here q=d, s and (q'ε {u, d, s, c, b}), α and β are the SU (3) color indices and , A =1,...,8 are the Gell-Mann matrices, and denotes the gluonic field strength tensor. The Wilson coefficients evaluated at µ=m AαβλAG µνb scale are[8]C 1= 1.082, C 2=−0.185, C 3= 0.014, C 4=−0.035, C 5= 0.009, C 6=−0.041,C 7=−0.002/137, C 8=0.054/137, C 9=−1.292/137, C 10=0.262/137, C g =−0.143. (3) The non-factorizable contributions to B →M 1M 2 can be calculated through the diagrams in Fig.1. The details of the calculations can be found in Ref. [9]. In the numerical calculations we use[10]τ (B +) = 1.65×10-12s, τ (B 0) = 1.56×10-12s,M B = 5.2792GeV , m b = 4.8GeV , m c = 1.4GeV , f B= 0.180GeV , f π = 0.133GeV , f K = 0.158GeV , f K * = 0.214GeV , f ρ = 0.21GeV , f ω = 0.195GeV .For the chiral enhancement factors for the pseudoscalar mesons, we takeR π ±π= R K ±, 0 = -1.2 ,which are consistent with the values used in [6, 11, 12]. We should take care for R π0. As pointedout in Ref. [7], R π0 for π0 should be -2M /(m 2b (m u + m d )) and equal to R π± due to inclusion ofisospin breaking effects correctly.For the form factors, we take the results of light-cone sum rule[13,14]F B →π(0)=0.3, F B →K (0)=1.13F B →π(0), A =0.372, A =0.470,ρB 0→*K B 0→and assume (0)=1.2(0) since we find larger (0) is preferred by experimental data.ωB 0→A ρB 0→A ωB 0→A We take the leading-twist distribution amplitude (DA) φ(x ) and the twist-3 DA φ0(x ) of light pseudoscalar and vector mesons as the asymptotic form[15]φP,V (x ) =6x (1-x ), (x ) =1. (4) 0P φFor the B meson, the wave function is chosen as[16,17]()(),xM x x N x ⎥⎥⎦⎤⎢⎢⎣⎡=2B 22B 22B B 2exp 1ωφ-- (5)with ωB =0.4GeV , and N B is the normalization constant to make(x ) =1. φ∫1Bd φx B (x ) is stronglypeaked around x =0.1, which is consistent with the observation of Heavy Quark Effective Theory that the wave function should be peaked around ΛQCD /M B .We have used the unitarity of the CKM matrix V *uq V ub +V *V cq cb +V *tq V tb =0 to decompose the4 高能物理与核物理(HEP &NP)第26卷amplitudes into terms containing , V *uq V ub and V *V cq cb , and⏐V us ⏐=λ=0.2196, ⏐V ub /V cb ⏐=0.085±0.02, ⏐V cb ⏐=0.0395±0.0017, ⏐V ud ⏐=1-λ2/2 . (6) We leave the CKM angle γ as a free parameter.The numerical results of the branching ratios B →PV are shown in Fig.2 as the function of CKM angle γ. We can see from Fig. 2(a), (b) and (c) that for the three detected channels the predicted branching ratios agree well with the CLEO experiment data [18]. Our predictions for other decay modes are well below their 90% C.L. upper limits.There are several works available with detailed analysis of the CLEO new data of the decays of B to charmless PV states[11,12,19]. It is worth to note that the shortcomings in the “generalizedfactorization” are resolved in the framework of QCD Factorization. Nonfactorizable effects are calculated in a rigorous way here instead of being parameterized by effective color number. Since the hard scattering kernals are convoluted with the light cone DAs of the mesons, gluon virtualityk 2=2b m x in the penguin diagram Fig. 1(e) has well defined meaning and leaves no ambiguity as tothe value of k 2, which has usually been treated as a free phenomenological parameter in the estimations of the strong phase generated though the BSS mechanism [20]. So that CP asymmetries are predicted soundly in this approach. We present the numerical result of the branching ratios of B →PV decays in Table 1 with the relevant strong phases shown explicitly. It shows that the strong phases are generally mode dependent.Table 1. Strong phases in the branching ratios (in units of 10-6) for thecharmless decays modes studied by CLEO. (γ =Arg V *u b )B (B -→π-ρ0)=6.65⏐0.11e -i86.5°+e -i γ⏐2B (0B →π+ρ-)=19.79⏐0.11e i9.02°+e -i γ⏐2B (0B →π-ρ+)=13.43⏐0.03e i172°+e -i γ⏐2B (B -→π-ω)=10.59⏐0.065e i26.01°+e -i γ⏐2B (0B →π0ρ0)=0.11⏐0.21e 2.90°+e -i γ⏐2B (B -→π0ρ-)=10.81⏐0.176e i7.20°+e -i γ⏐2B (0B →π-ω)=1.49×10-3⏐1.64e i148°+e -i γ⏐2B (B -→K -ρ0)=0.55⏐0.24e -i162°+e -i γ⏐2B (B -→π-⎯K *0)=0.0012⏐56.4e -i15.7°+e -i γ⏐2B (B -→K -K *0)=0.030⏐2.86e i164°+e -i γ⏐2B (B -→π0K *-)=0.59⏐2.80e -i169°+e -i γ⏐2B (B -→K -ω)=0.80⏐0.48e -i9.23°+e -i γ⏐2B (0B →K 0ω)=0.72⏐0.81e -i 11.8°+e -i γ⏐2B (⎯B 0→K -ρ+)=0.96⏐0.63e -i7.20°+e -i γ⏐2B (0B →π0⎯K *0)=0.004⏐12.89e i67.61°+e -i γ⏐2Hou, Smith and W ürthwein have performed a model dependent fit using the recent CLEOdata and found γ =114degree. Using SU (3) flavor symmetry, Gronau and Rosner have analyzedthe decays of B to charmless PV final states extensively and found several processes are consistent with cos γ < 0. In this paper we find cos γ < 0 is favored by the B 2521+--→π-ρ0 and ⎯B 0→π-ρ++π+ρ- if their experimental center values are taken seriously. To meet its center value with cos γ < 0 , B -→π增 刊 杨茂志等:用QCD 因子化方法研究B →PV 两体弱衰变过程 5-ω would indicate larger form factor i.e. A (0) > A (0). In our numerical calculation, wehave taken A (0) = 0.446 which is still consistent with the LCSR results 0.372 ± 0.074ω→B 0ρ→B 0ω→B 0[13]. It isalso interesting to note that ⎯B 0→π+ρ- is suppressed by cos γ < 0 while ⎯B 0→π-ρ+ is enchanced. The defference between Br (⎯B 0→π+ρ-) and Br (⎯B 0→π-ρ+) is much more sensitive to γ than their sum.6 高能物理与核物理(HEP &NP) 第26卷Summarywe have calculated the branching ratios and CP asymmetries of the charmless decays B →PV(P = (π, K), V= (ρ,ω, K *)) in QCD factorization approach. We have used LCSR formfactors F B →π,K (0) and A (0) as inputs. The results of Br (B *K ,0ρ-→π-ρ0) and Br (⎯B 0→π±ρ) agree with CLEO m [18]very well and favor cos γ < 0 if their experimental center values are taken seriously. To meet its experimental center value and cos γ < 0, the decay B -→π-ω will prefer larger form factor (0). For the other decay modes, the branching ratios are predicted well below their 90% C.L. upper limits given in Ref. [18].ωB 0→A References1 Bauer M, Stech B, Wirbel M. Z. Phys., 1985, C29: 637; Z. Phys., 1987, C34: 1032 Chernyak V L, Zhitnitsky L R. Nucl. Phys., 1990, B345: 1373 Isgur N, Llewelyn-Smith C H. Phys. Rev. Lett., 1984, 52: 1080; Nucl. Phys., 1989, B317: 5264 Radyushkin A V . Acta Phys., 1984, Pol. 15: 4035 Stefanis N G . hep-ph/99113756 Beneke M, Buchalla G , Neubert M. Phys. Rev. Lett., 1999, 83: 19147 Beneke M, Buchalla G , Neubert M et al. hep-ph/00061248 Buchalla G , Buras A J, Lautenbacher M E. Rev. Mod. Phys., 1996, 68: 1125 9 YANG M Z, YANG Y Y . Phys. Rev., 2000, D62: 114019 10 Particle Data Group. Eur. Phys. J., 1998, C3: 1 11 CHENG H Y , YANG K C. hep-ph/991029112 HOU W S, Smith J G , W ürthwein F W. hep-ex/9910014 13 Ball P, Braun V M. Phys. Rev., 1998, D58: 094016 14 Ball P. JHEP09, 005(1998)15Lepage G P, Brodsky S J. Phys. Lett., 1979, B87: 359; Chernyak V L, Zhitinissky A R. Phys. Rep., 1983, 112: 173; Braun V M, Filyanov I E. Z. Phys., 1990, C48: 239 16 Keum Y Y , LI H -N, Sanda A I. Phys. Lett., 2001, B504: 2; Phys. Rev., 2001, D63: 054008 17 LÜ C D, Ukai D, YANG M Z. Phys. Rev., 2001, D63: 07400918 CLEO Collaboration. CLEO CONF 99-13; CLEO Collaboration. CLNS 99/1652 and CLEO 99-19 19 Gronau M, Rosner J L. Phys. Rev., 2000, D61: 073008 20Bander M, Silverman D, Soni A. Phys. Rev. Lett., 1979, 43: 242增刊杨茂志等:用QCD因子化方法研究B→PV两体弱衰变过程7 用QCD因子化方法研究B→PV两体弱衰变过程杨茂志1 杨亚东21 (中国科学院高能物理研究所北京 100039)2 (Department of Physics, Technion, Haifa 32000, Israel)摘要基于最近CLEO实验和B介子物理中理论研究的进展, 在QCD因子化方案下研究了B介子到一个赝标π, K和一个矢量介子ρ, ω的两体弱衰变过程.在合理的参数范围内, 理论计算与实验相符得很好.关键词因子化弱衰变介子。

【历届诺贝尔奖得主(十一)】2008年物理学奖2

【历届诺贝尔奖得主(十一)】2008年物理学奖2

小林诚介绍2008诺贝尔物理学奖得主2008诺贝尔物理学奖得主小林诚(こばやしまこと/MakotoKobayashi)2008年10月7日,因与益川敏英共同提出小林-益川矩阵,可以解释电荷宇称不守恒的现象,并预测当时尚未发现的至少三族以上的夸克,瑞典皇家科学院诺贝尔奖委员会宣布将2008年度诺贝尔物理学奖授予美国科学家南部阳一郎和日本科学家小林诚、益川敏英。

小林诚(左)1944年出生于爱知县名古屋市小林诚(左)1957年名古屋市立山吹小学毕业1960年名古屋市立冨士中学毕业1963年爱知县立明和高等学校毕业1967年名古屋大学理学院物理学系毕业1972年3月名古屋大学理学院研究所理学博士1972年4月担任京都大学理学院助理教授1973年于京都大学担任助理教授时,与同事益川敏英一起提出了关于弱玻色子与夸克弱交互作用之Cabibbo?小林?益川矩阵(CKMmatrix)。

