北师大版八年级数学下册计算题专项练习(无答案)

合集下载

2022年精品解析北师大版八年级数学下册第五章分式与分式方程同步练习练习题(无超纲)

2022年精品解析北师大版八年级数学下册第五章分式与分式方程同步练习练习题(无超纲)

北师大版八年级数学下册第五章分式与分式方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、若关于x 的方程11axx =+的解大于0,则a 的取值范围是( ) A .1a > B .1a < C .1a >- D .1a <-2、若分式12x +有意义,则x 的取值范围是( ) A .2x ≥-B .2x >-C .0x ≠D .2x ≠-3、下列各式中,是分式的是( ) A .2b a- B .2a b+ C .212+ab a bD .3abπ4、八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了15min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是自行车速度的2倍,设汽车到博物馆所需的时间为x h ,则下列方程正确的是( )A .101020.25x x =⨯+B .101020.25x x =⨯-C .101020.25x x =⨯+ D .101020.25x x =⨯- 5、下列分式的变形正确的是( )A .21=21a ab b++ B .22x y x y++=x +yC .55a a b b =D .22a a b b=(a ≠b )6、2021年6月,怀柔区政府和内蒙古自治区四子王旗政府签订了《2021年东西部协作协议》,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实.在产业合作过程中,怀柔区为四子王旗提供设备和技术支持.运送设备使用大货车,技术人员乘坐面包车.已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用43小时.求大货车和面包车的速度.设大货车速度为x 千米/小时,下面是四位同学所列的方程:①国国:60060041.23x x =+; ②佳佳:4600600+3 1.2x x=;③富富:60060041.23x x =-;④强强:60046003 1.2x x-=.其中,正确的序号是( ) A .①② B .①③ C .①④ D .②③7、若把分式2x yxy+的x ,y 同时扩大2倍,则分式的值为( ) A .扩大为原来的2倍B .缩小为原来的14C .不变D .缩小为原来的128、当分式22x-有意义时,x 的取值范围是( )A .2x >B .2x <C .2x ≠D .2x =9、下列计算正确的是( ) A .222248x y x y x y -=-B .()()432268234m m m m m -÷-=--C .2-11•-11a a a =+ D .-1--b a a b b a+=10中x 的取值范围是( ) A .x >2B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式12x x --有意义,则x 的取值范围是__________. 2、代数式21x -与代数式32x -的值相等,则列等式为 _____,解得x =_____. 3、已知:①立方是它本身的数是±1;②多项式x 2y 2+y ﹣2是四次三项式;③﹣1x不是代数式;④在下列各数﹣(+5)、﹣1、+(﹣13)、﹣(﹣1)、﹣|﹣3|中,负数有4个;⑤ “a 、b 的平方和”写成代数式为a 2+b 2,上面说法或计算正确的是_____(填序号).4、从﹣3,﹣1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组1(27)33x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的分式方程3x x -﹣23a x --=﹣1有整数解,那么这5个数中所有满足条件的a 的值之和是_____. 5x 的取值范围是__________. 三、解答题(5小题,每小题10分,共计50分) 1、计算:(222x+x x -12x -+)÷[(6x +4)÷x ]. 2、为落实党中央“绿水青山就是金山银山”发展理念,某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前8天完成了这一任务,求原计划工作时每天绿化的面积为多少万平方米. 3、(1)化简:()()11y y +--(2(3)解分式方程:13211x x-=-- 4、解方程:(1)213xx x +=+;(2)2236111x x x +=+--. 5、某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍. (1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?-参考答案-一、单选题 1、A 【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解. 【详解】 解:由11ax x =+,解得:11x a =-,∴101a >-且a -1≠0, ∴1a >, 故选A . 【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键. 2、D 【分析】根据分式有意义的条件是分母不为0列不等式求解. 【详解】 解:∵分式12x +有意义, ∴20x +≠, 解得:2x ≠-, 故选D . 【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键. 3、A 【详解】 解:A 、2ba-是分式,故本选项符合题意; B 、2a b+是整式,不是分式,故本选项不符合题意; C 、212+ab a b 是整式,不是分式,故本选项不符合题意;D 、3abπ是整式,不是分式,故本选项不符合题意;故选:A 【点睛】本题主要考查了分式的定义,熟练掌握形如AB(其中,A B 为整式,且分母B 中含有字母)的式子叫做分式是解题的关键. 4、C 【分析】设汽车到博物馆所需的时间为x h ,根据时间=路程÷速度,汽车的速度是自行车速度的2倍,即可得出关于x 的分式方程,此题得解. 【详解】解:设汽车到博物馆所需的时间为x h ,根据题意列方程得,101020.25x x =⨯+; 故选:C 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 5、C 【分析】根据分式的基本性质判断即可. 【详解】解:A 选项中不能分子分母不能约分,故该选项不合题意; B 选项中分子和分母没有公因式,故该选项不合题意;C 选项中分子和分母都乘5,分式的值不变,故该选项符合题意;D 选项中分子乘a ,分母乘b ,a ≠b ,故该选项不合题意; 故选:C . 【点睛】本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 6、C 【分析】根据题意设大货车速度为x 千米/小时,则面包车的速度为1.2x 千米/小时,总路程均为600千米,由路程、速度、时间之间的关系及大货车到达四子王旗比面包车多用43小时,列出方程即可得. 【详解】解:设大货车速度为x 千米/小时,则面包车的速度为1.2x 千米/小时,总路程均为600千米, 根据题意可得:60060041.23x x -=, 变形为:60046003 1.2x x -=,60060041.23x x =+, ∴①④正确, 故选:C . 【点睛】题目主要考查分式方程的应用,理解题意,熟练运用路程、速度、时间之间的关系是解题关键. 7、D 【分析】分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 【详解】解:根据题意得:22222x y x y +⨯⋅=2()8x y xy +=1=422x y x yxy xy++⨯,即把分式2x y xy+的x ,y 同时扩大2倍,则分式的值缩小为原来的12, 故选:D . 【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论. 8、C分式有意义的条件是分式的分母不等于零,据此解答. 【详解】解:由题意得20x -≠, 解得2x ≠, 故选:C . 【点睛】此题考查了分式有意义的条件,熟记条件并正确计算是解题的关键. 9、D 【分析】根据整式和分式的运算法则即可求出答案. 【详解】解:A 、2224248x y x y x y -=-,故A 选项错误.B 、()()43226823+4m m m m m -÷-=-,故B 选项错误.C 、2-111•1a a a a a-=+,故C 选项错误. D 、-1--b a a b b a+=,故D 选项正确. 故选:D . 【点睛】本题考查整式和分式的运算法则,解题的关键是熟练运用整式和分式的运算法则,本题属于基础题型. 10、D根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得: 20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D . 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键. 二、填空题 1、2x ≠ 【分析】根据分式有意义的条件求解即可.分式有意义的条件:分式的分母不等于零. 【详解】 解:∵分式12x x --有意义, ∴20x -≠,解得:2x ≠. 故答案为:2x ≠. 【点睛】此题考查了分式有意义的条件,解题的关键是熟练掌握分式有意义的条件.分式有意义的条件:分式的分母不等于零. 2、2312x x =-- -1 【分析】根据题意列出分式方程,求出分式方程的解即可得到x 的值. 【详解】 解:根据题意得:21x -=32x -, 去分母得:2(x -2)=3(x -1), 去括号得:2x -4=3x -3, 解得:x =-1,检验:把x =-1代入得:(x -1)(x -2)≠0, ∴分式方程的解为x =-1. 故答案为:2312x x =--,-1. 【点睛】此题考查了解分式方程,熟练掌握分式方程的解法是解本题的关键. 3、②④⑤ 【分析】根据对立方根、多项式、分式、正负数等方面知识的理解辨别即可. 【详解】解:∵立方是它本身的数是±1和0, ∴①不符合题意;∵多项式x 2y 2+y ﹣2是四次三项式, ∴②符合题意;∵﹣1x是分式,也是代数式, ∴③不符合题意;∵在﹣(+5)、﹣1、+(﹣13)、﹣(﹣1)、﹣|﹣3|中,负数有﹣(+5)、﹣1、+(﹣13)、﹣|﹣3|共4个;∴④符合题意;∵“a 、b 的平方和”写成代数式为a 2+b 2,∴⑤符合题意,故答案为:②④⑤.【点睛】本题考查代数式、立方根、多项式、分式、正负数等知识,是基础考点,掌握相关知识是解题关键. 4、2-【分析】不等式组中两不等式整理后,由不等式组无解确定出a 的范围,进而舍去a 不合题意的值,分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程有整数解,确定出满足题意a 的值,求出之和即可.【详解】 解:()127330x x a ⎧+≥⎪⎨⎪-<⎩①②解不等式①得:1≥x ,解不等式②得:x a <∴不等式组的解集为1x x a≥⎧⎨<⎩, 由不等式组无解,得到a ≤1,即a =﹣3,﹣1,12,1,分式方程去分母得:x +a ﹣2=3﹣x ,解得:x=52a-,由分式方程的解为整数,得到a=-3,1,∴所有满足条件的a的值之和是-3+1=-2,故答案为:-2.【点睛】本题主要考查了解一元一次不等式组和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.5、1x>【分析】概念二次根式被开方数大于或等于0,分母不为0求解即可.【详解】则11x≥-且10x-≠,解得,1x>,故答案为:1x>.【点睛】本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.三、解答题1、21 4x-【分析】由分式的加减乘除运算进行化简,即可得到最简分式.【详解】解:原式=[(2(2)x+x x -12x -+]÷64x x + =[(22(2)(2)x+x x x -+()(2)(2)(2)x x x x x ---+]÷64x x + =[(244(2)(2)x +x+x x x -+22(2)(2)x x x x x ---+]÷64x x + =2244(2)(2)(2)x +x+x x x x x ---+÷64x x + =22442(2)(2)x +x+-x +xx x x -+÷64x x + =64(2)(2)x+x x x -+×64x x + =214x -.;【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.2、原计划每天绿化的面积为1.5万平方米.【分析】设原计划每天绿化的面积为x 万平方米,则实际工作每天绿化的面积为(1+25%)x 万平方米,由题意:某工程队承接了60万平方米的荒山绿化任务,结果提前8天完成了这一任务,列出分式方程,解方程即可.【详解】解:设原计划每天绿化的面积为x 万平方米,则实际工作每天绿化的面积为(1+25%)x 万平方米, 依题意得:60x ﹣60(125%)x +=8, 解得:x =1.5,经检验,x =1.5是原方程的解,且符合题意.答:原计划每天绿化的面积为1.5万平方米.【点睛】本题考查了分式方程的应用.找准等量关系,列出分式方程是解决问题的关键.3、(1)-y 2-2y -1;(2)(3)x =3 【分析】(1)变形后根据完全平方公式计算;(2)先逐项化简,再合并同类二次根式;(3)两边都乘以x -1,化为整式方程求解,再检验.【详解】解:(1)()()11y y +-- =-()()1+1y y +=-()21y +=-y 2-2y -1;(2== (3)13211x x-=-- 两边都乘以x -1,得1-2(x -1)=-3,1-2x +2=-3,解得x =3,检验:当x =3时,x -1≠0,∴x =3是分式方程的解.【点睛】本题考查了全平方公式,二次根式的加减混合运算,以及解分式方程,熟练掌握各知识点是解答本题的关键.4、(1)6x =(2)无解【分析】(1)先给方程两边同时乘以x (x +3)去分母化为整式方程,然后求出整式方程的解并检验即可解答;(2)先给方程两边同时乘以()()11x x -+去分母化为整式方程,然后求出整式方程的解并检验即可解答.(1) 解:213x x x +=+ 22(3)(3)x x x x ++=+,22326x x x x ++=+,6x =.检验:当6x =时,(3)0x x +≠.所以,原分式方程的解为6x =.(2) 解:2236111x x x +=+-- 2(-1)316x x ++=(),2x -2+3x +3=61x=.检验:当1x=时,(1(1)0x x +-=). ∴1x=不是原分式方程的解.所以,原分式方程无解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解答本题的关键,最后的检验是解答本题的易错点.5、(1)苹果每箱60元,粑粑柑每箱90元(2)最多可购买11箱粑粑柑【分析】(1)设苹果每箱x 元,则粑粑柑每箱(x +30)元,然后根据某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍,列出方程求解即可;(2)设可以购买m 箱粑粑柑,则购买(30﹣m )箱苹果,然后根据某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,列出不等式求解即可.(1)解:设苹果每箱x 元,则粑粑柑每箱(x +30)元, 依题意得:36001800330x x =⋅+, 解得:x =60,经检验,x=60是原方程的解,且符合题意,∴x+30=60+30=90.答:苹果每箱60元,粑粑柑每箱90元.(2)解:设可以购买m箱粑粑柑,则购买(30﹣m)箱苹果,依题意得:90×0.9m+60×(1+5%)(30﹣m)≤2100,解得:m≤1123,又∵m为正整数,∴m的最大值为11.答:最多可购买11箱粑粑柑.【点睛】本题主要考查了分式方程和一元一次不等式的实际应用,解题的关键在于能够正确理解题意列出方程和不等式求解.。

