数字推理题型的7种类型28种形式(二)
数字推理讲解及真题完美打印版
数字推理讲解及真题完美打印版数字推理题型的7种类型28种形式解题⽅法数字推理由题⼲和选项两部分组成,题⼲是⼀个有某种规律的数列,但其中缺少⼀项,要求考⽣仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的⼀个,使之符合数列的排列规律。
其不同于其他形式的推理,题⽬中全部是数字,没有⽂字可供应试者理解题意,真实地考查了应试者的抽象思维能⼒。
第⼀种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的⼀组数。
1、等差数列的常规公式。
设等差数列的⾸项为A1,公差为 D,则等差数列的通项公式为 An= A1+(n-1) D(n为⾃然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析]这是⼀种很简单的排列⽅式:其特征是相邻两个数字之间的差是⼀个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选 C。
2、⼆级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2]2,5,10,17,26,(),50 A.35 B.33 C.37 D.36[解析]相邻两位数之差分别为3,5,7,9,是⼀个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选 C。
3、分⼦分母的等差数列。
是指⼀组分数中,分⼦或分母、分⼦和分母分别呈现等差数列的规律性。
[例3]2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析]数列分母依次为3,4,5,6,7;分⼦依次为2,3,4,5,6,故括号应为7/8。
故选 D。
4、混合等差数列。
是指⼀组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4]1,3,3,5,7,9,13,15,,(),()。
A、1921B、1923C、2123D、2730[解析]相邻奇数项之间的差是以2为⾸项,公差为2的等差数列,相邻偶数项之间的差是以2为⾸项,公差为2的等差数列。
数字推理题型的7种类型28种形式,必会基础
数字推理题型的7种类型28种形式,必会基础!第一种情形----等差数列1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键第二种情形---等比数列:5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
公务员考试之数量关系
数量关系一.数字推理一.题型特点(一)数列填空推理(简单数列+多重数列)——注意考虑变式:常数和项数类型特点解题要点质、合数数列(1)质数数列:由只能被1和它本身整除的正整数(质数)组成的数列。
(2)合数数列:由除了1和它本身外还有其他约数的正整数(合数)组成的数列。
其中,1既不是质数,也不是合数;2是最小的质数,4是最小的合数。
(3)非质数数列:由1和合数组成的数列。
(4)非合数数列:由1和质数组成的数列。
1)质数数列:2,3,5,7,11,13,17,19,23,29,312)合数数列:4,6,8,9,10,12,14,15,16,3)非质数数列1,4,6,8,9,10,12,4)非合数数列1,2,3,5,7,11,13,间接考察:25,49,121,169,289,361(质数5,7,11,13,17,19的平方)二次做差后2 3 5 7 接下来注意是11,不是9,注意区分质数和奇数列:奇数列没有2等差数列相邻两项之差相等,等于一个常数逐差法(得到新数列)。
适用情况:多级等差数列及其变式。
整体变化幅度较小(有单调性)等比数列相邻两项之比相等,等于一个常数逐商法。
适用情况:数列满足等比数列特点,且无其他明显规律。
整体变化幅度较大(公比为正数时有单调性,公比为负数时,无单调性,呈现一正一负)注意:公比分数化,公比负数化。
多次方数列数列各项均为某项的多次方。
平方立方是特殊的多次方数列。
适用情况:有明显的平方项或立方项及变式。
整体变化幅度很大(有单调性)递推数列(递推和,递推差,递推积,递推平方,立方)递推考虑常数和项数某一项都是它的前两项或三项通过一定的运算法则得到的(一般是圈三法)观察趋势,尝试:1.整体递增:考虑和,倍,积,乘方增长较慢:先和,后倍,再积增长较快:积增长很快:乘方2整体递减:差,倍,商,开方减少较慢:先差,后倍,再商减少较块:商减少很快:开方根式数列数列中含根式的数列1根次之间存在关系2根次相同时,可以把根号外面的数化到根号里面去(或把根号里面的数化到外面去),看底数关系3根式的底数存在关系4.根次,底数分别存在一定的关系。
广东省考数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,( ) A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,( )A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,( ),( )。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理题型7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
行测数字推理之解题技巧(精华版)
数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
公务员行测考试中图形数字推理备考要点
