锐角三角函数-辅导

合集下载

九年级数学专题复习锐角三角函数

九年级数学专题复习锐角三角函数

总复习锐角三角函数【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点进阶:ABCabc(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点进阶:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点进阶:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点进阶:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点进阶:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点进阶:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c==,cos sin b A B c ==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高)②如图所示,1()2ABC S r a b c =++△.【典型例题】类型一、锐角三角函数的概念与性质例1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.举一反三:【变式】如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .类型二、特殊角的三角函数值 例2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.举一反三: 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值.例3.如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.CBA举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到0.1千米)类型三、解直角三角形及应用例4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长.例5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).举一反三:【变式】如图所示,正三角形ABC的边长为2,点D在BC的延长线上,CD=3.(1)动点P在AB上由A向B移动,设AP=t,△PCD的面积为y,求y与t之间的函数关系式及自变量t的取值范围;(2)在(1)的条件下,设PC=z,求z与t之间的函数关系式.例6.如图(1)所示,一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.(1)求AO与BO的长.(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图(2)所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A 沿NO下滑了多少米;②如图(3)所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【巩固练习】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35 B .45 C .34 D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247B .73C .724D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12B .22C .32D .336.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t an∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)。

中考数学-锐角三角函数(解析版)

中考数学-锐角三角函数(解析版)
专题 28 锐角三角函数
知识点一:锐角三角函数 1.三角函数定义 在 Rt△ABC 中,若∠C=90°
sin A A的对边 a
斜边
c
A的邻边
b
cos A
斜边
c
A的对边
a
tan A A的邻边 b
A的邻边
b
cot A A的对边 a
2.同角三角函数的关系
(1)平方关系: sin2 Acos2 A1
(1)三边之间的关系为 a2 b2 c2 (勾股定理)
(2)锐角之间的关系为∠A+∠B=90°
(3)30°角所对直角边等于斜边的一半。
(4)直角三角形斜边上的中线等于斜边的一半。
(5)边角之间的关系为:(三角函数定义)
2.其他有关公式
(1)
S
1 2
ab sin C
=
1 2
bc sin
A
=
1 2
ac sin
B
(2)Rt△面积公式:
S
1 2
ab
1 2
ch
(3)直角三角形外接圆的半径
R c 2
,内切圆半径
r abc 2
结论:直角三角形斜边上的高 h ab c
3.实际问题中术语的含义
(1)仰角与俯角
在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
(2)坡度:如图,我们通常把坡面的铅直高度和水平宽度的比叫做坡度(或坡比),用字母 i 表示,即 i h . l
见问题,这也是以后中考命题的趋势。 5.解决实际问题的关键在于建立数学模型,要善于把实际问题的数量关系转化为解直角三角形的问题.在 解直角三角形的过程中,常会遇到近似计算,应根据题目要求的精确度定答案.

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

锐角三角函数复习课课件

锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。

第15讲 锐角三角函数--提高班

第15讲 锐角三角函数--提高班

第15讲 锐角三角函数⎧⎪⎪⎨⎪⎪⎩正弦、余弦、正切特殊角的三角函数值锐角三角函数解直角三角形直角三角形的应用 知识点1 正弦、余弦、正切锐角三角函数相关概念 正弦:在直角三角形中,任意一锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作:sinA 。

余弦:在直角三角形中,任意一锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作:cosA 。

正切:在直角三角形中,任意一锐角∠A 的对边与邻边的比叫做∠A 的正切,记作:tanA 。

锐角A 的正弦,余弦,正切,都叫做A 的锐角三角函数。

(1)三角函数的实质是一些比,这些比只与角的大小有关,当角的大小确定时,它的三角函数值就确定了,也就是说,三角函数值随角度的变化而变化。

(2)由定义可知,0<sinA<1,0<cosA<1,tanA>0。

令y=sinA ,y=cosA ,y=tanA ,则函数中自变量的取值范围均为:0︒︒< <900A 函数的增减性分别为:①y=sinA 在自变量的取值范围内,y 随A 的增大而增大②y=cosA 在自变量的取值范围内,y 随A 的增大而减小③y=tanA 在自变量的取值范围内,y 随A 的增大而增大.【典例】1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则BC= ,sinA=【答案】4;【解析】解:∵∠C=90°,AB=5,AC=3,∴BC==4,∴sinA==, 2.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 .【答案】【解析】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.3.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=.【答案】2【解析】解:如图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,AC=2,∴BC===4,又∵∠D=∠A,∴tanD=tanA===2.【方法总结】1、利用某个锐角的三角函数值时,一定要把这个角放在直角三角形中。

初三-第01讲-锐角三角函数与解三角形(提高)-教案

初三-第01讲-锐角三角函数与解三角形(提高)-教案

学科教师辅导讲义学员编号:年级:九年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-----锐角三角函数与解三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握锐角三角函数的几何意义及计算公式;②掌握特殊角的三角函数值,并能进行熟练计算;③能根据题目已知条件,进行解三角形;④能利用三角函数进行简单的应用,并解决问题。