1979年高能物理学研究所(现称高能加速器研究机构)副教授1985年高能物理学研究所教授2003年高能加速器研究机构基本粒子原子核研究所长2004年大学共同利用机关法人高能加速器研究机构理事2006年高能加速器研究机构名誉教授2007年小林-益川理论小林诚小林诚和益川敏英提出解释“CP对称性破缺”现象的有关理论。

现代物理学理论认为,在100多亿年前宇宙大爆炸时应同时产生同等数量的粒子与反粒子,粒子与反粒子在质量等方面相同,但在电荷等方面相反,两者相遇便会湮灭同时释放出能量。

但实际情况并非如此,科学家并未在现今宇宙中找到与大量物质等量的反物质。

1973年,小林诚和益川敏英提出了“小林-益川理论”,认为造成上述现象的原因是夸克的反应衰变速率不同。

他们还预言存在6种夸克。

按照现代物理学理论,夸克等是比质子和中子等亚原子粒子更基本的物质组成单位。

在小林诚和益川敏英提出预言之初,科学家只发现了3种夸克,因此一直难以证明他们的理论。

1995年,6种夸克都被发现。

errored blocks 的原理

errored blocks 的原理

一、errored blocks 的定义Errored blocks 是指在数据传输中发生错误导致数据块出现错误的情况。

这些错误可能是由于传输过程中的噪声干扰、信号衰减、传输介质故障等原因引起的。

二、errored blocks 的检测和纠正在数据传输过程中,为了确保数据的完整性和准确性,通常会采用一定的技术来检测和纠正 errored blocks。

常见的方法包括循环冗余检验(CRC)和前向纠错码(FEC)等。

1. CRCCRC 是一种通过对数据进行多项式除法运算来生成校验码,然后将校验码添加到原始数据中进行传输的技术。

接收端在接收到数据后同样进行多项式除法运算得到校验码,并与接收到的校验码进行比较,如果不一致则表明数据出现错误。

CRC 可以检测错误的出现,但并不能对错误进行纠正。

2. FECFEC 则是通过向数据加入冗余信息,使得接收端能够在数据出现错误时根据冗余信息进行纠正。

常见的 FEC 技术包括海明码、RS 码等。

这些技术可以通过适当设计冗余信息来实现对一定数量错误的纠正。

三、errored blocks 的处理当发现数据传输中出现 errored blocks 时,需要对这些错误进行合理的处理。

处理方法主要包括重新发送、纠正、丢弃等。

1. 重新发送对于使用可靠传输协议的通信系统来说,当发现数据错误时可以要求发送端重新发送这些数据。

这种方法可以较好地保证数据的准确性,但会增加通信的延迟。

2. 纠正如果在数据中使用了 FEC 等纠错码技术,接收端可以通过对数据进行恢复操作来纠正部分错误。

这种方法可以在一定程度上避免数据的重传。

3. 丢弃当错误的数据块无法通过其他手段进行修复时,还可以选择直接丢弃这部分数据。

这种方法适用于对实时性要求较高的数据传输场景,但同时会丢失部分信息。

四、errored blocks 的应用Errored blocks 的检测和纠正技术广泛应用于各种数据传输场景,包括网络通信、存储系统、数字广播等领域。

OSHA现场作业手册说明书

OSHA现场作业手册说明书

DIRECTIVE NUMBER: CPL 02-00-150 EFFECTIVE DATE: April 22, 2011 SUBJECT: Field Operations Manual (FOM)ABSTRACTPurpose: This instruction cancels and replaces OSHA Instruction CPL 02-00-148,Field Operations Manual (FOM), issued November 9, 2009, whichreplaced the September 26, 1994 Instruction that implemented the FieldInspection Reference Manual (FIRM). The FOM is a revision of OSHA’senforcement policies and procedures manual that provides the field officesa reference document for identifying the responsibilities associated withthe majority of their inspection duties. This Instruction also cancels OSHAInstruction FAP 01-00-003 Federal Agency Safety and Health Programs,May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045,Revised Field Operations Manual, June 15, 1989.Scope: OSHA-wide.References: Title 29 Code of Federal Regulations §1903.6, Advance Notice ofInspections; 29 Code of Federal Regulations §1903.14, Policy RegardingEmployee Rescue Activities; 29 Code of Federal Regulations §1903.19,Abatement Verification; 29 Code of Federal Regulations §1904.39,Reporting Fatalities and Multiple Hospitalizations to OSHA; and Housingfor Agricultural Workers: Final Rule, Federal Register, March 4, 1980 (45FR 14180).Cancellations: OSHA Instruction CPL 02-00-148, Field Operations Manual, November9, 2009.OSHA Instruction FAP 01-00-003, Federal Agency Safety and HealthPrograms, May 17, 1996.Chapter 13 of OSHA Instruction CPL 02-00-045, Revised FieldOperations Manual, June 15, 1989.State Impact: Notice of Intent and Adoption required. See paragraph VI.Action Offices: National, Regional, and Area OfficesOriginating Office: Directorate of Enforcement Programs Contact: Directorate of Enforcement ProgramsOffice of General Industry Enforcement200 Constitution Avenue, NW, N3 119Washington, DC 20210202-693-1850By and Under the Authority ofDavid Michaels, PhD, MPHAssistant SecretaryExecutive SummaryThis instruction cancels and replaces OSHA Instruction CPL 02-00-148, Field Operations Manual (FOM), issued November 9, 2009. The one remaining part of the prior Field Operations Manual, the chapter on Disclosure, will be added at a later date. This Instruction also cancels OSHA Instruction FAP 01-00-003 Federal Agency Safety and Health Programs, May 17, 1996 and Chapter 13 of OSHA Instruction CPL 02-00-045, Revised Field Operations Manual, June 15, 1989. This Instruction constitutes OSHA’s general enforcement policies and procedures manual for use by the field offices in conducting inspections, issuing citations and proposing penalties.Significant Changes∙A new Table of Contents for the entire FOM is added.∙ A new References section for the entire FOM is added∙ A new Cancellations section for the entire FOM is added.∙Adds a Maritime Industry Sector to Section III of Chapter 10, Industry Sectors.∙Revises sections referring to the Enhanced Enforcement Program (EEP) replacing the information with the Severe Violator Enforcement Program (SVEP).∙Adds Chapter 13, Federal Agency Field Activities.∙Cancels OSHA Instruction FAP 01-00-003, Federal Agency Safety and Health Programs, May 17, 1996.DisclaimerThis manual is intended to provide instruction regarding some of the internal operations of the Occupational Safety and Health Administration (OSHA), and is solely for the benefit of the Government. No duties, rights, or benefits, substantive or procedural, are created or implied by this manual. The contents of this manual are not enforceable by any person or entity against the Department of Labor or the United States. Statements which reflect current Occupational Safety and Health Review Commission or court precedents do not necessarily indicate acquiescence with those precedents.Table of ContentsCHAPTER 1INTRODUCTIONI.PURPOSE. ........................................................................................................... 1-1 II.SCOPE. ................................................................................................................ 1-1 III.REFERENCES .................................................................................................... 1-1 IV.CANCELLATIONS............................................................................................. 1-8 V. ACTION INFORMATION ................................................................................. 1-8A.R ESPONSIBLE O FFICE.......................................................................................................................................... 1-8B.A CTION O FFICES. .................................................................................................................... 1-8C. I NFORMATION O FFICES............................................................................................................ 1-8 VI. STATE IMPACT. ................................................................................................ 1-8 VII.SIGNIFICANT CHANGES. ............................................................................... 1-9 VIII.BACKGROUND. ................................................................................................. 1-9 IX. DEFINITIONS AND TERMINOLOGY. ........................................................ 1-10A.T HE A CT................................................................................................................................................................. 1-10B. C OMPLIANCE S AFETY AND H EALTH O FFICER (CSHO). ...........................................................1-10B.H E/S HE AND H IS/H ERS ..................................................................................................................................... 1-10C.P ROFESSIONAL J UDGMENT............................................................................................................................... 1-10E. W ORKPLACE AND W ORKSITE ......................................................................................................................... 1-10CHAPTER 2PROGRAM PLANNINGI.INTRODUCTION ............................................................................................... 2-1 II.AREA OFFICE RESPONSIBILITIES. .............................................................. 2-1A.P ROVIDING A SSISTANCE TO S MALL E MPLOYERS. ...................................................................................... 2-1B.A REA O FFICE O UTREACH P ROGRAM. ............................................................................................................. 2-1C. R ESPONDING TO R EQUESTS FOR A SSISTANCE. ............................................................................................ 2-2 III. OSHA COOPERATIVE PROGRAMS OVERVIEW. ...................................... 2-2A.V OLUNTARY P ROTECTION P ROGRAM (VPP). ........................................................................... 2-2B.O NSITE C ONSULTATION P ROGRAM. ................................................................................................................ 2-2C.S TRATEGIC P ARTNERSHIPS................................................................................................................................. 2-3D.A LLIANCE P ROGRAM ........................................................................................................................................... 2-3 IV. ENFORCEMENT PROGRAM SCHEDULING. ................................................ 2-4A.G ENERAL ................................................................................................................................................................. 2-4B.I NSPECTION P RIORITY C RITERIA. ..................................................................................................................... 2-4C.E FFECT OF C ONTEST ............................................................................................................................................ 2-5D.E NFORCEMENT E XEMPTIONS AND L IMITATIONS. ....................................................................................... 2-6E.P REEMPTION BY A NOTHER F EDERAL A GENCY ........................................................................................... 2-6F.U NITED S TATES P OSTAL S ERVICE. .................................................................................................................. 2-7G.H OME-B ASED W ORKSITES. ................................................................................................................................ 2-8H.I NSPECTION/I NVESTIGATION T YPES. ............................................................................................................... 2-8 V.UNPROGRAMMED ACTIVITY – HAZARD EVALUATION AND INSPECTION SCHEDULING ............................................................................ 2-9 VI.PROGRAMMED INSPECTIONS. ................................................................... 2-10A.S ITE-S PECIFIC T ARGETING (SST) P ROGRAM. ............................................................................................. 2-10B.S CHEDULING FOR C ONSTRUCTION I NSPECTIONS. ..................................................................................... 2-10C.S CHEDULING FOR M ARITIME I NSPECTIONS. ............................................................................. 2-11D.S PECIAL E MPHASIS P ROGRAMS (SEP S). ................................................................................... 2-12E.N ATIONAL E MPHASIS P ROGRAMS (NEP S) ............................................................................... 2-13F.L OCAL E MPHASIS P ROGRAMS (LEP S) AND R EGIONAL E MPHASIS P ROGRAMS (REP S) ............ 2-13G.O THER S PECIAL P ROGRAMS. ............................................................................................................................ 2-13H.I NSPECTION S CHEDULING AND I NTERFACE WITH C OOPERATIVE P ROGRAM P ARTICIPANTS ....... 2-13CHAPTER 3INSPECTION PROCEDURESI.INSPECTION PREPARATION. .......................................................................... 3-1 II.INSPECTION PLANNING. .................................................................................. 3-1A.R EVIEW OF I NSPECTION H ISTORY .................................................................................................................... 3-1B.R EVIEW OF C OOPERATIVE P ROGRAM P ARTICIPATION .............................................................................. 3-1C.OSHA D ATA I NITIATIVE (ODI) D ATA R EVIEW .......................................................................................... 3-2D.S AFETY AND H EALTH I SSUES R ELATING TO CSHO S.................................................................. 3-2E.A DVANCE N OTICE. ................................................................................................................................................ 3-3F.P RE-I NSPECTION C OMPULSORY P ROCESS ...................................................................................................... 3-5G.P ERSONAL S ECURITY C LEARANCE. ................................................................................................................. 3-5H.E XPERT A SSISTANCE. ........................................................................................................................................... 3-5 III. INSPECTION SCOPE. ......................................................................................... 3-6A.C OMPREHENSIVE ................................................................................................................................................... 3-6B.P ARTIAL. ................................................................................................................................................................... 3-6 IV. CONDUCT OF INSPECTION .............................................................................. 3-6A.T IME OF I NSPECTION............................................................................................................................................. 3-6B.P RESENTING C REDENTIALS. ............................................................................................................................... 3-6C.R EFUSAL TO P ERMIT I NSPECTION AND I NTERFERENCE ............................................................................. 3-7D.E MPLOYEE P ARTICIPATION. ............................................................................................................................... 3-9E.R ELEASE FOR E NTRY ............................................................................................................................................ 3-9F.B ANKRUPT OR O UT OF B USINESS. .................................................................................................................... 3-9G.E MPLOYEE R ESPONSIBILITIES. ................................................................................................. 3-10H.S TRIKE OR L ABOR D ISPUTE ............................................................................................................................. 3-10I. V ARIANCES. .......................................................................................................................................................... 3-11 V. OPENING CONFERENCE. ................................................................................ 3-11A.G ENERAL ................................................................................................................................................................ 3-11B.R EVIEW OF A PPROPRIATION A CT E XEMPTIONS AND L IMITATION. ..................................................... 3-13C.R EVIEW S CREENING FOR P ROCESS S AFETY M ANAGEMENT (PSM) C OVERAGE............................. 3-13D.R EVIEW OF V OLUNTARY C OMPLIANCE P ROGRAMS. ................................................................................ 3-14E.D ISRUPTIVE C ONDUCT. ...................................................................................................................................... 3-15F.C LASSIFIED A REAS ............................................................................................................................................. 