中考数学二轮复习专题几何问题探究测试

合集下载

2023年中考数学二轮专题训练——几何探究压轴题(含答案)

2023年中考数学二轮专题训练——几何探究压轴题(含答案)

2023年中考数学二轮专题训练:几何探究压轴题1.已知是的中线,点是线段上一点,过点作的平行线,过点作的平行线,两平行线交于点,连结.【方法感知】如图①,当点与点重合时,易证:.(不需证明)【探究应用】如图②,当点与点不重合时,求证:四边形是平行四边形.【拓展延伸】如图③,记与的交点为,的延长线与的交点为,且为的中点.(1)______(2)若,时,则的长为______.2.已知:如图,正方形与正方形.(1)如图①,求证:;(2)如图②,求的值;(3)如图③,分别取的中点,试探究:与的关系,并说明理由.3.在中,,点是射线上的一动点(不与点、重合),以为一边在的右侧作,使,,连接.(1)如图1,当点在线段上,且时,那么________度;(2)设,.①如图2,当点D在线段上,时,请你探究与之间的数量关系,并证明你的结论;②如图3,当点D在线段的延长线上,时,请将图3补充完整;写出此时与之间的数量关系,并说明理由.4.已知,为等边三角形,点在边上.【基本图形】如图1,以为一边作等边三角形,连结.可得(不需证明).【迁移运用】如图2,点是边上一点,以为一边作等边三角.求证:.【类比探究】如图3,点是边的延长线上一点,以为一边作等边三角.试探究线段,,三条线段之间存在怎样的数量关系,请写出你的结论并说明理由.5.综合与实践二轮复习中,刘老师以“最值问题”为专题引导同学们进行复习探究.问题模型:等腰三角形,,,(1)探究:如图,点为等腰三角形底边上一个动点,连接,则的最小值为______,判断依据为______;(2)探究:在探究的结论下,继续探究,作的平分线交于点,点,分别为,上一个动点,求的最小值;(3)探究:在探究的结论下,继续探究,点为线段上一个动点,连接,将顺时针旋转,得到线段,连接,求线段的最小值.6.问题提出(1)如图1,在中,,,将其折叠,使点B落在边上的处,折痕经过点C,交于点D,则的度数为___________;问题探究(2)如图2,正方形的一条对称轴l交于点H,点E在l上,连接.若正方形的边长为2,,求线段的长.问题解决(3)如图3,有一块三角形空地经测量,米,.现要过点C边修建一条小路,满足,点A关于的对称点为D,连接交于点E.若米,请利用所学知识,求的长.7.已知是等腰直角三角形,,(1)如图1,是等腰直角三角形,点D在的延长线上,,连接,求证:;(2)如图2,点F是斜边上动点,点G是延长线上动点,总有,探究的数量关系,并说明理由;(3)如图3,点H是一点,连接FH,若,,,直接写出的面积为____________(用m,n表示).8.课本再现如图1,在等边中,为边上一点,为上一点,且,连接与相交于点.(1)与的数量关系是______,与构成的锐角夹角的度数是______.深入探究(2)将图1中的延长至点,使,连接,,如图2所示.求证:平分.(第一问的结论,本问可直接使用)迁移应用(3)如图3,在等腰中,,,分别是边,上的点,与相交于点.若,且,求的值..四边形中,,为上一点,连、.(1)平分,,①如图1,求证:;②如图2,若平分,交于F,交于N,,(2)在(1)的条件下求的值;,当,时,试探究与的数量关系,证明你的结论.,在中,,为的中点,连接,,试猜想与的数量关系,并加以证(1)独立思考:请解答老师提出的问题;(2)实践探究:希望小组受此问题的启发,将沿着(F为的中点)所在直线折叠,如图②,点C的对应点为,连接并延长交于点G,请判断与的数量关系,并加以证明.问题解决:智慧小组突发奇想,将沿过点对应点为,使于点,折痕交于点,连接,交于点组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果..问题提出:已知矩形,点为上的一点,,交于点.将绕点顺时针旋转得到,则与有怎样的数量关系.【问题探究】探究一:如图,已知正方形,点为上的一点,,交于点.(1)如图1,直接写出的值;(2)将绕点顺时针旋转到如图所示的位置,连接、,猜想与的数量关系,并证明你的结论;探究二:如图,已知矩形,点为上的一点,,交于点.,若四边形为矩形,,将绕点顺时针旋转得到、的对应点分别为、点,连接、,则的值是否随着的变化而变化.若变化,请说明变化情况;若不变,请求出的值.【一般规律】如图,若四边形为矩形,,其它条件都不变,将绕点顺时针旋转得到,连接,,请直接写出与的数量12.定义:有一个角是直角的平行四边形叫做矩形.(1)根据定义判矩形已知:如图1,在平行四边形中,是它的两条对角线,.求证:平行四边形是矩形.(2)动手操作有发现如图2,在矩形中,是的中点,将沿折叠后得到,点在矩形内部,延长交于点.猜想线段与有何数量关系?并证明你的结论.(3)类比探究到一般如图3,将(2)中的矩形改为平行四边形,其它条件不变,(2)中的结论是否仍然成立,请说明理由.(4)解决问题巧应用如图4,保持(2)中的条件不变,若点是的中点,且,请直接写出矩形的面积.13.在中,,,点P是平面内不与点A,C重合的任意一点,连接,将线段绕点P逆时针旋转α得到线段,连接,,.(1)观察猜想如图①,当时,的值是_______,直线与直线相交所成的较小角的度数是________.(2)类比探究如图②,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图②的情形说明理由.14.(1)(问题背景)如图1,在等边中,点M是边上一点,连接,以为边作等边(A,M,N按逆时针方向排列),连接,求证:(2)(变式探究)如图2,已知,指出图中的另外一对相似三角形并进行证明;(3)(拓展应用)如图3,在和中,,,点D在边上,求的值.15.(1)【操作发现】如图1,四边形都是矩形,,,小明将矩形绕点C顺时针转,如图2所示.若的值不变,请求出的值,若变化,请说明理由.在旋转过程中,当点E、F在同一条直线上时,画出图形并求出的长度.)【类比探究】,中,,,为中点,为平面内一个动点,且,将线段绕点D逆时针旋转得到,则四边形面积的最大值为.(直接写出结果),在矩形中,,动点射线方向移动,作关于直线的对称,设点的运动时间为.(1)若.①如图2,当点落在上时,求证:,②是否存在异于图2的时刻,使得是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线与直线相交于点M,且当时存在某一时刻有结论成立,试探究:对于的任意时刻,结论“”总是成立?请说明理由..在正方形中,是边上一点(点不与点、重合),连结.感知:如图①,过点作交于点.求证.探究:如图②,取的中点,过点作交于点,交于点.(1)求证:.(2)连结,若,求的长.应用如图③,取的中点,连结.过点作交于点,连结、.若,求四边形的面积.18.点在四边形的对角线上,直角三角板绕直角顶点旋转,其边、分别交、边于点、.操作发现:如图①,若四边形是正方形,当时,可知四边形是正方形,显然.当与不垂直时,判断确定、之间的数量关系;______.(直接写出结论即可)类比探究:如图②,若四边形是矩形,试说明.拓展应用:如图③,改变四边形、的形状,其他条件不变,且满足,,,时,求的值.参考答案:1.【拓展延伸】(1);(2)2.(2)(3),3.(1)90(2)①,证明见解析;②,5.(1);点到直线的距离垂线段最短(2)(3)6.(1);(2);(3)米7.(2)(3)8.(1);60°(3)39.(1)(2)(3)10.(1),(2),(3)11.[问题探究]探究一:(1);(2),探究二:.[一般规律]12.(2),(3)成立,(4)13.(1)1,;(2),,14.(2)(3);15.(1)①不变,;②或;(2)24 16.(1)②存在,的值为2或6或(2)对于的任意时刻,结论“”总是成立,17.((2)2应用:918.操作发现:;类比探究:拓展应用:。

2019年中考数学二轮复习几何探究题(压轴题) 综合练习 (含答案)

2019年中考数学二轮复习几何探究题(压轴题)  综合练习 (含答案)