授课日期及时段T(Textbook-Based)——同步课堂体系搭建一、 知识概念(一) 三角函数的概念1、正弦,余弦,正切的概念(及书写规范) 如图,在 ABC Rt ∆中,(1)的邻边的对边A A A ∠∠=tan = a b(2)斜边的对边A A ∠=sin = a c(3)斜边的邻边A A ∠=cos = b c2、定义中应该注意的几个问题(1)sinA 、cosA 、tanA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形) (2)sinA 、 cosA 、tanA 是一个比值(数值)(3)sinA 、 cosA 、tanA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。

(二)特殊角的三角函数值度 数 sin αcos αtan α30°2123 33 45°22 22 160°23 21 3ABC∠A 的对边∠A 的邻边斜边ABCABC(三)三角函数之间的关系1、余角关系:在∠A+∠B=90°时B A cos sin = B A sin cos = 1tan tan =⋅B A2、同角关系sin 2A+cos 2A=1. .cos sin tan AAA = (四)斜坡的坡度1、仰角、俯角、坡度、坡角和方向角(1)仰角:视线在水平线上方的角叫仰角.俯角:视线在水平线下方的角叫俯角.(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或叫坡比),用字母i 表示.坡角:坡面与水平面的夹角叫坡角,用α表示,则有i =_tan α 如图所示,l hi ==αtan ,即坡度是坡角的正切值.(3)方向角:平面上,通过观察点O 作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从O 点出发的视线与水平线或铅锤线所夹的角,叫做观测的方向角.(五)解三角形1、定义锐角A 的正弦,余弦和正切都是∠A 的三角函数,直角三角形中,除直角外,共5个元素:3条边和2个角.除直角外只要知道其中2个元素(至少有1个是边),就可利用以上关系求出另外3个元素.2、解直角三角形应用题的步骤(1)根据题目已知条件,画出平面几何图形,找出已知条件中各量之间的关系.(2)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,构造直角三角形进行解决.3、解三角形关系解直角三角形时,正确选择关系式是关键:(1)求边时一般用未知边比已知边,去找已知角的某一个三角函数;(2)求角时一般用已知边比已知边,去找未知角的某一个三角函数;(3)求某些未知量的途径往往不唯一,其选择的原则:①尽量直接使用原始数据;②计算简便;③若能用乘法应避免除法.考点一:三角函数的概念例1、已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于()A.B.2C.D.【解析】∵∠C=90°,AB=,AC=1,∴BC==2,则tanA==2,故选:B.例2、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.【解析】B.例3、如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.【解析】C.考点二:特殊角的三角函数值例1、在△ABC中,若|sinA﹣|+(﹣tanB)2=0,则∠C的度数为()A.30°B.60°C.90°D.120°【解析】D.例2、计算:sin45°+cos230°﹣+2sin60°.【解析】原式=•+()2﹣+2×=+﹣+=1+.例3、【解析】原式=1×﹣4××+×=﹣+=.考点三:斜坡的坡度例1、一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【解析】B.例2、一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinαB.C.500cosαD.【解析】A.考点四:解三角形例1、如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2B.3 C.3D.2【解析】∵AC=6,∠C=45°,∴AD=AC•sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选:A.例2、如图,△ABC中,∠ACB=90°,tanA=,AB=15,AC=9.【解析】9.例3、如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)【解析】(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.【解析】D.2、如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.【解析】D.3、在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A.b=a•sinB B.a=b•cosB C.a=b•tanB D.b=a•tanB【解析】D.4、已知∠A为锐角,且tanA=,那么下列判断正确的是()A.0<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【解析】B.5、在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C=()A.30°B.60°C.90°D.120°【解析】D.6、如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为14+2米.【解析】如图,延长AD交BC的延长线于点F,过点D作DE⊥BC的延长线于点E.∵∠DCE=30°,CD=8米,∴CE=CD•cos∠DCE=8×=4(米),∴DE=4米,设AB=x,EF=y,∵DE⊥BF,AB⊥BF,∴△DEF∽△ABF,∴=,即=…①,∵1米杆的影长为2米,根据同一时间物高与影长成正比可得,=…②,①②联立,解得x=14+2(米).故答案为:14+2.7、如图,△ABC的顶点都是正方形网格中的格点,则tan∠BAC等于.【解析】设小正方形的边长为1,过C作CF⊥AB于F,由勾股定理得:AB==2,AC==2,BC=2,由三角形面积公式得:AB×CF=BC×AE,2×CF=2×2,解得:CF=,在Rt△AFC中,由勾股定理得:AF==,tan∠BAC===,8、计算:3sin60°﹣2cos30°﹣tan60°•tan45°.【解析】原式=3×﹣2×﹣×1=﹣﹣=﹣.9、如图,在Rt△ABC和Rt△CDE中,AB与CE相交于点F,∠ACB=∠E=90°,∠A=30°,∠D=45°,BC=6,求CF的长.【解析】过F作FM⊥BC于M,则∠FMC=∠FMB=90°,∵∠ECD=45°,∴∠CFM=45°=∠FCM,∴CM=FM=CF×sin45°=CF,∵∠A=30°,∠ACB=90°,∴∠FBM=60°,∴BM==CF×=CF,∵BC=CM+BM=6,∴CF+CF=6,解得:CF=18﹣6.➢课后反击1、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.【解析】B.2、已知α为锐角,且sinα=,那么α的余弦值为()A.B.C.D.【解析】D.3、在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形【解析】A.4、在△ABC中,∠C=90°,tanA=,则sinB,cosB,tanB中最小的是()A.tanB B.sinB C.cosB D.sinB或cosB 【解析】C.5、如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.【解析】6、如图,在正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为【解析】作AD⊥BC于D,由勾股定理得,AC=,AB=3,BC=4,△ABC的面积为:×AB×CE=6,∴×CB×AD=6,解得AD=,CD==,tan∠ACB==.7、某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为26米.【解析】268、计算:6tan260°﹣cos30°•tan30°﹣2sin45°+cos60°.【解析】原式=6×()2﹣×﹣2×+=18﹣﹣+=18﹣.9、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,BC=10,试求CD的长.【解析】过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,BC=10,∴∠ABC=30°,AC=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.直击中考1、【2015•丽水】如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【解析】C.2、【2012•内江】如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【解析】B.3、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.B.C.D.【解析】连接BD,选B.4、【2014•德州】如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米5、【2012•深圳】小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+)米B.12米C.(4﹣2)米D.10米【解析】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(米),EF=4cos30°=2(米),在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2(米),CE:DE=1:2,∴DE=4(米),∴BD=BF+EF+ED=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(+6)(米).故选:A.6、【2015•湖北】如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.【解析】过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.S(Summary-Embedded)——归纳总结重点回顾1、正弦,余弦,正切的概念2、特殊角的三角函数值3、斜坡的坡度4、解三角形名师点拨1、sinA、cosA、tanA是一个比值(数值),大小只与∠A的大小有关,而与直角三角形的边长无关2、在几何图形中求解三角函数值或者解三角形,找出直角三角形或做辅助线构造直角三角形是解题的关键。