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

数学八年级下册 期末模拟检测卷一、单选题(共10题;共30分)1.在式子中,分式的个数有( )A .2B .3C .4D .52.多项式 因式分解为( )A .B .C .D .3.若a <b ,则下面可能错误的变形是( )A .6a <6bB .a+3<b+4C .ac+3<bc+3D .﹣ >- 4.由线段a ,b ,c 组成的三角形是直角三角形的是( )A .,,B .,,C .,,D .,,5.如图,△ABC 中,AC=BC ,点D,E ,F 分别在边AC ,AB ,BC 上,且满足AD=BE ,AE=BF ,∠DEF=40°,则∠C 的度数是( )A .90°B .100°C .120°D .140°6.下列各组数中,不能构成直角三角形的一组是( )A .1,2,B . ,2,C .3,4,5D .6,8,127.如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )31203510,,,,,9π4678y ab c x y x a x y+++32242x x x -+()221x x -()221x x +()221x x -()221x x +2a 2b 2a =4b =5c =a =b =c =3a =4b =5c =5a =13b =14c =3252A .6B .7C .8D .98.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =bD .与a 和b 的大小无关9.若 的值为 ,则 的值是( ) A .B .C .D .10.如图,六边形ABCDEF 的内角都相等,∠DAB=60°,AB=DE ,则下列结论成立的个数是( )①AB ∥DE ;②EF ∥AD ∥BC ;③AF=CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A .2B .3C .4D .5二、填空题(共5题;共15分)11.把多项式 分解因式的结果为 .2a b +21237y y ++1821469y y +-12-117-17-1724x -12. 的解集是 13.如果分式的值为零,那么则x 的值是 .14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .15.在△ABC 中,∠ABC =60°,BC =8,点 D 是 BC 边的中点,点 E 是边 AC 上一点,过点D 作 ED 的垂线交边 AC 于点 F ,若 AC =7CF ,且 DE 恰好平分△ABC 的周长,则△ABC 的面积为 .三、计算题(共1题;共10分)16.(1)解方程: ;(2)解不等式组: 四、解答题(共6题;共65分)17.(6分)如图,BD 、CE 分别是△ABC 的边AC 和边AB 上的高,如果BD =CE .试证明:AB =AC .2335122x x x -≥⎧⎪⎨+>-⎪⎩242x x -+21133x x x-=---212143x x x -≤⎧⎪-⎨<⎪⎩18.(8分)已知实数a ,b ,c 满足 , ,求 的值.19.(10分)“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?20.(10分)如图,∠A=90°,∠AOB=30°,AB=2,△A ′OB ′可以看作是由△AOB 绕点O 逆时针旋转60°得到的,求点A ′与点B的距离0a b c ++=2221a b c ++=()555a b c abc ++÷21.(15分)已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?22.(16分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.710(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.。