2019年中考数学二轮复习几何探究题(压轴题)综合练习1. (1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.(4)由此推广到一般情形(如图④),分别以△ABC 的AB 和AC 为边向△ABC 外作正n 边形,BE 和CD 仍相交于点O ,猜想∠BOC 的度数为____________________(用含n 的式子表示).图① 图② 图③ 图④3.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于点N ,连接CM.(1)如图①,若点M 在线段AB 上,求证:AP ⊥BN ;AM =AN.(2)①如图②,在点P 运动过程中,满足△PBC ∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)?②是否存在满足条件的点P ,使得PC =12?请说明理由.4. 如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③5. 已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②6. 如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.7. 阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.8. 如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.9. 已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm.对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD 于点F.设运动时间为t(s)(0<t<6),解答下列问题:(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 值;若不存在,请说明理由.10. 如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF.(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA. ①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.11. 已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE ∽△CBF ;②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).12. 如图①,菱形ABCD 中,已知∠BAD =120°,∠EGF =60°,∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于点E 、F.图①(1)如图②,当顶点G 运动到与点A 重合时,求证:EC +CF =BC ; (2)知识探究:①如图③,当顶点G 运动到AC 中点时,探究线段EC 、CF 与BC 的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上).(2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.14. 在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.备用图15.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.CB 上,且CD ∶DB =2∶1,OB 交AD 于点E ,平行于x 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿y 轴向上平移,到C 点时停止;l 与线段OB ,AD 分别相交于M ,N 两点,以MN 为边作等边△MNP(点P 在线段MN 的下方),设直线l 的运动时间为t(秒),△MNP 与△OAB 重叠部分的面积为S(平方单位). (1)直接写出点E 的坐标; (2)求S 与t 的函数关系式;(3)是否存在某一时刻t ,使得S =12S △ABD 成立?若存在,请求出此时t 的值;若不存在,请说明理由.备用图17. 已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF ⊥BC ;②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;18. 如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.参考答案1. (1)解:如图①中,∵AB=10,AC=6,AD是BC边上中线,由旋转性质知,BE=AC=6,AD=DE.∴在△ABE中,10-6<AE<10+6,即4<2AD<16,∴2<AD<8;(2)证明:延长FD至M,使FD =MD ,连接ME ,MB.如图①所示. ∵ED ⊥FM ,FD =DM , ∴ME =EF.∵CD =BD ,∠CDF =∠BDM , ∴△CDF ≌△BDM(SAS ), ∴CF =BM.∵BM +BE>ME ,∴BE +CF>EF;(3)解:BE +DF =EF. 理由:延长EB 至点N ,使BN =DF ,图②连接CN ,如图②所示.∵∠EBC +∠D =180°,∠EBC +∠CBN =180° ∴∠D =∠CBN ,∴在△CDF 和△CBN 中, ⎩⎪⎨⎪⎧DF =BN ∠D =∠CBN DC =BC, ∴△CDF ≌△CBN(SAS ),∴CF =CN.∵∠BCD =140°,∠ECF =70°, ∴∠DCF +∠BCE =70°,∴∠BCN +∠BCE =70°,即∠NCE =70°, ∴在△ECF 和△ECN 中, ⎩⎪⎨⎪⎧CF =CN ∠ECF =∠ECN CE =CE, ∴△ECF ≌△ECN(SAS ), ∴EF =EN.∵EB +BN =EN ,∴BE +DF =EF.2. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC,(2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°,∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°. (4)解:180°-180°·(n -2)n. 【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 3. (1)证明:∵△PBC ∽△PAM , ∴∠PBC =∠PAM.∵四边形ABCD 是正方形,∴∠PBC +∠PBA =∠CBA =90°, ∴∠PAM +∠PBA =90°, ∴∠APN =90°,即AP ⊥BN , ∴∠BPA =∠BAN =90°. ∵∠ABP =∠NBA ,∴△ABP ∽△NBA ,PB AB =PAAN , ∴AN AB =PA PB .又∵△PAM ∽△PBC , ∴PA PB =AM BC , 故AN AB =AM BC . 又∵AB =BC ,∴AM =AN ;(2)解:①点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 仍然成立;②不存在,理由如下:选择图②,如图,以AB 为直径,作半圆O ,连接OC ,OP ,∵BC =1,OB =12, ∴OC =52.∵由①知,AP ⊥BN ,∴点P 一定在以点O 为圆心、半径长为12的半圆上(A ,B 两点除外). 如果存在点P ,那么OP +PC ≥OC ,则PC ≥5-12.∵5-12>12,故不存在满足条件的点P ,使得PC =12.4. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF.②解:如图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF , ∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106, ∴DH =9105.5. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA=(CP DA )2,即14=(CP8)2, ∴CP =4,∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10.(2)线段EF 的长度始终不发生变化,为2 5.证明:如图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG, ∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.6. 解:(1)△ABP ∽△PCD.【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PE的值为定值.如图,过点F 作FG ⊥BC ,垂足为G.类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG ,∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12,即在旋转过程中,PE PF 的值为定值12. (3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12,又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t , ∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t) =t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去). ∴t 的值是2-45 5. 7. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h ,又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m=2,∴sin ∠A 1B 1C 1=12, ∴∠A 1B 1C 1=30°, ∴∠A 1E 1B 1+∠A 1D 1B 1=30°.8. 解:(1)根据题意BM =2t ,BN =BC -3t , 而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如图①, △NBM ∽△ABC ,cos B =cos 30°=BMBN , ∴2t 53-3t=32,解得t =157.②当∠BNM =∠ACB =90°时,如图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM , ∴53-3t 2t =32,解得t =52.因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大,而△MBN 的面积是S =12BM ×BN ×sin B =12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0,∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538,因此四边形ACNM 面积最小值是12×5×53-2538=7538. 9. (1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10, ∴AO =CO =5, ∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC , ∴△APO ≌△CEO ,∴PO =OE =t.作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形. (2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N.图②则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t , S △OCD =12·CD·ON =12·6·4=12. ∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC=(DQ DC )2,即S △DFQ 12=(t6)2, ∴S △DFQ =13t 2, ∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t , 即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16, 即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12, ∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8. ∵AG ∥PE , ∴∠DPI =∠DAG. ∵AD ∥BC ,∴∠DAG =∠AGB , ∴∠DPI =∠AGB ,∴Rt △ABG ∽Rt △DIP .由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP , ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)10. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形.又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM , ∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如图②,图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH ,∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF , ∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 11. (1)①证明:如图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2,由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°, 由CE 2=2EF 2=2(BE 2+BF 2)=6,图② 解得CE = 6.(2)解:连接BF ,如图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2 =(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.12. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC , 即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为:EC +CF =12BC.理由如下:如图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t, ∴CE =1t CE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如图②,连接BD 与AC 交于点H.图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.13. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD +BD ,∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4, ∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1,∴EG =EM 2+GM 2=10.14. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AC =AE ,BC =DE ,∴EA =ED ,∴点B ,E 在AD 的中垂线上, ∴BE 是AD 的中垂线, ∵点F 在BE 的延长线上, ∴BF ⊥AD ,AF =DF ; ③解:BE 的长为33-4;【解法提示】由②知AF =12AD =12AB =3,AE =AC =5,BF ⊥AD ,由勾股定理得EF =AE 2-AF 2=4.在等边△ABD 中,AB =6,BF ⊥AD , ∴BF =32AB =33,∴BE =33-4. (2)解:BE +CE 的值为13;【解法提示】如图, ∵∠DAG =∠ACB ,∴∠DAB =2∠CAB. ∵∠DAE =∠CAB , ∴∠BAE =∠CAB , ∴∠BAE =∠CBA , ∴AE ∥BC ,∵AE =AC =BC ,∴四边形ACBE 是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8,∴CE +BE =13. 15. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,图①∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.图②(4)解:答案不唯一,例:画出正确图形如图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A′C′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形. 16. 解:(1)点E 的坐标是(33,3). 【解法提示】如∵OA ∥BC ,∴△DEB ∽△AEO , ∴OE EB =OA BD =BC BD =BD +CD BD =1+CD BD=1+2=3, ∵∠EHO =∠BAO =90°, ∴EH ∥AB ,∴△OEH ∽△OBA , ∴OE OB =EH AB =OH OA =34, ∵AB =4,OA =43, ∴EH =3,OH =33, ∴点E 的坐标是(33,3).(2)如解图①,在矩形OABC 中,∵CD ∶DB =2∶1,点B 的坐标为(43,4), ∴点A 的坐标为(43,0),点D 的坐标为(833,4),可得直线OB 的解析式为y 1=33x , 直线AD 的解析式为y 2=-3x +12.当y 1=y 2=t 时,可得点M ,N 的横坐标分别为: x M =3t ,x N =43-33t , 则MN =|x N -x M |=|43-433t|(0≤t ≤4).当点P 运动到x 轴上时(如图②),图①∵△MNP 为等边三角形, ∴MN ·sin 60°=t ,即(43-433t)·32=t , 解得t =2.讨论:分三种情况:①当0≤t <2时(如图①), 设PM ,PN 分别交x 轴于点F ,G ,则△PFG 的边长为PF =MP -MF =MN -MF =43-433t -233t =43-23t , ∵MN =x N -x M =43-433t ,图②∴S =S 梯形FGNM =(43-23t +43-433t)t ×12=-533t 2+43t. ②当2≤t ≤3时(如图②),此时等边△MNP 整体落在△OAB 内, ∴S =S △PMN =34(43-433t)2=433t 2-83t +12 3. ③当3<t ≤4时(如图③), 在Rt △OAB 中,tan ∠AOB =AB AO =33, ∴∠AOB =30°,∠NME =30°,图③∴△MNE 和△MPE 关于直线OB 对称. ∵MN =|x N -x M |=433t -43, ∴S =12S △PMN =233t 2-43t +6 3.(3)存在t ,使S =12S △ABD 成立.∵S △ABD =12×4×433=833,若S =12S △ABD 成立,则:①当0≤t <2时,-533t 2+43t =433,解得t 1=2(舍去),t 2=25.②当2≤t ≤3时,433t 2-83t +123=433,解得t 3=2,t 4=4.(舍去)③当3<t ≤4时,233t 2-43t +63=433,得t 5=3+2(舍去),t 6=3-2(舍去). 综上所述,符合条件的t 的值有25或2.17. 证明:(1)①连接AH ,如图①,连接AH.图①∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC. ②由①得AH =32BC , AH =12EF∴32BC =12EF , ∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.图②【解法提示】如解图②,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰直角三角形, ∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2= (2BH)2-BH 2=BH 2, ∴AH =BH =12BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,EF =2AH =BC.(3)EF =4k 2-1 BC.【解法提示】如解图③,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰三角形,AB =kBC ,∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2=(kBC)2-(12BC)2=(k 2-14)BC 2,∴AH =124k 2-1 BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,124k 2-1 BC =12EF ,∴EF =4k 2-1 BC.18. 解:(1)如图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.图③(3)如图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.。

中考数学复习《几何探究型问题》经典题型及测试题(含答案)

中考数学复习《几何探究型问题》经典题型及测试题(含答案)