数学九年级培优第25讲 《锐角三角函数》

数学九年级培优第25讲 《锐角三角函数》

第二十八章锐角三角函数第25讲锐角三角函数知识导航1.正弦、余弦、正切的概念及表示方法.2.特殊角的三角函数值.【板块一】求锐角三角函数值方法技巧1.结合图形,理解并牢记三角函数的定义.2.数形结合法熟记特殊角的三角函数值.3.求一个角的三角函数值,一般利用已有的或构造的直角三角形,也可以利用等角转化等,结合三角函数定义求解.题型一紧扣定义求三角函数值【例1】已知锐角α满足tanα=12,求sinα的值.【解析】在Rt△ABC中,∠C=90°,∠A=α,∵tanα=12BCAC=,∴设BC=x,AC=2x,∴AB,∴sinBCABα===【点评】由于三角函数的定义是基于直角三角形,所以要画出符合题意的直角三角形,结合勾股定理和三角函教的定义求解.【例2】如图,在正方形ABCD中,点M为AD的中点,点E为AB上一点,且BE=3AE,求cos∠ECM 的值.【解析】首先确定△EMC为直角三角形,设AE=x,则BE=3x,AM=MD=2x,CD=4x.∴AE MDAM CD=,又∠A=∠D=90°,∴△AEM∽△DMC,可得∠EMC=90°,由勾股定理可求CM=x,CE=5x,在Rt△CEM中,cos∠ECM=CMCE=.题型二等角转换求三角函数值【例3】如图,半径为3的⊙A经过原点O和点C(0,2),点B是y轴左侧⊙A优弧上一点,求tan∠OBC 的值.αA BCCBEA M D【解析】作直径CD,在Rt△OCD中.CD=6.OC=2.∴ODtan∠CDO=OCOD=,由圆周角定理得∠OBC=∠CDO,则tan∠OBC【点评】在圆中经常利用同弧或等弧所对的圆周角相等进行角的转换,用直径所对的圆周角去构造直角三角形.题型三构造直角求三角函数值【例4】如图,在Rt△BAD中,tan∠B=53,延长斜边BD到点C,使DC=12BD,连接AC,求tan∠CAD 的值.【解析】要求tan∠CAD,必须将∠CAD放在直角三角形中,考虑∠BAD=90°,故过点D作DE∥AB交AC于点E.则∠ADE=90°,且有△CDE∽△CBA可利用,由tan∠B=53ADAB=,设AD=5x,AB=3x,而13DE CDAB BC==,∴DE=x,∴tan∠CAD=155DE xAD x==.【点评】求一个角的三角函数值,必须将所求的角放在直角三角形中.题型四等比转化求三角函数值【例5】如图,等腰直角△ABC中,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为点E,连接CE,求tan∠ACE的值.CDBACDEBAA BDEC【解析】过点E 作EH ⊥AC 于点H ,易证AH =HE ,∴tan ∠ACE =HE AH AECH CH EB==,设BE =x ,则BD =CD,∴BC =x ,AB =4x ,∴AE =AB -BE =3x ,∴tan ∠ACE =AEEB=3.【例6】如图,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【解析】连接AC ,∵AB 是⊙O 的直径,∴∠ACP =90°,∴cos ∠APC =PCPA,又易证△PCD ∽△P AB ,∴63105PC CD PA AB ===,∴cos ∠APC =35. 【点评】在直角三角形中,锐角的三角函数值等于两边的比值,当这个比值无法直接求解时,可利用相似三角形对应线段成比例进行转化.题型五 利用特殊角求三角函数值【例7】利用45°角的正切,求tan 22.5°的值,方法如下:解:构造Rt △ABC ,其中∠C =90°,∠B =45°,如图,延长CB 到点D ,使BD =AB ,连接AD ,则∠D =12∠ABC =22.5°,设AC =a ,AB =BDa a ,∴CD =(1)a ,∴tan 22.5°=tan ∠D=AC CD =-1.A BE DHCAACA请你依照此法求tan 15°的值.【解析】构造如图所示的∠A =15°的直角三角形,∠C =90°,并过点B 作∠ABD =15°交AC 于点D ,则∠BDC =30°,设BC =x ,则BD =AD =2x ,CD,∴AC =(2x ,∴tan 15°=BC AC=2针对练习11.如图,△ABC 的顶点是正方形网格的格点,则sin A =.2.在Rt △ABC 中,∠C =90°,sin A =513,则tan B = 125 .3.如图,将边长为2的正方形ABCD 沿 EF 和ED 折叠,使得点B ,C 两点折叠后重合于点G ,则tan ∠FEG =12.4.如图,直线MN 与⊙O 相切于点M ,ME =EF ,EF ∥MN ,则cos ∠E =12. A D CBABCDG F DCBA E5.如图,在△ABC 中,∠C =90°,BC =1,AC =tan 2A的值.解:AB=7.延长CA 到点D ,使AD =AB =7,则CD =7+tan2A=tan ∠D=7- 6.如图,AC 为⊙O 的直径,△ABD 内接于⊙O ,BD 交AC 于点F ,过点B 的切线BE ∥AD 交AC 的延长线于点E ,若CF =2,AF =8,求sin ∠E 的值.解:连接OB ,CD ,∵CF =2,AF =8,∴AC =10.∴OB =5.易证CD ⊥AD ,OB ⊥AD ,∴OB ∥CD ,∴△BOF ∽△DCF .