北师大版八年级数学下册《分式方程的应用》基础训练

北师大版八年级数学下册《分式方程的应用》基础训练

《分式方程的应用》基础训练知识点分式方程的应用1.(2019·苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.15243 x x=+B.15243 x x=-C.15243x x=+D.15243x x=-2.(2019·济宁)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.5005004510x x-=B.50050045 10x x-=C.500050045 x x-=D.500500045 x x-=3.(2019·辽阳)某施工队承接了60千米的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x千米,根据题意列出的方程正确的是()A.60(125%)6060x x⨯+-=B.6060(125%)60 x x⨯+-=C.606060 (125%)x x-=+D.606060 (125%)x x-=+4.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用11秒通过AC,其中通过BC 的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:_________.5.(2019·绵阳)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用的时间与以最大航速逆流航行60km所用的时间相同,则江水的流速为________km/h.6.(2019·扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天整治河道多少米?7.(2018·菏泽)为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?参考答案1.A2.A3.D4.66111.2x x+= 5.106.解:甲工程队每天整治河道900米.7.解:台式电脑的单价为0.24万元/台,笔记本电脑的单价为0.36万元/台.。

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。

初二下册数学计算练习题北师大版

初二下册数学计算练习题北师大版

初二下册数学计算练习题北师大版初二下册数学计算练习题(北师大版)在初二下册的数学学习中,本章主要是关于计算练习题的部分。

本文将围绕这个主题,介绍一些关于初二下册数学计算练习题的内容。

一、整数运算整数运算是数学的基础,也是初中数学的重要内容之一。

在本册中,我们将通过一系列的练习题来帮助同学们巩固整数运算方面的知识。

比如:1. 计算下列各题:(1) 37 + (-22)(2) (-45) - (-12)(3) 15 × (-4)(4) (-36) ÷ 4在解题过程中,同学们要注意正负数的加减乘除法规则,并正确运用。

二、分数运算分数运算是初中数学中的重要内容之一。

在本册中,我们将通过一系列的练习题来帮助同学们巩固分数运算的知识。

比如:1. 计算下列各题:(1) 2/3 + 1/4(2) 7/8 - 2/5(3) 3/4 × 5/6(4) 2/5 ÷ 3/4在解题过程中,同学们要掌握分数的加减乘除法规则,并善于运用。

三、代数运算代数运算是初中数学中的重要内容之一,也是数学学习的难点之一。

在本册中,我们将通过一系列的练习题来帮助同学们巩固代数运算的知识。

比如:1. 计算下列各题:(1) 2x + 3y,当x=4,y=-2时的值是多少?(2) 3a - 2b,当a=-5,b=3时的值是多少?(3) 4x^2 + 5x - 2,当x=2时的值是多少?在解题过程中,同学们要掌握代数式的计算方法,并注意符号的运用。

四、几何运算几何运算是初中数学中的重要内容之一。

在本册中,我们将通过一系列的练习题来帮助同学们巩固几何运算的知识。

比如:1. 已知正方形的一边长为5cm,求其周长和面积分别是多少?2. 已知圆的半径为3cm,求其周长和面积分别是多少?在解题过程中,同学们要掌握几何图形的计算方法,并善于运用。

五、实际问题运用数学是一门实用的学科,可以应用于日常生活和实际问题中。

在本册中,我们将通过一些实际问题的练习题来帮助同学们将数学知识应用于实际。

2019北师版八年级数学下计算题专题训练(经典40题)

2019北师版八年级数学下计算题专题训练(经典40题)

北师版八年级数学下计算题专题训练(经典40题)1、因式分解:2、因式分解:3、因式分解:4、因式分解:.5、因式分解:;6、把下列各式分解因式7、把下列各式分解因式8、分解因式:.9、分解因式:.10、利用因式分解计算:.11、分解因式n2(m-2)-n(2-m)12、先化简,再求值:,其中;13、先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.14、先化简,再求值:其中x=-5.15、先化简,再求值:,其中是方程的根.16、先化简,再求值,对于,请你找一个合适的值代入求值。

17、先化简,再求值其中18、19、先化简,再求值:,其中20、化简:.21、先化简再求值,,其中=.22、先化简,再求值:,其中a=2-23、化简求值:,其中x=-24、先化简,再求值:,其中25、先化简,后求值其中26、先化简,再示值:27、化简,求值:),其中m=28、先化简,再求值:,其中x是不等式组的整数解.29、先化简,再求值:,其中.30、化简,求值:),其中m=.31、化简,求值:,其中.32、解分式方程.33、34、35、36、解方程:37、.38、39、40、解方程:.参考答案一、计算题1、2、3、4、-4a(4a2-4ab+b2)(2分)=-4a(2a-b)2(2分).5、6、7、8、原式9、原式10、解:11、n2(m-2)-n(2-m)= n2(m-2)+n(m-2)= n(m-2)(n+1)12、13、解:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.14、解:==-==原式==15、(1)原式=由已知得:所以原式=16、解化简=…………4分代入求值,答案略…….4分17、化简结果:x-3 ,求值:-18、19、20、解:原式==21、解:原式= =当时,原式=22、原式=•=3(a+1)﹣(a﹣1)=3a+3﹣a+1=2a+2,当a=2﹣时,原式=4﹣2+2=6﹣2.23、原式== 1分=-(x+2)(x-1) 2分=-x2-x+2 . 3分当x=时,原式= 4分=-2++2 4分= . 5分24、25、解:原式=÷,=•,=﹣,当a=+2时,原式=﹣=﹣=﹣1﹣226、27、解:原式=当时,原式==28、解:原式=∵x为整数解∴x=-3或x=-2但x+3≠0 ∴x=-2将x=-2代入中, 原式==29、解:原式=÷()=×=,当x=﹣3时,原式==.30、答案:解:原式=……………1分=……………3分==……………4分==.……………5分∴当m=时,原式==.……………6分31、答案:解:原式== == ==∴当m= 时,原式=32、33、验证…此方程无解34、x= ,检验35、36、;37、.38、无解39、=1540、解:,,,. 经检验:是增根,是原方程的根.所以原方程的根是.。

北师大版八年级数学下册 每日一练(pdf版,无答案)

北师大版八年级数学下册 每日一练(pdf版,无答案)

1、在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E . (1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q . 求证:BP DQ =.2.(江苏连云港)在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.3.(湖北襄樊)如图11所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD . (1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?4、(湖北咸宁)如图,将矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△. (1)证明A AD CC B '''△≌△;(2)若30ACB ∠=°,试问当点C '在线段AC 上的什么位置时,四边形ABC D ''是菱形,并请说明理由.AQ DEBP CODADFCEGBCADA 'C 'D '5. 如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .若AB=2,DP :PB=1:2,且PA ⊥BF ,则对角线BD 的长为________.6.平行四边形ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF=6cm ,BF=12cm ,∠FBM=∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动 秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.7、如图,矩形ABCD 中,AD=2AB ,E 是AD 边上一点,DE=AD n1(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD ,BC 于点F ,G. FG 与BE 的交点为O ,连接BF 和EG . (1)试判断四边形BFEG 的形状,并说明理由;(4分) (2)当AB=a (a 为常数),n=3时,求FG 的长;(3分) (3)记四边形BFEG 的面积为S 1,矩形ABCD 的面积为S 2,当301721=s s 时,求n 的值.可以直接写出答案。

