分式经典题型分类练习题
分式题型分类
| x | 3 的值为 0 ,则x的值是? 2 x 2x 3
4、分式的基本性质
分式的分子与分母都乘以(或除以)同一个不
等于零的数或整式,分式的值不变。
〖实战演练〗
填空:
2x = ( 1) 2 x 3x x3
2
( 2)
x y
x y
2
2 2
=
x y
5、分式的恒等变形
√
a + b√
⑤
x
2、分式有(无)意义
①分式有意义:分母不为 0
②分式无意义:分母为 0
〖实战演练〗
当x为任意实数时,下列分式一定有意义的是( B )
2 A、 x2
2 B、 2 x2
2 C、 |x|
A、
√X
x2 1
3、分式值为0的条件
分子为0且分母不为 0
A=0
B ≠0
〖实战演练〗
若分式
〖实战演练〗
判断下列约分是否正确:
2x 2 x4 1 = ( 1) 4x 4 2x 2
4
x y x ( 2) a y = a
7、分式的加减乘除
①分式的混合运算
a2 a 1 a2 4a ( 2 2 ) 2 a 2a a 4a 4 a a
②化简求值题
②化简求值题
③科学记数法的表示
3 x y x y x ) x y 2 的值 已知x:y=2:3,求 ( xy x y 2 2
③求待定字母的值
8、分式方程及其应用
①解分式方程(步骤)
②求待定字母的值
③列分式方程解应用题
9、整数指数幂与科学记数法
10道《分式》练习题
10道《分式》练习题分式是数学中的一个重要概念,也是我们在日常生活中经常会遇到的数学问题之一。
它是由分子和分母组成的,分子代表分数的一部分,而分母则代表整体的数量。
在解决分式问题时,我们需要掌握一些基本的概念和技巧。
下面我将给大家介绍10道关于分式的练习题,希望能对大家的学习有所帮助。
1. 简化分式:将分子和分母的公因数约去,使分式的值保持不变。
例如,将分式6/12简化为1/2。
2. 分式的乘法:将两个分式相乘,只需将分子与分子相乘,分母与分母相乘。
例如,计算(2/3) * (4/5) = 8/15。
3. 分式的除法:将一个分式除以另一个分式,只需将第一个分式的分子乘以第二个分式的倒数。
例如,计算(2/3) / (4/5) = (2/3) * (5/4) = 10/12 = 5/6。
4. 分式的加法:将两个分式相加,需要先找到它们的公共分母,然后将分子相加。
例如,计算(1/2) + (1/3) = (3/6) + (2/6) = 5/6。
5. 分式的减法:将一个分式减去另一个分式,需要先找到它们的公共分母,然后将分子相减。
例如,计算(3/4) - (1/2) = (6/8) - (4/8) = 2/8 = 1/4。
6. 分式的混合运算:在一个表达式中同时包含加法、减法、乘法和除法的分式运算,需要按照运算的优先级进行计算。
例如,计算(1/2) + (3/4) * (2/5) = (1/2) + (6/20) = (10/20) + (6/20) = 16/20 = 4/5。
7. 分式的整数部分:当分子大于或等于分母时,可以将分式转化为一个整数和一个真分数的和。
例如,将分式7/4转化为一个整数和一个真分数,得到1 3/4。
8. 分式的倒数:将一个分式的分子和分母互换位置,得到它的倒数。
例如,分式2/3的倒数为3/2。
9. 分式的比较:当比较两个分式的大小时,可以将它们的分子和分母相乘,然后比较结果的大小。
分式练习题及答案
分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
《分式》典型练习题
分式知识点和典型习题(一)、分式定义及有关题型题型一:考查分式的定义2、下列分式中,最简分式有()题型二:考查分式有意义的条件1、当x有何值时,下列分式有意义题型三:考查分式的值为0的条件1、当x取何值时,下列分式的值为(1)(2)先0.(3)2x 2x 3~2x 5x 61、下列代数式中: x 1-,2x是分式的有:2 2 2 2 2 7 2223x x y m n m 1 a2ab bA • 2个B• 3个 C •4个D3、下列各式: a b x 3 5 y •3 2 1x 12x4 A.1个 B.2个 C.3个• 5个a b 1,电上,丄(x y)中,是分式的共有()(1) (2) 3xx22 (3) 2x2 1(4)(5)1、、a b x2y2x ya3x y m2n2m 1 a22ab b2题型四:考查分式的值为正、负的条件 1、( 1)当x 为何值时,分式—为正;8 x(2) 当X 为何值时,分式一5 % 2为负;3 (x 1)2(3) 当x 为何值时,分式—为非负数•x 3(二) 分式的基本性质及有关题型1 •分式的基本性质:A —B B M B M2 •分式的变号法则:二二 2 ab b b b题型一:化分数系数、小数系数为整数系数 1、不改变分式的值,把分子、分母的系数化为整数题型二:分数的系数变号2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号(1)亠x y(2)(3)(1)(2)0.2a 0.03b 0.04 a b(3)0.4a -b5题型三:考查分式的性质1、若分式—y中X、y的值都增加到原来的3倍,则分式的值()xA、不变B 、是原来的3倍C 、是原来的- D 、是原来的-3 92 22、若分式-一匕中x、y的值都增加到原来的3倍,则分式的值()xyA、不变B 、是原来的3倍C 、是原来的- D 、是原来的-3 9题型三:化简求值题1、已知:--5,;x y求2x 3xy 2y的值.2 x 2xy y、已知:畀3,求2a 3ab 2b的值. b ab a3、已知:X 12,求}<x2厶的值. 4x、若|x y 1| (2x 3)20,求1的值4x 2y5、已知与互为相反数,代数式的值6、若a2 2a b 2 6b 10 0,求詐的值.7 、如果1 x 2,试化简泊月弓(三)分式的运算1 •确定最简公分母的方法:① 最简公分母的系数,取各分母系数的最小公倍数; ② 最简公分母的字母因式取各分母所有字母的最高次幕2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幕.题型一:通分1、将下列各式分别通分.(1) ____ b ____ ; ⑵ ____________________________ b —;2ab ,3a 2c ,5『c 'a b ,2b 2a ,题型二:约分 1、约分:22 2 2(1);(2) ;(3) x 2 X 220 xym nx x 6(3)1 x2~2 , 2, 2 x x12xxx x 2(4) a2,题型三:分式的混合运算 1、计算:(1)(乜)3 (―)2 (竺)4;c ab a题型四:化简求值题 1、先化简后求值2(1)已知:x 1,求分子1 -8 [(Z 4 1)(丄丄)]的值; X 2 4 4x2 x(3)m 2n n mn 2m m n n m2(4)旦 a 1 ;a 1(5 )1 (x 1)(x 1)1 (X 1)(x 3)1 (x 3)(x 5)(6) x 2 4(x 2 4x 4x 2)x 2 2x (TT )求xy 2x2yz V 3xzz 2的值; (2)(x3a l)3(x 2 y题型五:求待定字母的值 例、若12^X ——,试求M,N 的值.x1 x 1 x 1(四)、整数指数幕与科学记数法题型一:运用整数指数幕计算 计算:(1)(a 2) 3 (be 1)3( 2)(3x 3y 2z 1) 2 (5xy 2z 3)2题型二:化简求值题题型三:科学记数法的计算【例 3】计算:(1)(3 10 3) (8.2 10 2)2 ; (2) (4 10 3)2 (2 10 2)3.(3)35[(a b) (a b) ]2 [2 4 ](a b) (a b)3(4) [(x y) (x2 2y) ] (xy)(5)(15) (5) 2 1 11 (1 -3)0(0.25)2007 42008【例2】已知x x5,求(1)x 2 x 2的值;(2)求x 4 x 4的值.(五)、分式中的变形求值x 2y 3 2y 3xy x已知2x 3xy 2y—,则——的值为x 2xyy5x y3 13、x — 型的: 变形x①若1 x 3,2则4 %2。
分式测试题及答案
分式测试题及答案一、选择题1. 下列哪个选项不是分式?A. \( \frac{1}{x} \)B. \( 3x + 2 \)C. \( \frac{x}{y} \)D. \( \frac{3}{2x} \)答案:B2. 分式 \( \frac{x^2 - 1}{x - 1} \) 可以化简为:A. \( x \)B. \( x + 1 \)C. \( x - 1 \)D. \( 1 \)答案:B3. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \) 都是正整数,那么 \( \frac{a}{b} \) 的值:A. 总是大于1B. 总是小于1C. 可以是任何实数D. 总是等于1答案:C二、填空题4. 分式 \( \frac{2x^2 - 3x}{x - 3} \) 的值为0的条件是_______ 。