∴32OB OF CD CF ==.CD =103.sin ∠E =sin ∠CAD =CD AC =13. 7.将一副三角尺(Rt △ABC 与Rt △BDC )按如图所示摆放在一起,连接AD ,试求∠ADB 的正切值.解:过点A 作AM ⊥DB 交DB 的延长线于点M ,易证∠MBA =45°,∴设AM =BM =x,则AB x .∴BC,BD .∴tan ∠ADB =AMDM8.如图,在△ABC 中,BC =4,AC =6,AB =5,求tan12∠BAC ·tan 12∠CBA 的值.ABCDEAAEDCBABCDM解:过点C作CH⊥AB于点H,延长BA到点D,使AD=AC,延长AB到点E,使BE=BC,设AH=x,则BH=5-x,∴42-(5-x)2=62-x2,∴x=92.∴BH=12,CH∴tan12∠BAC=tan∠D=CHDH=2962+.tan12∠CBA=tan∠E=CHHE=2142+,∴tan12∠BAC·tan12∠CBA=13.方法技巧:深刻理解三角函数的定义,画出符合题意的示意图,充分运用数形结合的思想解题.▶题型一利用已知三角函数,求其他角的三角函数值【例1】同学们,在我们进入高中以后,将会学到三角函数公式:sin2α=2sinα·cosα,则当锐角a的正切值为12时,sin2a=.【解析】如图,在Rt△ABC中.∠C=90°,∠A=α,由tanα=BCAC=12,设BC=1,AC=2,则AB.sinα=BCAB,cosα=ACAB,由公式sin2α=2sinα·cosα=2=45.【点评】紧扣定义,运用公式解题.▶题型二利用已知三角函数,求线段长【例2】如图,点D是△ABC的边AC上一点,BD=8,sin∠CBD=34,AE⊥BC于点E,若CD=2AD,求AE的长.BACEDCBA HC BADBAO OFAB CDE【解析】过点D作DF⊥BC于点F,则DF=BD·sin∠CBD=8×2=6,由AE⊥B C.DF⊥BC,∴DF∥AE.∴△CDF∽△CAE.∴CDAC=DFAE=23.∴AE=32DF=9.【点评】因三角函数的本质是线段比,故与三角函数相关的计算常与相似三角形联系在一起.▶题型三利用已知三角函数,求线段比【例3】如图,在Rt△ABC中,CD,CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.【解析】易证△BCD∽△BAC,∴BC2=BD·BA,又BA,∴BD2,同理CD=DE=BE-BD222,又∵谈∠DCE=DECD=222b aab-=12,∴a2+ab-b2=0,∴ab▶题型四利用已知三角函数,求面积【例4】如图,在四边形ABCD中,∠BAC=90°,tan∠CAD=12,cos∠ACD,AC与BD交于点E,CDBE=2ED,求四边形ABCD的面积.【解析】过点D作DF⊥ACC于点F,则AB∥DF.∴△ABE∽△FDE.∴ABDF=AEEF=BEED=2,设EF=2a,AE=4a.∴AF=6a,在Rt△AFD中.tan∠F AD=FDAF=12,∴DF=3a,在Rt△CFD中,cos∠ACD =CFCD.∴CF=1,DF=3a=3,∴a=1,AC=7,AB=2DF=6,∴S四边形ABCD=S△ABC+S△AC=12AB·AC+12AC·DF=12×6×7+12×7×3=632.针对练习21.在△ABC中,∠A为锐角,BC=12.tan A=34.∠B=30°,则AB2.如图,点E是正方形ABCD的边CB的延长线上的一点,且tan∠DEC=34,则tan∠AED的值为EDCBAABCDEFE DCBA913.3.已知△ABC中,AB=10,AC=B=30°,则△ABC4.如图,在四边形ABCD中,BD是对角线,∠ABC=90”,tan∠ABD=34,AB=20,BC=10,AD=13,求CD的长.解:分别过点A,C作AH⊥BD于点H,CG⊥BD于点G,∵tan∠ABD=AHBH=34,∴设AH=3x,BH=4x,(3x)2+(4x)2=202,∴x=4.∴AH=12,BH=16.∴HD=5,BD=21,易证∠BCG=∠ABD,..tan∠BCG=GBGC=34,又BC=10,∴BG=6,CG=8,∴DG=BD-BG=15,∴CD==17.5.如图,在△ABC中,AB=BC=5,tan∠ABC=34.边BC的重直平分线与AB的交点为点D.求ADDB的值.解:过点D作DF⊥BC于点F,连接CD,则BD=CD,BF=CF=52,tan∠DBF=DFBF=34.∴DF =158,在Rt△BFD中,BD=258,∴AD=5-258=158,∴ADDB=35.6.如图,已知四边形ABCD的一组对边AD,BC的延长线相交于点E,∠ABC=120°,cos∠ADC=35,CD=5,AB=12,ACDE的面积为6,求四边形ABCD的面积.EDCBAAB CDGHDCBAAB CDF CBA解:过点C作CF⊥AD于点F,过点A作AG⊥EB于点G,在Rt△ACDF中,cos∠ADC=DF CD=3 5.又CD=5,DF=3,CF=4,∵S△CDE=12ED·CF=6,∴ED=3,∴EF=6,在Rt△BAG中,∠BAG=30°,AB=12,∴AG=EFC∽△EAG,得EFEG=CFAG,可求EG=BE=EG-BG=9 6.∴S四边形ABCD=S△ABE-S△CED=126)×6=75-E DCBA ABCDE FG。