北师大版八年级下册数学总复习 第二章一元一次不等式与一元一次不等式组单元过关专题练习(无答案)

北师大版八年级下册数学总复习 第二章一元一次不等式与一元一次不等式组单元过关专题练习(无答案)

一元一次不等式与一元一次不等式组单元过关【含参不等式】1. 若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .1a ≥B .1a >C .1a -≤D .1a <-2. 已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩≥的解集为3≤x <5,则ba 的值为( )A .-2B .12-C .-4D .14-3. 若不等式组30x ax >⎧⎨-⎩≤只有三个整数解,则a 的取值范围为( )A .0≤a <1B .0<a <1C .0<a ≤1D .0≤a ≤14. 如图,如果不等式组4030x a x b -⎧⎨-<⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( ) A .16个B .12个C .9个D .2个5. 一元一次不等式组x ax b >⎧⎨>⎩的解集是x >a ,则a 与b 的关系为( )A .a ≥bB .a >bC .a ≤bD .a <b6. 已知关于x 的不等式组21321x ax b <+⎧⎨+⎩≥仅有3个自然数解,则整数a 与整数b 的和的最小值等于_________.7. 已知关于x 的不等式424233x x a +<-的解,也是不等式12162x -<的解,则a的取值范围是___________.8. 若不等式组0122x a x x -⎧⎨->-⎩≥恰有两个整数解,则a 的取值范围是________.9. 若关于x ,y 的方程组2121x y p x y p +=+⎧⎨-=-⎩的解满足x >y ,求p 的取值范围.10.已知关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩.(1)当m=2时,请解关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩;(2)若关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩中,x为非负数,y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.【数形结合求范围】1.如图所示,函数y1=|x|和214 33y x=+的图象相交于(-1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>22.如图所示,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A .BC .D .3. 一次函数y 1=kx +b 与y 2=x +a 的图象如图,交点横坐标为3,则下列结论:①当x <3时,y 1>0;②当x <3时,y 2>0;③当x >3时,y 1<y 2.正确的个数是( ) A .0B .1C .2D .3第3题图 第4题图4. 已知函数y 1=x ,2113y x =+,3455y x =-+的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为( )A .32B .3717C .6017D .2595. 如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是( ) A .1<x <2B .0<x <2C .0<x <1D .x >1第5题图 第6题图6. 如图,直线y 1=3x +b 和y 2=ax -3的图象交于点P (-2,-5),当y 1>y 2时,x 的取值范围是__________________.7. 已知一次函数y =3x -6的图象如图所示,回答下列问题:(1)当-5<y ≤3时,x 的取值范围是__________; (2)当x >3时,y 的取值范围是__________.8.如图,直线y1=mx与直线y2=kx+b交于点P(2,1),则不等式组12-<mx<kx+b的解集为________________.9.三个数3,1-a,1-2a在数轴上从左到右依次排列,你能确定a的取值范围吗?10.如图,直线OC,BC的函数关系式分别是11 2y x=和y2=-x+12,两直线的交点为C.(1)求点C的坐标,并直接写出y1>y2时x的范围;(2)在直线y1上找一点D,使△DCB的面积是△COB的一半,求点D的坐标;(3)点M(t,0)是x轴上的任意一点,过点M作直线l⊥x轴,分别交直线y1,y2于点E,F,当E,F两点间的距离不超过8时,求t的取值范围.【应用题】1.小明要从甲地到乙地,两地相距1千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15-x)≥1800 B.90x+210(15-x)≤1800C.210x+90(15-x)≥1.8 D.90x+210(15-x)≤1.82.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x-(30-x)≤120 B.10x≥120C.10x>120 D.10x-3(30-x)≥1203.三个连续正偶数的和小于19,这样的正偶数组共有多少组?把它们都写出来.4.某校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?5.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可打几折?6.某公司准备把240吨白砂糖运往A,B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见表:(2)如果安排10辆货车前往A地,其中大货车有m辆,其余货车前往B 地,且运往A地的白砂糖不少于130吨.①求m的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.7.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品,若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?(用一元一次不等式求解)8.某市计划修建一条长60千米的地铁,根据甲、乙两个地铁修建公司标书数据发现:甲、乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲、乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲、乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的56”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.9. 某商场促销方案规定:商场内所有商品按标价的8折出售,同时,若折后价满一定金额后,按表中获得相应的现金返还.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则顾客第一重优惠是:400×80%=320元,第二重优惠是返回现金30元,实际付款320-30=290元,获得的优惠额是400-290=110元.(1)购买一件标价为1000元的商品,顾客实际付款多少?优惠额是多少? (2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?10. 我县黄泛区农场有A ,B 两个果园,分别收获水果380件,320件,现需把这些水果全部运往甲、乙两个销售点,每件运费如图所示.现甲销售点需水果400件,乙销售点需水果300件.(1)设从A 果园运往甲销售点水果x 件,总运费w 元,请用含x 的代数式表示w ,并写出x 的取值范围.(2)若总运费不超过18 300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求最低运费.乙元20B A。