答案:\( x = \frac{3}{2} \)5. 如果 \( \frac{1}{x} + \frac{2}{y} = 1 \),那么\( \frac{x}{y} + \frac{y}{x} \) 的值为 _______ 。
答案:3三、解答题6. 化简分式 \( \frac{3x^2 - 12x + 12}{x^2 - 4} \) 。
答案:首先分解分子和分母的因式,得到 \( \frac{3(x -2)^2}{(x - 2)(x + 2)} \),然后约去公共因子 \( (x - 2) \),得到 \( \frac{3(x - 2)}{x + 2} \)。
7. 解分式方程 \( \frac{1}{x} - \frac{1}{x + 1} = \frac{2}{x(x + 1)} \)。
答案:首先找到分母的最小公倍数,即 \( x(x + 1) \),然后将方程两边同乘以 \( x(x + 1) \) 以消除分母,得到 \( x + 1 - x = 2 \),解得 \( x = 3 \)。
分式计算题分类训练(5种类型50道)—2024学年八年级数学上册专题训练+备考提分专项训练(解析版)
分式计算题分类训练(5种类型50道)【答案】(1)23x ;(2)5ac −【分析】(1)根据分式乘法法则,可得答案;(2)根据分式的除法,除以一个分式等于乘以这个分式的倒数,可得答案;【详解】解:(1)3324423263x y xy y xx y x ⋅==; (2)32233222222254422425105ab a b ab cd ab cd bd ccd c a b a b c ac −÷=⋅=−=−−. 【点睛】本题考查了分式的乘除法,根据法则计算是解题关键. 2442a a a a −++【答案】(1)12;(2)a【分析】(1)由分式的除法运算法则进行计算,即可得到答案; (2)由分式的乘法运算法则进行计算,即可得到答案.【详解】解:(1)原式=21x x +14x x +=12;(2)原式=()22a a a +−()222a a −+=2a a −; 【点睛】本题考查了分式的乘法、除法运算法则,解题的关键是掌握运算法则,正确的进行化简.【答案】(1)2152()ab a b +;(2)2(2)x x y x y +−+ 【分析】(1)先对分子、分母分解因式,再约分,即可求解;(2)先对分子、分母分解因式,再把除法化为乘法,然后约分即可求解.【详解】解:(1)原式=()()()2332510a b a b ab a b a b −⋅−+ =2352ab a b ⋅+ =2152()ab a b +;(2)原式=()()()()22222y x y x x yx x y x y +−−÷++=()()()()22222y x y x x x y x y x y +−+⋅−+ =2(2)x x y x y +−+. 【点睛】本题主要考查分式的乘除法,掌握因式分解以及约分是解题的关键.【答案】(1)2(1)(2)a a a −−+;(2)7m m −+【分析】(1)先把分式的分子分母因式分解,再约分化简即可;(2)先把分式的分子分母因式分解,再除法变乘法,最后约分化简即可.【详解】(1)222441214a a a a a a −+−⋅−+−22(2)1(1)(2)(2)a a a a a −−=⋅−−+ 22(2)(1)(1)(2)(2)a a a a a −−=−−+2(1)(2)a a a −=−+;(2)2211497m m m ÷−−()221(7)749(7)(7)m m m m m m m −=−⋅−=−−+−7mm =−+.【点睛】本题考查分式的乘除运算,一般都是先把分子分母因式分解,最后约分化简.【答案】(1)224a ab+(2)22239x x x --+【分析】(1)根据分式的乘法运算法则进行计算即可;(2)根据除以一个数等于乘以这个数的相反数进行计算即可.【详解】(1)解:22234246a b a b a b ab −⋅− =3a 2b2(a −2b )∙(a +2b)(a −2b)6ab (2)4a a b += 224a ab =+;(2)2222133218412x x x x x x −+−÷−−2(1)4(3)2(3)(3)3(1)x x x x x x --=×+-- 2(1)3(3)x x x -=+22239x x x --+=.【点睛】本题考查了分式的乘法运算以及除法运算,熟练掌握相关运算法则是解本题的关键.【答案】(1)22b(2)2−【分析】(1)直接根据分式的乘除运算法则解答即可;(2)分式的分子、分母先分解因式,把除法转化为乘法,再约分即可得到答案.【详解】(1)原式2222245353422a b c d d cd ab abc b =⋅⋅=;(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握分式的乘除运算法则是解题的关键.【答案】(1)234a c −;(2)21−−ab b . 【分析】分式相乘的法则是:用分子的积作为积的分子,分母的积作为积的分母,并将乘积化为既约分式或整式,作分式乘法时,也可先约分后计算.【详解】(1)解:原式2232162b a a bc a b ⎛⎫− ⎪⎝=⋅⎭⋅ 3221216a b ab c =−234a c =−(2)解:原式()22122()a b ab ab b a −=−⋅⋅−()2222()ab a b b a ab −=−−()1b a b =−−21ab b =−− 【点睛】本题考查分式的乘除运算.分式的除法运算实质上是乘法运算.掌握分式的乘法运算法则是解题关键.【答案】(1)()()()()3242x x x x −++−(2)22aa −+【分析】根据分式的乘除混合计算法则求解即可.【详解】(1)解:原式()()()()()()2232444322x x x x x x x x −+−=⋅⋅+−−+−()()()()3242x x x x −+=+−;(2)解:原式()()()()()211221112a a a a a a a −++−=⋅⋅+−+22aa −=+.【点睛】本题主要考查了分式的乘除混合计算,熟知相关计算法则是解题的关键.【答案】(1)2a −(2)12x x ++【分析】(1)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算;(2)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算.【详解】(1)原式()()()()()244214222a a a a a a a +−−=⋅⋅+−−−42a a −=−.(2)原式()()()()()()()()2314444322x x x x x x x x x x −−++−=⋅⋅+−−+−12x x +=+. 【点睛】本题考查了分式的乘除混合运算,正确分解因式是关键,属于基础题.【答案】(1)42b a -(2)-2【分析】(1)先将除法转化为乘法,再约分即可得出答案;(2)先利用完全平方公式整理,将除法化为乘法,最后约分即可得出答案.【详解】(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握运算法则是解题的关键.【答案】(1)a b +(2)x y −【分析】(1)根据同分母分式的运算法则计算即可;(2)根据同分母分式的运算法则计算即可.【详解】(1)解:原式()()a b a b a b a b +−==+−.(2)解:原式222x y xy x y x y +=−−− 222x y y x y x −+=−()2x y x y −=−x y =−.【点睛】本题考查了同分母分式的加减法以及平方差公式,熟练掌握同分母分式的加减法法则是解题的关键.【答案】(1)1x +(2)12x y +【分析】(1(2)先将异分母分式化为同分母分式,再进行同分母分式加减运算即可;【详解】(1)原式2221311x x x x x +−=+−−22131x x x x ++−=−22121x x x +−=−()()()2111x x x +=−−11x x −=+; (2)原式()()2222422x y x y x y x y x −++−−+=2224y xy x −−=12x y =+. 【点睛】本题考查了异分母分式相加减的运算,熟练掌握运算法则并你能将异分母分式互为同分母分式是解题的关键.【答案】(1)21m m −(2)224x x −【分析】(1)根据分式与整式的加法进行计算即可求解;(2)根据异分母的加法进行计算即可求解.【详解】(1)解:111m m ++−()()11111m m m m +−=+−−2111m m +−=−21m m =−; (2)解:2242x x x x −−− ()()()2222x x x x x −+=+−22224x x x x −−=−224x x =−.【点睛】本题考查了分式的加减计算,熟练掌握分式的运算法则是解题的关键.【答案】(1)3a +(2)221212a a a a −−++【分析】(1)先将分子分母能因式分解的进行因式分解,再通分计算即可;(2)先将分子分母能因式分解的进行因式分解,再通分计算即可.