3-16VI. REVIEW OF RECORDS. ................................................................................... 3-16A.I NJURY AND I LLNESS R ECORDS...................................................................................................................... 3-16B.R ECORDING C RITERIA. ...................................................................................................................................... 3-18C. R ECORDKEEPING D EFICIENCIES. .................................................................................................................. 3-18 VII. WALKAROUND INSPECTION. ....................................................................... 3-19A.W ALKAROUND R EPRESENTATIVES ............................................................................................................... 3-19B.E VALUATION OF S AFETY AND H EALTH M ANAGEMENT S YSTEM. ....................................................... 3-20C.R ECORD A LL F ACTS P ERTINENT TO A V IOLATION. ................................................................................. 3-20D.T ESTIFYING IN H EARINGS ................................................................................................................................ 3-21E.T RADE S ECRETS. ................................................................................................................................................. 3-21F.C OLLECTING S AMPLES. ..................................................................................................................................... 3-22G.P HOTOGRAPHS AND V IDEOTAPES.................................................................................................................. 3-22H.V IOLATIONS OF O THER L AWS. ....................................................................................................................... 3-23I.I NTERVIEWS OF N ON-M ANAGERIAL E MPLOYEES .................................................................................... 3-23J.M ULTI-E MPLOYER W ORKSITES ..................................................................................................................... 3-27 K.A DMINISTRATIVE S UBPOENA.......................................................................................................................... 3-27 L.E MPLOYER A BATEMENT A SSISTANCE. ........................................................................................................ 3-27 VIII. CLOSING CONFERENCE. .............................................................................. 3-28A.P ARTICIPANTS. ..................................................................................................................................................... 3-28B.D ISCUSSION I TEMS. ............................................................................................................................................ 3-28C.A DVICE TO A TTENDEES .................................................................................................................................... 3-29D.P ENALTIES............................................................................................................................................................. 3-30E.F EASIBLE A DMINISTRATIVE, W ORK P RACTICE AND E NGINEERING C ONTROLS. ............................ 3-30F.R EDUCING E MPLOYEE E XPOSURE. ................................................................................................................ 3-32G.A BATEMENT V ERIFICATION. ........................................................................................................................... 3-32H.E MPLOYEE D ISCRIMINATION .......................................................................................................................... 3-33 IX. SPECIAL INSPECTION PROCEDURES. ...................................................... 3-33A.F OLLOW-UP AND M ONITORING I NSPECTIONS............................................................................................ 3-33B.C ONSTRUCTION I NSPECTIONS ......................................................................................................................... 3-34C. F EDERAL A GENCY I NSPECTIONS. ................................................................................................................. 3-35CHAPTER 4VIOLATIONSI. BASIS OF VIOLATIONS ..................................................................................... 4-1A.S TANDARDS AND R EGULATIONS. .................................................................................................................... 4-1B.E MPLOYEE E XPOSURE. ........................................................................................................................................ 4-3C.R EGULATORY R EQUIREMENTS. ........................................................................................................................ 4-6D.H AZARD C OMMUNICATION. .............................................................................................................................. 4-6E. E MPLOYER/E MPLOYEE R ESPONSIBILITIES ................................................................................................... 4-6 II. SERIOUS VIOLATIONS. .................................................................................... 4-8A.S ECTION 17(K). ......................................................................................................................... 4-8B.E STABLISHING S ERIOUS V IOLATIONS ............................................................................................................ 4-8C. F OUR S TEPS TO BE D OCUMENTED. ................................................................................................................... 4-8 III. GENERAL DUTY REQUIREMENTS ............................................................. 4-14A.E VALUATION OF G ENERAL D UTY R EQUIREMENTS ................................................................................. 4-14B.E LEMENTS OF A G ENERAL D UTY R EQUIREMENT V IOLATION.............................................................. 4-14C. U SE OF THE G ENERAL D UTY C LAUSE ........................................................................................................ 4-23D.L IMITATIONS OF U SE OF THE G ENERAL D UTY C LAUSE. ..............................................................E.C LASSIFICATION OF V IOLATIONS C ITED U NDER THE G ENERAL D UTY C LAUSE. ..................F. P ROCEDURES FOR I MPLEMENTATION OF S ECTION 5(A)(1) E NFORCEMENT ............................ 4-25 4-27 4-27IV.OTHER-THAN-SERIOUS VIOLATIONS ............................................... 4-28 V.WILLFUL VIOLATIONS. ......................................................................... 4-28A.I NTENTIONAL D ISREGARD V IOLATIONS. ..........................................................................................4-28B.P LAIN I NDIFFERENCE V IOLATIONS. ...................................................................................................4-29 VI. CRIMINAL/WILLFUL VIOLATIONS. ................................................... 4-30A.A REA D IRECTOR C OORDINATION ....................................................................................................... 4-31B.C RITERIA FOR I NVESTIGATING P OSSIBLE C RIMINAL/W ILLFUL V IOLATIONS ........................ 4-31C. W ILLFUL V IOLATIONS R ELATED TO A F ATALITY .......................................................................... 4-32 VII. REPEATED VIOLATIONS. ...................................................................... 4-32A.F EDERAL AND S TATE P LAN V IOLATIONS. ........................................................................................4-32B.I DENTICAL S TANDARDS. .......................................................................................................................4-32C.D IFFERENT S TANDARDS. .......................................................................................................................4-33D.O BTAINING I NSPECTION H ISTORY. .....................................................................................................4-33E.T IME L IMITATIONS..................................................................................................................................4-34F.R EPEATED V. F AILURE TO A BATE....................................................................................................... 4-34G. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-35 VIII. DE MINIMIS CONDITIONS. ................................................................... 4-36A.C RITERIA ................................................................................................................................................... 4-36B.P ROFESSIONAL J UDGMENT. ..................................................................................................................4-37C. A REA D IRECTOR R ESPONSIBILITIES. .............................................................................. 4-37 IX. CITING IN THE ALTERNATIVE ............................................................ 4-37 X. COMBINING AND GROUPING VIOLATIONS. ................................... 4-37A.C OMBINING. ..............................................................................................................................................4-37B.G ROUPING. ................................................................................................................................................4-38C. W HEN N OT TO G ROUP OR C OMBINE. ................................................................................................4-38 XI. HEALTH STANDARD VIOLATIONS ....................................................... 4-39A.C ITATION OF V ENTILATION S TANDARDS ......................................................................................... 4-39B.V IOLATIONS OF THE N OISE S TANDARD. ...........................................................................................4-40 XII. VIOLATIONS OF THE RESPIRATORY PROTECTION STANDARD(§1910.134). ....................................................................................................... XIII. VIOLATIONS OF AIR CONTAMINANT STANDARDS (§1910.1000) ... 4-43 4-43A.R EQUIREMENTS UNDER THE STANDARD: .................................................................................................. 4-43B.C LASSIFICATION OF V IOLATIONS OF A IR C ONTAMINANT S TANDARDS. ......................................... 4-43 XIV. CITING IMPROPER PERSONAL HYGIENE PRACTICES. ................... 4-45A.I NGESTION H AZARDS. .................................................................................................................................... 4-45B.A BSORPTION H AZARDS. ................................................................................................................................ 4-46C.W IPE S AMPLING. ............................................................................................................................................. 4-46D.C ITATION P OLICY ............................................................................................................................................ 4-46 XV. BIOLOGICAL MONITORING. ...................................................................... 4-47CHAPTER 5CASE FILE PREPARATION AND DOCUMENTATIONI.INTRODUCTION ............................................................................................... 5-1 II.INSPECTION CONDUCTED, CITATIONS BEING ISSUED. .................... 5-1A.OSHA-1 ................................................................................................................................... 5-1B.OSHA-1A. ............................................................................................................................... 5-1C. OSHA-1B. ................................................................................................................................ 5-2 III.INSPECTION CONDUCTED BUT NO CITATIONS ISSUED .................... 5-5 IV.NO INSPECTION ............................................................................................... 5-5 V. HEALTH INSPECTIONS. ................................................................................. 5-6A.D OCUMENT P OTENTIAL E XPOSURE. ............................................................................................................... 5-6B.E MPLOYER’S O CCUPATIONAL S AFETY AND H EALTH S YSTEM. ............................................................. 5-6 VI. AFFIRMATIVE DEFENSES............................................................................. 5-8A.B URDEN OF P ROOF. .............................................................................................................................................. 5-8B.E XPLANATIONS. ..................................................................................................................................................... 5-8 VII. INTERVIEW STATEMENTS. ........................................................................ 5-10A.G ENERALLY. ......................................................................................................................................................... 5-10B.CSHO S SHALL OBTAIN WRITTEN STATEMENTS WHEN: .......................................................................... 5-10C.L ANGUAGE AND W ORDING OF S TATEMENT. ............................................................................................. 5-11D.R EFUSAL TO S IGN S TATEMENT ...................................................................................................................... 5-11E.V IDEO AND A UDIOTAPED S TATEMENTS. ..................................................................................................... 5-11F.A DMINISTRATIVE D EPOSITIONS. .............................................................................................5-11 VIII. PAPERWORK AND WRITTEN PROGRAM REQUIREMENTS. .......... 5-12 IX.GUIDELINES FOR CASE FILE DOCUMENTATION FOR USE WITH VIDEOTAPES AND AUDIOTAPES .............................................................. 5-12 X.CASE FILE ACTIVITY DIARY SHEET. ..................................................... 5-12 XI. CITATIONS. ..................................................................................................... 5-12A.S TATUTE OF L IMITATIONS. .............................................................................................................................. 5-13B.I SSUING C ITATIONS. ........................................................................................................................................... 5-13C.A MENDING/W ITHDRAWING C ITATIONS AND N OTIFICATION OF P ENALTIES. .................................. 5-13D.P ROCEDURES FOR A MENDING OR W ITHDRAWING C ITATIONS ............................................................ 5-14 XII. INSPECTION RECORDS. ............................................................................... 5-15A.G ENERALLY. ......................................................................................................................................................... 5-15B.R ELEASE OF I NSPECTION I NFORMATION ..................................................................................................... 5-15C. C LASSIFIED AND T RADE S ECRET I NFORMATION ...................................................................................... 5-16。

