电机调速课件—转速电流反馈控制的直流调速系统资料重点

合集下载

运动控制系统第2章 转速开环控制的直流调速系统

运动控制系统第2章 转速开环控制的直流调速系统

抑制电流脉动的措施
(1)增加整流电路相数,或采用多 重化技术; (2)设置电感量足够大的平波电抗 器。
3.晶闸管整流器-电动机系统的机械特性

当电流波形连续时,V-M系统的机械特性 方程式为 1 (2-7)
n
Ce
(U d0 Id R )
式中,Ce——电动机在额定磁通下的电动势 系数
C e K e N
最大失控时间 平均失控时间
Tsmax(ms)
Ts(ms)
20 10 6.67 3.33
10 5 3.33 1.67
晶闸管触发电路与整流装置的传递函数
滞后环节的输入为阶跃信号1(t),输出
要隔一定时间后才出现响应1(t-Ts)。 输入输出关系为:
U d 0 K sU c 1(t Ts )

2.1 直流调速系统用的可控直流电源
晶闸管整流器-电动机系统 直流PWM变换器-电动机系统
2.1.1 晶闸管整流器-电动机系统
图2-1 晶闸管整流器-电动机调速系统 (V-M系统)原理图
在理想情况下,Ud和Uc之间呈线性关系:U d K sU c
(2-1)
式中, Ud——平均整流电压, Uc ——控制电压, Ks——晶闸管整流器放大系数。

直流电动机电枢两端的平均电压为 t on U d U s U s (2-17) T 改变占空比 0 1 ,即可实现直流 电动机的调压调速。

Ud 令 U s 为PWM电压系数,则在不可逆
PWM变换器中

(2-18)
不可逆PWM变换器-直流电动机系统不允 许电流反向, 续流二极管VD的作用只是为id提供一个续 流的通道。 如果要实现电动机的制动,必须为其提供 反向电流通道 。

运动控制_第3章____转速、电流双闭环直流调速系统

运动控制_第3章____转速、电流双闭环直流调速系统

U
*
im
,转速外环呈开环状态,
转速的变化对系统不再产生影响。在这种情况下,电流负反
馈环起恒流调节作用,转速线性上升,从而获得极好的下垂
特性,如图 3-5中的AB段虚线所示。
第二十一页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
此时,电流
I
d
U* im ?
?
I dm
,Idm 为最大电流,是由设
差调节。
第二十页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
1) 转速调节器饱和
在电动机刚开始起动时,突加阶跃给定信号 U*n,由于
机械惯性,转速 n很小,转速负反馈信号 Un很小,则转速偏
差电压 ΔUn=U*n-Un>0很大,转速调节器 ASR 很快达到饱和
状态, ASR的输出维持在限幅值
图 3-5 双闭环直流调速系统的静特性
第二十三页,编辑于星期三:九点 二十二分。
第3章 转速、电流双闭环直流调速系统
2) 转速调节器不饱和
当转速n达到给定值且略有超调时 (即n>n0),ΔUn=
U*n-Un<0,则转速调节器 ASR的输入信号极性发生改变,
ASR 退出饱和状态,转速负反馈环节开始起转速调节作用,
用以调节起动电流并使之保持最大值,使得转速线性变化, 迅速上升到给定值; 在电动机稳定运行时,转速调节器退 出饱和状态,开始起主要调节作用,使转速随着转速给定信 号的变化而变化,电流环跟随转速环调节电动机的电枢电流 以平衡负载电流。
第六页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
器ACR和转速调节器 ASR的输入电压偏差一定为零,因此,

直流电机调速控制ppt课件

直流电机调速控制ppt课件
光电光电耦合器
参考教材 电子技术基础 维修电工 电机与变压器 p半pt精导选体版变流技术 电力电子技术 元器件手册 上21 网
④反馈信号用光电耦合电路取样。
参考教材
电子技术基础 维修电工(技师 高级技师) 半导体变流技术 电力电子技术 自动控制原
理 上网
ppt精选版
22
⑤可控整流电路和电机励磁电源的 改进
调速系统分交流和直流调速系统, 由于直流调速系统的调速范围广,静 差率小、稳定性好以及具有良好的动 态性能。因此在相当长的时期内,高 性能的调速系统几乎都采用了直流调 速系统。
ppt精选版
8
这就是所谓的电 源—电动机调速 系统(V—M) 系统,它属于开 环系统。
用晶闸管触发可控整流电路 实现电枢电压可调,从而达到改 变电机转速的目的。
参考教材
电子技术基础 维修电工(技 师 高级技师) 半导体变流技 术 电力电子技术 自动控制原 理 电机与变压器 上网
ppt精选版
23
⑥调速旋纽的改进
1、触摸式音量控制器代替RP22速度控制电位 器。
2、将电路改动后试运行。
参考教材 电子技术基础 上网
场效应管增强型N-MOS
ppt精选版
24
⑦全电路测量与调试
④电路中反馈信号直接在主电路取样,设备维护和检修 时有安全隐患,建议用光电耦合器隔离取样。
⑤可控整流电路和电机励磁电源有改进空间。
⑥手动调速旋纽使用时间长了会接触不良,影响系统稳 定,建议用触摸式电压调节器来改进。
ppt精选版
17
2、在原电路基础上提出改进意见,并重新绘
制系统原理图。
①用比例调节器代替原来的放大和比 较节。
他励直流电机的调速