中考数学复习《几何探究型问题》经典题型及测试题(含答案)题型解读1.考查类型:①动点探究题;②平移、旋转、折叠探究题;③图形形状变化探究题.2.考查内容:①多与特殊四边形的性质、三角形全等、相似的判定和性质有关;②涉及平移、旋转或折叠的相关性质;③多与二次函数的性质有关.3.备考指导:在做此类题型时,要观察题中已知条件,并结合题设,联系相关的知识解题,对结果猜想题根据前面问题大胆猜想,往往是解题的突破口.类型一动点探究题1.如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.2.如图①,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于点E、F.(1)如图②,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图③,当顶点G运动到AC中点时,探究线段EC、CF与BC的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.图①3.已知:如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm .对角线AC ,BD 交于点O ,点P 从点A 出发,沿AD 方向匀速运动,速度为1 cm /s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm /s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF∥AC,交BD 于点F.设运动时间为t(s )(0<t<6),解答下列问题: (1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP?若存在,求出t 值;若不存在,请说明理由.4.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF. (1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.类型二 平移、旋转、折叠探究题5.如图①,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③6.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.7.已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD 的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N 在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②8.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.9.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.10.如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.11.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.类型三图形形状变化探究题12.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.图①(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.图②(3)填空:在上述(1)(2)的基础上可得在图③中∠BOC=________(填写度数).图③图④(4)由此推广到一般情形(如图④),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想∠BOC的度数为____________________(用含n的式子表示).13.阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.14.已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE=90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE∽△CBF; ②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF=45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).15.已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF⊥BC; ②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图③,若△ABC 是等腰三角形,且AB =AC =kBC ,请你直接写出EF 与BC 之间的数量关系.类型一 动点探究题1. 解:(1)根据题意BM =2t ,BN =BC -3t ,而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如解图①, △NBM ∽△ABC ,cos B =cos 30°=BM BN ,∴2t 53-3t =32,解得t =157.②当∠BNM =∠ACB =90°时,如解图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM, ∴53-3t 2t =32,解得t =52. 因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.第1题解图(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大, 而△MBN 的面积是S =12BM ×BN ×sin B=12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0, ∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538, 因此四边形ACNM 面积最小值是12×5×53-2538=7538.2. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC ,即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为: EC +CF =12BC.理由如下:如解图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.第2题解图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t,∴CE =1tCE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如解图②,连接BD 与AC 交于点H.第2题解图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.3. 解:(1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10,第3题解图①∴AO =CO =5,∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC ,∴△APO ≌△CEO ,∴PO =OE =t.如解图①,作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.第3题解图②③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形.(2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N. 则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t ,S △OCD =12·CD·ON =12·6·4=12.∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC =(DQ DC)2,即S △DFQ 12=(t 6)2,∴S △DFQ =13t 2,∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t ,即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16,即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,第3题解图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12,∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8.∵AG ∥PE ,∴∠DPI =∠DAG .∵AD ∥BC ,∴∠DAG =∠AGB ,∴∠DPI =∠AGB , ∴Rt △ABG ∽Rt △DIP.由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP, ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)4. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF , 又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°,∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF , ∵BC =CD +BD , ∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如解图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,第4题解图∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4,∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1, ∴EG =EM 2+GM 2=10.类型二 平移、旋转、折叠探究题5. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°,第5题解图∴HD ⊥HF ,即BD ⊥CF.②解:如解图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF ,∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106,∴DH =9105.6. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B,E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③解:BE的长为33-4;【解法提示】由②知AF=12AD=12AB=3,AE=AC=5,BF⊥AD,由勾股定理得EF=AE2-AF2=4.在等边△ABD中,AB=6,BF⊥AD,∴BF=32AB=33,∴BE=33-4.(2)解:BE+CE的值为13;第6题解图【解法提示】如解图,∵∠DAG=∠ACB,∴∠DAB=2∠CAB.∵∠DAE=∠CAB,∴∠BAE=∠CAB,∴∠BAE=∠CBA,∴AE∥BC,∵AE=AC=BC,∴四边形ACBE是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8, ∴CE +BE =13.7. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA =(CP DA)2,即14=(CP8)2,∴CP =4,设CD =x ,则DP =x -4,AP =AB =CD =x , ∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10. (2)第7题解图线段EF 的长度始终不发生变化,为2 5.证明:如解图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG,∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.8. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,第8题解图①∵四边形ABCD 是菱形, ∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC ′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.第8题解图②(4)解:答案不唯一,例:画出正确图形如解图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形.9. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)第9题解图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM ,∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如解图②,第9题解图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF ,∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 10. 解:(1)△ABP ∽△PCD. 【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PEPF 的值为定值.如解图,过点F 作FG ⊥BC ,垂足为G.第10题解图类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG, ∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12, 即在旋转过程中,PE PF 的值为定值12.(3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12, 又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t ,∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t)=t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去).∴t 的值是2-455.11. 解:(1)如解图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,第11题解图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如解图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,第11题解图②∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.第11题解图③(3)如解图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.类型三 图形形状变化探究题12. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC, ∴△ABE ≌△ADC(SAS ). (2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°, ∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°.(4)解:180°-180°·(n -2)n.【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 13. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如解图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,第13题解图则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h , 又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m =2,∴sin ∠A 1B 1C 1=12,∴∠A 1B 1C 1=30°,∴∠A 1E 1B 1+∠A 1D 1B 1=30°. 14. (1)①证明:如解图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,第14题解图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2, 由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°,第14题解图②由CE 2=2EF 2=2(BE 2+BF 2)=6, 解得CE = 6.(2)解:连接BF ,如解图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如解图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),第14题解图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2=(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.15. 证明:(1)①连接AH ,如解图①. 第15题解图①∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC.②由①得AH =32BC ,∵AH =12EF∴32BC =12EF ,∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.第15题解图②【解法提示】如解图②,连接AH,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰直角三角形,∴AH⊥BC,在Rt△ABH中,AH2=AB2-BH2=(2BH)2-BH2=BH2,∴AH=BH=12BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,EF=2AH=BC.第15题解图③(3)EF=4k2-1 BC.【解法提示】如解图③,连接AH,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,∵△ABC是等腰三角形,AB=kBC,∴AH⊥BC,在Rt△ABH中,AH2=AB2-BH2=(kBC)2-(12=(k2-14)BC2,2BC)∴AH=12-1 BC,24k∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,12-1 BC=12EF,24k∴EF=4k2-1 BC.。

中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案

中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案

中考数学总复习《二次函数的实际应用与几何问题》练习题-附带答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c的图象如图所示,则|a+b+c|+|a﹣b+c|+|2a+b|=()A.2a+3 b B.2c﹣b C.2a﹣b D.b-2c 2.如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()m2A.45B.50C.60D.65 3.如图,坐标系的原点为O,点P是第一象限内抛物线y=14x2﹣1上的任意一点,PA⊥x轴于点A.则OP﹣PA值为()A.1B.2C.3D.4 4.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系5.如图,AC为矩形ABCD的对角线,已知AD=3,CD=4.点P沿折线C−A−D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.6.如图所示,⊥DEF中⊥DEF=90°,⊥D=30°,DF=16,B是斜边DF上一动点,过B 作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,⊥ABD的面积为y,则y与x 之间的函数图象大致为()A.(B.C.D.(7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A .75m 2B .752m 2C .48m 2D .2252m 28.如图,点A 是二次函数y = √3 x 2图象上的一点,且位于第一象限,点B 是直线y=﹣ √32x 上一点,点B′与点B 关于原点对称,连接AB ,AB′,若⊥ABB′为等边三角形,则点A 的坐标是( )A .( 13 , 19√3 ) B .( 23 , 49√3 )C .(1, √3 )D .( 43 , 169√3 ) 9.在平面直角坐标系中抛物线y=﹣(x ﹣2)2+1的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊥P ,那么下列判断正确的是( ) A .x 轴与⊥P 相离 B .x 轴与⊥P 相切 C .y 轴与⊥P 相切D .y 轴与⊥P 相交10.如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交⊥BCD 的外角平分线于F ,设BE =x ,⊥ECF 的面积为y ,下列图象中能表示y 与x 的函数关系的图象大致是( )A .B .C .D .11.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 212.如图,抛物线y=ax 2+2ax-3a(a>0)与x 轴交于A ,B 顶点为点D ,把抛物线在x 轴下方部分关于点B 作中心对称,顶点对应D’,点A 对应点C ,连接DD’,CD’,DC ,当⊥CDD’是直角三角形时a 的值为( )A .12 , √32B .13 , √32 C .13 , √33 D .12二、填空题(共6题;共7分)13.如图,已知抛物线 y =(x −2)2−1 与 x 轴交于A 、C 两点,与 y 轴交于点B ,在抛物线的对称轴上找一点Q ,使⊥ABQ 成为等腰三角形,则Q 点的坐标是 。

2023年中考数学二轮专项练习:二次函数的实际应用-几何问题(含答案)

2023年中考数学二轮专项练习:二次函数的实际应用-几何问题(含答案)

2023年中考数学二轮专项练习:二次函数的实际应用-几何问题一、单选题1.如图①,在矩形ABCD 中,动点E 从点A 出发,沿AB→BC方向运动,当点E 到达点 C 时停止运动.过点 E 作FE⊥AE,交CD 于 F 点,设点 E 运动路程为x,FC=y,图②表示y与x 的函数关系的大致图像,则矩形ABCD 的面积是( )A.235B.5C.6D.2542.如图,用20m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为( )m2A.45B.50C.60D.65 3.在平面直角坐标系中,已知点M,N的坐标分别为(―1,3),(3,3),若抛物线y= x2―2mx+m2―m+2与线段MN只有一个公共点,则m的取值范围是( )A.―1⩽m<0或7―172<m⩽7+172B.―1⩽m<0或m>7―172C.m<0或7―172<m⩽7+172D.―1⩽m⩽7+1724.若抛物线y=x2-4x-12与x轴交于点A,B,与y轴交于点C,则△ABC的面积为( )A.24B.36C.48D.96 5.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是( )A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系6.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为( )A .πB .2πC .3πD .4π7.如图,两条抛物线y 1=-12x 2+1,y 2=−12x 2−1与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为( )A .8B .6C .10D .48.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD 如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y 与x 的函数图象大致是( )A .B .C .D .9.空地上有一段长为a米的旧墙MN,利用旧墙和木栏围成一个矩形菜园(如图1或图2),已知木栏总长为40米,所围成的菜园面积为S.下列说法错误的是( )A.若a=16,S=196,则有一种围法B.若a=20,S=198,则有两种围法C.若a=24,S=198,则有两种围法D.若a=24,S=200,则有一种围法10.已知抛物线y=―316(x―1)(x―9)与x轴交于A,B两点,对称轴与抛物线交于点C,与x轴交于点D,⊙C的半径为2,G为⊙C上一动点,P为AG的中点,则DP的最大值为( )A.72B.412C.342D.2311.边长为1的正方形OA1B1C1的顶点A1在x轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为( )A.-23B.-12C.-2D.-2312.已知一个直角三角形的两边长分别为a和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a的值为( )A.3B.41C.3或41D.不能确定二、填空题13.如图,小滕用铁栅栏及一面墙(墙足够长)围成了一个矩形自行车场地ABCD,在AB和BC边各有一个2m宽的小门(不用铁栅栏),小滕共用了铁栅栏40米,则矩形ABCD的面积的最大值为 m2.14.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ΔACD和ΔBCE,那么DE长的最小值是 .15.已知正方形ABCD是边长为4,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD。