The Standard Model of Particle Physics

The Standard Model of Particle Physics

a r X i v :h e p -p h /9812285v 1 8 D e c 1998The Standard Model of Particle PhysicsMary K.Gaillard 1,Paul D.Grannis 2,and Frank J.Sciulli 31University of California,Berkeley,2State University of New York,Stony Brook,3Columbia UniversityParticle physics has evolved a coherent model that characterizes forces and particles at the mostelementary level.This Standard Model,built from many theoretical and experimental studies,isin excellent accord with almost all current data.However,there are many hints that it is but anapproximation to a yet more fundamental theory.We trace the development of the Standard Modeland indicate the reasons for believing that it is incomplete.Nov.20,1998(To be published in Reviews of Modern Physics)I.INTRODUCTION:A BIRD’S EYE VIEW OF THE STANDARD MODEL Over the past three decades a compelling case has emerged for the now widely accepted Standard Model of elementary particles and forces.A ‘Standard Model’is a theoretical framework built from observation that predicts and correlates new data.The Mendeleev table of elements was an early example in chemistry;from the periodic table one could predict the properties of many hitherto unstudied elements and compounds.Nonrelativistic quantum theory is another Standard Model that has correlated the results of countless experiments.Like its precursors in other fields,the Standard Model (SM)of particle physics has been enormously successful in predicting a wide range of phenomena.And,just as ordinary quantum mechanics fails in the relativistic limit,we do not expect the SM to be valid at arbitrarily short distances.However its remarkable success strongly suggests that the SM will remain an excellent approximation to nature at distance scales as small as 10−18m.In the early 1960’s particle physicists described nature in terms of four distinct forces,characterized by widely different ranges and strengths as measured at a typical energy scale of 1GeV.The strong nuclear force has a range of about a fermi or 10−15m.The weak force responsible for radioactive decay,with a range of 10−17m,is about 10−5times weaker at low energy.The electromagnetic force that governs much of macroscopic physics has infinite range and strength determined by the finestructure constant,α≈10−2.The fourth force,gravity,also has infinite range and a low energy coupling (about 10−38)too weak to be observable in laboratory experiments.The achievement of the SM was the elaboration of a unified description of the strong,weak and electromagnetic forces in the language of quantum gauge field theories.Moreover,the SM combines the weak and electromagnetic forces in a single electroweak gauge theory,reminiscent of Maxwell’s unification of the seemingly distinct forces of electricity and magnetism.By mid-century,the electromagnetic force was well understood as a renormalizable quantum field theory (QFT)known as quantum electrodynamics or QED,described in the preceeding article.‘Renormalizable’means that once a few parameters are determined by a limited set of measurements,the quantitative features of interactions among charged particles and photons can be calculated to arbitrary accuracy as a perturbative expansion in the fine structure constant.QED has been tested over an energy range from 10−16eV to tens of GeV,i.e.distances ranging from 108km to 10−2fm.In contrast,the nuclear force was characterized by a coupling strength that precluded a perturbativeexpansion.Moreover,couplings involving higher spin states(resonances),that appeared to be onthe same footing as nucleons and pions,could not be described by a renormalizable theory,nor couldthe weak interactions that were attributed to the direct coupling of four fermions to one another.In the ensuing years the search for renormalizable theories of strong and weak interactions,coupledwith experimental discoveries and attempts to interpret available data,led to the formulation ofthe SM,which has been experimentally verified to a high degree of accuracy over a broad range ofenergy and processes.The SM is characterized in part by the spectrum of elementaryfields shown in Table I.The matterfields are fermions and their anti-particles,with half a unit of intrinsic angular momentum,or spin.There are three families of fermionfields that are identical in every attribute except their masses.Thefirst family includes the up(u)and down(d)quarks that are the constituents of nucleons aswell as pions and other mesons responsible for nuclear binding.It also contains the electron and theneutrino emitted with a positron in nuclearβ-decay.The quarks of the other families are constituentsof heavier short-lived particles;they and their companion charged leptons rapidly decay via the weakforce to the quarks and leptons of thefirst family.The spin-1gauge bosons mediate interactions among fermions.In QED,interactions among elec-trically charged particles are due to the exchange of quanta of the electromagneticfield called photons(γ).The fact that theγis massless accounts for the long range of the electromagnetic force.Thestrong force,quantum chromodynamics or QCD,is mediated by the exchange of massless gluons(g)between quarks that carry a quantum number called color.In contrast to the electrically neutralphoton,gluons(the quanta of the‘chromo-magnetic’field)possess color charge and hence couple toone another.As a consequence,the color force between two colored particles increases in strengthwith increasing distance.Thus quarks and gluons cannot appear as free particles,but exist onlyinside composite particles,called hadrons,with no net color charge.Nucleons are composed ofthree quarks of different colors,resulting in‘white’color-neutral states.Mesons contain quark andanti-quark pairs whose color charges cancel.Since a gluon inside a nucleon cannot escape its bound-aries,the nuclear force is mediated by color-neutral bound states,accounting for its short range,characterized by the Compton wavelength of the lightest of these:theπ-meson.The even shorter range of the weak force is associated with the Compton wave-lengths of thecharged W and neutral Z bosons that mediate it.Their couplings to the‘weak charges’of quarksand leptons are comparable in strength to the electromagnetic coupling.When the weak interactionis measured over distances much larger than its range,its effects are averaged over the measurementarea and hence suppressed in amplitude by a factor(E/M W,Z)2≈(E/100GeV)2,where E is the characteristic energy transfer in the measurement.Because the W particles carry electric charge theymust couple to theγ,implying a gauge theory that unites the weak and electromagnetic interactions,similar to QCD in that the gauge particles are self-coupled.In distinction toγ’s and gluons,W’scouple only to left-handed fermions(with spin oriented opposite to the direction of motion).The SM is further characterized by a high degree of symmetry.For example,one cannot performan experiment that would distinguish the color of the quarks involved.If the symmetries of theSM couplings were fully respected in nature,we would not distinguish an electron from a neutrinoor a proton from a neutron;their detectable differences are attributed to‘spontaneous’breakingof the symmetry.Just as the spherical symmetry of the earth is broken to a cylindrical symmetry by the earth’s magneticfield,afield permeating all space,called the Higgsfield,is invoked to explain the observation that the symmetries of the electroweak theory are broken to the residual gauge symmetry of QED.Particles that interact with the Higgsfield cannot propagate at the speed of light,and acquire masses,in analogy to the index of refraction that slows a photon traversing matter.Particles that do not interact with the Higgsfield—the photon,gluons and possibly neutrinos–remain massless.Fermion couplings to the Higgsfield not only determine their masses; they induce a misalignment of quark mass eigenstates with respect to the eigenstates of the weak charges,thereby allowing all fermions of heavy families to decay to lighter ones.These couplings provide the only mechanism within the SM that can account for the observed violation of CP,that is,invariance of the laws of nature under mirror reflection(parity P)and the interchange of particles with their anti-particles(charge conjugation C).The origin of the Higgsfield has not yet been determined.However our very understanding of the SM implies that physics associated with electroweak symmetry breaking(ESB)must become manifest at energies of present colliders or at the LHC under construction.There is strong reason, stemming from the quantum instability of scalar masses,to believe that this physics will point to modifications of the theory.One shortcoming of the SM is its failure to accommodate gravity,for which there is no renormalizable QFT because the quantum of the gravitationalfield has two units of spin.Recent theoretical progress suggests that quantum gravity can be formulated only in terms of extended objects like strings and membranes,with dimensions of order of the Planck length10−35m. Experiments probing higher energies and shorter distances may reveal clues connecting SM physics to gravity,and may shed light on other questions that it leaves unanswered.In the following we trace the steps that led to the formulation of the SM,describe the experiments that have confirmed it,and discuss some outstanding unresolved issues that suggest a more fundamental theory underlies the SM.II.THE PATH TO QCDThe invention of the bubble chamber permitted the observation of a rich spectroscopy of hadron states.Attempts at their classification using group theory,analogous to the introduction of isotopic spin as a classification scheme for nuclear states,culminated in the‘Eightfold Way’based on the group SU(3),in which particles are ordered by their‘flavor’quantum numbers:isotopic spin and strangeness.This scheme was spectacularly confirmed by the discovery at Brookhaven Laboratory (BNL)of theΩ−particle,with three units of strangeness,at the predicted mass.It was subsequently realized that the spectrum of the Eightfold Way could be understood if hadrons were composed of three types of quarks:u,d,and the strange quark s.However the quark model presented a dilemma: each quark was attributed one half unit of spin,but Fermi statistics precluded the existence of a state like theΩ−composed of three strange quarks with total spin3A combination of experimental observations and theoretical analyses in the1960’s led to anotherimportant conclusion:pions behave like the Goldstone bosons of a spontaneously broken symmetry,called chiral symmetry.Massless fermions have a conserved quantum number called chirality,equalto their helicity:+1(−1)for right(left)-handed fermions.The analysis of pion scattering lengths andweak decays into pions strongly suggested that chiral symmetry is explicitly broken only by quarkmasses,which in turn implied that the underlying theory describing strong interactions among quarksmust conserve quark helicity–just as QED conserves electron helicity.This further implied thatinteractions among quarks must be mediated by the exchange of spin-1particles.In the early1970’s,experimenters at the Stanford Linear Accelerator Center(SLAC)analyzed thedistributions in energy and angle of electrons scattered from nuclear targets in inelastic collisionswith momentum transfer Q2≈1GeV/c from the electron to the struck nucleon.The distributions they observed suggested that electrons interact via photon exchange with point-like objects calledpartons–electrically charged particles much smaller than nucleons.If the electrons were scatteredby an extended object,e.g.a strongly interacting nucleon with its electric charge spread out by acloud of pions,the cross section would drop rapidly for values of momentum transfer greater than theinverse radius of the charge distribution.Instead,the data showed a‘scale invariant’distribution:across section equal to the QED cross section up to a dimensionless function of kinematic variables,independent of the energy of the incident electron.Neutrino scattering experiments at CERN andFermilab(FNAL)yielded similar parison of electron and neutrino data allowed adetermination of the average squared electric charge of the partons in the nucleon,and the result wasconsistent with the interpretation that they are fractionally charged quarks.Subsequent experimentsat SLAC showed that,at center-of-mass energies above about two GeV,thefinal states in e+e−annihilation into hadrons have a two-jet configuration.The angular distribution of the jets withrespect to the beam,which depends on the spin of thefinal state particles,is similar to that of themuons in anµ+µ−final state,providing direct evidence for spin-1√where G F is the Fermi coupling constant,γµis a Dirac matrix and12fermions via the exchange of spinless particles.Both the chiral symmetry of thestrong interactions and the V−A nature of the weak interactions suggested that all forces except gravity are mediated by spin-1particles,like the photon.QED is renormalizable because gauge invariance,which gives conservation of electric charge,also ensures the cancellation of quantum corrections that would otherwise result in infinitely large amplitudes.Gauge invariance implies a massless gauge particle and hence a long-range force.Moreover the mediator of weak interactions must carry electric charge and thus couple to the photon,requiring its description within a Yang-Mills theory that is characterized by self-coupled gauge bosons.The important theoretical breakthrough of the early1970’s was the proof that Yang-Mills theories are renormalizable,and that renormalizability remains intact if gauge symmetry is spontaneously broken,that is,if the Lagrangian is gauge invariant,but the vacuum state and spectrum of particles are not.An example is a ferromagnet for which the lowest energy configuration has electron spins aligned;the direction of alignment spontaneously breaks the rotational invariance of the laws ofphysics.In QFT,the simplest way to induce spontaneous symmetry breaking is the Higgs mech-anism.A set of elementary scalarsφis introduced with a potential energy density function V(φ) that is minimized at a value<φ>=0and the vacuum energy is degenerate.For example,the gauge invariant potential for an electrically charged scalarfieldφ=|φ|e iθ,V(|φ|2)=−µ2|φ|2+λ|φ|4,(3)√λ=v,but is independent of the phaseθ.Nature’s choice forθhas its minimum atspontaneously breaks the gauge symmetry.Quantum excitations of|φ|about its vacuum value are massive Higgs scalars:m2H=2µ2=2λv2.Quantum excitations around the vacuum value ofθcost no energy and are massless,spinless particles