《直流电机调速》课件

《直流电机调速》课件

直流电机调速的分类
直流电机调速可以分为线性调速和PWM调速两种方式。线性调速是通过改变电 机的输入电压或电流来实现调速的,而PWM调速则是通过改变电机输入电压的 占空比来实现调速的。
PWM调速具有更高的调速精度和更小的电机发热量,因此在许多应用中得到了 广泛的应用。
02
直流电机调速的方法
改变电枢电压调速
总结词
通过改变电枢两端的电压,可以调节直流电机的转速。
详细描述
当电枢两端电压增加时,电机转速相应增加;反之,当电压减小时,电机转速 相应降低。这种方法调速范围广,但需要可调直流电源,控制电路相对复杂。
改变励磁电流调速
总结词
通过改变励磁绕组的电流,可以调节 直流电机的磁场强度,进而调节电机 转速。
详细描述
02
直流电机调速是一种常见的电机 调速方式,具有调速范围广、调 速线性度好、动态响应快等优点 。
直流电机调速的原理
直流电机调速的原理基于直流电机的电磁转矩与电枢电流成 正比的特性。通过改变电枢电流的大小,可以改变电机的输 出转矩,从而调节电机的转速。
另外,直流电机还具有电枢反电动势,它与电枢电流的大小 成正比。改变电机的输入电压或电流,可以改变电机的输入 功率,进一步调节电机的转速。
控制复杂度较高
直流电机调速系统的控制算法相对复 杂,需要专业的技术人员进行维护和 调试。
05
直流电机调速的发展趋势
高性能直流电机调速系统的研究
总结词
随着工业自动化水平的提高,对直流电机调 速系统的性能要求也越来越高,高性能直流 电机调速系统的研究成为重要的发展趋势。
详细描述
为了满足高精度、高动态响应的调速需求, 研究者们不断探索新的控制算法和优化策略 ,以提高直流电机调速系统的调节精度、稳 定性和动态响应能力。

直流调速系统

直流调速系统

GT
Ud
Id
-
- Un +
+ RP2
-
n
+ IG
-
U tg
V-M闭环系统原理框图
-
( a ) 给 定 环 节 —— 产 生 控 制 信 号 : 由 高 精 度 直 流 稳压电源和用于改变控制信号的电位器组成。 (b)比较与放大环节——信号的比较与放大;由P、I、 PI运放器组成
(c)触发器和整流装臵环节(组合体)--功率放大
nnom 1000r/min、 Ra=0.05Ω
晶闸管整流器的内阻
Ks=30 问 题
Rrec=0.13Ω
要求D=20,s≤5%
问若采用开环V-M系统能否满足要求? 若采用α=0.015V·min/r转速负反馈闭环系统,问放大 器的放大系数为多大时才能满足要求?
解(1)设系统满足D=20,检验系统是否满足s≤5%?
特点:
损耗较大、有级 调速,机械特性 较软。 (2)弱磁调速 特点: 只能弱磁,调 速范围小
工程上,常将调压与调磁相结合,可以扩大调速范围 。
n
Φn Φ2 Φ1 Φ1 Φ2 Φn nn Un U d3 U d2 U d1 Ten
图1-2 调压和调 磁时的机械特性
U d1 U d2 U d3 U n
①系统结构图
U n
Un U d0
电动机
U n
放大器
U ct 整流器及
触发装置
n
速度检测
②系统中各环节的稳态输入输出关系如下: 电压比较环节 放大器
* U n U n Un
U ct K P U n
晶闸管整流器及触发装臵 U d 0 K sU ct