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。

在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。

具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。

其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。

这些符号都是完整的,单独的“sin”没有意义。

在用大写字母表示角度时,一般省略“∠”符号。

在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。

例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。

例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。

证明△ABE≌△DFA,并求sin∠EDF的值。

解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。

又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。

又因为∠ADC=90°,所以∠AEB=90°。

因此,△ABE和△DFA是全等三角形。

接下来,求sin∠EDF的值。

由于∠BAC=45°,所以∠AED=45°。

由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。

因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。

解:由于∠A=60°,∠B=45°,所以∠C=75°。

根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。

学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。

本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。

一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。

一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。

解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。

例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。

因此,我们只需要根据这个定义和公式进行计算即可。

举个例子,题目给出角度A=30度,要求求出其正弦值sinA。

根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。

二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。

例如,正切函数的基本关系式是tanA=sinA/cosA。

这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。

解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。

例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。

解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。

四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。

辅导八:锐角三角函数知识点总结与典型例题

辅导八:锐角三角函数知识点总结与典型例题

锐角三角函数知识点总结与训练1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A90B 90∠-︒=∠︒=∠+∠得由B A 对边C5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,:i h l=hlα叫做方向角。

如图4,OA、OB、OC、OD的方向角分别是:北偏东45°(东北方向),南偏东45°(东南方向),南偏西45°(西南方向),北偏西45°(西北方向)。

锐角三角函数培优讲义33113

锐角三角函数培优讲义33113

讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。

3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。

三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。

3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。

4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。

5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。

(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。

初中数学竞赛辅导讲义及习题解答 第16讲 锐角三角函数

初中数学竞赛辅导讲义及习题解答 第16讲 锐角三角函数

第十六讲 锐角三角函数古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等.正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的sin 、cos 、tg 、ctg 的通用形式.三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质:1.单调性;2.互余三角函数间的关系;3.同角三角函数间的关系.平方关系:sin 2α+cos 2α=1;商数关系:tg α=ααcos sin ,ctg α=ααsin cos ; 倒数关系:tg αctg α=1.【例题求解】【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB=2,AB=29cm , 则S △ABC = .思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=135=AC CD ,tanB=2=BDCD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:(1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R Cc B b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( )A .32+B .32-23-思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC ,(1)求证:AC =BD ;(2)若sinC=1312,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明;(2) sinC=ACAD =1312,引入参数可设AD=12k ,AC =13k .【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根.(1)求实数p 、q 应满足的条件;(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B的正弦?思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数p 、q 应满足的条件.学历训练1.已知α为锐角,下列结论①sin α+cos α=l ;②如果α>45°,那么sin α>cos α;③如果cos α>21 ,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 . 2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB 135,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .4.化简(1)263tan 27tan 22-+ = .(2)sin 2l °+sin 22°+…+sin 288°+sin 289°= .5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )A .甲的最高B .丙的最高C .乙的最低D .丙的最低6.已知 sin αcos α=81,且0°<α<45°则co α-sin α的值为( ) A .23 B .23- C .43 D .43- 7.如图,在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( )A .3B .32C . 23D .43 8.如图,在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( )A .2B .2C . 1D .229.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.10.如图,D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=43,求AE 的长.11.若0°<α<45°,且sin αcon α=1673,则sin α= . 12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .14.设α为锐角,且满足sin α=3cos α,则sin αcos α等于( )A .61B .51 C .92 D .103 15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .23 C .1 D .21 16.如图,在△ABC 中,∠A =30°,tanB=23,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .29 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.18.如图,已知AB=CD=1,∠ABC =90°,∠CBD °=30°,求AC 的长.19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 π(2)设△ABC 滚动240°,C 点的位置为C ˊ,△ABC 滚动480°时,A 点的位置在A ˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tan α+tan β)÷(1-tan α·tan β),求出∠CAC ˊ+∠CAA ˊ的度数.参考答案。