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)一、单选题1.下列代数式:①1;②3B24;③56+;④7+8;⑤9r43.其中分式的个数是()A.1B.2C.3D.4 2.要使分式r1K2有意义,的取值范围是()A.≠−2B.≠2C.≠−1D.≥230,则x的值为()A.±3B.0C.−3D.34.把分式2r中的和均扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍5.下列各式从左到右的变形正确的是()A.K121 2r =2K r2B.0.2r r0.2=2r r2C.r1K=K1K D.r K=K r6.化简K−K的结果是()A.+B.−C.2−2D.1 7.解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是()A.−2+(2−1)=−1.5B.−2+1=1.5(2−1)C.−2+1=−1.5(2−1)D.−2+(2−1)=1.58.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.求前一小时的行驶速度.若设前一小时的行驶速度为Jkm/h,则可列方程为()A.180+4060=1+180−1.5B.180−4060=1+180−1.5 C.180+4060=180−1.5D.180−4060=180−1.5二、填空题9.请写出一个只含有字母的分式,且当=1时,此分式的值为0,这个分式可以是.10.在括号里填上适当的整式:(1)32B=;.(2)3B2−2;.(3)3B r=..11.将分式12−9和9−3进行通分时,最简公分母是12.化简:r1÷22−1=.13.已知+=3,则代数式K B÷.14=K5+r2,则=.15.已知关于的分式方程r2r1=−1的解是非正数,则的取值范围是.16.物业为了进一步优化小区环境,计划对小区内总长1500米步道旁的绿植进行修剪,原计划x小时完工,为减少对居民的影响,实际修剪时提高了效率,结果提前2小时完工,则实际比原计划每小时多修剪米.(结果化为最简形式)三、解答题17.计算:(1)(r3)22+33+÷2K1r118.解方程:(1)1K1=12−1(2)2−K3+413−.191÷1−−1K1,然后从±1,0,±12这五个数中选一个合适的数代入求值.20.已知关于的分式方程1K2+3=1+B2−,(1)若分式方程无解,求的值;(2)若分式方程的解为正数,求的取值范围.21.某中铁集团有甲乙两个施工队,该集团承担一条高速铁路的施工任务,甲工程队单独施工10个月后,为了加快进度,乙工程队也加人施工,这样又用了20个月完成了任务.已知乙工程队单独施工该项任务需要40个月才能完成.(1)求甲工程队单独施工完成该项任务需要多少个月?(2)如果两个施工队从一开始就合作完成此项施工任务,需要多少个月?22.福安葡萄享有“北有吐鲁番,南有闽福安”的美誉,某农场分别种植甲、乙两种葡萄,去年甲种葡萄总产量3万千克,乙种葡萄总产量2万千克,原计划甲、乙两种葡萄都按元/千克出售,实际因成熟时间不同,甲种葡萄8折出售,乙种葡萄加价3元出售,实际总收入与计划总收入相同.(1)求去年甲、乙两种葡萄的实际销售单价分别是多少元?(2)今年农场改进技术,两种葡萄品质提升、产量增加,农场准备在去年实际售价的基础上,单价都增加元(>0)后全部出售给某经销商,该经销商提供了以下两种收购方案:方案一:甲、乙两种葡萄都按产量万千克收购;方案二:甲、乙两种葡萄都按总价万元收购.通过计算甲、乙两种葡萄的总平均单价,说明农场选用哪种方案合算.参考答案1.解:①1是分式,符合题意;②3B 24不是分式,不符合题意;③56+是分式,符合题意;④7+8不是分式,不符合题意;⑤9r43不是分式,不符合题意;∴分式一共有2个,故选:B .2.解:∵分式r1K2有意义,∴−2≠0,即≠2,故选:B .30,∴|U −3=0+3≠0,解得=3,故选D .4.解:把分式2r 中的和均扩大3倍为36r3=33(2rp =2r ,所以分式的值不变,故选:A .5.解:A 、K 1212r ==2K r2,计算正确,故符合题意;B 、0.2r r0.2=2r1010r2≠2r r2,变形错误,故不符合题意;C 、r1K ≠K1K 变形错误,故不符合题意;D 、r K=−K −r原式变形错误,故不符合题意;故选:A .6.解:K −K =−−=1.故选:D.7.解:解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是−2+(2−1)=−1.5.故选:A.8.解:设前一小时的行驶速度为Dm/h,则一小时后的速度为1.5Dm/h,由题意得:180−4060=1+180−1.5,故选:B.9.解:由题意得,满足题意的分式可以为K1,故答案为;K1(答案不唯一).10.解:(1)32B=3δ52B⋅5=15B102;故答案为:102(2)3B2−2==3K2;故答案为:3;(3)3Br=r=故答案为:2+.11.解:∵2−9=+3−3,9−3=−3−3,∴最简公分母是−3+3−3,故答案为:−3+3−3.12.解:原式=r1=−1故答案为:K113.解:K B÷=−B2−2B=−B=1r,当+=3时,原式=13.故答案为:13.14.解:K5+r2=o+2)(−5)(+2)(−5)(+2)+o−5)=B+B+2−5(−5)(+2)=(rpr2K5(K5)(r2),∵5K4(K5)(r2)=K5+r2,∴5K4(K5)(r2)=(rpr2K5(K5)(r2),∴+=52−5=−4,解得=3=2.故答案为:215.解:去分母,得+2=−−1,解得:=−−3,∵≤0,∴−−3≤0,∴≥−3,∵≠−1,即−−3≠−1,∴≠−2,∴≥−3且≠−2,故答案为:≥−3且≠−2.16.解:由题意可得,实际比原计划每小时多修剪:1500K2−1500=30002−2(米),故答案为:30002−2.17.(1)解:原式=(r3)2r23=r3−3=r3−3=1(2)解:原式=+÷2K1r1=(+1+−2)÷2K1r1=(2−1)·r12K1=+1.18.(1)解:方程1K1=12−1两边同时乘以+1−1得+1=1,解得=0,检验:把=0代入+1−1=−1≠0.∴原方程的解为:=0;(2)解:方程2−K3+4=13−两边同时乘以−3,得2−+4−3=−1,解得:=3,检验:把=3代入−3得−3=0,∴=3是原分式方程的增根,原分式方程无解.19.解:原式=rr1r11−2−321−2−1K1=2+1+1÷12121−1−1=2+1+1112−1−1=1−1−2−1K1=由题意,得≠±1,±12,取=0,则原式=2.20.(1)解:去分母,得1+3−2=−1−B,移项、合并同类项,得+3=4,∵分式方程无解,∴①当方程有增根时,原方程无解,即=2,2+3=4,解得=−1;②当+3=0时,原方程无解,即=−3,综合①②,若分式方程无解,的值为−1或−3.(2))由(1)可得+3=4,∵原分式方程的解为正数,∴>0,−2≠0,∴+3>0,且2+3≠4,∴>−3且≠−1.21.(1)解:设甲工程队单独完成此项工程需要x天,根据题意得:10++×20=1,解得:=60,经检验,=60是所列方程的解,且符合题意.答:甲工程队单独完成此项工程需要60天;(2)1÷=1÷5120=24(天).答:如果两队一开始就合作完成此项工程,需要24天.22.(1)解:根据题意,得(3+2)=3×0.8+2(+3),解得=10,∴甲种葡萄的实际销售单价为10×0.8=8(元),乙种葡萄的实际销售单价为10+3=13(元).答:甲种葡萄的实际销售单价是8元,乙种葡萄的实际销售单价是13元.(2)解:由题意知,方案一的平均单价为(8+pr(13+p2=21+22.方案二的平均单价为2÷+=2(8+p(13+p21+2,∵21+22−2(8+p(13+p21+2=252(21+2p>0.∴农场选择方案一更合算.。

北师大版八年级数学下册计算题天天练 (150)

北师大版八年级数学下册计算题天天练 (150)
8
三、解下列方程组。
8a=9b+198x+4y=4
{{
2a=4b+162x=5y+11
5x-3y=477m+2b=20
{{
7y-9x=47-1m+4b=26
一、求下列各数的平方根和算术平方根。
49
(1) ——;(2) 0.09;(3) 9;(4) 10-10
100
二、求下列各数的立方根。
216
(1)-——;(2) -1;(3) 0.512;(4) 1027
{{
7y+2x=47-1m-4b=19
一、求下列各数的平方根和算术平方根。
49
(1) ——;(2) 0.25;(3) 24;(4) 10-14
196
二、求下列各数的立方根。
216
(1)-——;(2) -4;(3) 0.216;(4) 1021
8
三、解下列方程组。
4a=4b+55x+y=2
{{
7a=3b-149x=3y-9
64
三、解下列方程组。
3a=2b-137x+8y=7
{{
4a=3b+17x=y+5
x-6y=1338m+7b=20
{{
3y+4x=133-2m-b=21
一、求下列各数的平方根和算术平方根。
64
(1) ——;(2) 0.25;(3) 20;(4) 10-8
361
二、求下列各数的立方根。
512
(1)-——;(2) -1;(3) 0.064;(4) 103
一、求下列各数的平方根和算术平方根。
49
(1) ——;(2) 0.49;(3) 8;(4) 10-20
121
二、求下列各数的立方根。
125

北师大版八年级数学下册1 1 3 等腰三角形 同步练习题(无答案)

北师大版八年级数学下册1 1 3 等腰三角形 同步练习题(无答案)