中考数学总复习《二次函数的动态几何问题》专项测试卷-含参考答案

中考数学总复习《二次函数的动态几何问题》专项测试卷-含参考答案

中考数学总复习《二次函数的动态几何问题》专项测试卷-含参考答案一、单选题(共12题;共24分)1.如图,在四边形ABCD中,AB∥CD,∥B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设∥APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.2.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,则点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.−14≤b≤1B.−54≤b≤1C.−94≤b≤12D.−94≤b≤13.如图所示,∥ABC为等腰直角三角形,∥ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC 与DE在同一直线上,∥ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,∥ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.4.二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)5.如图,等腰Rt∥ABC(∥ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让∥ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,∥ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.6.如图,矩形ABCD中,AB=4cm,AD=5cm,点E在AD上,且AE=3cm,点P、Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒,∥BPQ的面积为y cm2.则y与t的函数关系图象大致是()A.B.C.D.7.如图,∥ABC是边长为4cm的等边三角形,动点P从点A出发,以2cm/s的速度沿A→C→B运动,到达B点即停止运动,过点P作PD∥AB于点D,设运动时间为x(s),∥ADP的面积为y (cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.8.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.9.如图1,在四边形ABCD中,AD∥BC,∥B=∥C=60°,P、Q同时从B出发,以每秒1单位长度分别沿B﹣A﹣D﹣C和B﹣C﹣D方向运动至相遇时停止,设运动时间为t(秒),∥BPQ的面积为S (平方单位),S与t的函数图象如图2所示,则下列结论错误的个数()①当t=4秒时,则S=4 √3②AD=4③当4≤t≤8时,则S=2 √3t ④当t=9秒时,则BP平分四边形ABCD的面积.A.1个B.2个C.3个D.4个10.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.11.如图,在菱形ABCD中,∠ABC=120°,AB=2.动点P从点A出发,以每秒2个单位的速度沿折线AD→DC运动到点C,同时动点Q也从点A出发,以每秒√3个单位的速度沿AC 运动到点C,当一个点停止运动时,则另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.12.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,则S最小B.当C是AB的中点时,则S最大C.当C为AB的三等分点时,则S最小D.当C是AB的三等分点时,则S最大二、填空题(共6题;共7分)13.如图,抛物线y = 13x2−23x−83的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆上的一动点,连接EP,N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.14.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,则∥PAB的面积S的取值范围是.15.如图,抛物线y=(x-1)2-1与直线y=x交于点O,点B为线段OA上的动点,过点B作BC∥y 轴,交交抛物线于点C,则线段BC长度的最大值为16.如图,在∥ABC中,∥B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.17.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,则四个点同时停止运动,在运动过程中,当运动时间为s时,则四边形EFGH的面积最小,其最小值是cm2.18.如图,抛物线y=13x2+83x−3与x轴交于点A和点B两点,与y轴交于点C,D点为拋物线上第三象限内一动点,当∠ACD+2∠ABC=180∘时,则点D的坐标为.三、综合题(共6题;共73分)19.如图,抛物线y =ax 2+bx +3与x 轴交于A(−2,0),B(6,0)两点,与y 轴交于点C 直线l :y =12x +n 与抛物线交于A ,D 两点,与y 轴交于点E .(1)求抛物线的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA ,PD ,求当△PAD 面积最大时点P 的坐标及该面积的最大值;(3)y 轴上是否存在点Q ,使∠ADQ =45°,若存在请求点Q 的坐标;若不存在说明理由. 20.在平面直角坐标系中,已知抛物线y =ax 2+bx ﹣4经过A (﹣4,0),C (2,0)两点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,∥AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.21.如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且EF =//OC ,连接OE ,CF 得四边形OCFE .(1)求B点坐标;(2)当tan∥EOC= 43时,则显然满足条件的四边形有两个,求出相应的点F的坐标;(3)当0<tan∥EOC<3时,则对于每一个确定的tan∥EOC值,满足条件的四边形OCFE有两个,当这两个四边形的面积之比为1:2时,则求tan∥EOC.22.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/秒的速度移动,同时点Q从B点开始沿BC边向点C以2cm/秒的速度移动,且当其中一点到达终点时,则另一个点随之停止移动.设P,Q两点移动的时间为t秒,△PBQ的面积为Scm2.(1)BP=cm;(2)求S与t的函数关系式,并求出△PBQ面积的最大值.23.如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)、动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动、其中,点M沿OA向终点A运动,点N沿BC向终点C运动、过点N作NP∥BC,交AC于P,连结MP、已知动点运动了t秒、(1)P点的坐标为(,)(用含t的代数式表示);(2)试求∥MPA面积的最大值,并求此时t的值;(3)请你探索:当t为何值时,则∥MPA是一个等腰三角形?24.已知抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0),与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在直线BC上方抛物线上取一点P,过点P作PQ⊥x轴交BC边于点Q,求PQ的最大值;(3)在直线BC上方抛物线上取一点D,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,则求点D的坐标.参考答案1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】C10.【答案】C11.【答案】A12.【答案】A13.【答案】1.5π14.【答案】3≤S≤1515.【答案】9416.【答案】317.【答案】3;1818.【答案】(−7,−163) 19.【答案】(1)解:将A (-2,0)、B (6,0)代入y=ax 2+bx+3得:{4a −2b +3=036a +6b +3=0解得{a =−14b =1∴抛物线的解析式为y=-14x 2+x+3 (2)解:∵y =12x +n 过点于A(−2,0),所以n =1 ∴点D 的坐标为(4,3).如图1中,过点P 作PK ∥y 轴交AD 于点K .设P(m ,−14m 2+m +3),则K(m ,12m +1). ∵S △PAD =12⋅(x D −x A )⋅PK =3PK ∴PK 的值最大值时,则△PAD 的面积最大PK =−14m 2+m +3−12m −1=−14m 2+12m +2=−14(m −1)2+94∵−14<0∴m =1时,则PK 的值最大,最大值为94此时△PAD 的面积的最大值为274,P(1,154). (3)解:存在如图2中,将线段AD 绕点A 逆时针旋转90°得到AT ,则T(−5,6)设DT 交y 轴于点Q ,则∥∠ADQ =45°∵D(4,3)∴直线DT 的解析式为y =−13x +133∴Q(0,133) 作点T 关于AD 的对称点T ′(1,−6)则直线DT ′的解析式为y =3x −9设DQ ′交y 轴于点Q ′,则∠ADQ ′=45°∴Q ′(0,−9)综上所述,满足条件的点Q 的坐标为(0,133)或(0,−9). 20.【答案】(1)解:将A (﹣4,0),C (2,0)代入y =ax 2+bx ﹣4,得:{16a −4b −4=04a +2b −4=0 ,解得:{a =12b =1∴抛物线解析式为:y =12x 2+x −4 (2)解:如图,过点M 作MN∥AC 于点N∵抛物线y =12x 2+x −4与y 轴交于点B 当x =0 时,则y =−4∴B(0,−4) ,即OB=4∵点M 为第三象限内抛物线上一动点,点M 的横坐标为m∴M(m ,12m 2+m −4) ∴ON =−m ,MN =−(12m 2+m −4)=−12m 2−m +4 ∴AN =m −(−4)=m +4∴S △ABM =S △ANM +S 梯形MNOB −S △AOB =12(4+m)(−12m 2−m +4)+12(−12m 2−m +4+4)(−m)−12×4 =−m 2−4m =−(m +2)2+4(−4<m <0)∴当m =−2 时,则S 有最大值,最大值为4∴S 关于m 的函数关系式为S =−m 2−4m , S 的最大值为4.21.【答案】(1)解:∵y=﹣x 2+6x=﹣(x ﹣3)2+9∴B (3,9)(2)解:抛物线的对称轴为直线x=3,直线x=3交x 轴于H ,如图∵tan∥EOC= 43 ,即tan∥EOH= 43∴EH OH = 43∴EH=4∴E 点坐标为(3,4)或(3,﹣4)当y=4时,则﹣(x ﹣3)2+9=4,解得x 1=3﹣ √5 (舍去),x 2=3+ √5当y=﹣4时,则﹣(x ﹣3)2+9=﹣4,解得x 1=3﹣ √13 (舍去),x 2=3+ √13∴F 点坐标为(3+ √5 )或(3+ √13 ,﹣4)(3)解:如图,∵平行四边形OEFC 和平行四边形OE′F′C′等高∴这两个四边形的面积之比为1:2时,则OC′=2OC 设OC=t,则OC′=2t∴F点的横坐标为3+t,F′点的横坐标为3+2t而点F和F′的纵坐标互为相反数∴﹣(3+t﹣3)2+9+[﹣(3+2t﹣3)2+9]=0,解得t1= 3√105,t2=﹣3√105(舍去)∴F点坐标为(3+ 3√105,275)∴E(3,27 5)∴tan∥EOC= 2753= 95.22.【答案】(1)(6-t)(2)解:经过t秒后∴S=12×PB×BQ=12×(6-t)×2t=-t2+6t=−(t−3)2+9∴在移动过程中,△PBQ的最大面积是9cm2.23.【答案】(1)解:6-t;43t(2)解:延长NP交x轴于Q,则有PQ∥QA.设∥MPA的面积为SS=12MA·PQ=12(6—t)43t=— 23t2+4t (0≤t≤6)∴当t =3时,则S的最大值为6(3)解:①若MP=PA ∵PQ∥MA ∴ MQ=QA=t ∴3t=6 即t=2②若MP=MA 则MQ=6—2t PQ=43t PM=MA=6—t在Rt∥PMQ 中∵PM2=MQ2+PQ2 ∴(6—t)2=(6—2t)2+(43t)2∴t =10843③若PA=AM ∵PA=t AM=6—t ∴t=6—t ∴t=94综上所述, t =2或t = 10843 或t = 9424.【答案】(1)解:∵抛物线y =ax 2+bx +3经过点A(−1,0)、B(3,0)∴{a −b +3=09a +3b +3=0解得{a =−1b =2∴抛物线的解析式为:y =−x 2+2x +3(2)解:∵抛物线的解析式为:y =−x 2+2x +3 令x =0,则y =3∴C(0,3)∵B(3,0)设直线BC 的解析式为y =kx +b则{b =33k +b =0解得{k =−1b =3直线BC 的解析式为:y =−x +3过点P 作PQ∥x 轴交BC 于点Q ,设P 点坐标为(x ,−x 2+2x +3)则Q 点坐标为(x ,−x +3)则PQ =(−x 2+2x +3)−(−x +3)=−x 2+3x=−(x −32)2+94∴PQ 的最大值是94. (3)解:∵∆COF 与∆CDF 共高,面积比转化为底边比 OF :DF=S∥COF :S∥CDF =3:2过点D 作BC 的平行线交x 轴于G ,交y 轴于E根据平行线分线段成比例OF:FD=OC:CE=3:2∵OC=3∴OE=5∴E(0,5)∴直线EG解析式为:y= -x+5联立方程,得:−x2+2x+3=−x+5解得:x1=1则点D的坐标为(1,4)或(2,3);。

2024中考数学复习 重难题型分类练 题型九 几何探究题 (含答案)

2024中考数学复习 重难题型分类练 题型九 几何探究题 (含答案)