三、三角形形式数字推理三角形数字推理的规律通常是寻找三角形的数字与中心数字之间的联系1.3 2 6 22 11 68 ?1 1 32 2 4 4 3A:10 B:15 C:19 D:21【答案】C.解析:“左下角的数”的“顶尖数的次方”+右下角的数=中间的数,比如 1的3次方+1=2 ,3的2次方+2=11, 2的6次方+4=68,结果为4的2次方+3=19,所以答案应为C.2.8 7 16 612 21 4 ?6 4 9 3 2 8 9 18A:3 B:5 C:7 D:9【答案】A.解析:6×8÷4=12,7×9÷3=21,16×2÷8=4,6×9÷18=(3)所以答案应为A. 6×8÷4=122.11 9 7 1046 48 32 ?7 5 8 7 3 6 5 4A:36 B:38 C:42 D:44【答案】B.解析:(11+7+5)×2=46 , (9+8+7)×2=48 , (7+3+6)×2= 32, (10+5+4)×2=(38)四、其他图形形式数字推理1.【答案】D.解析:下面2个数字之和的平方-上面一个数字的平方=中间的数字(5+2)^2-6^2=13 , (10+4)^2-12^2=52 , (3+7)^2-9^2=192.【答案】D.解析:交叉计算,(8-2)*(4+2)=36 ,(1-2)*(3+3)=-6 ,(5-5)*(5+5)=0 3.【答案】B.解析:(11+7)-(9+9)÷2=9 ,(3+0)-(5+1)÷2=0 ,(7+7)-(8+2)÷2=9 .4.2 103 6 5 710 1 ?2 11 5 4 13 6A:10 B:11 C:12 D:13 【答案】A.解析:左上角的数×右下角的数-右上角的数-左下角的数=中间的数,答案为5×6-13-7=10五、拓展:图形推理A B C D【解答】正确答案为B.因为只有B能使两套图形具有相似性,仅仅元素不同,一个是半圆,一个是半正方形,但两组图形中元素的排列规律完全相同.在右面的4个图形中,只有一个是由左边的纸板折叠而成.你需要选出正确的一个.A B C D【解答】正确答案为D,在例题中,只有D可以由左边的纸板折叠而成.因此,正确答案是D.行测备考战略之数字推理篇数字推理题因其考察的无背景化,也即不需要较高的数学知识和运算能力就可以做题,是公务员考试行政职业能力测试中一直以来的固定题型。
[数量关系] 数字推理题型的7种类型28种形式(6)
[数量关系] 数字推理题型的7种类型28种形式(6) 第六种情形—立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。
16、立方规律的常规式:
[例23] 1/343,1/216,1/125,()A、1/36 B、1/49 C、1/64 D、1/27
[解析] 仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。
故选C。
17、立方规律的变式:
之一、n3-n
[例24] 0,6,24,60,120,()A、280 B、320 C、729 D、336
[解析] 数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。
故选D。
之二、n3+n
[例25] 2,10,30,68,()A、70 B、90 C、130 D、225 [解析] 数列可变形为13+1,23+1,33+1,43+1,故第5项为53+=130,其排列规律可概括为n3+n。
故选C。
之三、从第二项起后项是相邻前一项的立方加1。
[例26] -1,0,1,2,9,()A、11 B、82 C、729 D、730 [解析] 从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。
故选D。
思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。
更多公务员资料、试题下载:/hebei/gwy/。
数量关系之数字推理基本题型及解题规律
数量关系之数字推理基本题型及解题规律数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1,5,3,7,( ) A.2 B.8 C.9 D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C是奇数。
2、全是偶数:例题:2,6,4,8,( ) A.1 B.3 C.5 D.10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2,13,4,17,6,( ) A.8 B.10 C.19 D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,( ),5二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36,( ) A.19 B.18 C.17 D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,( ),14,23,37 A.6 B.7 C.8 D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,( ),24,391,0,1,1,2,3,5,( )2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,( ) A.162 B.156 C.148 D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D。
四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,( ),3,-3 A.0 B.1 C.2 D.3答案是A。
行测数字推理题技巧
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
数字推理解题技巧
数字推理解题技巧数字推理解题技巧数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律, 数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A.2B.8C.9 nbsp;D.12解析:答案是C ,整个数列中全都是奇数,而答案中只有答案C 是奇数2、全是偶数:例题:2 6 4 8 ()A.1B.3C.5D.10解析:答案是D ,整个数列中全都是偶数,只有答案D是偶数。
3、奇、偶相间例题:2 13 4 17 6 ()A.8B.10C.19D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。