【详解】(1)解:22193a a a −−−()()21333a a a a =−+−− ()()()()233333a a a a a a +=−+−+− ()()2333a a a a −−=+− ()()333a a a −=+− 13a =+;(2)解:221121a a a a a a −−++++()()21111a a a a a −−=+++ ()()()()()2211111a a a a a a −−+=+++()()()21211a a a −+=+221212a a a a =−−++.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算的运算顺序和运算法则.【答案】(1)221x −−;(2)2x x −+【分析】(1)根据异分母分式相加减法则,异分母分式相加减,先通分,分母都变为()()11x x +−,变为同分母分式,再加减计算即可;(2)根据异分母分式相加减法则,异分母分式相加减,先通分,使前两项分数的分母都变为()()22x x +−,变为同分母分式,再加减计算,约分化简,再把1−这项写成同分母的形式22x x +−+,再加减计算即可.【详解】(1)原式()()()()111111x x x x x x −+=−+−+−()()()1111x x x x −−+=+−221x −=−;(2)原式()()()()()22412222x x x x x x +=−−+−−+()()()22122x x x −=−+−2222x x x +=−++2x x =−+. 【点睛】本题考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.【答案】(1)a b +(2)21m m +【分析】(1)先通分计算括号内,再根据分式的除法法则进行计算即可;(2)先算除法,再通分进行加法运算即可.【详解】(1)解:原式()2222a ab b ab a b a b ab −+=⋅−+()()2a b ab ab b a a b −=⋅+−a ba b −=+;(2)原式()()()()23313321m m m m m m −+=−+⋅+−+111m m =−++ 2111m m −+=+21m m =+.【点睛】本题考查分式的混合运算,解题的关键是掌握分式的混合运算法则,正确的计算.【答案】(1)26m +(2)11x −【分析】(1)通分计算加减法,再约分计算乘除法即可求解; (2)通分计算加减法,再约分计算乘除法即可求解.【详解】(1)解:原式()22224523m m m m m ⎛⎫−=−⋅ ⎪−−−−⎝⎭ ()222923m m m m −−=⋅−−()()()332223m m m m m +−−=⋅−−26m =+;(2)解:原式22121x x x x x x ⎛⎫++=÷− ⎪⎝⎭211x x x x +−=÷()()111x x x x x +=⋅+−11x =− 【点睛】本题考查分式的混合运算.异分母分式的加减运算关键是通分,分式的乘除运算关键是将分子分母因式分解后进行约分.【答案】3x − 【分析】先将括号内的两个式子通分并化简,然后将除法改为乘法,分子分母调换位置,最后再约分,可得最终化简结果.【详解】解:2569122x x x x −+⎛⎫−÷ ⎪++⎝⎭ 22569222x x x x x x +−+⎛⎫=−÷ ⎪+++⎝⎭()23322x x x x −−=÷++()23223x x x x −+=+−g13x =−.【点睛】本题考查了用公式法因式分解、约分、通分、分式的化简等知识点.熟知分式的化简步骤是解题的关键,同时要将结果化为最简分式或整式.【答案】232a a −++【分析】根据分式的混合运算顺序和运算法则化简原式,即可求解.【详解】解:22231211a a a a a a −⎛⎫÷−+ ⎪+++⎝⎭ ()()22231111a a a a a a −⎛⎫−=÷− ⎪+++⎝⎭()()()()221221a a a a a a −+=⋅+−+()()12a a a =−++ 232aa a =−++.【点睛】本题主要考查分式的化简,解题的关键是掌握分式的混合运算顺序和运算法则.【答案】1 【分析】通分,计算括号内,再将除法变成乘法,约分即可.【详解】解:原式()()2a ab a b a a b −−=⋅−1=.【点睛】本题考查分式的混合运算.熟练掌握相关运算法则,是解题的关键.【答案】2241x xx ++【分析】再括号外的分式2乘法运算即可化简原式.【详解】解:231111x x x x x x ⎛⎫⋅ ⎭−⎝−−++⎪ ()()()()()()31111111x x x x x x x x x +−−−+=⋅−++22331x x x x x +−+=+2241x x x +=+.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.【答案】1aa −【分析】先计算括号里边的式子,通分化成同分母的分式相加,再计算除法运算即可. 【详解】解:+⎛⎫+÷ ⎪−−−+⎝⎭2a 11a a 1a 1a 2a 1=(a +1a −1+1(a −1)2)÷a a −1=a 2(a−1)2÷a a−1 =a 2(a−1)2×a−1a 1aa =−.【点睛】此题考查学生分式运算,以及完全平方公式、平方差公式的运用,解答此题的关键是把分式化到最简.【答案】26x + 【分析】先通分括号内的式子,然后将括号外的除法转化为乘法,再约分即可.【详解】解:532224x x x x −⎛⎫+−÷ ⎪−−⎝⎭ ()()()2252223x x x x x +−−−=⋅−− ()222923x x x x −−=⋅−− ()()()332223x x x x x +−−=⋅−− ()23x =+ 26x =+.【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.【答案】2x +,1.【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】解:原式()22121x x x x +−=⨯+− 2x =+,当=1x −时,原式121=−+=.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.【答案】1x −,4 【分析】先计算括号内加法,再计算除法即可得到化简结果,再把字母的值代入计算即可.【详解】解:22121124x x x x −+⎛⎫+÷ ⎪−−⎝⎭ 222121224x x x x x x −−+⎛⎫=+÷ ⎪−−−⎝⎭()()()211222x x x x x −−=÷−+− ()()()222121x x x x x +−−=⋅−− 21x x +=− 当3x =−时, 原式32113144−+−===−−− 【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.【答案】1x −,2−(答案不唯一) 【分析】根据分式的减法和除法可以化简题目中的式子,然后从1−,0,1和2中选一个使得原分式有意义的值代入化简后的式子,即可解答本题.【详解】解: 原式211(2)(2)1(2)x x x x x −−+−=⋅−−2212x x x x −+=⋅−−21x x +=−,∵1x ≠,2x ≠±∴当0x =时,原式02201+==−−(答案不唯一).【点睛】本题考查分式的化简求值,解答本题的关键是掌握分式混合运算法则.【答案】2,当2m =时,值为12−【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的m 的值代入进行计算即可.【详解】解:22221369m m m m −⎛⎫+÷ ⎪−−+⎝⎭()()2323321m m m m −+−=⋅−−()()231321m m m m −−=⋅−−32m −=, 3010m m −≠−≠,,31m m ∴≠≠,,∴当2m =时,原式23122−==−【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.【答案】3a b −+,11− 【分析】先根据分式混合运算的法则把原式进行化简,再求出a 、b 的值代入进行计算即可.【详解】解:原式()()()()2232251=222a b a b a b b a a b a b a b a ⎡⎤−+−÷−−⎢⎥−−−⎣⎦ ()()()2222531=224a b a b a a b a b a b −−−÷−−−()()222321=29a b a b a a b a b a −−−−⋅−()()()()23321=32a b a b a a b a b a b a −−+−−−⋅()31=3a b a a b a −−+ ()()()=3333b a b a a b a b a a +−++− 23a b =−+, 解方程组51a b a b +=⎧⎨−=−⎩得23a b =⎧⎨=⎩,当2,3a b ==时,原式有意义,∴原式2223311=−=−+⨯.