交直流调速系统之直流调速简介介绍课件

交直流调速系统之直流调速简介介绍课件

机的转速和电流, 机的转速和电流,
实现转速和电流 实现转速和电流
的闭环控制
的闭环控制
直流调速系统的工作过程
01
输入信号:接收来 自控制器的指令信

02
信号处理:将指令 信号转换为控制信

03
驱动控制:控制直 流电机的转速和转

04
反馈控制:根据直 流电机的运行状态, 调整控制信号,实
现闭环控制
05
直流调速系统的挑战与机遇
挑战:提高调速系统的效 率和稳定性,降低能耗和 成本
挑战:提高直流调速系统 的智能化水平,实现对复 杂工况的适应性
机遇:随着新能源技术的 发展,直流调速系统在电 动汽车、轨道交通等领域 的应用前景广阔
机遇:随着物联网技术的 发展,直流调速系统可以 实现远程监控和诊断,提 高系统的可靠性和维护性
直流伺服调 速系统:通 过控制直流 伺服电机的 位置和速度 来控制速度
04
直流变频调 速系统:通 过改变直流 变频器的输 出频率来控 制速度
直流调速系统的基本组成
整流器:将交 流电转换为直
流电
滤波器:滤除 直流电中的交
流成分
逆变器:将直 流电转换为交
流电
控制器:控制 逆变器的输出 频率和电压, 实现调速控制
电机的转矩
03
电压控制:通过控制电压的大小来控制
电机的转速
04
速度-电流双闭环控制:通过速度环和电
流环的协调控制来实现对电机的精确控制
直流调速系统的性能指标
0 1
调速范围:指直流调速系统能够实现的最
高转速和最低转速之间的差值
0 2
调速精度:指直流调速系统能够实现的转

直流电机调速原理

直流电机调速原理

直流电机调速原理
直流电机调速原理主要是通过控制电机的电压和电流来改变电机的转速。

直流电机调速可以分为电压调速和电流调速两种方法。

1. 电压调速:
电压调速是通过改变直流电机的供电电压来实现的。

当电机的电压降低时,电机的转速会相应降低;当电压增加时,电机的转速也会增加。

这是因为电机内部的电流与电压成正比关系,而电机的转速又与电机内部的电流成正比关系。

2. 电流调速:
电流调速是通过改变直流电机的电流来实现的。

电机的转速与电机的电流成正比关系,在一定电压的情况下,增大电机的电流可以提高电机的转速。

通过改变电机的电流大小,可以实现直流电机的调速。

在实际应用中,调速控制器会根据需要调整电机供电的电压或电流,以达到期望的转速。

常见的调速方法包括电压调制调速、PWM调速和编码器反馈调速等。

需要注意的是,直流电机调速原理中还涉及到调速控制系统中的反馈机制和控制算法。

例如,通过编码器等传感器对电机的转速进行实时测量,并将测量值与期望值进行比较,并根据比较结果进行调速控制。

通过不断调整电机供电的电压和电流,使电机的实际转速逐渐接近期望转速,从而实现直流电机的精确调速。

7第七章直流调速系统ppt课件

7第七章直流调速系统ppt课件
第7章 直流调速系统
7.1 直流调速系统概述 7.2 单闭环直流调速系统 7.3 带电流截止负反馈的闭环调速系统 7.4 闭环调速系统设计实例 7.5 多环直流调速系统
精选2021版课件
1
7.1 直流调速系统概述
7.1.1.直流调速系统的基本概念
在自动控制系统中,电力拖动系统是最重要的应用系统之一,
而电动机又是电力拖动系统的核心部件,它是将电能转化为机械能
的一种有力工具。根据电动机供电方式的不同,它可分为直流电动
机和交流电动机。由于直流电动机具有良好的启、制动性能,而且
可以在较大范围内平滑的调速,因此,在轧钢设备、矿井升降设备、
挖掘钻探设备、金属切削设备、造纸设备、电梯等需要高性能可控
制电力拖动的场合得到了广泛的应用。但直流电动机本身有着一些
7.1 直流调速系统概述
转速下限受低速时运转不稳定性的限制。对于要求在一定范围 内无级平滑调速的系统来说,此调速方式较好。改变电枢电压调速 (简称调压调速)是直流调速系统的主要调速方式。
2.改变励磁电流调速方式
改变电动机励磁回路的励磁电压大小,可改变励磁电流大小, 从而改变励磁磁通大小而实现调速,此种调速方式称为改变励磁电 流调速方式。其机械特性如图7-2所示。
这种调速方案属于恒功率调速。调磁调速的调速范围不大,一
般只是配合调压调速方式,在电动机额定转速之上作小范围的升速。
将调压调速和调磁调速复合起来则构成调压调磁复合调速系统,
精选2021版课件
上一页 下一页 返6 回
7.1 直流调速系统概述
可得到更大的调速范围,额定转速以下采用调压调速,额定转 速以上采用调磁调速。 3.电枢回路串电阻调速方式 在电动机电枢回路串接附加电阻,改变串接电阻的阻值,也可 调节转速,此种调速方式称为电枢回路串电阻调速方式。 这种调速方式只能进行有级调速,且串接电阻有较大能量损耗, 电动机的机械特性较软,转速受负载影响大,轻载和重载时转速不 同。另外,该调速方式中的调速电阻损耗大,经济性差,一般只应 用于少数性能要求不高的小功率场合。其机械特性如图7-3所示。