锐角的三角函数

锐角的三角函数

•锐角三角函数的概念•锐角三角函数的性质•锐角三角函数的公式•锐角三角函数的应用•锐角三角函数的扩展目录01010203定义正切函数在区间(0, π/2)和区间(π/2, π)上都是增函数,且当α=0时,tan(α)=0;当α=π/4时,tan(α)=1。

性质应用01总结词详细描述周期性总结词在锐角三角形中,边长与角度之间存在直接的关系。

详细描述对于锐角三角形,边长与角度之间的关系可以通过正弦、余弦和正切函数来描述。

这些函数将边长和角度联系在一起,为解决几何问题提供了重要的工具。

角度与边的关系角度与面积的关系总结词详细描述01两角和与差的公式倍角公式余弦正切正弦03正切半角公式01正弦02余弦01已知两边及夹角解三角形已知三边及夹角解三角形已知三边长度解三角形解三角形方向角的计算极坐标系方向问题高度和深度问题高度测量在几何学中,高度是一个重要的概念。

利用三角函数可以方便地计算出任意两点之间的高度差。

深度测量在海洋学和地球物理学中,深度是一个重要的参数。

利用三角函数可以方便地计算出任意一点到海底的距离(深度)。

01范围任意角的三角函数值都有正、负之分,其取值范围为实数集。

定义任意角的三角函数定义为直角三角形中一个锐角对应边的长度与斜边长度的比值。

周期性任意角的三角函数值都具有周期性,即随着角度的变化,函数值呈现出周期性变化。

任意角的三角函数反三角函数定义反三角函数是指那些需要用已知三角函数值求解角度的函数。

种类反三角函数包括反正弦、反余弦和反正切等。

应用反三角函数在几何学、工程技术和科学计算等领域有广泛应用。

双曲函数与三角函数的联系联系公式应用感谢您的观看THANKS。

锐角三角函数(通用8篇)

锐角三角函数(通用8篇)

锐角三角函数(通用8篇)锐角三角函数篇1教学三维目标:一.学问目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能依据这些值说出对应的锐角度数。

二.力量目标:逐步培育同学观看、比较、分析,概括的思维力量。

三.情感目标:提高同学对几何图形美的熟悉。

教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切教学程序:一.探究活动1.课本引入问题,再结合特别角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaa= ,cosa= ,tana=3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。

4.同学练习p21练习1,2,3二.探究活动二1.让同学画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°归纳结果30°45°60°siaacosatana2. 求下列各式的值(1)sia 30°+cos30°(2)sia 45°- cos30°(3) +ta60°-tan30°abc三.拓展提高p82例4.(略)1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab四.小结五.作业课本p85-86 2,3,6,7,8,10锐角三角函数篇2一、锐角三角函数正弦和余弦第一課时:正弦和余弦(1)教学目的1,使同学了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使同学了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。

而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。

1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。

可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。

2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。

3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。

4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。

2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。

例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。

四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。

2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。

例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。

3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。

第二十八章锐角三角函数(教案)

第二十八章锐角三角函数(教案)
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义及其图像性质。对于难点部分,如函数互化公式的理解,我会通过具体例题和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器来测量并计算实际角度对应的函数值。
第二十八章锐角三角函数(教案)
一、教学内容
第二十八章锐角三角函数:
1.锐角三角函数的定义:正弦、余弦、正切的定义及表示方法。
2.锐角三角函数的图像:通过动态演示或静态图像,让学生直观理解正弦、余弦、正切函数的图像特征。
3.锐角三角函数的性质:周期性、奇偶性、单调性等。
4.锐角三角函数的互化:正弦、余弦、正切之间的关系及其互化公式。
举例:讲解正弦函数的定义时,通过直角三角形的比例关系引出正弦函数的概念,并强调在单位圆中的比值表示方法。
2.教学难点
-函数图像的动态理解:学生往往难以从静态图像中理解动态变化,如何让学生通过动态演示或交互式软件直观感受函数图像的变化。
-锐角三角函数互化公式的记忆与运用:正弦、余弦、正切之间的互化关系较复杂,学生需掌握并能灵活运用互化公式。
在新课讲授环节,我发现有些同学对锐角三角函数的定义理解不够深入,尤其是在函数图像的动态理解上存在困难。针对这一点,我采用了动态软件和教具进行演示,但感觉效果并不理想。我考虑在下一节课中增加互动环节,让学生自己动手操作,以便更直观地感受函数图像的变化。
在实践活动和小组讨论中,同学们表现出了较高的热情,能够积极参与讨论和实验操作。但在引导讨论时,我发现有些同学对实际问题的数学建模能力较弱,难以将问题抽象为数学模型。针对这一问题,我将在后续的教学中加强数学建模的培训,培养学生从实际问题中提炼数学问题的能力。