called Goldstone bosons.They appear in the physical spectrum as the longitudinally polarized spin states of gauge bosons that acquire masses through their couplings to the Higgsfield.A gauge boson mass m is determined by its coupling g to theHiggsfield and the vacuum value v.Since gauge couplings are universal this also determines the√Fermi constant G for this toy model:m=gv/2,G/2|φ|=212F=246GeV,leaving three Goldstone bosons that are eaten by three massive vector bosons:W±and Z=cosθw W0−sinθw B0,while the photonγ=cosθw B0+sinθw W0remains massless.This theory predicted neutrino-induced neutral current(NC)interactions of the typeν+atom→ν+anything,mediated by Z exchange.The weak mixing angleθw governs the dependence of NC couplings on fermion helicity and electric charge, and their interaction rates are determined by the Fermi constant G Z F.The ratioρ=G Z F/G F= m2W/m2Z cos2θw,predicted to be1,is the only measured parameter of the SM that probes thesymmetry breaking mechanism.Once the value ofθw was determined in neutrino experiments,the√W and Z masses could be predicted:m2W=m2Z cos2θw=sin2θwπα/QUARKS:S=1LEPTONS:S=13m3m Q=0m quanta mu1u2u3(2–8)10−3e 5.11×10−4c1c2c3 1.0–1.6µ0.10566t1t2t3173.8±5.0τ 1.77705/3g′,where g1isfixed by requiring the same normalization for all fermion currents.Their measured values at low energy satisfy g3>g2>g1.Like g3,the coupling g2decreases with increasing energy,but more slowly because there are fewer gauge bosons contributing.As in QED,the U(1)coupling increases with energy.Vacuum polarization effects calculated using the particle content of the SM show that the three coupling constants are very nearly equal at an energy scale around1016GeV,providing a tantalizing hint of a more highly symmetric theory,embedding the SM interactions into a single force.Particle masses also depend on energy;the b andτmasses become equal at a similar scale,suggesting a possibility of quark and lepton unification as different charge states of a singlefield.V.BRIEF SUMMARY OF THE STANDARD MODEL ELEMENTSThe SM contains the set of elementary particles shown in Table I.The forces operative in the particle domain are the strong(QCD)interaction responsive to particles carrying color,and the two pieces of the electroweak interaction responsive to particles carrying weak isospin and hypercharge. The quarks come in three experimentally indistinguishable colors and there are eight colored gluons. All quarks and leptons,and theγ,W and Z bosons,carry weak isospin.In the strict view of the SM,there are no right-handed neutrinos or left-handed anti-neutrinos.As a consequence the simple Higgs mechanism described in section IV cannot generate neutrino masses,which are posited to be zero.In addition,the SM provides the quark mixing matrix which gives the transformation from the basis of the strong interaction charge−1Finding the constituents of the SM spanned thefirst century of the APS,starting with the discovery by Thomson of the electron in1897.Pauli in1930postulated the existence of the neutrino as the agent of missing energy and angular momentum inβ-decay;only in1953was the neutrino found in experiments at reactors.The muon was unexpectedly added from cosmic ray searches for the Yukawa particle in1936;in1962its companion neutrino was found in the decays of the pion.The Eightfold Way classification of the hadrons in1961suggested the possible existence of the three lightest quarks(u,d and s),though their physical reality was then regarded as doubtful.The observation of substructure of the proton,and the1974observation of the J/ψmeson interpreted as a cp collider in1983was a dramatic confirmation of this theory.The gluon which mediates the color force QCD wasfirst demonstrated in the e+e−collider at DESY in Hamburg.The minimal version of the SM,with no right-handed neutrinos and the simplest possible ESB mechanism,has19arbitrary parameters:9fermion masses;3angles and one phase that specify the quark mixing matrix;3gauge coupling constants;2parameters to specify the Higgs potential; and an additional phaseθthat characterizes the QCD vacuum state.The number of parameters is larger if the ESB mechanism is more complicated or if there are right-handed neutrinos.Aside from constraints imposed by renormalizability,the spectrum of elementary particles is also arbitrary.As discussed in Section VII,this high degree of arbitrariness suggests that a more fundamental theory underlies the SM.VI.EXPERIMENTAL ESTABLISHMENT OF THE STANDARD MODELThe current picture of particles and interactions has been shaped and tested by three decades of experimental studies at laboratories around the world.We briefly summarize here some typical and landmark results.FIG.1.The proton structure function(F2)versus Q2atfixed x,measured with incident electrons or muons,showing scale invariance at larger x and substantial dependence on Q2as x becomes small.The data are taken from the HERA ep collider experiments H1and ZEUS,as well as the muon scattering experiments BCDMS and NMC at CERN and E665at FNAL.A.Establishing QCD1.Deep inelastic scatteringPioneering experiments at SLAC in the late1960’s directed high energy electrons on proton and nuclear targets.The deep inelastic scattering(DIS)process results in a deflected electron and a hadronic recoil system from the initial baryon.The scattering occurs through the exchange of a photon coupled to the electric charges of the participants.DIS experiments were the spiritual descendents of Rutherford’s scattering ofαparticles by gold atoms and,as with the earlier experi-ment,showed the existence of the target’s substructure.Lorentz and gauge invariance restrict the matrix element representing the hadronic part of the interaction to two terms,each multiplied by phenomenological form factors or structure functions.These in principle depend on the two inde-pendent kinematic variables;the momentum transfer carried by the photon(Q2)and energy loss by the electron(ν).The experiments showed that the structure functions were,to good approximation, independent of Q2forfixed values of x=Q2/2Mν.This‘scaling’result was interpreted as evi-dence that the proton contains sub-elements,originally called partons.The DIS scattering occurs as the elastic scatter of the beam electron with one of the partons.The original and subsequent experiments established that the struck partons carry the fractional electric charges and half-integer spins dictated by the quark model.Furthermore,the experiments demonstrated that three such partons(valence quarks)provide the nucleon with its quantum numbers.The variable x represents the fraction of the target nucleon’s momentum carried by the struck parton,viewed in a Lorentz frame where the proton is relativistic.The DIS experiments further showed that the charged partons (quarks)carry only about half of the proton momentum,giving indirect evidence for an electrically neutral partonic gluon.1011010101010FIG.2.The quark and gluon momentum densities in the proton versus x for Q 2=20GeV 2.The integrated values of each component density gives the fraction of the proton momentum carried by that component.The valence u and d quarks carry the quantum numbers of the proton.The large number of quarks at small x arise from a ‘sea’of quark-antiquark pairs.The quark densities are from a phenomenological fit (the CTEQ collaboration)to data from many sources;the gluon density bands are the one standard deviation bounds to QCD fits to ZEUS data (low x )and muon scattering data (higher x ).Further DIS investigations using electrons,muons,and neutrinos and a variety of targets refined this picture and demonstrated small but systematic nonscaling behavior.The structure functions were shown to vary more rapidly with Q 2as x decreases,in accord with the nascent QCD prediction that the fundamental strong coupling constant αS varies with Q 2,and that at short distance scales (high Q 2)the number of observable partons increases due to increasingly resolved quantum fluc-tuations.Figure 1shows sample modern results for the Q 2dependence of the dominant structure function,in excellent accord with QCD predictions.The structure function values at all x depend on the quark content;the increases at larger Q 2depend on both quark and gluon content.The data permit the mapping of the proton’s quark and gluon content exemplified in Fig.2.2.Quark and gluon jetsThe gluon was firmly predicted as the carrier of the color force.Though its presence had been inferred because only about half the proton momentum was found in charged constituents,direct observation of the gluon was essential.This came from experiments at the DESY e +e −collider (PETRA)in 1979.The collision forms an intermediate virtual photon state,which may subsequently decay into a pair of leptons or pair of quarks.The colored quarks cannot emerge intact from the collision region;instead they create many quark-antiquark pairs from the vacuum that arrange themselves into a set of colorless hadrons moving approximately in the directions of the original quarks.These sprays of roughly collinear particles,called jets,reflect the directions of the progenitor quarks.However,the quarks may radiate quanta of QCD (a gluon)prior to formation of the jets,just as electrons radiate photons.If at sufficiently large angle to be distinguished,the gluon radiation evolves into a separate jet.Evidence was found in the event energy-flow patterns for the ‘three-pronged’jet topologies expected for events containing a gluon.Experiments at higher energy e +e −colliders illustrate this gluon radiation even better,as shown in Fig.3.Studies in e +e −and hadron collisions have verified the expected QCD structure of the quark-gluon couplings,and their interference patterns.FIG.3.A three jet event from the OPAL experiment at LEP.The curving tracks from the three jets may be associated with the energy deposits in the surrounding calorimeter,shown here as histograms on the middle two circles,whose bin heights are proportional to energy.Jets1and2contain muons as indicated,suggesting that these are both quark jets(likely from b quarks).The lowest energy jet3is attributed to a radiated gluon.3.Strong coupling constantThe fundamental characteristic of QCD is asymptotic freedom,dictating that the coupling constant for color interactions decreases logarithmically as Q2increases.The couplingαS can be measured in a variety of strong interaction reactions at different Q2scales.At low Q2,processes like DIS,tau decays to hadrons,and the annihilation rate for e+e−into multi-hadronfinal states give accurate determinations ofαS.The decays of theΥinto three jets primarily involve gluons,and the rate for this decay givesαS(M2Υ).At higher Q2,studies of the W and Z bosons(for example,the decay width of the Z,or the fraction of W bosons associated with jets)measureαS at the100GeV scale. These and many other determinations have now solidified the experimental evidence thatαS does indeed‘run’with Q2as expected in QCD.Predictions forαS(Q2),relative to its value at some reference scale,can be made within perturbative QCD.The current information from many sources are compared with calculated values in Fig.4.4.Strong interaction scattering of partonsAt sufficiently large Q2whereαS is small,the QCD perturbation series converges sufficiently rapidly to permit accurate predictions.An important process probing the highest accessible Q2 scales is the scattering of two constituent partons(quarks or gluons)within colliding protons and antiprotons.Figure5shows the impressive data for the inclusive production of jets due to scattered partons in pp collisions reveals the structure of the scattering matrix element.These amplitudes are dominated by the exchange of the spin1gluon.If this scattering were identical to Rutherford scattering,the angular variable0.10.20.30.40.511010FIG.4.The dependence of the strong coupling constant,αS ,versus Q using data from DIS structure functions from e ,µ,and νbeam experiments as well as ep collider experiments,production rates of jets,heavy quark flavors,photons,and weak vector bosons in ep ,e +e −,and pt ,is sensitive not only to to perturbative processes,but reflectsadditional effects due to multiple gluon radiation from the scattering quarks.Within the limited statistics of current data samples,the top quark production cross section is also in good agreement with QCD.FIG.6.The dijet angular distribution from the DØexperiment plotted as a function ofχ(see text)for which Rutherford scattering would give dσ/dχ=constant.The predictions of NLO QCD(at scaleµ=E T/2)are shown by the curves.Λis the compositeness scale for quark/gluon substructure,withΛ=∞for no compositness(solid curve);the data rule out values of Λ<2TeV.5.Nonperturbative QCDMany physicists believe that QCD is a theory‘solved in principle’.The basic validity of QCD at large Q2where the coupling is small has been verified in many experimental studies,but the large coupling at low Q2makes calculation exceedingly difficult.This low Q2region of QCD is relevant to the wealth of experimental data on the static properties of nucleons,most hadronic interactions, hadronic weak decays,nucleon and nucleus structure,proton and neutron spin structure,and systems of hadronic matter with very high temperature and energy densities.The ability of theory to predict such phenomena has yet to match the experimental progress.Several techniques for dealing with nonperturbative QCD have been developed.The most suc-cessful address processes in which some energy or mass in the problem is large.An example is the confrontation of data on the rates of mesons containing heavy quarks(c or b)decaying into lighter hadrons,where the heavy quark can be treated nonrelativistically and its contribution to the matrix element is taken from experiment.With this phenomenological input,the ratios of calculated par-tial decay rates agree well with experiment.Calculations based on evaluation at discrete space-time points on a lattice and extrapolated to zero spacing have also had some success.With computing advances and new calculational algorithms,the lattice calculations are now advanced to the stage of calculating hadronic masses,the strong coupling constant,and decay widths to within roughly10–20%of the experimental values.The quark and gluon content of protons are consequences of QCD,much as the wave functions of electrons in atoms are consequences of electromagnetism.Such calculations require nonperturbative techniques.Measurements of the small-x proton structure functions at the HERA ep collider show a much larger increase of parton density with decreasing x than were extrapolated from larger x measurements.It was also found that a large fraction(∼10%)of such events contained afinal。