第3章转速、电流反馈控制的直流调速系统-PPT文档资料

第3章转速、电流反馈控制的直流调速系统-PPT文档资料
电力拖动自动控制系统 —运动控制系统
第3章 转速、电流反馈控制 的直流调速系统
内 容 提 要
转速、电流反馈控制直流调速系统的组成 及其静特性 转速、电流反馈控制直流调速系统的动态 数学模型 转速、电流反馈控制直流调速系统调节器 的工程设计方法 MATLAB仿真软件对转速、电流反馈控制 的直流调速系统的仿真

第Ⅱ阶段:恒流升速阶段(t1~t2)
n n
*



Id基本保持在 Idm,
0 Id Idm t
电动机加速 到了给定值 n*。
ASR输出达到限幅值时,转速外环呈开环 状态,转速的变化对转速环不再产生影响。 双闭环系统变成一个电流无静差的单电流 闭环调节系统。稳态时

Id
U

* im
Idm
(3-2)
AB段是两个调 节器都不饱和 时的静特性, Id<Idm, n=n0。 BC段是ASR调 节器饱和时的 静特性,Id=Idm, n < n 0。
3.1.2 稳态结构图与参数计算
图3-2 转速、电流反馈控制直流调速系统原理图 ASR——转速调节器 ACR——电流调节器 TG——测速发电机
1. 稳态结构图和静特性




转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压, 当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和; 当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。 对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。

自动控制技术第三章 直流调速系统

自动控制技术第三章  直流调速系统
晶闸管可控整流器供电的直流调速系统(V-M系统)
第三章 直流调速系统
与旋转变流机组及离子拖动变流装置相比, 晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。由图可见,晶闸管可控整流器的功率 放大倍数在104以上,其门极电流可以直接用晶 体三极管来控制,不再像直流电动机那样需要 较大功率放大装置。在控制作用的快速性方面, 变流机组是秒级,而晶闸管整流器是毫秒级, 这将会大大提高系统的动态性能。
直流斩波器的控制方式 b)脉冲频率调制
第三章 直流调速系统
用全控式器件实行开关控制时,多用脉冲宽度调制的控制方式,形成近年来 应用日益广泛的PWM装置—电动机系统,简称PWM调速系统或脉宽调速系统。
直流斩波器的控制方式 c)两点式控制
第三章 直流调速系统
与V-M系统相比,PWM调速系统有下列优点: (1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就足以 获得脉动很小的直流电流,电枢电流容量连续,系统的低速运行平稳,调速范围 较宽,可达1∶10 000左右。又由于电流波形比V-M系统好,在相同的平均电流即 相同的输出转矩下,电动机的损耗和发热都较小。 (2)同样由于开关频率高,若与快速响应的电动机相配合,系统可以获得很 宽的频带,因此快速响应性能好。动态抗干扰能力强。 (3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。 因受到器件容量的限制,直流PWM调速系统目前只用于中、小功率的系统。
在静止可控整流方面,离子拖动系统是最早应用的静止变流装置供电的直流 调速系统。它虽然克服了旋转变流机组的许多缺点,而且还缩短了响应时间,但 汞弧整流器造价较高,维护麻烦,特别是水银如果泄漏,将会污染环境,危害人 体健康。

第2章第5讲转速反馈控制直流调速系统

第2章第5讲转速反馈控制直流调速系统

(2-91) 式中Tsam为采样周期。
2.4.3 数字PI调节器

数字PI调节器有位置式和增量式两种算法, 位置式算法中,u(k)为第k拍的输出值。比例部分只 与当前的偏差有关,积分部分则是系统过去所有偏 k 差的累积。
u(k ) K P e(k ) K I Tsam
e (i ) K
i 1
P e( k ) u I ( k )
K P e(k ) K I Tsame(k ) u I (k 1)

增量式算法只需要当前的和上一拍的偏差即可计算 输出值。
(2-93) u(k ) u(k ) u(k 1) K P e(k ) e(k 1) K I Tsame(k )
RI d n ( Rs I d U com ) Ce (1 K ) Ce (1 K ) Ce (1 K )
* K p K s (U n U com ) * K p K sU n
K p Ks
Ce (1 K )