2024中考数学复习重难题型分类练题型九几何探究题类型一非动点探究题1.已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图①,若DE∥BC,求证:四边形BCDE是菱形;(2)如图②,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(i)求∠CED的大小;(ii)若AF=AE,求证:BE=CF.第1题图2.已知正方形ABCD,E为对角线AC上一点.【建立模型】(1)如图①,连接BE,DE.求证:BE=DE;【模型应用】(2)如图②,F是DE延长线上一点,FB⊥BE,EF交AB于点G.①判断△FBG的形状并说明理由;②若G为AB的中点,且AB=4,求AF的长;【模型迁移】(3)如图③,F是DE延长线上一点,FB⊥BE,EF交AB于点G,BE=BF.求证:GE=(2-1)DE.第2题图3.(1)如图①,在△ABC 中,∠ACB =2∠B ,CD 平分∠ACB ,交AB 于点D ,DE ∥AC ,交BC 于点E .①若DE =1,BD =32,求BC 的长;②试探究AB AD -BE DE是否为定值.如果是,请求出这个定值;如果不是,请说明理由;(2)如图②,∠CBG 和∠BCF 是△ABC 的2个外角,∠BCF =2∠CBG ,CD 平分∠BCF ,交AB 的延长线于点D ,DE ∥AC ,交CB 的延长线于点E .记△ACD 的面积为S 1,△CDE 的面积为S 2,△BDE 的面积为S 3.若S 1·S 3=916S 22,求cos ∠CBD 的值.第3题图类型二动点探究题4.如图,在矩形ABCD 中,点O 是AB 的中点,点M 是射线DC 上动点,点P 在线段AM上(不与点A 重合),OP =12A B.(1)判断△ABP 的形状,并说明理由;(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN =AN ;(3)点Q 在边AD 上,AB =5,AD =4,DQ =85,当∠CPQ =90°时,求DM 的长.5.如图①,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3.点P,Q分别在线段AB,BE上(不与端点重合),且满足APBQ=54.设BQ=x,CP=y.(1)求半圆O的半径;(2)求y关于x的函数表达式;(3)如图②,过点P作PR⊥CE于点R,连接PQ,RQ.①当△PQR为直角三角形时,求x的值;②作点F关于QR的对称点F′,当点F′落在BC上时,求CF′BF′的值.第5题图6.在▱ABCD中,∠C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,请直接写出PA,PE的数量关系;(2)如图②,当点P在线段CD上时,求证:DA+2DP=DE;(3)点P在射线CD上运动,若AD=32,AP=5,请直接写出线段BE的长.第6题图7.如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D,E分别为BC,PC的中点,连接DE.过点E作BC的垂线,与BC,AC分别交于F,G两点.连接DG,交PC于点H.(1)∠EDC的度数为________°;(2)连接PG,求△APG的面积的最大值;(3)PE与DG存在怎样的位置关系与数量关系?请说明理由;(4)求CHCE的最大值.类型三平移探究题8.已知:在正方形ABCD的边BC上任取一点F,连接AF,一条与AF垂直的直线l(垂足为点P)沿AF方向,从点A开始向下平移,交边AB于点E.(1)当直线l经过正方形ABCD的顶点D时,如图①所示.求证:AE=BF;(2)当直线l经过AF的中点时,与对角线BD交于点Q,连接FQ,如图②所示.求∠AFQ 的度数;(3)直线l继续向下平移,当点P恰好落在对角线BD上时,交边CD于点G,如图③所示.设AB=2,BF=x,DG=y,求y与x之间的关系式.第8题图9.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图①),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图①中的纸片DEF沿AC方向平移,连接AE,BD(如图②),当点F与点C重合时停止平移.【思考】图②中的四边形ABDE是平行四边形吗?请说明理由;【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图③),求AF的长;活动二:在图③中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连接OB,OE(如图④).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.第9题图10.已知:点C ,D 均在直线l 的上方,AC 与BD 都是直线l 的垂线段,且BD 在AC 的右侧,BD =2AC ,AD 与BC 相交于点O .(1)如图①,若连接CD ,则△BCD 的形状为________,AO AD的值为________;(2)若将BD 沿直线l 平移,并以AD 为一边在直线l 的上方作等边△ADE .①如图②,当AE 与AC 重合时,连接OE ,若AC =32,求OE 的长;②如图③,当∠ACB =60°时,连接EC 并延长交直线l 于点F ,连接OF .求证:OF ⊥A B.第10题图类型四旋转探究题11.在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD,B D.(1)如图①,将线段CA绕点C逆时针旋转α,则∠ADB的度数为________;(2)将线段CA绕点C顺时针旋转α时.①在图②中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连接BE.用等式表示线段AD,CE,BE之间的数量关系,并证明.第11题图12.在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图①,当点A′落在AC的延长线上时,求AA′的长;(2)如图②,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图③,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.第12题图13.如图,在△ABC中,AB=AC=25,BC=4,D,E,F分别为AC,AB,BC的中点,连接DE,DF.DE;(1)如图①,求证:DF=52(2)如图②,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;(3)如图③,在(2)的条件下,当DP⊥AB时,求DN的长.第13题图14.如图①,四边形ABCD中,AD∥BC,∠ABC=90°,∠C=30°,AD=3,AB=23,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B 在PM上,其中∠Q=90°,∠QPM=30°,PM=43.(1)求证:△PQM≌△CHD;(2)△PQM从图①的位置出发,先沿着BC方向向右平移(图②),当点P到达点D后立刻绕点D逆时针旋转(图③),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图②,点K在BH上,且BK=9-43.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图③,在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接..写出CF的长(用含d的式子表示).第14题图类型五折叠探究题15.如图,在△ABC中,∠ABC=30°,AB=AC,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将△ACD沿AD折叠得到△AED,连接BE.(1)当AE⊥BC时,∠AEB=________°;(2)探究∠AEB与∠CAD之间的数量关系,并给出证明;(3)设AC=4,△ACD的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.16.在矩形ABCD中,BC=3CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图①,当EH与线段BC交于点P时,求证:PE=PF;(2)如图②,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.第16题图17.(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点,求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB沿BE 翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE 的长;(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE 沿AE翻折得到△AFE,直线EF交BC于点P.求PC的长.第17题图18.如图①,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B,C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB′,点B′落在矩形ABCD的内部,延长PB′交直线AD 于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B′C,求△PCB′周长的最小值;③如图②,BB′交AE于点H,点G是AE的中点,当∠EAB′=2∠AEB′时,请判断AB与HG 的数量关系,并说明理由.第18题图19.小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,ADAN=m,点M在AD边上,且BA=BM.点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则AMAN=________;(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.第19题图类型六类比探究题20.已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.(1)如图①,分别以AC,CB为边向形外作正方形ACDE和正方形BGF C.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.①若S1=9,S2=16,求S的值;②延长EA交GB的延长线于点N,连接FN,交BC于点M,交AB于点H.若FH⊥AB(如图②所示),求证:S2-S1=2S;(2)如图③,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C 在△ABF内),连接EF,CF.若EF⊥CF,试探索S2-S1与S之间的等量关系,并说明理由.第20题图21.问题提出:如图①,在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究AFAB的值.问题探究:(1)先将问题特殊化,如图②,当∠BAC=60°时,直接写出AFAB的值;(2)再探究一般情形,如图①,证明(1)中的结论仍然成立;问题拓展:如图③,在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,CGBC=1n(n<2),延长BC至点E,使DE=DG,延长ED交AB于点F,直接写出AFAB的值(用含n的式子表示).第21题图22.【问题呈现】如图①,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE;【类比探究】如图②,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值;【拓展提升】如图③,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC=ADDE=34.连接BD,CE.(1)求BDCE的值;(2)延长CE交BD于点F,交AB于点G,求sin∠BFC的值.图①图②图③第22题图其他类型23.现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A,B不重合),连接AC,B C.(1)沿AC,BC剪下△ABC,则△ABC是________三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E,F和直径AB上的点G,H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P,Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.第23题图备用题24.同学们还记得吗?图①、图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形,受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:【问题一】如图①,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F,则AE与BF的数量关系为________;【问题二】受图①启发,兴趣小组画出了图③;直线m,n经过正方形ABCD的对称中心O,直线m分别与AD,BC交于点E,F,直线n分别与AB,CD交于点G,H,且m⊥n,若正方形ABCD边长为8,求四边形OEAG的面积;【问题三】受图②启发,兴趣小组画出了图④;正方形CEFG的顶点G在正方形ABCD的边CD上,顶点E在BC的延长线上,且BC=6,CE=2.