1.1.3 等腰三角形(3)同步练习题北师大版八年级数学下册一、选择题1.如图,在△ABC中,∠B=∠C,AB=3,则AC的长为( )A.2B.3C.4D.52.已知a,b是△ABC的两条边长,且a2+b2-2ab=0,则△ABC的形状是( )A.等腰三角形B.等边三角形C.锐角三角形D.不确定3.如图,已知∠A=36°,∠C=72°,BE平分∠ABC,DE∥BC,则图中等腰三角形的个数有( )A.3B.4C.5D.无法确定4.下列条件中能判定△ABC为等腰三角形的是( )A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A=50°,∠B=80°D.∠A:∠B:∠C=3:4:55.如图,△ABC中,BE是角平分线,DE∥BC交AB于点D,交AC于点E,若DE=8,AD=5,则AB等于( )A.12B.13C.14D.156.如图,在平面直角坐标系中,点A在第一象限(∠1不等于60),点P在x轴上·若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )A2个 B.3个 C.4个 D.5个7.如图,△ABC中,BM平分∠ABC,交AC于点M,D是BC边上的一点,连接AD,使AD=DC,且∠BAD=110°,则∠BMC=( )A.30°B.155°C.145°D.135°8.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上.如果点P 是某个小矩形的顶点,连接PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( ) A.2 B.3 C.4 D.5二、填空题9.如图,在等腰三角形ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A 落在点C处.若AE=3,则BC的长是_______.10.如图,直线l1∥l2,点A在直线1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC.若∠ABC=70°,则∠1的大小为_______.11.上午9时,一只船从海岛A出发,以20nmile/h的速度向正北方向航行,11时到达海岛B 处,从A,B望灯塔C,分别测得∠NAC=34°,∠NBC=68°,则海岛B到灯塔C的距离为____.12.在△ABC中,∠A=50°,当∠B=_____时,△ABC是等腰三角形.13.如图,在长方形纸片ABCD中,将长方形纸片沿着对角线AC折叠,使点D落在点F处,设AF与BC相交于点E.若AB=6,AD=8,则AE=____.14.如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE,AB=5,BE=3,则AC=______.三、解答题15.求证:三角形中至少有一个角不大于60°.16.如图,在等边三角形ABC中,D是AB边上的动点,以CD为一边向上作等边三角形EDC,连接AE.(1)△ACE和△BCD全等吗?请说出你的理由.(2)试说明AE∥BC.17.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在BC边上,DE与AC 相交于点O.(1)求证:△OEC是等腰三角形.(2)当点E在什么位置时,点O是AC的中点?说明理由.18.在△ABC中,AB=AC,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC交AB,AC于点E,F.(1)如图①,图中等腰三角形共有____个.猜想:EF与BE,CF之间有怎样的数量关系?并说明理由.(2)如图②,AB≠AC,图中的等腰三角形是,(1)中的EF与BE,CF之间的数量关系还存在吗?(3)如图③,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于点O,过点O作OE∥BC 交AB于点E,交AC于点F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE,CF之间的数量关系,并说明理由.。

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合测试练习题(无超纲)

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组综合测试练习题(无超纲)

第二章一元一次不等式和一元一次不等式组综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤32、已知a<b,则()A.a﹣2>b﹣2 B.﹣a+1>﹣b+1 C.ac<bc D.a b c c3、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b 4、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C .若﹣2a >2b ,则a <bD .若ac 2<bc 2,则a <b5、已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( )A .60k -<<B .30k -<<C .3k <-D .6k <-6、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 27、若x <y ,则下列不等式中不成立的是( )A .x -5<y -5B .16x <16yC .x -y <0D .-5x <-5y8、如图,l 1反映了某公司产品的销售收入与销售量的关系;l 2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A .小于12件B .等于12件C .大于12件D .不低于12件9、已知一次函数111y k x b =+与一次函数222y k x b =+中,函数1y 、2y 与自变量x 的部分对应值分别如表1、表2所示:表1:表2:则关于x 的不等式11221k x b k x b +>++的解集是( )A .0x <B .0x >C .01x <<D .1x >10、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m .若1m ,则k 的取值范围为______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2b c (3)c -a_______c -b(4)-a |c |_______-b |c |3、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 4、有人问一位教师所教班级有多少人,教师说:“一半学生在学数学,四分之一学生在学音乐,七分之一学生在读外语,还剩下不足六位学生在操场踢足球”,则这个班有_______名学生.5、定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a ﹣b )+1.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式﹣3⊕x <15的解为 _____.三、解答题(5小题,每小题10分,共计50分)1、根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)15x -<;(2)413x -≥;(3)1142x -+≥; (4)410x -<-.2、解不等式组3(1)1922x x x x +≥-⎧⎪⎨+>⎪⎩,并把解集表示在数轴上.3、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)4、(1)解不等式4x ﹣1>3x ;(2)解不等式组3(1)5(1)21531123x x x x -≤+-⎧⎪-+⎨>-⎪⎩. 5、解不等式组并把它的解集在数轴上表示出来 ()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩-参考答案-一、单选题1、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.2、B【分析】根据不等式的性质逐项分析即可.【详解】解:A、∵a<b,∴a-2<b-2,故不符合题意;B、∵a<b,∴-a>-b,∴-a+1>-b+1,,故符合题意;C、∵a<b,当c≤0时,ac<bc不成立,故不符合题意;D、∵a<b,当c>0时,a bc c不成立,故不符合题意;故选B.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.4、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.5、A【分析】先求出交点坐标,然后列不等式组即可求解.【详解】解:由题意得,36y kx k y x =+⎧⎨=-⎩, 解得6393k x k k y k --⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵两直线()0y kx k k =+≠与36y x =-相交于第四象限, ∴603903k k k k --⎧>⎪⎪-⎨-⎪<⎪-⎩, ∴-6<k <0;故选:A .【点睛】本题考查一次函数的图象及性质,以及不等式组的解法,能够掌握直线交点坐标的求法,牢记象限内点的坐标特点是解题的关键.6、C根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、D【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.8、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.9、D【分析】用待定系数法求出1y 和2y 的表达式,再解不等式即可得出答案.【详解】由表得:(0,3),(1,4)在一次函数111y k x b =+上,∴11134b k b =⎧⎨+=⎩, 解得:1113k b =⎧⎨=⎩, ∴13y x =+,(0,4),(1,3)在一次函数222y k x b =+上,∴22243b k b =⎧⎨+=⎩, 解得:2214k b =-⎧⎨=⎩, ∴24y x =-+,∴11221k x b k x b +>++为341x x +>-++,解得:1x >.故选:D .【点睛】本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.10、B【分析】化简﹣(﹣a )=a ,根据数轴得到a <﹣1<﹣b <0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,∵a <﹣1,∴﹣a >1,故A 选项判断错误,不合题意;∵﹣b <0,∴b >0,b ﹣a >0,故B 正确,符合题意;∵a <﹣1,∴a +1<0,故C 判断错误,不合题意;∵a <﹣b ,∴a +b <0,∴﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.二、填空题1、12k <-【分析】将已知点()2,0、()0,m 代入y kx b =+后可得2m k =-,再根据m 的取值范围可得k 的取值范围.【详解】解:∵一次函数y kx b =+(k 、b 是常数,0k ≠)的图像与x 轴交于点()2,0,与y 轴交于点()0,m , ∴02m b k b =⎧⎨=+⎩, ∴2m k =-,∵1m ,∴21k ->,即12k <-.故答案为:12k <-.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得m 和k 的关系是解题关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键. 4、28【分析】根据题意可以列出相应的不等式,又根据一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,可知该班学生一定是2、4、7的倍数,从而可以解答本题.【详解】解:设这个班有x人,由题意可得:1116247x x x x---<,解得,x<56,又∵一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,∴该班学生一定是2、4、7的倍数,∴x=28,故答案为:28.【点睛】本题考查一元一次不等式的应用,解答此类问题的关键是列出相应的不等式,注意要联系实际情况和题目中的要求.5、53 x<【分析】根据题目中所给的新运算先进行化简,然后再解不等式求解即可.【详解】解:∵3x-⊕()()331x=-⨯--+,931x=++,310x=+.∵315x -⊕<,∴31015x +<, ∴53x <. 故答案为:53x <.【点睛】题目主要考查整式的混合运算及解不等式,理解题中定义的新运算,熟练掌握解不等式的方法是解题关键.三、解答题1、(1)6x <(2)1≥x(3)6x ≤-(4)52x > 【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答;(3)先根据不等式的性质1,再根据不等式的性质3解答;(4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+,解得:6x <;(2)解:413x -≥,两边加上1得:41131x -+≥+,即44x ,两边除以4得:1≥x ;(3) 解:1142x -+≥, 两边减去1得:111412x -+-≥-,即132x -≥, 两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、23x -≤<,图见解析【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.【详解】 解:3(1)1922x x x x +≥-⎧⎪⎨+>⎪⎩①② 由①得 2x ≥-由②得 3x <把不等式组的解集表示在数轴上,如图,∴原不等式组的解为23x -≤<【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.3、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.4、(1)1x >;(2)133x -≤<.【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)4x ﹣1>3x ;431x x -> 解得1x >;(2)3(1)5(1)21531123x x x x -≤+-⎧⎪⎨-+>-⎪⎩①② 解不等式①得:3x ≥-, 解不等式②得:13x <∴不等式组的解集为133x -≤< 【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.5、542x ≤<图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】 解:()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩①②解不等式①得:4x ≤, 解不等式②得:52>x , ∴不等式组的解集为:542x ≤<,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.。