( R K p K s Rs ) I d Ce (1 K )
Q n2 n1

2.数字测速方法的精度指标
(2)测速误差率

测速误差率:转速实际值和测量值之差与实际值 之比, 记作

(2-76) 测速误差率反映了测速方法的准确性,δ越小, 准确度越高。
n 100% n
2.数字测速方法的精度指标 (3) 测速原理
由光电式旋转编码器产生与被测转速成正比的 脉冲,测速装置将输入脉冲转换为以数字形式表 示的转速值。 脉冲数字(P/D)转换方法: (1)M法—脉冲直接计数方法; (2)T 法—脉冲时间计数方法; (3)M/T法—脉冲时间混合计数方法。

第2章 转速反馈控制的直流调速系统(第三周)

第2章 转速反馈控制的直流调速系统(第三周)

1. 被调量有静差
从静特性分析中可以看出,由于采用了比例放大
器,闭环系统的开环放大系数K值越大,系统的稳 态性能越好。然而,Kp =常数,稳态速差就只能减 小,却不可能消除。因为闭环系统的稳态速降为
ncl
RI d Ce (I
K)
只有 K = ,才能使 ncl = 0,而这是不可能的。
因此,这样的调速系统叫做有静差调速系统。实际
式中: K KpKs 闭环系统的开环放大系数
Ce
系统的静特性方程式
n
K
p
KsU
* n
RId
Ce (1 K ) Ce (1 K )
2.3 转速反馈控制的直流调速系统
2.3.2 比例控制的直流调速系统
闭环系统静特性和开环系统机械特性
n op
n cl
n
K
p
KsU
* n
RId
(静特性方程)
n
K
p
K
sU
✓nmax和nmin是电动机在额定负载时的最高和最低转速
✓一般取nN≈nmax
2.2 稳态调速性能指标和直流调速系统的机械特性
2.2.1转速控制的要求和稳态调速性能指标
稳态性能指标:
调速范围 静差率
D= nmax n min
当系统在某一转速下运行时,负载由理想空载增加
到额定值所对应的转速降落ΔnN与理想空载转速n0之比:
比较一下开环系统的机械特性和闭环系统的静特 性,就能清楚地看出反馈闭环控制的优越性。如果 断开反馈回路,则上述系统的开环机械特性为
n Ud0 IdR Ce
K
p
KsU
* n
Ce
RId Ce
n0op

第五章 直流电动机调速控制系统

第五章 直流电动机调速控制系统

结论:调速系统只要在调速范围的最低 工作转速时满足静差率要求,则其在整个调 速范围内都会满足静差率要求。
图5-5 不同转速下的静差率
3. 调速范围与静差率的关系 静差率和调速范围必须同时考虑才有意义,由各自的 定义式可知:提调速范围时,任何系统的调速范围都可以 很大;而单提静差率,大多数系统也会较容易满足。 对同一个系统 ,有:
nnom S n0nin
nnom (1 S )nnom nmin n0 min nnom nnom S S
由调速范围(对于调压调速
nmax nnom ),
n D max nmin
nnom nmin
将上页的 nmin 表达式代入本式,得
nnomS D nnom(1 S )
其中,调速范围D、静差率S取决于生产加工工艺要求 ,是无法变更的。为使上式成立,只能设法减少额定负载下 的转速降落。 无反馈控制的开环调速系统,额定负载下的转速降落值为:
n nom I dnom R Ce
其中,R是电枢回路总电阻,为系统固有参数, Idnom是对 应额定负载时的电流,也是固定的。所以,一般开环系统无 法满足一定调速范围和静差率性能指标要求。
如果在负载增加的同时设法增大系统的给定电压 Un,就会使电动机电枢两端的 电压Ud增大,电动机的转速就会升高。若Un增加量大小适度,就可以使因负载增加 而产生的 n被Ud升高而产生的速升所弥补,结果会使转速n接近保持在负载增加前 的值上。 这样,既能使系统有调速能力,又能减少稳态速降,使系统具有满足要求的调 速范围和静差率。 系统组成如图 我们可以在与调速电动机 同轴接一测速发电机TG,这 样就可以将电动机转速 n 的大 小转换成与其成正比的电压信 号Un,把Un与Un相比较后, 去控制晶闸管整流装置以控制 电动机电枢两端的电压Ud就 可以达到控制电动机转速 n 的 目的。

转速﹑电流双闭环直流调速系统

转速﹑电流双闭环直流调速系统
图2-4双闭环直流调速系统的稳态结构框图
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。