在直线BE上是否存在点P,使△APF 为直角三角形?若存在,求出BP的长度;若不存在,说明理由.第24题图源自人教八下P63实验与探究参考答案与解析1.(1)证明:如解图①,设DB与CE交于点O,第1题解图①∵CD=CB,∴∠CDB=∠CBD,又∵DE∥BC,∴∠EDB=∠CBD,∴∠EDB=∠CDB,∵CE⊥BD,∴∠DOE=∠DOC=90°,又∵DO=DO,∴△EDO≌△CDO(ASA),∴DE=DC,∴DE=BC,∴四边形BCDE为平行四边形,∵CB=CD,∴四边形BCDE为菱形;【一题多解】解法二:如解图①,由(1)得,△EDO≌△CDO,∴EO=CO,∵DC=BC,CE⊥BD,∴DO=BO,∴四边形BCDE是平行四边形,∵CE与BD互相垂直且平分,∴四边形BCDE为菱形.解法三:如解图①,∵BD⊥CE,BC=CD,∴BO=DO,∴CE垂直平分BD,∴EB=ED,由(1)可知△EDO≌△CDO,∴ED=DC,∴ED=EB=CD=BC,∴四边形BCDE为菱形.(2)(ⅰ)解:∵DE垂直平分AC,∴AD=CD,AE=CE,又∵DE=DE,∴△AED≌△CED(SSS),∴∠AED=∠CED,又∵CB=CD,CE⊥BD,∴CE垂直平分BD,同理可证△CBE≌△CDE,∴∠CEB=∠CED,∴∠CEB=∠CED=∠AED,又∵∠CEB+∠CED+∠AED=180°,∴∠CED=60°;(ⅱ)证明:如解图②,第1题解图②设BD与CE相交于点G,AC与DE相交于点H,由(ⅰ)可知∠HAE=30°,∠GBE=30°,∴∠AFB=120°,FA=FB,又∵∠AEC=∠AED+∠CED=120°,∴∠ACE=180°-30°-120°=30°,∴EA=EC,又∵AF=AE,∴AF=AE=EC=FB,∵∠AFB=∠AEC=120°,∴△AFB≌△AEC(SAS),∴AB=AC,∴AB-AE=AC-AF,∴BE=CF.2.(1)证明:∵四边形ABCD为正方形,AC为对角线,∴AB=AD,∠BAE=∠DAE=45°.∵AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE;(2)解:①△FBG为等腰三角形.理由如下:∵四边形ABCD为正方形,∴∠GAD=90°,∴∠AGD+∠ADG=90°.∵FB⊥BE,∴∠FBG+∠EBG=90°,由(1)得∠ADG=∠EBG,∴∠AGD=∠FBG,又∵∠AGD=∠FGB,∴∠FBG=∠FGB,∴△FBG为等腰三角形;②如解图,过点F作FH⊥AB,垂足为H.第2题解图∵四边形ABCD为正方形,点G为AB的中点,AB=4,∴AG=BG=2,AD=4.由①知FG =FB ,∴GH =BH =1,∴AH =AG +GH =3.在Rt △FHG 与Rt △DAG 中,∵∠FGH =∠DGA ,∴tan ∠FGH =tan ∠DGA ,∴FH GH =AD AG =42,∴FH =2.在Rt △AHF 中,AF =AH 2+FH 2=9+4=13;(3)证明:∵FB ⊥BE ,∴∠FBE =90°.在Rt △EBF 中,BE =BF ,∴EF =2BE .由(1)得BE =DE ,由(2)得FG =BF ,∴GE =EF -FG =2BE -BF =2DE -DE =(2-1)DE .3.解:(1)①∵CD 平分∠ACB ,∴∠ACD =∠DCB =12∠ACB .∵∠ACB =2∠B ,∴∠ACD =∠DCB =∠B .∴CD =BD =32.∵DE ∥AC ,∴∠ACD =∠EDC .∴∠EDC =∠DCB =∠B .∴CE =DE =1.∴△CED ∽△CDB .∴CE CD =CD CB.即132=32CB ,解得BC =94;②AB AD -BE DE是定值.∵DE ∥AC ,∴AB AD =BC CE.由①同理可得CE =DE ,∴AB AD =BC DE.∴AB AD -BE DE =BC DE -BE DE =CE DE=1.∴AB AD -BE DE是定值,定值为1;(2)∵DE ∥AC ,∴S 1S 2=AC DE =BC BE.∵S 3S 2=BE CE,∴S 1·S 3S 22=BC CE.又∵S 1·S 3=916S 22,∴BC CE =916.设BC =9x ,则CE =16x .∵CD 平分∠BCF ,∴∠ECD =∠FCD =12∠BCF .∵∠BCF =2∠CBG ,∴∠ECD =∠FCD =∠CBD .∴BD =CD .∵DE ∥AC ,∴∠EDC =∠FCD .∴∠EDC =∠CBD =∠ECD .∴CE =DE .∵∠DCB =∠ECD ,∴△CDB ∽△CED .∴CD CE =CB CD,∴CD 2=CB ·CE =144x 2.∴CD =12x (负值已舍去).如解图,过点D 作DH ⊥BC 于点H .∵BD =CD =12x ,∴BH =12BC =92x ,∴cos ∠CBD =BH BD =92x 12x=38.第3题解图4.(1)解:△ABP 为直角三角形.理由如下:∵O 为AB 的中点,∴OA =OB =12AB .∵OP =12AB ,∴OP =OA =OB ,∴点P 在以AB 为直径的⊙O 上.∴∠APB =90°.故△ABP 为直角三角形;(2)证明:如解图①,连接ON ,连接OC 交PB 于点E .∵M 为DC 的中点,O 为AB 的中点,AB ∥CD ,AB =CD ,∴MC ∥OA 且MC =OA .∴四边形MAOC 为平行四边形.∴OC ∥AM ,∴∠CEP =∠APB =90°,∴OC ⊥PB .∵OP =OB ,∴E 为PB 的中点.∴CP =BC .∴△OPC ≌△OBC ,∴∠CPO =∠CBO =90°.∴∠OPN =∠OAN =90°.又∵OP =OB =OA ,ON =ON ,∴△OPN ≌△OAN .∴PN =AN ;第4题解图(3)解:如解图②,过点P 作GH ∥AB 与AD ,BC 分别交于点G ,H .设AG =BH =x ,则QG =125-x ,CH =4-x .∵∠GPA +∠HPB =∠GPA +∠GAP =90°,∴∠GAP =∠HPB .∵∠AGP =∠PHB =90°,∴△GAP ∽△HPB .∴AG PH =GP HB,∴AG ·HB =PH ·GP .同理可证:QG ·CH =PH ·GP ,∴AG ·HB =QG ·CH .∴x ·x =(125-x )(4-x ),解得x =32.∴AG =BH =32.∵GP ·HP =AG ·HB ,∴GP ·(GH -GP )=94,GP =12或92.∵GP ∥DM .∴GP DM =AG AD,∴DM =GP ·AD AG =43或12.5.解:(1)如解图①,连接OD ,设半圆O 的半径为r ,∵CD 切半圆O 于点D ,∴OD ⊥CD .∵BE ⊥CD ,∴OD ∥BE ,∴△COD ∽△CBE ,∴OD BE =CO CB ,即r 3=5-r 5,∴r =158,即半圆O 的半径是158;第5题解图①(2)由(1)得CA =CB -AB =5-2×158=54,∵AP BQ =54,BQ =x ,∴AP =54x .∵CP =AP +AC ,∴y =54x +54;(3)①显然∠PRQ <90°,∴分两种情况.ⅰ)当∠RPQ =90°时,如解图②.第5题解图②∵PR ⊥CE ,∴∠ERP =90°.∵∠E =90°,∴四边形RPQE 为矩形,∴PR =QE .∵PR =PC ·sin C =35y =34x +34,∴34x +34=3-x ,∴x =97;ⅱ)当∠PQR =90°时,如解图③,过点P 作PH ⊥BE 于点H ,第5题解图③则四边形PHER 是矩形,∴PH =RE ,EH =PR .∵CB =5,BE =3,∴CE =52-32=4.∵CR =CP ·cos C =45y =x +1,∴PH =RE =CE -CR =4-(x +1)=3-x =EQ ,∴∠EQR =∠ERQ =45°,∴∠PQH =45°=∠QPH ,∴HQ =HP =3-x ,由EH =PR 得:(3-x )+(3-x )=34x +34,∴x =2111.综上所述,x 的值是97或2111;②如解图④,连接AF ,QF ′,由对称可知QF =QF ′,第5题解图④由(3)①得,ER =EQ ,∠F ′QR =∠EQR =45°,∴∠BQF ′=90°,∴QF =QF ′=BQ ·tan B =43x .∵AB 是半圆O 的直径,∴∠AFB =90°,∴BF =AB ·cos B =94,∴43x +x =94,∴x =2728,∴CF ′BF ′=BC -BF ′BF ′=BC BF ′-1=3x -1=199.或利用QF ′∥CE 得,CF ′BF ′=EQ QB =3-x x=3x -1=199.6.(1)解:PA =PE ;【解法提示】如解图①,连接PB ,∵四边形ABCD 是平行四边形,∴AD =BC ,∵AD =BD ,∴BD =BC ,∴∠C =∠BDC =45°,∴∠DBC =90°,∵P 是CD 的中点,∴BP =PD =PC ,∴BP ⊥CD ,∠PBD =45°,∴∠PDA =∠PBE =135°,∵EP ⊥AP ,∴∠DPB =∠APE =90°,∴∠DPA =∠BPE ,∴△PAD ≌△PEB ,∴PA =PE .第6题解图①(2)证明:如解图②,过点P作PF⊥CD交DE于点F,∵PF⊥CD,EP⊥AP,∴∠DPF=∠APE=90°,∴∠DPA=∠FPE,∵四边形ABCD是平行四边形,∴∠C=∠DAB=45°,AB∥CD,又∵AD=BD,∴∠DAB=∠DBA=∠C=∠CDB=45°,∴∠ADB=∠DBC=90°,∴∠PFD=45°,∴∠PFD=∠PDF,∴PD=PF,∴∠PDA=∠PFE=135°,∴△ADP≌△EFP,∴AD=EF,在Rt△FDP中,∠PDF=45°,∵cos∠PDF=DP DF,∴DF=DPcos∠PDF =DPcos45°=2DP,∵DE=DF+EF,∴DA+2DP=DE;第6题解图②(3)解:2或72.【解法提示】①当点P在线段CD上时,如解图③,过点A作AM⊥CD延长线于点M,∵四边形ABCD为平行四边形,∴∠MDA=∠C=45°,∴DM=AM=AD·sin∠MDA=32×sin45°=3,∴PM=AP2-AM2=52-32=4,∴DP=PM-DM=4-3=1,由(2)知DE=AD+2DP=32+2×1=42,∵BD=AD=32,∴BE=DE-BD=42-32=2;②当点P在CD的延长线上时,如解图④,过点A作AM⊥CD延长线于点M,过点P作PF⊥CD延长线交DE于点F,∵四边形ABCD为平行四边形,∴∠MDA=∠C=45°,∴DM=AM=AD·sin∠MDA=32×sin45°=3,∴PM=AP2-AM2=52-32=4,∴DP=PM+DM=4+3=7,由(2)知EF=AD,∴DE=DF-EF=2DP-AD=2×7-32=42,∵BD=AD=32,∴BE=DE+BD=42+32=72.综上所述,BE的长为2或72.第6题解图7.解:(1)45;【解法提示】∵AB=AC,∠A=90°,∴∠B=∠ACB=45°.∵D,E分别是BC,PC的中点,∴DE是△BPC的中位线,∴DE∥BP,∴∠EDC=∠B=45°.(2)如解图①,延长DE,交AC于点I,第7题解图①∵DE∥AB,∴∠DIC=∠A=90°.∵GF⊥BC,∴∠GFB=∠GFC=90°.∵∠ACB=45°,∴△GIE ,△DEF ,△CFG 均为等腰直角三角形.∵∠A =∠EIC ,∠ACP =∠ICE ,∴△CAP ∽△CIE .∴IE AP =IC AC =EC PC =12.∵AC =12,∴IC =6.设AP =2x ,则IE =IG =x ,∴AG =AC -GI -IC =6-x .∴S △APG =12AP ·AG =12·2x ·(6-x )=-x 2+6x =-(x -3)2+9.∴当x =3时,△APG 的面积最大,最大值为9;(3)PE ⊥DG ,PE =DG .理由如下:由(2)得△GIE ,△DEF ,△CFG 均为等腰直角三角形,∴DF =EF ,CF =GF ,∠DFG =∠EFC =90°,∴△DFG ≌△EFC (SAS).∴∠DGF =∠ECF ,DG =EC .∵∠ECF +∠CEF =90°,∠CEF =∠GEH ,∴∠DGF +∠GEH =90°,∴∠GHE =90°,即DG ⊥PC .∵D 为BC 的中点,DI ∥AB ,∴I 为AC 的中点,E 为PC 的中点,∴EC =PE ,∵EC =DG ,∴PE ⊥DG ,PE =DG ;(4)如解图②,作△DCG 的外接圆⊙O ,过点O 作OJ ⊥DG 于点J ,连接OG ,OC ,OD .设⊙O 的半径为r ,则OC =OD =OG =r ,DG =2r ,OJ =12DG =22r ,∵△DFG ≌△EFC ,∴DG =CE =2r .∴CH CE =CH DG ≤OC +OJ DG =r +22r 2r=1+22,即CH CE 的最大值为1+22.第7题解图②8.(1)证明:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠BAD =90°,∵DE ⊥AF ,∴∠APD =90°,∴∠PAD +∠ADE =90°,∠PAD +∠BAF =90°,∴∠BAF =∠ADE ,∴△ABF ≌△DAE (ASA),∴AE =BF ;(2)解:如解图①,连接AQ ,CQ .第8题解图①∵四边形ABCD 是正方形,∴BA =BC ,∠ABQ =∠CBQ =45°,∵BQ =BQ ,∴△ABQ ≌△CBQ (SAS),∴QA =QC ,∠BAQ =∠QCB ,∵EQ 垂直平分线段AF ,∴QA =QF ,∴QC =QF ,∴∠QFC =∠QCF ,∴∠QFC =∠BAQ ,∵∠QFC +∠BFQ =180°,∴∠BAQ +∠BFQ =180°,∴∠AQF +∠ABF =180°,∵∠ABF =90°,∴∠AQF =90°,∴∠AFQ =∠FAQ =45°;(3)解:如解图②,过点E 作ET ⊥CD 于点T ,则四边形BCTE 是矩形.