【点睛】本题考查了分式的化简求值,掌握分式混合运算的法则是解题的关键.【答案】4【分析】根据2222244x y x y A x xy y x y −+=⋅+++,即可化简求值. 【详解】解:∵2222244x y x y A x xy y x y −+÷=+++ ∴()()()22222224422x y x y x y x y x y x y A x xy y x y x y x y x y +−−++−=⋅=⋅=++++++ 当2,1x y ==时,2112214A −==+⨯ 【点睛】本题考查分式的化简求值.将分子分母正确的进行因式分解是解题关键.【答案】2a +,5【分析】根据分式的减法和除法可以化简题目中的式子,然后从2−,2,3中选取一个使得原分式有意义的值代入化简后的式子即可. 【详解】解:22224a a a a a ⎛⎫−÷ ⎪−−⎝⎭ ()()22222222a a a a a a a a +−⎛⎫−=−⨯ ⎪−−⎝⎭()()22222a a a a a +−=⋅−2a =+,∵要使分式有意义,a 不能取0和2±,∴当3a =时,原式325=+=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式除法和减法的运算法则.【答案】26x −−;6− 【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:233139x x x +⎛⎫+÷ ⎪−−⎝⎭ ()()333333x x x x x ++−=÷−+− ()()33363x x x +−=−⋅− ()23x =−+26x =−−,当()()330x x +−=,即3x =或3x =−时,分式没有意义,当0x =时,原式266x =−−=−.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.【答案】()122x −;14042【分析】先根据分式混合运算法则进行化简,然后再代入数据求值即可. 【详解】解:2142422x x x x x +⎛⎫+÷ ⎪+−+⎝⎭ ()2142222x x x x x ⎡⎤++÷⎢⎥+−+⎣⎦=()()()()()()224222222222x x x x x x x x x ⎡⎤−++÷⎢⎥+−+−⎣⎦++= ()()22422224x x x x x ++=⋅+−+()122x =−,当2023x =时,原式()112202324042==⨯−.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.【答案】3a +【分析】先根据分式的加法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【详解】解:()()()()23333233231339323323a a a a a a a a a a a a a a a a −+−+−+−−⎛⎫+÷=⋅=⋅=+ ⎪−−−−−−⎝⎭,当3=a 时,原式33=+=【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.【答案】(1)无解(2)无解【分析】(1)去分母,化为整式方程求解,注意检验;(2)去分母,化为整式方程求解,注意检验;【详解】(1)解:2216124x x x ++=−−−,两边同时乘以2(4)−x ,得22(2)16(4)x x −++=−−, 44164x −−+=,2x =,2x =时,240x −=∴原方程无解.(2)解:两边同时乘以2(9)x −,得32(3)12x x −++=,39x =,3x =,3x =时,290x -=∴原方程无解.【点睛】本题考查分式方程的求解;掌握分式方程的求解步骤,注意检验是解题的关键.【答案】(1) 1.5x =(2)无解【分析】(1)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可;(2)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】(1)解:2111x x x +=−−, 去分母得:12x x +−=,移项合并同类项得:23x =,系数化为1得: 1.5x =,检验:把 1.5x =代入1x −得:1.510.50−=≠,∴ 1.5x =是原方程的解.(2)解:2216124x x x −−=+−,去分母得:()222164x x −−=−,去括号得:2244164x x x −+−=−,移项合并同类项得:48x −=,系数化为1得:2x =−,检验:把2x =−代入得:()2240−−=,∴2x =−是原方程的增根,∴原方程无解. 【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的一般步骤,准确计算,注意最后要对方程的解进行检验.【答案】(1)4x =;(2)原分式方程无解.【分析】(1)方程两边乘以最简公分母()22x x −,把分式方程转化成整式方程求解即可; (2)方程两边乘以最简公分母()()22x x +−,把分式方程转化成整式方程求解即可.【详解】(1)解:()21522x x x x +=−, 方程两边同乘()22x x −,得482510x x −+=−,解得:4x =,检验:当4x =时,()22160x x −=≠,4x ∴=是原方程的解,∴原方程的解为4x =;(2)解:2224162424x x x x x −++=+−−,()()()()2221622222x x x x x x +−−=+−+−,()()22162222x x x x x x −+−=+−+−,方程两边都乘()()22x x +−,得:()()222216x x −−+=,解得:2x =−,检验:当2x =−时,()()220x x +−=,∴2x =−是增根,即原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的方法是解题的关键. ) ).【答案】见解析【详解】解:(1),去分母,方程两边同时乘以x (x ﹣1),得:x2﹣2(x ﹣1)=x (x ﹣1),x2﹣2x+2=x2﹣x ,﹣x=﹣2,x=2,经检验:x=2是原分式方程的解;(2)去分母,方程两边同时乘以x2﹣1,得:(x+1)2﹣4=x2﹣1,x2+2x+1﹣4=x2﹣1,2x=2,x=1,经检验:x=1不是原分式方程的解,原分式方程无解.【点评】本题是解分式方程,明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论;注意去分母时,要同时乘以所有分母的最简公分母,解分式方程时,一定要检验.【答案】(1)1x =(2)2x =【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母,得32x x +−−,解,得1x =,经检验知1x =是分式方程的解;(2)原方程变形得()()23111111x x x x +=+−+− 去分母,得()()213111x x −++=, 解,得2x =,经检验知2x =是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
分式经典题型分类练习题
分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
100道分式试题及答案
100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。
请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。
然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。
分式练习题(附答案)
分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
最新初中数学—分式的分类汇编及解析