北师大版八年级数学下册计算题天天练 (108)

北师大版八年级数学下册计算题天天练 (108)
27
三、解下列方程组。
4a=4b-176x-3y=20
{{
2a=9b+17x=5y+1
8x-7y=117m+6b=12
{{
6y-8x=11-4m+7b=24
一、求下列各数的平方根和算术平方根。
25
(1) ——;(2) 0.01;(3) 27;(4) 10-12
169
二、求下列各数的立方根。
125
(1)-——;(2) -2;(3) 0.008;(4) 109
8
三、解下列方程组。
5a=7b-76x-3y=1
{{
4a=6b-68x=y+16
9x-5y=-59m+6b=1
{{
7y-9x=-5-2m-6b=16
一、求下列各数的平方根和算术平方根。
25
(1) ——;(2) 0.81;(3) 27;(4) 10-12
121
二、求下列各数的立方根。
343
(1)-——;(2) -5;(3) 0.125;(4) 1030
64
三、解下列方程组。
3a=8b+62x-7y=4
{{
6a=b-87x=5y-15
8x-2y=87m-6b=27
{{
y+x=87-1m+2b=30
8
三、解下列方程组。
6a=4b+92x-8y=18
{{
7a=4b-208x=2y-10
3x+7y=1293m+b=6
{{
8y+6x=129-10m+4b=5
一、求下列各数的平方根和算术平方根。
25
(1) ——;(2) 0.25;(3) 30;(4) 10-2
400
二、求下列各数的立方根。
216
(1)-——;(2) -6;(3) 0.512;(4) 109

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练练习题

2022年北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练练习题

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <22、下列不等式是一元一次不等式的是( )A .23459x x >-B .324x -<C .12x < D .4327x y -<-3、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( ) A .92m ≤ B .5m ≤ C .92m = D .5m =4、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x ,根据题意得( )A .5x ﹣2(20﹣x )≥80B .5x ﹣2(20﹣x )≤80C .5x ﹣2(20﹣x )>80D .5x ﹣2(20﹣x )<805、在数轴上表示不等式﹣1<x 2,其中正确的是()A.B.C.D.6、若不等式﹣3x<1,两边同时除以﹣3,得()A.x>﹣13B.x<﹣13C.x>13D.x<137、已知三角形两边长分别为7、10,那么第三边的长可以是()A.2 B.3 C.17 D.5 8、已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:下列说法中,正确的是()A.图象经过第二、三、四象限B.函数值y随自变量x的增大而减小C.方程ax+b=0的解是x=2D.不等式ax+b>0的解集是x>-19、适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2 B.4 C.8 D.16 10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2C .若﹣2a >2b ,则a <bD .若ac 2<bc 2,则a <b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的不等式组3x x a>⎧⎨<⎩有解,则a 的取值范围是______. 2、当|x ﹣4|=4﹣x 时,x 的取值范围是___.3、已知点P (x ,y +1)在第二象限,则点Q (﹣x +2,2y +3)在第 ___象限.4、不等式组1023x x +>⎧⎨<⎩的解集为_______. 5、如果不等式(b +1)x <b +1的解集是x >1,那么b 的范围是 ___.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.2、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?3、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a 盒,小健如何选择方案更划算?4、有一批产品需要生产装箱,3台A 型机器一天刚好可以生产6箱产品,而4台B 型机器一天可以生产5箱还多20件产品.已知每台A 型机器比每台B 型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A 型机器和2台B 型机器生产,需几天完成?(3)若每台A 型机器一天的租赁费用是240元,每台B 型机器一天的租赁费用是170元,可供租赁的A 型机器共3台,B 型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、求一元一次不等式组的解集,并把它的解集表示在数轴上.()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩-参考答案-一、单选题1、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.2、B【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A 、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B 、是一元一次不等式,故此选项符合题意;C、1x是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.3、C【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.4、C【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5、A【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.【详解】解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣13.故选:A.【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.7、D【分析】根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.【详解】解:设第三边长为x,由题意得:∵三角形的两边分别为7,10,∴10−7<x<10+7,解得:3<x<17,符合条件的只有D.故选:D.【点睛】本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.8、D【分析】利用待定系数法求一出函数解析式,把表格数据代入两组数值得02a b b -+=⎧⎨=⎩,解方程组求出一次函数解析式,根据一次函数性质可判断选项.【详解】解:设一次函数解析式为y kx b =+,由表格可知,一次函数过点(-1,0),(0,2),则:02a b b -+=⎧⎨=⎩, 解得:22a b =⎧⎨=⎩, ∴一次函数解析式为:22y x =+,∴2020a b =>=>,,故函数经过第一、二、三象限,故选项A 错误;∴=20a >,故函数值y 随x 增大而增大,故选项B 错误;令220x +=,得x=-1,故选项C 错误;令220x +>,得1x >-,故选项D 正确;故选:D .【点睛】本题主要考查了一次函数的图象和性质,待定系数法求根一次函数解析式,表格信息,解方程组是解题的关键.9、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=12解不等式2a+7≥0,2a﹣1≥0得,a≥﹣72,a≥12,所以a≥12,而a又是整数,故a=12不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣7 2解不等式2a+7≤0,2a﹣1≤0得,a≤﹣72,a≤12,所以a≤﹣72,而a又是整数,故a=﹣72不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣72,a≤12,所以﹣72≤a≤12,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选:B.【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D 、若ac 2<bc 2,则a <b ,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、a >3【分析】由题意直接根据不等式组的解集的表示方法进行分析可得答案.【详解】解:由题意得:a >3,故答案为:a >3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.3、一【分析】根据第二象限的点坐标特征,求出x 和y 的范围,然后确定出Q 点横纵坐标的范围,即可得出结论.【详解】解:∵点P (x ,y +1)在第二象限,∴x <0,y +1>0,∴y >﹣1,∴﹣x >0,2y >﹣2,∴﹣x +2>2,2y +3>1,即:﹣x +2>0,2y +3>0,∴点Q (﹣x +2,2y +3)在第一象限,故答案为:一.【点睛】本题考查平面直角坐标系中象限内点的特征,以及不等式的计算,理解平面直角坐标系中点坐标的特征,掌握不等式的求解方法是解题关键.4、312x -<<【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由10x +>,得:1x >-,由23x <,得:32x <,∴不等式组的解集为312x-<<.故填:312x-<<.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、b<-1【分析】根据不等式的基本性质3可知b+1<0,解之可得答案.【详解】解:∵(b+1)x<b+1的解集是x>1,∴b+1<0,解得b<-1,故答案为:b<-1.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边同时乘以或除以同一个负数,不等号的方向改变.三、解答题1、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.2、(1)甲种文具需要20元,一个乙种文具需要10元(2)20【分析】(1)设购买一个甲种文具需要x元,一个乙种文具需要y元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x元,一个乙种文具需要y元,依题意得:1218420 1614460x yx y+=⎧⎨+=⎩,解得:2010xy=⎧⎨=⎩,答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.3、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.4、(1)60件;(2)6天;(3)A 型机器前2天租3台,第3天租2台;B 型机器每天租3台【分析】(1)设每箱装x 件产品,根据“每台A 型机器比每台B 型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A 型机器6台次,B 型机器12台次,其中3天中共租A 型机器8台次,B 型机器9台次(如A 型机器前两天租3台,第3天租2台,B 型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、x ≤1,解集在数轴上的表示见解析【分析】先求出两个一元一次不等式的解集,再求两个解集的公共部分即得不等式组的解集,然后把解集在数轴上表示出来即可.【详解】()3241213x x x x ⎧--≥-⎪⎪⎨+⎪>-⎪⎩①② 解不等式①得:x ≤1,解不等式②得:x <4,∴不等式组的解集为x≤1.不等式组的解集在数轴表示如下:【点睛】本题考查了解一元一次不等式组,关键是求出每一个一元一次不等式的解集,注意当不等式两边同除以一个负数时,务必记住:不等号的方向要改变.。