三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=9 5+9=14 9+14=23 14+23=37,因此,答案为D;练习:6,9,(),24,391,0,1,1,2,3,5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,()A.162B.156C.148D.145解析: 22+35-1=56 35+56-1=90 56+90-1=145,答案为D四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,(),3,-3A.0B.1C.2D.3答案是A解析:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,( )A.16B.20C.25D.30答案是 B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列; 3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1 103-2=101练习:8,8,6,2,()1,3,7,13,21,31,()4、二级等比:相减的差是等比数列例题:0,3,9,21,45, ( )相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99年考题解析:-1-(-2)=1 ,1-(-1)=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是13 5、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,()相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=3 50-47=3 48-45=3 45-3=42 答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,( )前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,( )A.85B.92C.126D.250解析:6×2+2=14 14×2+2=30 30×2+2=62 62×2+2=126,答案为C 练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2, 2/3, 3/4,1/3,3/8 ()A.1/6B.2/9C.4/3D.4/9解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/83/8×?=1/16 答案是 A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。
行测答题技巧简单学系列——数字推理全集
行测答题技巧简单学系列——数字推理全集行测答题技巧系列:行测知识简单学——数字推理全集行政职业能力测试,简称“行测”,是事业单位考试当中重要的组成部分。
其中,数字推理作为其组成部分之一,需要考生具备较强的数字敏感性和一定的数字运算能力。
当然,解答相关题目的前提是了解数字推理中各种数列的形式和特点。
本文就将对相关内容进行介绍。
一、等差数列1.概念:如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列。
常考题型:二级等差数列,三级等差数列。
例:35,29,24,20,17,( )(逐项作差后得公差为1的等差数列,为二级等差数列。
三级等差数列为二级数列再作差所得。
)2.等差数列的变式作差或持续作差后,得到其他数列或其变式,这是最常考查的等差数列规律。
例:39,62,91,126,149,178,( )(作差后得到“23,29,35”的循环数列)3.等差数列及其变式特征归纳(1)数列中出现个别质数的,一般都是等差数列或其变式,因为指数不具备进行拆分寻求规律的可能性。
(2)含有0的数列很有可能是等差数列,因为0不易做递推变化,多在等差数列或多次方数列中出现,宜首先从作差方向寻求规律。
(3)单调递增或增减交替有可能是等差数列变式。
二、等比数列1.概念:如果一个数列从第二项起,每一项与它前面一项的比等于同一个非零常数,那么该数列就叫做等比数列。
与等差数列类似,二级等比数列,三级等比数列(较少)也是常考点。
2.等比数列变式(1)二级等比数列;(2)作商后得到等差/质数/常数列。
例:4,4,16,144,( )相邻各项的商依次为12,22,32,(42)。
144*16=(2304)。
3.等比数列及其变式特征归纳(1)数项具有良好的整除性;(2)递增/递减趋势明显,会出现先增后减的情况;(3)具有递推关系的等比数列变式可通过估算相邻项间大致倍数反推规律。
三、和数列1.基本形式(1)两项和数列:数列从第三项开始,没意向等于它前两项之和。
数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
[数量关系] 数字推理题型的7种类型28种形式(5)
[数量关系]数字推理题型的7种类型28种形式(5) 第五种情形—平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。
16、平方规律的常规式。
[例19] 49,64,91,(),121 A、98 B、100 C、108 D、116 [解析] 这组数列可变形为72,82,92,(),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。
故选B。
17、平方规律的变式。
之一、n2-n
[例20] 0,3,8,15,24,()A、28 B、32 C、35 D、40 [解析] 这个数列没有直接规律,经过变形后就可以看出规律。
由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。
故选C。
之二、n2+n
[例21] 2,5,10,17,26,()A、43 B、34 C、35 D、37
[解析]