一、选择题1.将分式3aba b-中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变B .扩大3倍C .扩大9倍D .扩大6倍2.若xy y x =+,则yx 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、23.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( ) A . B . C .D .4.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2 C .﹣2或﹣2 D .2或2 6.已知,则的值是( )A .B .﹣C .2D .﹣27.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<< 8.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个 9.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c10.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14B .14-C .4D .-411.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x+ C .x +1 D .x ﹣112.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D .13.函数中自变量x 的取值范围是( )A .x≠2B .x≥2C .x≤2D .x >2 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.已知为整数,且分式的值为整数,则可取的值有( )A .1个B .2个C .3个D .4个16.下列各式的约分,正确的是 A .1a b a b --=- B .1a ba b--=-- C .22a b a b a b -=-+ D .22a b a b a b-=++ 17.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 18.化简﹣的结果是( )m+3 B .m-3 C . D .19.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣220.下列4个分式:①;②;③;④中最简分式有( )A .1个B .2个C .3个D .4个 21.在函数中,自变量的取值范围是( ) A .>3B .≥3且≠4C .>4D .≥322.若a >-1,则下列各式中错误..的是( ) A .6a >-6B .2a >-12C .a +1>0D .-5a <-523.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a ,b ,c 大小关系是( ) A .b <a <cB .b <c <aC .c <b <aD .a <c <b24.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( )A .不变B .扩大3倍C .缩小为原来的13D .扩大9倍 25.下列各式变形正确的是( ) A .B .C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】将分式3ab a b -中的a 、b 都扩大到3倍,则为3333333a b aba b a b ⨯⨯=⨯--,所以分式的值扩大3倍.故选B .2.B解析:B 【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可. y x 11+=1==+xyxy xy y x 考点:分式的通分,整体带入.3.A解析:A 【解析】试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程.4.C解析:C . 【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a ∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C . 考点:分式的值.5.D解析:D 【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221. 考点:(1)、分式的计算;(2)、分类讨论思想6. D解析:D 【解析】试题分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解:∵, ∴﹣=, ∴, ∴=﹣2.故选D .7.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.8.A解析:A【解析】分析:本题考查的是负指数幂的运算.解析:①10-3=0.00001,故①错误;②(0.0001)0=1正确;③3a -2=23a,故③错误;④(-2)3÷(-2)5=2-2,故④错误.故选A.9.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b , 故选B.10.C解析:C 【解析】试题分析:根据负整指数幂的性质1(0)pp a a a -=≠计算,可得12⎛⎫- ⎪⎝⎭2141()2==-. 故选C11.A解析:A 【分析】根据分式混合运算法则计算即可. 【详解】 解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ .故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.12.A解析:A 【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程.13.A解析:A 【解析】试题解析:根据题意得:2﹣x≠0, 解得:x≠2. 故函数中自变量x 的取值范围是x≠2.故选A .考点:函数自变量的取值范围.14.C解析:C 【解析】 原式=()()()2111m m m +++=21m +,当m =-3时,原式=-1;当m =-2时,原式=-2;当m =0时,原式=2;当m =1时,原式=1.m 的值有4个. 故选C.15.C解析:C 【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3 故选:C.16.C解析:C . 【解析】试题分析:根据分式的基本性质作答. 试题解析:A .()1a b a b a b a b---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b -+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b -+-==-≠+++,故该选项错误. 故选C . 考点:约分.17.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b ++==--,故选:C .考点:分式的化简求值.18.A解析:A 【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.19.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.20.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故选:B.21.B解析:B【解析】试题分析:根据分式的意义,可知x-4≠0,解得x≠4,根据二次根式有意义的条件可知x-3≥0,解得x≥3,因此x的取值范围为x≥3,且x≠4.故选:B.点睛:此题主要考查了复合算式有意义的条件,解题关键是根据复合算式的特点,逐步确定条件即可.主要有:分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数为非负数.22.D解析:D【解析】根据不等式的基本性质可知,A. 6a>−6,正确;B.2a>12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.23.C解析:C 【解析】 a =31()2-=8, b =(−2) ² =4, c =(π−2015) º =1, ∵1<4<8, ∴c <b <a , 故选C.24.A解析:A 【解析】将2210x y xy +中的x 、y 都扩大为原来的3倍得到:22331033x y x y +()()()()=229990x y xy +=2210x y xy+. 故选A.点睛:用3x 、3y 代换原式中的x 、y ,然后用分式性质化简即可.25.D解析:D 【解析】试题分析:因为x y x y x y x y -+-=--+,所以A 错误;因为2a bc d-+不能再化简,所以B 错误;因为0.20.032030.40.05405a b a b c d c d--=++,所以C 错误;因为,所以D 正确;故选:D.考点:分式的性质.。
初二分式所有练习题
初二分式所有练习题在初二数学学习中,分式是一个重要的知识点,也是学生们比较容易犯错的地方。
为了帮助同学们巩固分式的知识,下面我将提供一些初二分式的练习题,供大家练习。
题目1:简化分式将分式$\frac{12x^3y^2}{4x^2y^3}$进行简化。
解答:首先,我们可以进行分子和分母的因式分解。
分子可以写成$2^2 \times 3 \times x^3 \times y^2$,分母可以写成$2^2 \times x^2 \times y^3$。
然后,我们可以将相同的因式约掉,得到简化后的结果:$\frac{3x}{y}$。
题目2:分式加法计算$\frac{3}{4} + \frac{2}{5}$。