第1章-锐角三角函数-知识梳理

第1章-锐角三角函数-知识梳理

锐角三角函数一、基础知识1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ;sinA= a sinA c = 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ;cos b A c= 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA 。

tan a A b =把锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cosA 。

cos b A a =2、三角函数值 角度 三角函数0°30° 45° 60° 90° sinA 0 12 22 321 cosA 1 3222 12 0 tanA 0 33 1 3 不存在(2)锐角三角函数值的性质。

锐角三角函数的大小比较:在︒<<︒900A 时,随着A 的增大,正弦值越来越大,而余弦值越来越小.即:A sin 是增函数,A cos 减函数。

○1锐角三角函数值都是正数。

○2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。

3、 同角、互余角的三角函数关系:1、同角三角函数关系:1cos sin 22=+A A .sin tan cos ∂∂=∂;cos cot sin ∂∂=∂;tan cot 1∂•∂=2、互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。

解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。

直角三角形的可解条件及解直角三角形的基本类型已知条件解法 一条边和一个锐角 斜边c 和锐角AB=90°-A ,a=csinA ,b=ccosA ,s=c 2sinAcosA 直角边a 和锐角AB=90°-A ,b=acotA ,c sin a A =,21cot 2s a A = 两条边 两条直角边a和b 22c a b =+,由tan a A b=,求角A ,B=90°-A ,S=12ab 直角边a 和斜边c 22b c a =-,由sin a A c =,求 角A ,B=90°-A ,S=12a 22c a - 知识梳理:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数一.三角函数定义:正弦:∠A 的正弦=斜边的对边A ∠ 记作:sinA=ca=AB BC余弦: 正切:定义的理解:∠A 的正弦:sin A =ca=AB BC ∠A 的余弦:cos A = = , ∠A 的正切:tan A = = , ∠B 的正弦:sin B = = ∠B 的余弦:cos B = = , ∠B 的正切:tan B = = .定义的简单运用:1.直接给出直角三角形的两条边的大小来求锐角三角函数值:如图所示,在Rt △ABC 中,∠C =900,求sinAsinB,cosA,cosB,tanA,tanB 的值。

(1) (1) (1) (1)sinA = sinB= sinA = sinB= sinA = sinB= sinA = sinB=cosA = cosB= cosA = cosB= cosA = cosB= cosA = cosB=tanA = tanB= tanA = tanB= tanA = tanB= tanA = tanB=2.给出某个角的三角函数值和某一边,求三角函数值。

如图所示,在Rt △ABC 中,∠C =900,BC=6,sinA=53求sinB, cosA, ,tanA 的值。

A AB A A BC B BC C13 C 23 7 54 4 66CB A3.给出的是直角三角形中的两条边的比,求三角函数值。

如图所示,在Rt △ABC 中,∠C =900,125AB AC 求sinA, cosB,tanA,的值4.给出的是直角三角形中的某个角的三角函数值,求其它的三角函数值。