这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。
如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,,其实就是n2+n。
故选D。
之三、每项自身的平方减去前一项的差等于下一项。
[例22] 1,2,3,7,46,()A、2109 B、1289 C、322 D、147
[解析] 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。
[数量关系] 数字推理题型的7种类型28种形式(7)
[数量关系]数字推理题型的7种类型28种形式(7) 第七种情形—特殊类型:
18、需经变形后方可看出规律的题型:
[例27] 1,1/16,(),1/256,1/625 A、1/27 B、1/81 C、1/100 D、1/121
[解析] 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。
故选B。
19、容易出错规律的题。
[例28] 12,34,56,78,()A、90 B、100 C、910 D、901
[解析] 这道题表面看起来起来似乎有着明显的规律,12后是34,然后是56,78,后面一项似乎应该是910,其实,这是一个等差数列,后一项减去前一项均为22,所以括号内的数字应该是78+22=100。
故选B。
更多公务员资料、试题下载:/hebei/gwy/。
[数量关系] 数字推理题型的7种类型28种形式(3)
[数量关系]数字推理题型的7种类型28种形式(3) 第三种情形—混合数列式:是指一组数列中,存在两种以上的数列规律。
8、双重数列式。
即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。
[例8] 26,11,31,6,36,1,41,()A、0 B、-3 C、-4 D、46
[解析] 此题是一道典型的双重数列题。
其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。
故选C。
9、混合数列。
是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。
[例9] 5,3,10,6,15,12,(),()
A、20 18
B、18 20
C、20 24
D、18 32
[解析] 此题是一道典型的等差、等比数列混合题。
其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。
故选C。
更多公务员资料、试题下载:/hebei/gwy/。
数字推理小学二年级的数学推理题
数字推理小学二年级的数学推理题数字推理是数学中的一种常见题型,旨在培养学生的逻辑思维能力和数学推理能力。
本文将为大家介绍一些适合小学二年级学生的数字推理题,帮助他们提升数学推理能力。
1. 数字序列数字序列是数字推理题中常见的一种。
通过观察数字序列的规律,学生需要找出下一个数字是多少。
这种题型可以帮助学生培养观察、分析和推理的能力。
例题1:5, 10, 15, 20, ?解析:观察数字序列,可以发现每个数字是前一个数字加上5得到的。
因此,下一个数字应该是20 + 5 = 25。
例题2:2, 4, 8, 16, ?解析:观察数字序列,可以发现每个数字是前一个数字乘以2得到的。
因此,下一个数字应该是16 × 2 = 32。
2. 数字关系数字关系题要求学生根据给定的数字关系,判断两个数字之间的关系是什么。
这种题型可以帮助学生培养抽象思维和逻辑推理能力。
例题1:3 : 9,4 : ?,5 : 25解析:观察数字关系,可以发现左边的数字是右边数字的平方。
因此,第二个数字应该是4的平方,即16。
例题2:8 : 64, 3 : ?, 4 : 256解析:观察数字关系,可以发现左边的数字是右边数字的平方。
因此,第二个数字应该是3的平方,即9。
3. 数字图形数字图形题要求学生根据给定的数字图形的特征,推理出下一个图形是什么。
这种题型可以帮助学生培养空间想象和逻辑推理能力。
例题1:□ □ □ □ □ □ □ □ □ □ □ □□ ■ □ □ □ □ □ □ □ □ □ □□ □ □ □ ■ □ □ □ □ □ □ □解析:观察数字图形,可以发现每次都在中间一行的中间一列加上一个方块。
因此,下一个图形应该是:□ □ □□ ■□□ □ □例题2:□ □ □ □ □ ■ □ □ □ □ □ □■ □ ■ □ ■ □ □ □ □ □ □ □■ □ ■ □ ■ □ ■ □ □ □ ■ □解析:观察数字图形,可以发现每次都在左下角和右上角加上一个方块,并且将原来的方块填充起来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中公教育·给人改变未来的力量数字推理题型的7种类型28种形式(二)
数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第二种情形---等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,( )
A、2/9
B、1/9
C、1/27
D、4/27
[解析] 很明显,这是一个典型的等比数列,公比为1/3。
故选D。
6、二级等比数列。
是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
[例6] 4,6,10,18,34,( ) A、50 B、64 C、66 D、68
[解析] 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+16Ⅹ2=66 故选C。
7、等比数列的特殊变式。
[例7] 8,12,24,60,( ) A、90 B、120 C、180 D、240
[解析] 该题有一定的难度。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为60Ⅹ6/2=180。
故选C。
此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。
同时出现的话就值得争论了,这题只是一个特例。
A。