badly conditioned matrix 解决方法 -回复

badly conditioned matrix 解决方法 -回复

badly conditioned matrix 解决方法-回复关于如何解决“badly conditioned matrix”(病态矩阵)的问题导言:在数值计算中,“病态矩阵”是指具有非常高条件数的矩阵。

条件数是度量矩阵相对于其奇异值的性质的一个数值指标。

当矩阵的条件数非常高时,计算机在求解线性方程组或执行其他矩阵操作时可能会出现较大的误差。

因此,我们需要解决这个问题,以确保数值计算的准确性和稳定性。

一、了解问题:在开始解决“病态矩阵”的问题之前,我们应该先了解该问题的原因和影响。

具体来说,我们需要回答以下问题:1. 病态矩阵的定义和条件数的概念是什么?2. 病态矩阵给数值计算带来了哪些问题和挑战?3. 在实际应用中,为什么会出现病态矩阵的情况?通过回答这些问题,我们可以更好地了解“病态矩阵”问题的本质和背景,为后续的解决方案做好准备。

二、常见的解决方法:在实践中,有许多方法可以解决“病态矩阵”的问题。

以下是一些常见的解决方案:1. 改进数值算法:某些数值算法对病态矩阵更敏感,因此可以选择改用其他更稳定的算法来求解线性方程组或执行其他矩阵操作。

例如,可以使用QR分解、LU分解或奇异值分解等算法来替代传统的高斯消元法或雅可比迭代等算法。

2. 正则化技术:正则化技术是一种通过引入额外约束来改善矩阵问题的方法。

它可以在计算中限制某些矩阵参数的取值范围,从而减小条件数。

常见的正则化技术包括Tikhonov正则化、Ridge回归和LASSO回归等。

3. 数据预处理:矩阵数据的预处理是一种常见的矫正“病态矩阵”的方法。

通过对输入数据进行变换、缩放或过滤等预处理操作,可以改善矩阵的条件数。

例如,可以使用主成分分析(PCA)来减少数据集的维度,从而减小条件数。

4. 稳定性分析和后续调整:在进行数值计算之前,进行稳定性分析是一种常用的方法。

通过评估问题的稳定性并估计数值计算的误差范围,可以为后续计算或调整提供依据。

LTE系统消息翻译

LTE系统消息翻译

系统消息解析1 MIB (Master Information Block)解析MIB主要包含系统带宽、PHICH配置信息、系统帧号。

(下图为实测信令)➢DL_Bandwidth系统带宽,范围enumerate(1.4M(6RB,0),3M(15RB,1),5M(25RB,2),10M(50RB,3),15M(75RB,4),20M(100RB,5)),上图为n100,对应的系统带宽为20M(100RB,带宽索引号为5)。

➢Phich_Duration当该参数设置为normal时,PDCCH占用的OFDM符号数可以自适应调整;当该参数设置为extended时,若带宽为1.4M,则PDCCH占用的OFDM符号数可以取3或4,对于其他系统带宽下,PDCCH占用的符号数只能为3。

➢PHICH-Resource该参数用于计算小区PHICH信道的资源;➢SystemFrameNumber系统帧号。

系统帧号,用于UE获取系统时钟。

实际SFN位长为10bit,也就是取值从0-1023循环。

在PBCH的MIB广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。

PBCH 的40ms窗口手机可以通过盲检确定。

➢Spare:预留的,暂时未用2 SIB1 (System Information Block Type1)解析SIB1上主要传输评估UE能否接入小区的相关信息及其他系统消息的调度信息。

主要包括4部分:➢小区接入相关信息(cell Access Related Info)➢小区选择信息(cell Selection Info)➢调度信息(scheduling Info List)➢TDD配置信息(tdd-Config)SIB1消息解析(UE侧):RRC-MSG..msg....struBCCH-DL-SCH-Message......struBCCH-DL-SCH-Message........message..........c1............systemInformationBlockType1..............cellAccessRelatedInfo//小区接入相关信息................plmn-IdentityList//PLMN标识列表..................PLMN-IdentityInfo....................plmn-Identity ......................mcc//460 ........................MCC-MNC-Digit:0x4 (4) ........................MCC-MNC-Digit:0x6 (6) ........................MCC-MNC-Digit:0x0 (0) ......................mnc//00 ........................MCC-MNC-Digit:0x0 (0) ........................MCC-MNC-Digit:0x0 (0) ....................cellReservedForOperatorUse:notReserved (1) ................trackingAreaCode:11100(890C)//TAC跟踪区(890C)为16进制数,转换成十进制为35084,查TAC在该消息中可以查到,此条信元重要。

Weak Interactions of Light Flavours

Weak Interactions of Light Flavours
2Leabharlann Standard Model
LSM = LH (φ) + LG (W, Z, G) + Higgs Gauge ¯ / ψ+ ψiD
ψ=fermions ψ,ψ′ =fermions
The Standard Model Lagrangian has four parts: ¯ ′ gψψ′ ψφψ Yukawa
QCD and QED conserve C,P,T separately. Local Field theory by itself implies CPT. The fermion and Higgs2 part of the SM-lagrangian conserves CP and T as well. The only part that violates CP and as a consequence also T is the Yukawa part. The Higgs part is responsible for two parameters, the gauge part for three and the HiggsFermion part contains in principle 27 complex parameters, neglecting Yukawa couplings to neutrinos. Luckily most of the 54 real parameters in the Yukawa sector are unobservable. After diagonalizing the lepton sector there only the three charged lepton masses remain. The quark sector can be similarly diagonalized leading to 6 quark masses, but some parts remain in the difference between weak interaction eigenstates and mass-eigenstates. The latter is conventionally put in the couplings of the charged W -boson, which is given by Vud Vus Vub dα g α − uα cα t γ µ (1 − γ5 ) Vcd Vcs Vcb sα − √ Wµ 2 2 V V V b

badly conditioned matrix 解决方法

badly conditioned matrix 解决方法

badly conditioned matrix 解决方法关于"badly conditioned matrix"(病态矩阵)的解决方法引言:在数值分析中,病态矩阵是一个特殊的矩阵,其条件数非常高,这意味着即使输入的数据有微小的误差,也会导致解的误差巨大。

病态矩阵是一种常见的问题,可能会对数值计算产生重大影响。

然而,幸运的是,我们可以采取一些措施来应对病态矩阵的挑战,并确保获得准确和稳定的解。

在本文中,将提供一些解决病态矩阵问题的方法,以便我们能够更好地理解和处理这一问题。

第一步:输入数据的预处理病态矩阵的条件数取决于输入数据的精确性。

因此,第一步是对输入数据进行预处理和修正以提高其准确性。

一种常用的方法是使用数值分析中的数值稳定性技术,如舍入误差分析和数值稳定算法。

通过这些技巧,我们可以识别并修复导致矩阵病态性的问题,从而减少条件数。

第二步:使用正则化技术正则化是通过添加一个正则化项来修改矩阵问题的数学表达式,以提高解的稳定性。

正则化技术广泛应用于矩阵和线性方程组的求解中,并可以有效地应对病态矩阵的挑战。

其中,Tikhonov正则化和岭回归是常见的正则化方法,它们在解决过拟合和病态矩阵问题方面具有良好的效第三步:使用迭代方法另一种应对病态矩阵的方法是使用迭代方法解决线性方程组。