如图所示,在Rt △ABC 中,∠C =900, sinA=53求sinB, cosB, tanB 的值。

5求出几何图形的三角函数值。

(1)如图所示,已知△ABC 中,AB=AC=5,BC=6.求∠B 的三种三角函数值。

(2)如图所示,在Rt △ABC 中,∠C =900,AC=3,BC=4.CD 是斜边AB 上的高。

求∠BCD 的三种三角函数值。

6.整合训练题:1.在△ABC 中,若,AB=3,则cosA=______.2.在△ABC 中,∠C=90°,BC=3,AC=4,则tanA=_____,sinA=______,cosA=______. 3.在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,AC=5,sinA=125,则BC=______,CD=_____. 4.△ABC 中,∠C=90°,AB=c ,AC=b ,BC=a ,则cosA ·tanA=______.5.若三角形三边长的比为5:12:13,则此三角形最小内角的正切值为______. 6.在△ABC 中,若∠C=90°,∠B=2∠A ,则cosA 等于( )B CC BA CB DC B AA .32 B .12C .3D .337.Rt △ABC 中,各边长度都扩大两倍,那么锐角A 的各三角函数值( ) A .都扩大两部 B .都缩小两倍 C .保持不变 D .无法确定 8.如图1所示,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=•4, •设∠BCD=α,•则tan α的值为( )A .34 B .43 C .35 D .459.在Rt △ABC 中,已知∠C=90°,周长为60cm ,tanB=125,则△ABC 的面积是( ) A .30c m 2 B .60c m 2 C .120c m 2 D .240cm 210.如图2,菱形ABCD 的对角线AC=6,BD=•8,•∠ABD=α, •则tan α=•_______,•sin α=________,cos α=________.11.(2006·攀枝花)如图3所示,AB 是⊙O 的直径,弦AC 、BD 相交于E ,则CDAB等于( ) A .tan ∠AED B .cot ∠AED C .sin ∠AED D .cos ∠AED12.如图3,在△ABC 中,AC 、BC 边上的高BE 、AD 交于H ,若AH=3,AE=2, 求tanC 的值. 13.如图,在直角坐标系中,P 是第一象限的点,其坐标是(3,y ),且OP 与x 轴的正半轴的夹角α的正切值是43,求(1)y 的值;(2)角α的正弦值.14.将一副三角尺如图摆放在一起,连结AD ,试求∠ADB 的正切值.(3)(1)(2) (3)二.锐角三角函数的取值范围:1、锐角三角函数值,都是 实数(正、负或者0);2、正弦、余弦值的大小范围: <sin A < ; <cos A < 例:用定义证明:sinA+cosA > 1三.特殊角的三角函数值:1. 30°:sin 30°= , cos 30°= ,tan 30°= , 45°:sin 45°= , cos 45°= ,tan 45°= , 60°:sin 60°= , cos 60°= ,tan 60°= ,5、填表(2)、特殊角的三角函数值的题型:1、在Rt △ABC 中,已知∠C =900,∠A=450则A sin = 2、已知:α是锐角,221cos =α,tan α=______; 3、已知∠A 是锐角,且______2sin ,3tan ==AA 则;4、在平面直角坐标系内P 点的坐标(︒30cos ,︒45tan ),则P 点关于x 轴对称点P /的坐标为 ( )A . )1,23(B . )23,1(-C . )1,23(- D . )1,23(-- 5、下列不等式成立的是( )A .︒<︒<︒45cos 60sin 45tanB .︒<︒<︒45tan 60sin 45cosC .︒<︒<︒45tan 30cos 45cosD .︒<︒<︒30tan 60sin 45cos6、若1)10tan(30=+α,则锐角α的度数为( )A .200B .300C .400D .5007、计算 (1)_______60cos 45tan _______,60cos 30sin 0=+=+;(2)︒-︒+︒+︒-︒30sin 30cos 30tan 4145sin 60cos 22(3)000045tan 30tan 145tan 30tan ⋅-+ (4))60sin 45(cos 30sin 60cos 2330cos 45sin 00000---+(5)│-3│+2cos45°--1)0; (6)2cos45°+sin60°-4sin30°四..角的大小与三角函数值的大小之间的关系:若00<A<B<900,则(1)sinA sinB (2)cosA cosB (3)tanA tanB 练习:1. 若600<A<900,求sinA,cosA,tanA 的取值范围。

2. 若00<A<300,求sinA,cosA,tanA 的取值范围。

3. 若450<A<600,求sinA,cosA,tanA 的取值范围。

4.若300<A<600,求sinA,cosA,tanA 的取值范围。

5.已知A 为锐角。

(1)若0<cosA<23,则∠A 的取值范围是 。

(2)若0<sinA<23,则∠A 的取值范围是 。

(3)若0<cosA<21,则∠A 的取值范围是 。

(4)若21<cosA<23,则∠A 的取值范围是 。

(5)若0<tanA<33,则∠A 的取值范围是 。

六..用插入法判定角度范围:1.若sin a=0.6.则∠a 的取值范围是( )(A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 2.若cosa=0.6.则∠a 的取值范围是( )(A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 3.若tana=0.6.则∠a 的取值范围是( )(A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 4.若sin a=33.则∠a 的取值范围是( ) (A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 5.若cosa=33则∠a 的取值范围是( ) (A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 6.若tana=2.则∠a 的取值范围是( )(A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900 7.若tana=23.则∠a 的取值范围是( ) (A )00<a<300 (B)300<a<450 (C) 450<a<600 (D) 600<a<900七:.用插入法来判定三角函数值的范围:1. 已知:∠A=400 则sinA 的取值范围是( ) (A) 0<sinA<21 (B) 21<sinA<22 (C) 22<sinA<23 (D) 23<sinA<12. 已知:∠A=700 则sinA 的取值范围是( ) (A) 0<sinA<21 (B) 21<sinA<22 (C) 22<sinA<23 (D) 23<sinA<13. 已知:∠A=400 则cosA 的取值范围是( ) (A) 0<cosA<21 (B) 21<cosA<22 (C) 22<cosA<23 (D) 23<cosA<14. 已知:∠A=700 则cosA 的取值范围是( ) (A) 0<cosA<21 (B) 21<cosA<22 (C) 22<cosA<23 (D) 23<cosA<15. 已知:∠A=400 则tanA 的取值范围是( ) (A) 0<tanA<33 (B) 33<tanA<1 (C) 1<tanA<3 (D) tanA>3 6. 已知:∠A=700 则tanA 的取值范围是( ) (A) 0<tanA<33 (B) 33<tanA<1 (C) 1<tanA<3 (D) tanA>3 八.有用的变形公式:若A+B=90)则sin A= ,cos A= 。

相关文档
最新文档