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

八年级数学北师大版下册5.4分式方程解答题专项(应用题篇)(二)1.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?2.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.3.甲、乙两个工程队承担了福州市今年的旧城改造工作中的一个办公楼项目,若乙队单独工作3天后,再由两队合作7天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这各项目所需天数的2倍.(1)求甲,乙两个工程队单独完成这个项目各需多少天;(2)甲工程队一天的费用是7万元,乙工程队一天的费用是3万元,若甲乙合作5天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)4.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?5.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?6.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?7.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?8.某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?9.为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.10.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?11.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.12.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.13.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.14.某校为积极响应垃圾分类的号召,从商场购进了A、B两种品牌的垃圾桶用于回收不同种类垃圾.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用3000元购买A品牌垃圾桶的数量是用1500元购买B品牌垃圾桶数量的4倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学准备再次用不超过3000元购进A、B两种品牌垃圾桶共50个,恰逢商场对两种品牌垃圾桶的售价进行了调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?15.利华机械厂为海天公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B 种产品多2件,甲车间生产的A种产品30件的天数与乙车间生产的B种产品24件天数相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)海天公司每天付给甲车间600元的工时费,每天付给乙车间400元的工时费,现海天公司一次性购买A、B两种产品共800件,海天公司购买A、B两种产品付给甲、乙两车间的总工时费用不超过42000元.求购进A种产品至多多少件.参考答案1.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.2.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.3.解:(1)设甲工程队单独完成这个项目需要x天,则乙工程队单独完成这个项目需要2x天,依题意得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲工程队单独完成这个项目需要12天,乙工程队单独完成这个项目需要24天.(2)设甲乙两队合作5天后乙队还要再单独工作y天,依题意得:+=1,解得:y=9,∴7×5+3×(5+9)=77(万元).答:这个项目总共要支出的工程费用为77万元.4.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.5.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.6.解:(1)设该商场购进的第一批“84”消毒液单价为x元/瓶,依题意得:2×=.解得,x=10.经检验,x=10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(+﹣200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.7.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.8.解:设白术种子每千克x元,根据题意,得,解得x=60,经检验,x=60是原方程的解且符合题意.答:白术种子每千克60元.9.解:(1)设张老师骑自行车的平均速度为x千米/小时,依题意有,﹣=,解得x=16,经检验,x=16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,(2)由(1)可得张老师开车的平均速度为16×3=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.10.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.11.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.12.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.13.解:设甲每小时做x个零件,乙每小时做(x+8)个零件,由题意可得:,解得:x=32,经检验,x=32是原方程的解,∴x+8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.14.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,由题意得:=4×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+50=100,答:购买一个A品牌垃圾桶需50元,购买一个B品牌垃圾桶需100元;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,由题意得:50×0.9×(50﹣m)+100×(1+20%)m≤3000,解得:m≤10,∴m最大值是10.答:该学校此次最多可购买10个B品牌垃圾桶.15.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品,由题意得:=,解得:x=8,经检验,x=8是原方程的解,且符合题意,则x+2=10,答:甲车间每天生产10件A种产品?乙车间每天生产8件B种产品;(2)设购进A种产品a件,则购进B种产品(800﹣a)件,由题意得:×600+×400≤42000,解得:a≤200,答:购进A种产品至多200件.。

北师大版八年级数学下册第六章四边形动点问题专题训练(无答案)

北师大版八年级数学下册第六章四边形动点问题专题训练(无答案)

四边形动点问题专题训练基础练习:1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值. ... )A.....B.2.5或3....C. 3.5或4....D.2或3.5或4.52、如图, 在正方形ABCD中, E是AB上一点, BE=2, AE=3BE, P是AC上一动点, 则PB+PE 的最小值是______________3.已知四边形ABCD是直角梯形, AD∥BC, ∠B=90°, AB=8,AD=18,BC=20,点P以每秒钟1个单位长度的速度从点A出发向点D运动.(1)当运动时间为t秒, 则AP=______,PD=______;当t=_____时, △PCD的面积等于40.(2)设运动时间为t秒, △PCD的面积为S, 则S与t之间的函数关系式为:______________.能力提升:1、如图, 在四边形ABCD中, AD∥BC, 且AD=9cm, BC=6cm.点P、Q分别从点A、C同时出发, 点P以1cm/s的速度由A向D运动, 点Q以2cm/s的速度由C向B运动, 其中一个动点到达终点时, 另一个动点也停止运动, 几秒后直线PQ将四边形ABCD截出一个平行四边形.(1)2.如图, 在梯形ABCD 中, AD ∥BC, E 是BC 的中点, AD =5, BC =12, CD =4 , ∠C =45°, 点P 是BC 边上的一动点, 设PB 的长为x 。

当x 的值为____________时, 以点P 、A 、D 、E 为顶点的四边形为直角梯形。

当x 的值为____________时, 以点P 、A 、D 、E 为顶点的四边形为平行四边形。

3.△ABC 是等边三角形, 点D 是射线BC 上的一个动点(点D 不与点B.C 重合), △ADE 是以AD 为边的等边三角形, 过点E 作BC 的平行线, 分别交射线AB.AC 于点F 、G, 连接BE.(1)如图(a )所示, 当点D 在线段BC 上时. 探究四边形BCGE 是怎样特殊的四边形? 并说明理由;(2)如图(b )所示, 当点D 在BC 的延长线上运动到什么位置时, 四边形BCGE 是菱形? 并说明理由. (四条边都相等的四边形是菱形)A B C DP Q1cm/2cm/4.如图, 在Rt△ABC中, ∠B=90°, AC=60cm, ∠A=60°, 点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动, 同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动, 当其中一个点到达终点时, 另一个点也随之停止运动. 设点D.E运动的时间是t秒(0<t≤15). 过点D作DF⊥BC于点F, 连接DE, EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能, 求出相应的t值, 如果不能, 说明理由;(3)当t为何值时, △DEF为直角三角形?请说明理由.16.如图1, 在直角梯形ABCD中, AD∥BC, 顶点D, C分别在AM, BN上运动(点D不与A重合, 点C 不与B重合), E是AB上的动点(点E不与A, B重合), 在运动过程中始终保持DE⊥CE, 且AD+DE=AB=a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档