闭环-转速电流双闭环直流调速系统

闭环-转速电流双闭环直流调速系统
《运动控制系统》
§2.2 转速、电流双闭环直流调速系统
一、双闭环调速系统的控制规律
转速单闭环系统被调节的是n,检测的误差是n, 要消除的也是扰动对n的影响。故不能控制电流(转 矩)的动态过程。
电流截止负反馈环节只能限制电流的冲击,不 能控制电流保持为某一所需值。
经常正、反转运行的调速系统,希望尽量缩短 启动、制动和反转过渡过程的时间,即要求系统动 态性能好,单闭环就不能满足要求了。
整个系统的本质由外环速度调节器来决定。即: 当ASR不饱和时,电流负反馈使静特性可能产生的 速降完全被ASR的积分作用所抵消了;一旦ASR饱 和,当负载电流过大,系统实现保护作用使n下降 过大时,转速环即失去作用,只剩下电流环起作用, 这时系统表现为恒流调节系统,静特性便会呈现出 很陡的下垂特性。
各变量的稳态工作点和稳态参数计算:
C
IdN
Idm
Id
BC段:描述ASR饱和后(ACR不饱和)的电流单闭环
系统的静特性,转速外环呈开环状态,表现为电流
无静差。
Id
U
* im
Idm
(n < n0 )
ASR的限幅值Uim由设计者选定——限定了最大电 流值Idm。
2、稳态参数:
转速调节器输出:
U
* i
Ui
Id
I dL
电流调节器输出:Uc
加快动态过程。 (4)电机过载/堵转时,限制Idlmax,起快速自动保护作用。
调节器的输出限幅作用
转速调节器ASR的输出限幅电压U*im决定
电流给定电压的最大值Idm;
电流调节器ACR的输出限幅电压Ucm限制 了电力电子变换器的最大输出电压Udm。
当ASR饱和时,相当于电流单闭环系统,实现 “只有电流负反馈,没有转速负反馈”

《电力拖动自动控制系统》复习要点

《电力拖动自动控制系统》复习要点

阮毅、陈伯时《电力拖动自动控制系统(第4版)》复习要点第一章绪论1、运动控制系统的组成2、运动控制系统的基本运动方程式me L d JT T dt ω=-mm d dtθω=3、转矩控制是运动控制的根本问题。

4、负载转矩的大小恒定,称作恒转矩负载。

a )位能性恒转矩负载b)反抗性恒转矩负载。

5、负载转矩与转速成反比,而功率为常数,称作恒功率负载。

6、负载转矩与转速的平方成正比,称作风机、泵类负载。

直流调速系统第二章转速反馈控制的直流调速系统1、直流电动机的稳态转速:e U IR n K -=Φ2、调节直流电动机转速的方法:(1)调节电枢供电电压;(2)减弱励磁磁通;(3)改变电枢回路电阻。

3、V-M系统原理图4、触发装置GT 的作用就是把控制电压U c 转换成触发脉冲的触发延迟角α。

改变触发延迟角α可得到不同的U d0,相应的机械特性为一族平行的直线。

5、脉宽调制变换器的作用:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速。

6、调速范围:生产机械要求电动机提供的最高转速n max 和最低转速n min 之比。

7、静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比。

8、调速范围、静差率和额定速降之间的关系:(1)N N n s D n s =∆-N N ND n s n D n ∆=+∆(1)N N n s n D s ∆=-9、转速负反馈闭环直流调速系统稳态结构框图10、直流电动机的动态结构11、开环系统机械特性和比例控制闭环系统静特性的关系:(1)闭环系统静特性可以比开环系统机械特性硬得多;(2)闭环系统的静差率要比开环系统小得多;(3)如果所要求的静差率一定,则闭环系统可以大大提高调速范围。

12、当负载转矩增大,闭环调速系统转速自动调节的过程:TL ↑→I d ↑→n ↓→U n ↓→∆U n ↑→U c ↑→U d0↑→n ↑13、比例调节器的输出只取决于输入偏差量的现状,而积分调节器的输出则包含了输入偏差量的全部历史。

实验四 转速、电流反馈控制直流调速系统的仿真

实验四  转速、电流反馈控制直流调速系统的仿真

实验四转速、电流反馈控制直流调速系统的仿真一、实验目的熟练使用MATLAB下的SIMULINK软件进行系统仿真。

学会用MATLAB下的SIMULINK软件建立转速、电流反馈控制的直流调速系统的仿真模型和进行仿真实验的方法。

二、实验器材PC机一台,MATLAB软件三、实验参数采用转速、电流反馈控制的直流调速系统,按照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n的响应数据,绘制出它们的响应曲线,并对实验数据进行分析,给出相应的结论。

转速、电流反馈控制的直流调速系统中各环节的参数如下:直流电动机:额定电压U N = 220 V,额定电流I dN =136 A,额定转速n N = 1460r/min,电动机电势系数C e= 0.132 V·min/r,允许过载倍数λ=1.5。

晶闸管整流装置的放大系数K s = 40。

电枢回路总电阻R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数T m = 0.18 s,整流装置滞后时间常数T s=0.0017s,电流滤波时间常数T oi=0.002s。