解答:首先,我们需要找到两个分式的公共分母。
对于$\frac{3}{4}$和$\frac{2}{5}$,其最小公倍数为20。
然后,我们将两个分式的分子乘以相应的公倍数得到同分母的分式,即$\frac{15}{20} + \frac{8}{20}$。
最后,我们将分子相加,保持分母不变,得到$\frac{23}{20}$。
如果需要,我们可以将其化简为$\frac{23}{20}$。
题目3:分式乘法计算$\frac{2}{3} \times \frac{4}{5}$。
解答:将$\frac{2}{3}$和$\frac{4}{5}$的分子相乘,分母相乘,得到$\frac{8}{15}$。
题目4:分式除法计算$\frac{5}{8} \div \frac{2}{3}$。
解答:将$\frac{5}{8}$乘以$\frac{3}{2}$的倒数,即$\frac{5}{8} \times \frac{3}{2}$。
然后,进行分子相乘,分母相乘,得到$\frac{15}{16}$。
题目5:分式的整体倍数计算$2 \times \left(\frac{1}{3} + \frac{2}{5}\right)$。
解答:首先,我们需要将两个分式相加,得到$\frac{5}{15} +\frac{6}{15}$。
分式有关练习题
分式有关练习题一、选择题1.下列分数中,质数是:A. 1/4B. 2/3C. 5/6D. 9/82. 下列分式的值最大的是:A. 1/2B. 2/3C. 3/4D. 4/53. 下列各分式中,正确的是:A. 3/5 < 4/7B. 1/4 > 2/7C. 5/6 = 4/7D. 3/8 = 5/64. 分数5/8的倒数是:A. 5/8B. 8/5C. 3/8D. 8/35. 分数9/16的约分结果是:A. 3/4B. 2/3C. 6/9D. 9/16二、填空题1. 将3/4化成分数的百分比形式,填写分数部分和百分号部分分别为____和____。
答:3/4 和 752. 将0.6化成分数形式,填写分子和分母分别为____和____。
答:3 和 53. 2/5除以1/3的结果为____。
答:6/5 或 1 1/54. 将3 1/4化成假分数形式,填写分子和分母分别为____和____。
答:13 和 45. 2/3乘以2/5的结果为____。
答:4/15三、计算题1. 计算:2/3 + 1/4 = ____。
答:11/122. 计算:3/4 - 1/3 = ____。
答:5/123. 计算:3/5 × 2/3 = ____。
答:2/54. 计算:1/2 ÷ 2/3 = ____。
答:3/45. 计算:5/8 + 3/4 - 1/2 = ____。
答:13/8 或 1 5/8四、应用题1. 爸爸煮了8只鸡蛋,妈妈说要给每个孩子分三分之一个鸡蛋,家里一共有4个孩子。
问每个孩子可以分到几个鸡蛋?答:每个孩子可以分到2个鸡蛋。
2. 小明学习了1/2小时,又学习了3/4小时,他一共学习了多长时间?答:小明学习了1 1/4小时。
3. 一桶果汁有5/6升,小明喝了2/3升后,还剩下多少升?答:还剩下1/6升。
4. 小华家种了9/12亩的水稻,小明家种了5/6亩的水稻,他们家一共种了多少亩的水稻?答:他们家一共种了11/12亩的水稻。
分式的约分与通分题型分类练习题
分式的约分与通分题型分类练习题一、约分题型1. 将分式 $\frac{36}{48}$ 约分为最简形式。
解析:分子和分母都是偶数,可以同时除以2,得到$\frac{18}{24}$;再次约分,得到最简形式 $\frac{3}{4}$。
2. 将分式 $\frac{15}{30}$ 约分为最简形式。
解析:分子和分母都能被5整除,可以同时除以5,得到$\frac{3}{6}$;再次约分,得到最简形式 $\frac{1}{2}$。
二、通分题型1. 将分式 $\frac{2}{3}$ 和 $\frac{3}{4}$ 通分。
解析:两个分式的分母分别为3和4,可以求得最小公倍数为12,因此需要将两个分式的分子和分母都乘以适当倍数使得分母都为12。
分式 $\frac{2}{3}$ 乘以4/4,得到 $\frac{8}{12}$;分式$\frac{3}{4}$ 乘以3/3,得到 $\frac{9}{12}$。
因此,通分后的两个分式为 $\frac{8}{12}$ 和 $\frac{9}{12}$。
2. 将分式 $\frac{1}{2}$ 和 $\frac{2}{5}$ 通分。
解析:两个分式的分母分别为2和5,可以求得最小公倍数为10,因此需要将两个分式的分子和分母都乘以适当倍数使得分母都为10。
分式 $\frac{1}{2}$ 乘以5/5,得到 $\frac{5}{10}$;分式$\frac{2}{5}$ 乘以2/2,得到 $\frac{4}{10}$。
因此,通分后的两个分式为 $\frac{5}{10}$ 和 $\frac{4}{10}$。
以上是分式的约分与通分题型分类练题的示例。
通过这些练题,可以加深对分式的约分和通分的理解,提升解题能力。
分式方程20道例题
分式方程20道例题一、基础题型例1:解方程(2)/(x + 1)=(1)/(x - 1)解析:1. 首先去分母,给方程两边同时乘以(x + 1)(x-1)(最简公分母),得到: - 2(x - 1)=x + 1。
2. 然后展开括号:- 2x-2=x + 1。
3. 接着移项:- 2x-x=1 + 2。
- 解得x = 3。
4. 最后检验:- 当x = 3时,(x + 1)(x - 1)=(3+1)×(3 - 1)=4×2 = 8≠0。
- 所以x = 3是原分式方程的解。
例2:解方程(x)/(x - 2)-1=(4)/(x^2)-4解析:1. 先将方程右边的分母因式分解,x^2-4=(x + 2)(x - 2)。
2. 去分母,方程两边同时乘以(x + 2)(x - 2),得到:- x(x + 2)-(x + 2)(x - 2)=4。
3. 展开括号:- x^2+2x-(x^2-4)=4。
- x^2+2x - x^2+4 = 4。
4. 化简得:- 2x=0,解得x = 0。
5. 检验:- 当x = 0时,(x + 2)(x - 2)=(0 + 2)×(0 - 2)=-4≠0。
- 所以x = 0是原分式方程的解。
例3:解方程(3)/(x)+(6)/(x - 1)=(x + 5)/(x(x - 1))解析:1. 去分母,方程两边同时乘以x(x - 1),得到:- 3(x - 1)+6x=x + 5。
2. 展开括号:- 3x-3+6x=x + 5。
3. 移项合并同类项:- 3x+6x - x=5 + 3。
- 8x=8,解得x = 1。
4. 检验:- 当x = 1时,x(x - 1)=1×(1 - 1)=0。
- 所以x = 1是增根,原分式方程无解。
二、有增根问题的分式方程例4:若关于x的分式方程(2)/(x - 2)+(mx)/(x^2)-4=(3)/(x + 2)会产生增根,求m的值。
分式运算练习题
分式运算练习题在数学学习中,分式运算是一个非常重要的概念。
掌握了分式运算的方法和技巧,可以帮助我们解决很多实际问题。
本文将为大家提供一些分式运算的练习题,以巩固对分式运算的掌握。
一、基础练习题1. 计算:$\frac{3}{4} + \frac{1}{2} =$2. 计算:$\frac{2}{3} - \frac{1}{4} =$3. 计算:$\frac{2}{5} \times \frac{3}{4} =$4. 计算:$\frac{3}{7} \div \frac{2}{5} =$5. 计算:$(\frac{1}{2} + \frac{1}{3}) \div \frac{2}{5} =$6. 计算:$\frac{3}{5} \times \frac{5}{6} \div \frac{4}{9} =$7. 计算:$(\frac{1}{2} - \frac{1}{3}) \times \frac{3}{4} =$8. 计算:$\frac{2}{3} + \frac{5}{6} \div \frac{7}{8} =$9. 计算:$(\frac{3}{4} \div \frac{1}{5}) \times \frac{2}{3} =$10. 计算:$\frac{2}{3} + (\frac{4}{5} - \frac{1}{2}) =$二、综合应用题1. 在一个箱子里,有一些苹果和梨。
若箱子里有 $\frac{3}{4}$ 的苹果和剩下的 18 个水果中的 $\frac{1}{3}$ 是梨,那么箱子里有多少个水果?2. 班上 $\frac{5}{6}$ 的同学都喜欢看电视剧,其中又有$\frac{2}{3}$ 的同学喜欢看古装剧。
若班上共有 36 名同学,那么有多少名同学喜欢看古装剧?3. 甲、乙、丙三个人一起合作完成了一个项目,他们分别完成了整个项目工作量的 $\frac{1}{3}$、$\frac{2}{5}$ 和 $\frac{1}{4}$。
分式经典题型分类练习题
zx4
题型三:求待定字母的值
【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 .