迭代方法通过通过多次迭代逼近解来解决线性方程组,从而减少计算过程中的矩阵病态性对结果的影响。

常见的迭代方法包括雅可比迭代法、高斯-赛德尔迭代法和共轭梯度法。

这些方法通过在每次迭代中逐渐优化解的近似值,从而得到更准确和稳定的解。

第四步:使用奇异值分解奇异值分解(SVD)是解决病态矩阵问题的一种常用方法。

SVD是一种矩阵分解技术,可以将一个矩阵分解为三个矩阵的乘积:原始矩阵等于左奇异向量矩阵乘以奇异值矩阵再乘以右奇异向量矩阵的转置。

通过使用SVD,我们可以降低病态矩阵的条件数,并获得更准确和稳定的解。

第五步:使用正交变换正交变换是通过改变矩阵的基或坐标系来减少矩阵的病态性。

高能物理的进展

高能物理的进展

Main Improvements of BESIII








CsI Calorimeter: E/E ~ 2.3% MDC :small cell,Al wire and He based gas P/P (1GeV) = 0.6-0.7 %@0.8T, 0.5 %@1T, dE/dx = 6 % T of TOF: Barrel 90 ps;Endcap 110 ps (RPC): Readout hits on strips ~4 cm Luminosity monitor: L/ L = 3 % SC Magnet :1 Tesla, Rin ~ 1.32 m, L ~ 3.8 m Trigger and DAQ system which accommodate the multi-bunch and high luminosity. New electronic readout system: : one wire bus Computer system : PC farm
夸克模型和三代轻子
u d e 三代轻子: e
三代夸克:
传播子:

c s
W ,Z

t b
0
g
(电磁力) (弱力) (强力) 夸克模型很成功,1995年,t夸克也找到了,能很好 描述强子结构。中微子宽度测量的实验,支持轻子 (从而夸克)只有三代,与宇宙学的预言相符合。
高能加速器和探测器的应用非常广泛和深远。 几十年来高能物理对科学做出了重大贡献。 从1901年颁发诺贝尔奖起,已有一百多位物理 学家获得了诺贝尔物理奖,其中有41位与粒子物理 有关,是物理学中获诺贝尔奖最多的一门分支。

winedt package ckj error -回复

winedt package ckj error -回复

winedt package ckj error -回复标题:解决Winedt软件包CKJ错误的步骤引言:Winedt是一款广泛用于Windows操作系统上的文本编辑器,它提供了许多强大的功能和灵活的设置选项,特别适用于处理和编辑各种类型的文档。

然而,像其他软件一样,Winedt也可能遇到一些错误。

本文将着重讨论Winedt软件包CKJ错误,并提供解决这些错误的详细步骤。

第一部分:了解CKJ错误1. 描述:CKJ错误是指在Winedt软件包中出现的与中文、韩文和日文等字符有关的问题。

当您在文档中使用这些字符时,可能会遇到字体显示异常、乱码、无法正确输入等问题。

这些错误可能是由于缺少字体或配置问题引起的。

2. 常见原因:- 缺少对应的字体或字体文件- 字体文件损坏或冲突- Winedt软件本身的配置问题第二部分:解决CKJ错误的步骤1. 确认字体安装:首先,我们需要确认所需的中文、韩文和日文字体已经正确安装在您的计算机上。

检查系统的字体文件夹,并确保您要使用的字体文件存在。

如果字体文件缺失,您可以从官方或可靠的字体提供者下载并安装相应字体。

2. 配置Winedt软件:打开Winedt软件并导航到"Options"菜单。

选择"Configuration",然后选择"Font"。

- 在"Styles"选项卡中,选择您想要配置的字体(如:用于编辑或显示的字体)。

- 在"Encoding"选项卡中,选择与您要使用的字符集匹配的编码设置。

3. 设置默认编码:如果您的文档通常包含多种字符集的内容,可以通过以下步骤设置默认编码:- 在Winedt的"Options"菜单中,选择"Preferences"。

- 在"Preferences"对话框中,找到并选择"Charsets"选项。

matlab常见错误中英文对照表

matlab常见错误中英文对照表

matlab常见错误中英文对照表下面是编译错误代码中英对照错误代码及错误信息错误释义error1:Outofmemory内存溢出error2:Identifierexpected缺标识符error3:Unknownidentifier未定义的标识符error4:Duplicateidentifier重复定义的标识符error5:Syntaxerror语法错误error6:Errorinrealconstant实型常量错误error7:Errorinintegerconstant整型常量错误error8:Stringconstantexceedsline字符串常量超过一行error10:Unexpectedendoffile文件非正常结束error11:Linetoolong行太长error12:Typeidentifierexpected未定义的类型标识符error13:Toomanyopenfiles打开文件太多error14:Invalidfilename无效的文件名error15:Filenotfound文件未找到error16:Diskfull磁盘满error17:Invalidcompilerdirective无效的编译命令error18:Toomanyfiles文件太多error19:Undefinedtypeinpointerdef指针定义中未定义类型error20:Variableidentifierexpected缺变量标识符error21:Errorintype类型错误error22:Structuretoolarge结构类型太长error23:Setbasetypeoutofrange集合基类型越界error24:Filecomponentsmaynotbefilesorobjectsfile分量不能是文件或对象error25:Invalidstringlength无效的字符串长度error26:Typemismatch类型不匹配error27:error27:Invalidsubrangebasetype无效的子界基类型error28:Lowerboundgreaterthanupperbound下界超过上界error29:Ordinaltypeexpected缺有序类型error30:Integerconstantexpected缺整型常量error31:Constantexpected缺常量error32:Integerorrealconstantexpected缺整型或实型常量error33:PointerTypeidentifierexpected缺指针类型标识符error34:Invalidfunctionresulttype无效的函数结果类型error35:Labelidentifierexpected缺标号标识符error36:BEGINexpected缺BEGINerror37:ENDexpected缺ENDerror38:Integerexpressionexpected缺整型表达式error39:Ordinalexpressionexpected缺有序类型表达式error40:Booleanexpressionexpected缺布尔表达式error41:Operandtypesdonotmatch操作数类型不匹配error42:Errorinexpression表达式错误error43:Illegalassignment非法赋值error44:Fieldidentifierexpected缺域标识符error45:Objectfiletoolarge目标文件太大error46:Undefinedexternal未定义的外部过程与函数error47:Invalidobjectfilerecord无效的OBJ文件格式error48:Codesegmenttoolarge代码段太长error49:Datasegmenttoolarge数据段太长error50:DOexpected缺DOerror51:InvalidPUBLICdefinition无效的PUBLIC定义error52:InvalidEXTRNdefinition无效的EXTRN定义error53:ToomanyEXTRNdefinitions太多的EXTRN定义error54:OFexpected缺OFerror55:INTERFACEexpected缺INTERFACEerror56:Invalidrelocatablereference无效的可重定位引用error57:THENexpected缺THENerror58:TOorDOWNTOexpected缺TO或DOWNTOerror59:Undefinedforward提前引用未经定义的说明error61:Invalidtypecast无效的类型转换error62:Divisionbyzero被零除error63:Invalidfiletype无效的文件类型error64:Cannotreadorwritevariablesofthistype不能读写此类型变量error65:Pointervariableexpected缺指针类型变量error66:Stringvariableexpected缺字符串变量error67:Stringexpressionexpected缺字符串表达式error68:Circularunitreference单元UNIT部件循环引用error69:Unitnamemismatch单元名不匹配error70:Unitversionmismatch单元版本不匹配error71:Internalstackoverflow内部堆栈溢出error72:Unitfileformaterror单元文件格式错误error73:IMPLEMENTATIONexpected缺IMPLEMENTATION error74:Constantandcasetypesdonotmatch常量和CASE类型不匹配error75:Recordorobjectvariableexpected缺记录或对象变量error76:Constantoutofrange常量越界error77:Filevariableexpected缺文件变量error78:Pointerexpressionexpected缺指针表达式error79:Integerorrealexpressionexpected缺整型或实型表达式error80:Labelnotwithincurrentblock标号不在当前块内error81:Labelalreadydefined标号已定义error82:Undefinedlabelinprecedingstatementpart在前面未定义标号error83:Invalid@argument无效的@参数error84:UNIT expected缺UNITerror85:";"expected缺“;”error86:":"expected缺“:”error87:","expected缺“,”error88:"("expected缺“(”error89:")"expected缺“)”error90:"="expected缺“=”error91:":="expected缺“:=”error92:"["or"(."Expected缺“[”或“(.”error93:"]"or".)"expected缺“〕”或“.)”error94:"."expected缺“.”error95:".."expected缺“..”error96:Toomanyvariables变量太多error97:InvalidFORcontrolvariable无效的FOR循环控制变量error98:Integervariableexpected缺整型变量error99:Filesandproceduretypesarenotallowedhere该处不允许文件和过程类型error100:Stringlengthmismatch字符串长度不匹配error101:Invalidorderingoffields无效域顺序error102:Stringconstantexpected缺字符串常量error103:Integerorrealvariableexpected缺整型或实型变量error104:Ordinalvariableexpected缺有序类型变量error105:INLINEerrorINLINE错误error106:Characterexpressionexpected缺字符表达式error107:Toomanyrelocationitems重定位项太多error108:Overflowinarithmeticoperation算术运算溢出error112:CASEconstantoutofrangeCASE常量越界error113:Errorinstatement表达式错误error114:Cannotcallaninterruptprocedure不能调用中断过程error116:Mustbein8087modetocompilethis必须在8087模式编译error117:Targetaddressnotfound找不到目标地址error118:Includefilesarenotallowedhere该处不允许INCLUDE文件error119:Noinheritedmethodsareaccessiblehere该处继承方法不可访问error121:Invalidqualifier无效的限定符error122:Invalidvariablereference无效的变量引用error123:Toomanysymbols符号太多error124:Statementparttoolarge语句体太长error126:Filesmustbevarparameters文件必须是变量形参error127:Toomanyconditionalsymbols条件符号太多error128:Misplacedconditionaldirective条件指令错位error129:ENDIFdirectivemissing缺ENDIF指令error130:Errorininitialconditionaldefines初始条件定义错误error131:Headerdoesnotmatchpreviousdefinition和前面定义的过程或函数不匹配error133:Cannotevaluatethisexpression不能计算该表达式error134:Expressionincorrectlyterminated表达式错误结束error135:Invalidformatspecifier无效格式说明符error136:Invalidindirectreference无效的间接引用error137:Structuredvariablesarenotallowedhere该处不允许结构变量error138:CannotevaluatewithoutSystemunit没有System单元不能计算error139:Cannotaccessthissymbol不能存取符号error140:Invalidfloatingpointoperation无效的符号运算error141:Cannotcompileoverlaystomemory不能编译覆盖模块至内存error142:Pointerorproceduralvariableexpected缺指针或过程变量error143:Invalidprocedureorfunctionreference无效的过程或函数调用error144:Cannotoverlaythisunit不能覆盖该单元error146:Fileaccessdenied不允许文件访问error147:Objecttypeexpected缺对象类型error148:Localobjecttypesarenotallowed不允许局部对象类型error149:VIRTUALexpected缺VIRTUALerror150:Methodidentifierexpected缺方法标识符error151:Virtualconstructorsarenotallowed不允许虚构造函数error152:Constructoridentifierexpected缺构造函数标识符error153:Destructoridentifierexpected缺析构函数标识符error154:Failonlyallowedwithinconstructors只能在构造函数内使用Fail标准过程error155:Invalidcombinationofopcodeandoperands操作数与操作符无效组合error156:Memoryreferenceexpected缺内存引用指针error157:Cannotaddorsubtractrelocatablesymbols不能加减可重定位符号error158:Invalidregistercombination无效寄存器组合error159:286/287instructionsarenotenabled未激活286/287指令error160:Invalidsymbolreference无效符号指针error161:Codegenerationerror代码生成错误error162:ASMexpected缺ASMerror166:Procedureorfunctionidentifierexpected缺过程或函数标识符error167:Cannotexportthissymbol不能输出该符号error168:Duplicateexportname外部文件名重复error169:Executablefileheadertoolarge可执行文件头太长error170:Toomanysegments段太多。