电流反馈系数β=0.05V/A(≈10V/1.5I N)。

四、实验内容1、电流环的仿真。

参考教材P90中相关内容建立采用比例积分控制的带限幅的电流环仿真模型,设置好各环节的参数。

图1电流环的仿真模型2、按照表1中的数据分别改变电流环中比例积分控制器的比例系数K p 和积分系数K i ,观察电流环输出电枢电流I d 的响应曲线,记录电枢电流I d 的超调量、响应时间、稳态值等参数,是否存在静差?分析原因。

表1 比例积分系数t/sI d /A不同比例系数Kp 和积分系数Ki 时的电枢电流曲线表1不同比例系数K p 和积分系数K i 的电枢电流数据对比分析:由表1可知,不同的比例系数K p 和积分系数K i 会影响系统的电枢电流且系统存在静差,原因是电流调节系统受到电动机反电动势的扰动,电动机反电动势是一个线性渐增的扰动量,所以系统做不到无静差。

运动控制系统第3章-转速闭环控制的直流调速系统ppt

运动控制系统第3章-转速闭环控制的直流调速系统ppt

s)
闭环时,Dcl
nN s ncl (1
s)
得到 Dcl (1 K )Dop
(2-50)
闭环系统静特性和开环系统机械特性的关系
开环系统 Id n 例如:在图2-24中工作点从A A′
闭环系统 Id n Un Un Uc
n Ud0 例如:在图2-24中工作点从A B 比例控制直流调速系统能够减少稳态速降的实质在于它的自动 调节作用,在于它能随着负载的变化而相应地改变电枢电压, 以补偿电枢回路电阻压降的变化。
图2-26 积分调节器的输入和输出动态过程
图2-26 积分调节器的 输入和输出动态过程
只要ΔUn>0,积分调 节器的输出Uc便一直 增长;只有达到 ΔUn=0时, Uc才停止 上升;只有到ΔUn变 负, Uc才会下降。
当ΔUn=0时, Uc并 不是零,而是某一个 固定值Ucf
突加负载时,由于Idl的 增加,转速n下降,导 致ΔUn变正,
由式(2-48)可得
K
nop
1
275
1 103.6
ncl
2.63
则得
Kp
K
K s / Ce
103.6 30 0.015 / 0.2
46
即只要放大器的放大系数等于或大于46。
3.1.3 闭环直流调速系统反馈控制规律
(1)比例控制的反馈控制系统是被调量有 静差的控制系统 比例控制反馈控制系统的开环放大系数值 越大,系统的稳态性能越好。 但只要比例放大系数Kp=常数,开环放大 系数K≠∞,反馈控制就只能减小稳态误差, 而不能消除它, 这样的控制系统叫做有静差控制系统。
电力拖动自动控制系统 —运动控制系统
第3章
转速闭环控制的 直流调速系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以及退饱和三种情况。
17
图3-6 双闭环 直流调速系统 起动过程的转 速和电流波形
18
第Ⅰ阶段:电流上升阶段(0~t1)
n
Ⅰ n*