x3
x3
【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 .
x2
提示: x 2 a 0 且 x 2 , a 2 且 a 4 .
3
题型四:解含有字母系数的方程
【例 6】解关于 x 的方程
题型二:化简求值题 【例 2】已知 x x 1 5 ,求( 1) x2 x 2 的值;( 2)求 x4 x 4 的值 .
题型三:科学记数法的计算 【例 3】计算:( 1) (3 10 3 ) (8.2 10 2 )2 ;(2) (4 10 3 ) 2 (2 10 2 )3 .
练习 :
1.计算:( 1)
( 5) 5x 4 2 x 5 1
2x 4 3x 2 2
( 7) x x 9 x 1
x2 x 7 x1
(6) 1
x1 x8 x6
1 x5
1 x2
1 x4
2.解关于 x 的方程:
( 1) 1 1 2 (b 2a) ;(2) 1 a 1 b (a b) .
axb
a xbx
3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 .
x 2 x9 x 3 x8
七、分组通分法
例 7.解方程: 1
1
1
1
x 2 x5 x3 x4
(三)分式方程求待定字母值的方法
例 1.若分式方程 x 1 m 无解,求 m 的值。
x2 2x
例 2.若关于 x 的方程 x
x1
k2 x2 1
x 不会产生增根,求 k 的值。
分式经典题型分类练习题
分式经典题型分类练习题分式的运算一、分式的定义及有关题型题型一:考查分式的定义分式的定义是指分子和分母都是代数式的算式。
例如,下列代数式中,x-y和2x+y-a+b是分式。
题型二:考查分式有意义的条件当分母不等于0时,分式才有意义。
例如,当x不等于-4时,分式(x-4)/(x+4)有意义。
题型三:考查分式的值为的条件当分式的值为0时,分子等于0.例如,当x=1或x=-3时,分式(x-1)/(x+3)的值为0.题型四:考查分式的值为正、负的条件当分式的分子和分母都大于0或者都小于0时,分式的值为正;当分子和分母符号不同,分式的值为负;当分子等于0时,分式的值为0.练:1.当分母不等于0时,下列分式有意义:1) (x-3)/(6|x|-3)2) (3-x)/[(x+1)+12]3) 1/(x^2-1)2.当分子等于0时,下列分式的值为0:1) (x+4)/(x-5)2) (25-x^2)/(x^2-6x+5)3.解不等式:1) |x|-2<=x+12) (x+5)/(x^2+2x+3)>2/(x+3)二、分式的基本性质及有关题型1.分式的基本性质:分式可以化简、加减乘除。
2.分式的变号法则:分式的分子和分母同乘或同除一个非零数时,分式的值不变;分子和分母同变号时,分式的值也不变。
题型一:化分数系数、小数系数为整数系数为了方便计算,可以把分数系数、小数系数化为整数系数,但不改变分式的值。
题型二:分数的系数变号为了方便计算,可以把分式的分子和分母的首项的符号变为正号,但不改变分式的值。
题型三:化简求值题通过化简分式,可以求出分式的值。
例如,已知(12x-3xy+2y)/(yx+2xy+y)的值为5,求1/(x*y)的值。
练:1.把下列分式的分子、分母的系数化为整数,但不改变分式的值:1) 0.03x-0.2y/0.08x+0.5y2) 3/0.4a+b/5修改后的文章:分式的运算一、分式的定义及有关题型题型一:考查分式的定义分式的定义是指分子和分母都是代数式的算式。
初二下册分式专题(全部题型)
分式专题题型一:分式的概念:【例题1】 如下各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. 〔 〕 A 、1 B 、2 C 、3 D 、4【练一练】1. 如下式子中,属于分式的是 〔〕 A 、π1 B 、3xC 、11-x D 、522. 如下式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】如下各式中,〔1〕2m m +;〔2〕1||2m -;〔3〕239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 〔 〕A 、21x x -B 、112-+x xC 、112+-x xD 、11+-x x 2. 假如代数式4-x x 有意义,如此实数x 的取值X 围是________________. 3. (1)假如分式11+x 有意义,如此x 的取值X 围是________________; (2)分式ax x x +--532,当2=x 时,分式无意义,如此=a _______________________. 4. 假如不论x 取何实数,分式m x x x ++-6322总有意义,如此m 的取值X 围是______________________. 【例题3】当x 为何值时,〔1〕2132x x +-;〔2〕221x x x +-;〔3〕224x x +-.各式的值为0.【练一练】1. 分式11+-x x 的值是零,那么x 的值是 〔 〕 A 、-1 B 、0 C 、1 D 、1±2. 假如分式112--x x 的值是零,如此x 的值为 〔 〕 A 、-1 B 、0 C 、1 D 、1±3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)假如分式1232-a a 的值为负数,如此a 的取值X 围为__________________; (2)当整数=x _____________时,分式16-x 的值是负整数; (3)点)82017,22018(2-++n n n 在第四象限,如此n 的取值X 围是______________________. 2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的根本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】 如果把分式y x x232-中的y x ,都扩大3倍,那么分式的值〔〕A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍【例题6】不改变分式的值,将如下分式的分子、分母中的系数化为整数.(1)0.20.020.5x yx y +-〔2〕11341123x yx y+-【练一练】1. 如果把分式y x xy+中的x 和y 都扩大为原来的2倍,那么分式的值 〔〕 A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的212. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 〔〕A 、扩大为原来的3倍B 、缩小为原来的31C 、缩小为原来的91D 、不变3. 分式x --11可变形为 〔 〕 A 、11--x B 、x +-11 C 、x +11 D 、11-x 4. 不改变分式的值,将如下分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx x x 24.03.12.001.032+- (2) yx yx +-5.12.041题型四:分式的根本性质II (约分和通分):【例题7】约分:〔1〕; 〔2〕;〔3〕1616822-+-a a a ,其中5=a 〔4〕yx y x ---2422,其中1,3==y x【练一练】1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mn n m ---的最简公分母是____________;(3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a c b ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461yy y x y x -+-的最简公分母是_____________________________________; (6)分式ac b b a c c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________.【练一练】通分:(1)xz xz y x 45,34,2123 〔2〕32)1(,)1(,1a z a y a x --- 〔3〕42,882,4422-+-+-a c a a b a a a【例题8】xy y x 4=-,求yxy x y xy x ---+2232的值【练一练】1. 假如2=+a b b a ,如此=++++22224b ab a b ab a ___________;假如311=-y x ,如此代数式=----yxy x y xy x 22142____________; 2.311=-y x ,求y xy x y xy x ----2232的值.题型五:分式的加减:【例题9】计算:(1)22222333a b a b a b a b a b a b +--+- 〔2〕222422x x x x x +-+--〔3〕222222222a ab b a b b a a b++---〔4〕21132a ab +〔5〕2312224x x x x +-+--〔6〕211a a a ---.