错误处理 CKMLCP 前期未结算 解决方案

错误处理 CKMLCP 前期未结算  解决方案

CKMLCP前期未结算_报错解决1:每次结账后要检查物料状态S_ALR_87013180 - 根据期间状态的物料,检查是否有非01状态的物料解决2:结账后,物料期间不允许前期记账,防止结账后再发生前期物料移动,导致改变了物料状态解决3:手工修改CKMLPP表中物料上一期间的状态为已结算状态解决4:如下方法2013—08-09 08:52:08| 分类:SAP_FICO|标签:|举报|字号大中小订阅做7月分的物料分类账,发现6月份有三个物料没有做物料分类账,在执行CKMLCP时系统报错如下:计算出前一期间中物料……的期末结算消息号:C+805解决方案:1。

CKMREP (RCKM_REP_TABI0F通过改标准程序,可以使CKMREP直接保存);2. 直接改表CKMLPP 更新物料的状态;3. SAP NOTE 361236 见附件:MUST_SETTLE(单级)MUST_MULTI(多级)MUST_COGS(消耗的重估)MUST_WIP(在制品)MUST_CLOSE(结账输入)SAP Note 361236 — CKMLCP:No period—end closingoperations after period shift物料分类账的产品价格控制更改对于价格控制为S的产品,运行物料分类账后系统会自动修改为V,然后下期的价格控制仍旧为S,那么此时,如果想对该物料做上月的移动,即便会计期间、物料期间、CO期间均已经放开,依旧不能过账,系统会提示两个期间的价格控制不一致,解决的办法是,冲销上期的物料分类账的运行,那么此时,上期的价格控制会自动变为S,这时候就可以做上期的物料移动操作物料帐运行过程中出现一个无语的问题,求论坛老师们支招。

问题详情如下:我们这边物料是按照标准成本核算的,一家分公司在运行CKMLCP时做到第三步“单级处理确定”时90%的物料报红灯错误,错误的详细信息是计算出前一期间中物料1000457 的期末结算消息号C+805诊断您想执行含有评估范围HA00中评估类型的物料1000457的单级价格确定。

undefined control sequence. 数学公式

undefined control sequence. 数学公式

“Undefined control sequence” 是一个在 LaTeX 或类似的排版系统中常见的错误信息。

当你尝试编译一个包含数学公式的 LaTeX 文档时,如果公式中有一些 LaTeX 不认识的命令或符号,它就会显示这个错误。

为了解决这个问题,你可以:
检查拼写和大小写:LaTeX 命令是大小写敏感的,所以确保你使用的命令的拼写和大小写都是正确的。

查看文档:查阅你正在使用的命令的 LaTeX 文档,确保你正确地使用了它们。

搜索帮助:在互联网上搜索这个错误信息和相关的命令,可能会找到其他用户遇到相同问题时的解决方案。

简化问题:尝试简化你的公式,一步一步地添加内容,直到再次出现问题。

这样,你可以更容易地找到导致问题的具体部分。

使用包或宏:有些特殊的数学符号或功能可能需要额外的 LaTeX 包或宏。

确保你已经包含了所有必要的包。

更新 LaTeX 发行版:如果你使用的是一个较旧的 LaTeX 发行版,考虑更新到最新版本,因为新版本可能修复了一些旧版本中存在的问题,并增加了对新命令的支持。

雪花算法 违反了 primary key 约束

雪花算法 违反了 primary key 约束

雪花算法违反了 primary key 约束雪花算法是一种在分布式系统中生成全局唯一ID的算法。

它通过将64位的ID分为多个部分来生成唯一ID,其中包括时间、机器编号、序列号等信息。

使用雪花算法可以避免在分布式系统中发生ID冲突的问题。

然而,当使用雪花算法作为主键时,可能会违反主键约束。

主键约束是数据库中一种保证表中每行数据唯一的方式。

主键不能为NULL,且不能重复。

主键约束用于确保表中每行数据的唯一性,从而保证数据库的一致性和完整性。

在使用雪花算法作为主键时,可能会出现以下情况,导致违反主键约束:1. 机器编号重复。

雪花算法的一部分是用于标识机器编号的,如果有多个机器使用相同的编号生成ID,则会导致ID冲突,违反主键约束。

2. 时钟回拨。

雪花算法的另一部分是用于标识生成ID的时间戳的。

如果在生成ID时时钟发生回拨,则会导致生成的ID与之前生成的ID重复,违反主键约束。

3. 序列号溢出。

雪花算法的一部分序列号是用于标识同一毫秒内生成的不同ID的。

如果某一毫秒内需要生成的序列号超出了可表示的范围,则会出现序列号溢出,导致生成的ID重复,违反主键约束。

为了避免使用雪花算法作为主键时出现以上问题,可以采取以下措施:1. 确保每个机器的机器编号不重复。

2. 尽量避免使用时钟回拨的机器。

3. 针对序列号溢出问题,可以使用预留的序列号位来进行扩展,或者使用更大的序列号位来表示更多的序列号。

总之,虽然使用雪花算法可以在分布式系统中生成唯一ID,但是作为主键时需要考虑多种因素。

只有正确使用雪花算法,并采取相应的措施,才能确保主键约束不会被违反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SM there are 10 physical quark flavor parameters, the 6 quark masses and the 4 parameters in the CKM matrix: 3 mixing angles and 1 CP violating phase.4 Therefore, the SM predicts intricate correlations between dozens of different decays of s, c, b, and t quarks, and in particular between CP violating observables. Possible deviations from CKM paradigm may upset some predictions: • Flavor-changing neutral currents at unexpected level, e.g., Bs mixing incompatible with SM, enhanced B(s) → ℓ+ ℓ− ; • Subtle (or not so subtle) changes in correlations, e.g., CP asymmetries not equal in B → ψKS and B → φKS ; • Enhanced or suppressed CP violation, e.g., Bs → ψφ. The key to testing the SM is to do many overconstraining measurements. A convenient language to compare these is by putting constraints on ρ and η , which occur in the Wolfenstein parameterization of the CKM matrix, Vud Vus Vub VCKM = Vcd Vcs Vcb = (1) Vtd Vts Vtb 2 λ Aλ3 (ρ − iη ) 1− 1 2λ 1 2 . λ Aλ2 −λ 1− 2 3 2 Aλ (1 − ρ − iη ) −Aλ 1 This form is designed to exhibit the hierarchical structure by expanding in the sine of
Figure 1. Sketch of the unitarity triangle.
the Cabibbo angle, λ = sin θC ≃ 0.22, and is valid to order λ4 . The unitarity of VCKM implies several relations, such as
+
CP violation in decay is in some sense its simplest form, and can be observed in both charged and neutral meson as well as in baryon decays. It requires at least two amplitudes with nonzero relative weak (φk ) and strong (δk ) phases to contribute to a decay, Af = f |H|B =
For Publisher’s use THE CKM MATRIX AND CP VIOLATION ZOLTAN LIGETI Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720 E-mail: zligeti@
For Publisher’s use
(ρ,η) α
* Vud Vub * Vcd Vcb
* Vtd Vtb * Vcd Vcb
γ (0,0)
β (1,0)
D0 −D0 is the only neutral meson mixing generated by down-type quarks in the SM (uptype squarks in SUSY). The strongest hint for D0 − D 0 mixing is6 Γ(CP even) − Γ(CP odd) yCP = Γ(CP even) + Γ(CP odd) = (0.9 ± 0.4)% . (4ห้องสมุดไป่ตู้ Unfortunately, because of hadronic uncertainties, this measurement cannot be interpreted as a sign of new physics.7 At the present level of sensitivity, CPV would be the only clean signal of NP in the D sector. 2 CP violation in B decays and B → J/ψKS CP violation in decay
2.1
We know from the measurement of ǫK that CPV in the K system is at the right level, as it can be accommodated in the SM with an O(1) value of the KM phase.3 The other observed CP violating quantity in kaon decay, ǫ′ K , is notoriously hard to calculate, so hadronic uncertainties have precluded precision tests of the KM mechanism. In the kaon sector these will come from the study of K → πν ν ¯ decays. The BNL E949 experiment observed the third event, yielding5 B (K
k
Ak eiδk eiφk , Ak eiδk e−iφk . (5)
k
Af = f |H|B =
If |Af /Af | = 1 then CP is violated. This type of CP violation is unambiguously observed in the kaon sector by ǫ′ K = 0, and now it is also established in B decays with 5.7σ significance, AK − π+ ≡ Γ(B → K − π + ) − Γ(B → K + π − ) Γ(B → K − π + ) + Γ(B → K + π − ) = −0.109 ± 0.019 , (6)
arXiv:hep-ph/0408267v3 8 Oct 2004
1
Introduction
In the last few years the study of CP violation and flavor physics has undergone dramatic developments. While for 35 years, until 1999, the only unambiguous measurement of CP violation (CPV) was ǫK ,1 the constraints on the CKM matrix2, 3 improved tremendously since the B factories turned on. The error of sin 2β is an order of magnitude smaller now than in the first measurements few years ago [see Eq. (12)]. Flavor and CP violation are excellent probes of new physics (NP), as demonstrated by the following examples: • Absence of KL → µµ predicted charm; • ǫK predicted the third generation; • ∆mK predicted the charm mass; • ∆mB predicted the heavy top mass. From these measurements we know already that if there is NP at the TeV scale then it must have a very special flavor and CP structure to satisfy the existing constraints. The question we would like to address is: What does the new data tell us? 1.1 Testing the flavor sector
In the SM only the Yukawa couplings distinguish between the fermion generations. This is a coupling to something unknown, which we would like to understand better. In the
相关文档
最新文档