电流从0到达最

大允许值 Idm
0
t
Id Idm
IdL
0
t1
t2 t3 t4
t
19
在t=0时,系统突加阶跃给定信号Un*,在ASR和 ACR两个PI调节器的作用下, Id很快上升,在Id上 升到Idl之前,电动机转矩小于负载转矩,转速为零。
ASR——转速调节器 ACR——电流调节器
TG——测速发电机
6
1. 稳态结构图和静特性
转速调节器ASR的输出限幅电压决定了电流给定 的最大值,电流调节器ACR的输出限幅电压限制 了电力电子变换器的最大输出电压,
当调节器饱和时,输出达到限幅值,输入量的变 化不再影响输出,除非有反向的输入信号使调节 器退出饱和;
起动电流呈矩形波,转速按线 性增长。这是在最大电流(转矩) 受限制时调速系统所能获得的最快 的起动(制动)过程。
4
3.1.1 转速、电流反馈控制直流调速系统 的组成
应该在起动过程中只有电流负反馈,没有转速负反馈;在达 到稳态转速后,又希望只要转速负反馈,不再让电流负反 馈发挥作用。
在系统中设置两个调节器,分别引入转速负反馈和电流负 反馈以调节转速和电流,
BC段是ASR调 节器饱和时的 静特性,Id=Idm, n<n0。
图3-4 双闭环直流调速系统的静特性
11
在 负负 反载 馈电 起流 主小要于调节Idm作时用表。现为转速无静差,转速 当负载电流达到Idm时,转速调节器为饱和输出
U电*流im,无电静流差调。节器起主要调节作用,系统表现为 采用两个PI调节器形成了内、外两个闭环的效果。 当 小A,SIRd<处Id于m,饱使和转状速态上时升,,Idn=>Idnm0,,若Δn负<0载,电AS流R减反
(3-5)
13
根据各调节器的给定与反馈值计算有关的
反馈系数: 转速反馈系数
U
* nm
nmax
电流反馈系数
U
* im
I dm
(3-6) (3-7)
两个给定电压的最大值U*nm和U*im由设计 者选定。
14
3.2 转速、电流反馈控制直流调速系统 的数学模型与动态过程分析
3.2.1 转速、电流反馈控制直流调速系统的动态数学模型
电力拖动自动控制系统 —运动控制系统
第3章
转速、电流反馈控制 的直流调速系统
1
内容提要
转速、电流反馈控制直流调速系统的组成 及其静特性
转速、电流反馈控制直流调速系统的动态 数学模型
转速、电流反馈控制直流调速系统调节器 的工程设计方法
2
3.1 转速、电流反馈控制直流调速系统 的组成及其静特性
图3-5 双闭环直流调速系统的动态结构图
15
3.2.2转速、电流反馈控制直流调速系统 的动态过程分析
对调速系统而言,被控制的对象是转速。 跟随性能可以用阶跃给定下的动态响应描述。 能否实现所期望的恒加速过程,最终以时间
最优的形式达到所要求的性能指标,是设置 双闭环控制的一个重要的追求目标。
16
当调节器不饱和时,PI调节器工作在线性调节状 态,其作用是使输入偏差电压在稳态时为零。
对于静特性来说,只有转速调节器饱和与不饱和 两种情况,电流调节器不进入饱和状态 。
7
图3-3 双闭环直流调速系统的稳态结构图 α——转速反馈系数 β——电流反馈系数
8
(1) 转速调节器不饱和
两个调节器都不饱和,稳态时,它们的输 入偏差电压都是零。
U
* n
Un
n
n0
U
* i
Ui
I d
n
U
* n
n0
(3-1)
I节器饱和
ASR输出达到限幅值时,转速外环呈开环 状态,转速的变化对转速环不再产生影响。
双闭环系统变成一个电流无静差的单电流 闭环调节系统。稳态时
Id
U
* im
I dm
(3-2)
10
AB段是两个调 节器都不饱和 时的静特性, Id<Idm, n=n0。
1.起动过程分析
电 值 态流 等 值I于 Idd从LI。d零m不增变长,到以Id后m,又然下后降在并一经段调时节间后内到维达持稳其 转速波形先是缓慢升速,然后以恒加速上升,产
生超调后,到达给定值n*。 起动过程分为电流上升、恒流升速和转速调节三
个阶段, 转速调节器在此三个阶段中经历了不饱和、饱和
对于经常正、反转运行的调速系统,缩短起、制 动过程的时间是提高生产率的重要因素。
在起动(或制动)过渡过程中,希望始终保持电 流(电磁转矩)为允许的最大值,使调速系统以 最大的加(减)速度运行。
当到达稳态转速时,最好使电流立即降下来,使 电磁转矩与负载转矩相平衡,从而迅速转入稳态 运行。
3
图3-1 时间最优的理想过渡过程
把转速调节器的输出当作电流调节器的输入,再用电流调 节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外 边,称作外环。形成了转速、电流反馈控制直流调速系统 (简称双闭环系统)。
5
3.1.2 稳态结构图与参数计算
图3-2 转速、电流反馈控制直流调速系统原理图
向积分,使ASR调节器退出饱和。
12
2.各变量的稳态工作点和 稳态参数计算
双闭环调速系统在稳态工作中,当两个调 节器都不饱和时,各变量之间有下列关系
U
* n
Un
n
n0
(3-3)
Ui* Ui Id IdL
(3-4)
Uc
Ud0 Ks
Cen Id R Ks
CeU
* n
/
I dL
R
Ks
当 Id ≥ IdL 后,电机开始起动,由于机电惯性作用, 转速不会很快增长,ASR输入偏差电压仍较大, ASR很快进入饱和状态,而ACR一般不饱和。直到 Id = Idm , Ui = U*im 。
20
第Ⅱ阶段:恒流升速阶段(t1~t2)
n
Ⅰ n*


Id基本保持在Idm,
电动机加速到了
0
t 给定值n*。
Id Idm
IdL
0
t1
t2 t3 t4
t
21
ASR调节器始终保持在饱和状态,转速环仍 相当于开环工作。系统表现为使用PI调节器 的电流闭环控制;
电流调节器的给定值就是ASR调节器的饱和 值U*im,基本上保持电流Id = Idm不变;
电流闭环调节的扰动是电动机的反电动势, 它是一个线性渐增的斜坡扰动量,系统做不 到无静差,而是Id略低于Idm。
相关文档
最新文档