第8题解图②∴ET =BC ,∠BET =∠AET =90°,∵四边形ABCD 是正方形,∴AB =BC =ET ,∠ABC =90°,∵AF ⊥EG ,∴∠APE =90°,∵∠AEP +∠BAF =90°,∠AEP +∠GET =90°,∴∠BAF =∠GET ,∵∠ABF =∠ETG ,AB =ET ,∴△ABF ≌△ETG (ASA),∴BF =GT =x ,∵AD ∥CB ,DG ∥BE ,∴△BEP ∽△DGP ,△BPF ∽△DPA ,∴BE DG =BP DP =BF DA,∴BE y =x 2,∴BE =TC =12xy ,∵GT =CG -CT ,即x =2-y -12xy ,∴y =4-2x x +2(0≤x ≤2).9.解:【思考】四边形ABDE 是平行四边形,理由如下:∵△ABC ≌△DEF ,∴AB =DE ,∠BAC =∠EDF .∴AB ∥DE .∴四边形ABDE 是平行四边形;【发现】如解图①,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∴OA =OD =OB =OE .设AF =x cm ,则OA =OE =12(x +4).∴OF =OA -AF =2-12x .在Rt △OFE 中,根据勾股定理得(2-12x )2+32=14(x +4)2,解得x =94.∴AF =94cm ;第9题解图【探究】BD =2OF .理由如下:如解图②,延长OF 交AE 于点H .由矩形性质可得∠OAB =∠OBA =∠ODE =∠OED ,OA =OB =OE =OD .∴∠OBD =∠ODB ,∠OAE =∠OEA .∵∠ABD +∠BDE +∠DEA +∠EAB =360°,∴∠ABD +∠BAE =180°,∴AE ∥BD ,∴∠OHE =∠ODB .∵EF 平分∠OEH ,∴∠OEF =∠HEF .∵∠EFO =∠EFH =90°,EF =EF ,∴△EFO ≌△EFH ,∴EO =EH ,FO =FH ,∴∠EHO =∠EOH =∠OBD =∠ODB ,∴△EOH ≌△OBD ,∴BD =OH =2OF .10.(1)解:等腰三角形,13;【解法提示】如解图①,过点C 作CF ⊥BD 于点F ,∵AC ⊥l ,BD ⊥l ,∴∠CAB =∠DBA =∠CFB =90°,∴四边形ABFC 是矩形,∴AC ∥BD ,AC =BF ,∵BD =2AC ,∴BF =DF ,在△BCF 和△DCF =DFBFC =∠DFC ,=CF∴△BCF ≌△DCF (SAS).∴BC =DC ,∴△BCD是等腰三角形.∵AC ∥BD ,∴△AOC ∽△DOB ,∴OD OA =BD CA =2,∴OD =2OA ,∴OA AD=OA OA +OD=OA 3OA =13.第10题解图①(2)①解:如解图②,过点E 作EG ⊥AD 于点G ,第10题解图②∵AC =32,△ADE 是等边三角形,∴BD =2AC =3,∠EAD =60°,∴∠DAB =90°-∠EAD =30°,∴AD =AE =2BD =6,∵AO AD =13,∴AO =13AD =2,∵AG =12AD =3,∴OG =AG -AO =1,∴EG =AE 2-AG 2=62-32=33,∴OE =OG 2+EG 2=12+(33)2=27;②证明:如解图③,连接CD ,第10题解图③由(1)可知△BCD 是等腰三角形,∵∠ACB =60°,∴∠DBC =∠ACB =60°,∴△BCD 是等边三角形,∠ABC =30°,∵∠EDC =∠EDA -∠CDA =60°-∠CDA ,∠ADB =∠CDB -∠CDA =60°-∠CDA ,∴∠EDC =∠ADB .在△ECD 和△ABD 中,=ADEDC =∠ADB =BD,∴△ECD ≌△ABD (SAS),∴∠ECD =∠ABD =90°,∴∠ACF =∠ECD +∠DCB +∠ACB -180°=90°+60°+60°-180°=30°,设AF =x ,则AC =3x ,AB =3AC =3x ,∴AF AB =x 3x =13=AO AD,∵∠OAF =∠DAB ,∴△OAF ∽△DAB ,∴∠OFA =∠DBA =90°,∴OF ⊥AB .11.解:(1)135°;【解法提示】由题意知,AC =CD =BC ,∴∠CAD =∠CDA ,∠DBC =∠BDC ,又∵△ABC 为直角三角形,∴∠ADB =∠CDA +∠BDC ,即∠ADB =12(180°-α)+12[180°-(90°-α)]=135°.(2)①补全图形,如解图①.第11题解图①∵线段CA 绕点C 顺时针旋转α得到线段CD ,∴CD =CA =BC ,∵∠ACB =90°,∠ACD =α,∴∠CDA =∠CAD =90°-α2,∠CDB =∠CBD =45°-α2,∴∠ADB =∠CDA -∠CDB =45°;②2CE =2BE -AD .证明:过点C 作CG ∥BD ,交EB 的延长线于点G ,如解图②,第11题解图②∵BC =CD ,CE 平分∠BCD ,∴CE 垂直平分BD ,∴BE =DE ,∠EFB =90°,由①知,∠ADB =45°.∴∠EBD =∠EDB =45°,∴∠FEB =45°,∵BD ∥CG ,∴∠ECG =∠EFB =90°,∠G =∠EBD =45°,∴EC =CG ,EG =2EC .∵∠ACE =90°-∠ECB ,∠BCG =90°-∠ECB ,∴∠ACE =∠BCG ,∵AC =BC ,∴△ACE ≌△BCG ,∴AE =BG ,∵EG =EB +BG =EB +AE =EB +ED -AD =EB +EB -AD =2EB -AD ,∴2CE =2BE -AD .12.解:(1)由旋转的性质得,BA =BA ′,∵∠ACB =90°,∴CB 垂直平分AA ′,∴AC =CA ′=52-32=4,∴AA ′=AC +CA ′=8;(2)如解图①,过点C 作CH ⊥AB 于点H ,作CF ∥BM 交AB 于点F ,∴∠CFB =∠A ′BC ′,由旋转的性质得,∠ABC =∠A ′BC ′,∴∠CFB =∠ABC ,∴CB =CF =3,FH =BH ,由(1)知AC =4,∵AC 2-AH 2=BC 2-(5-AH )2,解得AH =165,∴BH =FH =95,BF =185,CH =AC 2-AH 2=125,∴C ′F =C ′B +BF =335,∵CF ∥BM ,∴△C ′MB ∽△C ′CF ,∴BM FC =C ′B C ′F ,即BM 3=3335,∴BM =1511;图①图②第12题解图【一题多解】如解图②,过点C 作CH ⊥AB 于点H ,过点M 作MG ⊥BC ′于点G ,由旋转的性质得,∠MBG =∠CBA ,∴tan ∠MBG =MG BG =tan ∠CBA =AC BC =43,设MG =4x ,则BG =3x ,BM =5x ,同理(2)得CH =125,BH =95,∵tan ∠CC ′H =CH C ′H =125245=12,∴MG C ′G =12,∴C ′G =8x ,∵BC ′=3,∴3x +8x =3,解得x =311,∴BM =5x =1511;(3)存在.理由如下:如解图③,连接A ′C ,过点A 作AP ∥A ′C ′交C ′D 的延长线于点P ,则∠A ′C ′D =∠P,第12题解图③由旋转的性质得,BC =BC ′,∴∠BC ′C =∠BCC ′,∵∠BC ′C +∠A ′C ′C =90°,∠BCC ′+∠ACP =90°,∴∠ACP =∠A ′C ′C =∠P ,∴AP =AC =A ′C ′,∵∠ADP =∠A ′DC ′,∴△ADP ≌△A ′DC ′(AAS),∴A ′D =AD ,∵点E 为AC 的中点,∴DE 为△AA ′C 的中位线,∴DE =12A ′C ,∵A ′C ≥A ′B -BC =2,∴DE ≥12(A ′B -BC )=1,∴DE 的最小值为1.13.(1)证明:∵AB =AC =25,BC =4,D ,E ,F 分别为AC ,AB ,BC 的中点,∴DE =12BC =2,∴DF =12AB =5,∴DF =52DE ;(2)解:FN =52EM ,理由如下:∵AB =AC =25,BC =4,D ,E ,F 分别为AC ,AB ,BC 的中点,∴EF =12AC =CD ,EF ∥DC ,∴四边形CDEF 是平行四边形,∴∠DEF =∠C ,由(1)得DF =12AB =12AC =DC ,∴∠DFC =∠C ,∴∠DEF =∠DFC ,∴180°-∠DEF =180°-∠DFC ,∴∠DEM =∠DFN ,∵将∠EDF 绕点D 顺时针旋转一定角度,得到∠PDQ ,∴∠EDF =∠PDQ ,∴∠FDN +∠NDE =∠EDM +∠NDE ,∴∠FDN =∠EDM ,∴△DNF ∽△DME ,∴NF ME =DF DE =52,∴FN =52EM ;(3)解:如解图,连接AF ,过点C 作CH ⊥AB 于点H ,第13题解图在Rt △AFC 中,FC =12BC =2,∴AF =AC 2-FC 2=4,∵S △ABC =12BC ·AF =12AB ·CH ,∴HC =BC ·AF AB =4×425=855,∵DP ⊥AB ,∴∠AGD =∠AHC =90°.又∵∠GAD =∠HAC ,∴△AGD ∽△AHC ,∴GD HC =AD AC =12,∴GD =12HC =455,在Rt △GED 中,GE =ED 2-GD 2=22-(455)2=255,在Rt △AGD 中,AG =AD 2-GD 2=(5)2-(455)2=355,∴tan ∠ADG =AG GD =355455=34,∵EF ∥AD ,∴∠EMG =∠ADG ,∴tan ∠EMG =EG MG =34,∴MG =43GE =43×255=8515,∴MD =MG +GD =8515+455=453,由(2)得△DNF ∽△DME ,∴DN DM =DF DE =52,∴DN =52DM =52×453=103.14.(1)证明:∵AD ∥BC ,∠ABC =90°,∴∠DAB =180°-∠ABC =90°,∵DH ⊥BC ,即∠DHB =90°,∴四边形ABHD 为矩形.∴AB =DH =23,∠DHC =90°,∵∠C =30°,∴CD =2DH =43,在△PQM 和△CHD 中,Q =∠DHCQPM =∠HCD =CD,∴△PQM ≌△CHD (AAS);(2)解:①∵PM =43,∠QPM =30°,∴PQ =PM ·cos ∠QPM =6.如解图①,过点D 作DT ⊥QA ,交QA 的延长线于点T ,∵∠QPM =30°,∠BPD =90°,∴∠TPD =60°,∴DT =AD ·sin ∠TPD =332,∴边PQ 平移扫过的面积为AQ ·DT =6×332=93,∵边PQ 旋转扫过的面积为50π×62360=5π,∴边PQ 扫过的面积为93+5π;图①图②第14题解图②由(1)可得BH =AD =3,∵BK =9-43,∴KH =BH -BK =43-6,如解图②,当点P 平移到与点D 重合时,连接DK ,设DQ 交BC 于点E ,∵∠QPM =∠HPE ,∠PQM =∠PHE ,∴△PHE ∽△PQM ,∴EH QM =PH PQ ,即EH 23=236,∴EH =2,∵EH -KH =8-43>0,∴点K 在△PQM 中,∵△PQM 右移的速度为每秒1个单位长,∴在△PQM 右移的过程中,点K 在△PQM 区域(含边界)内的时长为(43-6)秒;∵CH =6,BH =3,∴BC =9,∵BK =9-43,∴CK =BC -BK =43,∴CD =CK ,∵∠C =30°,∴∠CDK =∠CKD =75°,∴∠KDH =∠KDC -∠HDC =15°,∴∠QPK =∠QPM -∠KDH =15°,∵△PQM 旋转的速度为每秒5°,∴在△PQM 旋转的过程中,点K 在△PQM 区域(含边界)内的时长为15°÷5°=3秒.∴点K 在△PQM 区域(含边界)内的时长为43-6+3=(43-3)秒;③CF 的长为60-12d 9-d.【解法提示】∵BE =d ,∴EH =|3-d |,EC =BH +HC -BE =3+6-d =9-d ,在Rt △DEH 中,DE 2=DH 2+EH 2=(23)2+|3-d |2=d 2-6d +21,∵∠EDF =∠C ,∠DEF =∠CED ,∴△DEF ∽△CED ,∴DE CE =EF ED ,∴EF =DE 2EC =d 2-6d +219-d,∴CF =BC -BE -EF =9-d -d 2-6d +219-d =60-12d 9-d.15.解:(1)60;【解法提示】当AE ⊥BC 时,△ABE 是等边三角形,∴∠AEB =60°.(2)∠AEB -∠CAD =30°;证明:设∠CAD =α,∵AE =AC =AB ,∴∠BAC =180°-2∠ABC =120°,∴∠BAE =120°-2α,∴∠AEB =12(180°-∠BAE )=12[180°-(120°-2α)]=30°+α,∴∠AEB -∠CAD =30°;(3)如解图,连接AO ,∵O 为BC 的中点,AB =AC ,∴AO ⊥BC .在Rt △AOC 中,AC =4,∠ACO =30°,∴AO =2,OC =23,∵S △ACD =12AO ·DC ,即x =12×2·DC ,∴DC =x .在Rt △AOD 中,∵AD 2=AO 2+OD 2,∴y =22+(23-x )2,整理得y =x 2-43x +16.∴y 关于x 的函数解析式为y =x 2-43x +16(0<x <23).第15题解图16.(1)证明:由折叠的性质得∠PEF=∠FED,∵AD∥BC,∴∠FED=∠EFP,∴∠PEF=∠EFP,∴PE=PF;(2)证明:如解图①,连接PM、EM、FM,∵AD=BC,AE=CF,∴ED=BF,∴EH=BF,由(1)可得PE=PF,∴PH=PB,∵∠PHM=∠PBM=90°,PM=PM,∴Rt△PMH≌Rt△PMB(HL),∴HM=BM,∵∠MHE=∠MBF,HE=BF,∴△MHE≌△MBF(SAS),∴ME=MF,∴点M在线段EF的垂直平分线上;第16题解图(3)解:如解图②,连接AC交BD于点O,由题意可得点E由点A移动到AD中点的过程中,BC的长度.点G运动的路线是以点O为圆心,OC长为半径的圆的一部分,即解图中。