【练一练】1. (1)111+-+x x x =_________;(2)xy x y x y -+-=_________;(3)2222235b a a b a b a ---+=__________. 2. (1)1,3==+ab b a ,如此=+a b b a ___________;(2)0322=++b ab a ,如此=+a b b a __________. 3.〔1〕22256343333a b b a a b a bc ba c cba +-++-〔2〕2222()()a b a b b a ---〔3〕222442242x x x x x x -+-++-+【例题10】34(1)(2)12x A B x x x x -=+----,求整式A ,B .【练一练】1. 假如11)1)(1(3-++=-+-x B x A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】计算: (1)422449158a b x x a b (2)222441214a a a a a a -+--+-(3)222324a b a b c cd -÷(4)2222242222x y x y x xy y x xy-+÷+++.【练一练】1.计算:〔1〕32232)()2(yx x y --〔2〕x x x x x x +-÷-+-22211122.先化简,再求值:〔1〕,144421422x x x x x ++÷--其中14x =-⋅〔2〕,ab .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.3..0)255(|13|2=-+-+b a b a 求323232236().()()a ab b a b b a-÷--的值.题型七:分式方程:【例题12】解分式方程:〔1〕10522112x x +=--〔2〕225103x x x x -=+-〔3〕21233x x x -=---【练一练】〔1〕0122=-+x x 〔2〕22231--=-x x x 〔3〕x x x -=+--23123〔4〕1132-=+-x x x x题型七:分式方程增根问题:【例题13】(1)假如分式方程223242mx x x x +=--+有增根,求m 值;〔2〕假如分式方程2221151k k x x x x x ---=---有增根1x =-,求k 的值.【练一练】1、假如关于x 的方程0111=----x xx m 有增根,如此m 的值是〔〕A 、3B 、2C 、1D 、-12、假如关于x 的分式方程1322mx x x ++=--有增根,如此m 的值是〔〕A 、1m =-B 、2m =C 、3m =D 、0m =或3m =3、假如关于x 的方程0552=-+--x mx x有增根,如此m 的值是〔 〕A 、-2B 、-3C 、5D 、34、如果方程11322x x x -+=--有增根,那么增根是_____.假如方程114112=---+x x x 有增根,如此增根是______.5、分式方程5133x m x x+=--有增根,如此m 的值为. 6、(1)假如关于x 的分式方程xx x m 2132=--+有增根,如此该方程的增根为________________; (2)假如关于x 的方程2222=-++-x mx x 有增根,如此m 的值是__________________.7、假如关于x 的分式方程3232-=--x m x x 有增根,如此2-m 的值为________________.题型八:分式方程无解问题:【例题14】假如关于x 的分式方程6523212+-=---x x x ax 总无解,求a 的值。
分式题型练习题
分式题型练习题1. 须知分式题型是数学中常见的题型,包括求值、化简、运算等。
正确掌握分式的概念和运算规则对于解决数学问题至关重要。
本文将提供一些分式题型练习题,以帮助读者熟悉分式的应用。
2. 基础练习题(1) 求值:计算下列分式的值。
a) $\frac{3}{4} - \frac{1}{2}$b) $\frac{5}{6} \div \frac{2}{3}$c) $2 \times \left(\frac{1}{3} + \frac{2}{5}\right)$(2) 化简:将下列分式化简为最简形式。
a) $\frac{8}{12}$b) $\frac{16}{20}$c) $\frac{24}{36}$(3) 比较大小:比较下列分式的大小,用">"、"<" 或"=" 进行标记。
a) $\frac{5}{6}$ 、$\frac{4}{5}$b) $\frac{2}{3}$ 、$\frac{3}{4}$c) $\frac{7}{8}$ 、$\frac{5}{6}$3. 进阶练习题(1) 运算:进行下列分式的运算。
a) $\frac{3}{4} + \frac{2}{3}$b) $\frac{5}{6} \times \frac{7}{8}$c) $\frac{x}{6} = \frac{3}{4}$,求 $x$ 的值。
(2) 求未知量:解方程。
a) $\frac{x}{3} = \frac{4}{5}$,求 $x$ 的值。
b) $\frac{2x+3}{4} = \frac{x-1}{2}$,求 $x$ 的值。
(3) 应用题:解决实际问题。
a) 甲工人花 2 天修一段路,乙工人花 3 天修同样的路,他们一起修这段路需要多少天?b) 甲队的工人一天能挖 1/5 的沟,乙队的工人一天能挖 1/3 的沟,他们一起挖的话,一天能挖多少沟?4. 提示和解答(1) 基础练习题的求值和化简步骤较为简单,按照加减乘除的顺序进行计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 分式的运算(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+yx ,求y xy x y xy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+. 【例4】已知:21=-x x ,求221x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值. 3.已知:311=-b a ,求aab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x x x xx x ; (4)aa -+21,2 题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值; (3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ;(2)ab abb b a a ----222;(3)ba c cb ac b c b a c b a c b a ---++-+---++-232;(4)ba b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-; (6)2121111x x x ++++-;(7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x .2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+--(4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m(3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值.【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围.题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-xxx x ; (2)3423-=--x x x ;(3)22322=--+x x x ; (4)171372222--+=--+x x xx xx(5)2123524245--+=--x x x x (6)41215111+++=+++x x x x (7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+.3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----x x x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x 六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x 七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
例2.若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。
例3.若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。
例4.若关于x 的方程1151221--=+-+-x k xx k xx 有增根1=x ,求k 的值。