中考数学专题复习_几何探究题

中考数学专题复习_几何探究题

专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。

(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。

'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。

,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习——几何图形初步与相交线、平行线(测试时间:60分钟分数:100分)一、选择题(本题共8小题,共40分)1.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.2.(2022·浙江金华)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.3.(2022·广西柳州)如图,直线a,b被直线c所截,若,∠1=70°,则∠2的度数是( )A.50°B.60°C.70°D.110°4.如图,直线相交于点射线平分若,则等于()A.B.C.D.5.(2022·辽宁营口)如图,直线的顶点B,C分别在上,若,则的大小为( )A.B.C.D.6.两个直角三角板如图摆放,其中,,,AB 与DF交于点M.若,则的大小为()A.B.C.D.7.如图,点D、E分别在线段、上,连接、.若,,,则的大小为()A.60°B.70°C.75°D.85°8.(2021·四川德阳)如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=( )A.30°B.60°C.120°D.150°二、填空题(本题共5小题,每空3分,共15分)9.(2022·广西玉林)已知∠α=60°,则∠α的余角等于____度.10.如图,两直线交于点O,若∠1+∠2=76°,则∠1= 度.11.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A = .12.(2021·湖南益阳)如图,与相交于点O,是的平分线,且恰好平分,则_______度.13.(2021·辽宁阜新)如图,直线,一块含有30°角的直角三角尺顶点E位于直线CD 上,EG平分,则的度数为_________°.三、解答题(本题共3小题,共45分)14.(2021·湖北武汉)如图,,,直线与,的延长线分别交于点,.求证:.15.如图,,AD是内部一条射线,若,于点E,于点F.求证:.16.(2020·江苏镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.参考答案:1.A2.C3.C4.A5.C6.C7.B8.D9.3010.3811.20°12.6013.6014.证明:∵,∴.∵,∴.∴.∴.15.证明:∵,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF,∴.16.证明:(1)在△BEF和△CD A中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.。

2020届中考数学二轮复习专题训练:二次函数与几何(含答案)

2020届中考数学二轮复习专题训练:二次函数与几何(含答案)

2020届中考数学二轮复习专题训练:二次函数与几何1. 如图,抛物线1C :y =ax 2+bx+1的顶点坐标为D (1,0),(1)求抛物线1C 的解析式;(2)如图1,将抛物线1C 向右平移1个单位,向下平移1个单位得到抛物线2C ,直线y x c =+,经过点D 交y 轴于点A ,交抛物线2C 于点B ,抛物线2C 的顶点为P,求△DBP 的面积(3)如图2,连结AP,过点B 作BC ⊥AP 于C,设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.图1yxO P DBA图2QyxO P F E CDB A【解答】(1)∵抛物线顶点为(1,0)P ,经过点(0,1)∴可设抛物线的解析式为:2(1)y a x =-,得: 1a = ∴抛物线的解析式为221y x x =-+(2)根据题意的p (2,-1)∴抛物线的解析式为:2(2)1y x =--,∴A(0,-1),B(4,3)∴△DBP 的面积 =3(3)过点Q 作QM AC ⊥于点M ,过点Q 作QN BC ⊥于点N ,设点Q 的坐标是2(,43)t t t -+,则2(2)QM CN t ==-,4MC QN t ==-.∵//QM CE ∴PQM ∆∽PEC ∆ ∴QM PM EC PC = 即2(2)12t t EC --=,得2(2)EC t =- ∵//QN FC ∴BQN ∆∽BFC ∆ ∴QN BN FC BC = 即243(43)4t t t FC ---+=,得4FC t = 又∵4AC =∴4()[42(2)]8FC AC EC t t+=+-==,即()FC AC EC +为定值8.2. 如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(3分)(2)如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分) (3)如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)(1)由抛物线C 1:()522-+=x a y 得顶点P 的为(-2,-5)∵点B (1,0)在抛物线C 1上∴()52102-+=a ,∴a =59 (2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称,∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG ,∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5),抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到∴抛物线C 3的表达式为()54952+--=x y (3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到∴顶点N 、P 关于点Q 成中心对称由(2)得点N 的纵坐标为5设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G ,作PK ⊥NG 于K ∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6 ∴FG =3,点F 坐标为(m +3,0)H 坐标为(2,0),K 坐标为(m ,-5), 根据勾股定理得 PN 2=NK 2+PK 2=m 2+4m +104PF 2=PH 2+HF 2=m 2+10m +50 NF 2=52+32=34①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0) ③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.3. 已知: 如图1, 二次函数y =a (x -1)2-4的图象交x 轴负半轴于点A , 交x 轴正半轴于点B , 交y 轴负半轴于点C , 且OB =3OA . (1) 求二次函数的解析式;(2) 如图2, M 是抛物线的顶点, P 是抛物线在B 点右侧上一点, Q 是对称轴上一点, 并且AQ ⊥PQ , 是否存在这样的点P , 使得∠P AQ =∠AMQ ? 若存在, 请求出P 点坐标; 若不存在, 请说明理由.(3)如图3, 设(1)中抛物线的顶点为M ,R 为x 轴正半轴上一点,将(1)中抛物线绕R 旋转1800得到抛物线C 1: y =-a (x -h)2+k 交x 轴于D,E 两点,.若tan ∠BME=1,求R 点的坐标。

2019年中考数学二轮复习几何探究题(压轴题) 综合练习 (含参考答案)

2019年中考数学二轮复习几何探究题(压轴题)  综合练习 (含参考答案)

8. 如图,在 Rt△ABC 中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点 M 从点 B 出发,在 BA 边上以 每秒 2 cm 的速度向点 A 匀速运动,同时动点 N 从点 C 出发,在 CB 边上以每秒 3 cm 的速度向点 B 匀速 运动,设运动时间为 t 秒(0≤t≤5),连接 MN. (1)若 BM=BN,求 t 的值; (2)若△MBN 与△ABC 相似,求 t 的值; (3)当 t 为何值时,四边形 ACNM 的面积最小?并求出最小值.
2.如图①,②,③分别以△ABC 的 AB 和 AC 为边向△ABC 外作正三角形(等边三角形)、正四边形(正方 形)、正五边形,BE 和 CD 相交于点 O. (1)在图①中,求证:△ABE≌△ADC. (2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC 的度数,并 说明理由或写出证明过程.
(3)填空:在上述(1)(2)的基础上可得在图③中∠BOC=________(填写度数). (4)由此推广到一般情形(如图④),分别以△ABC 的 AB 和 AC 为边向△ABC 外作正 n 边形,BE 和 CD 仍 相交于点 O,猜想∠BOC 的度数为____________________(用含 n 的式子表示).
AC ②在顶点 G 的运动过程中,若CG=t,请直接写出线段 EC、CF 与 BC 的数量关系(不需要写出证明过程); (3)问题解决:
6 如图④,已知菱形边长为 8,BG=7,CF=5,当 t>2 时,求 EC 的长度.
13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中, ∠BAC=90°,AB=AC,点 D 为直线 BC 上一动点(点 D 不与 B,C 重合),以 AD 为边在 AD 右侧作正 方形 ADEF,连接 CF. (1)观察猜想 如图①,当点 D 在线段 BC 上时,①BC 与 CF 的位置关系为:____________. ②BC,CD,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考 如图②,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立, 请你写出正确结论再给予证明. (3)拓展延伸 如图③,当点 D 在线段 BC 的延长线上时,延长 BA 交 CF 于点 G,连接 GE.若已知

中考数学专题巩固:几何图形探究题(含解析)

中考数学专题巩固:几何图形探究题(含解析)

几何图形探究题1.(1)问题发现如图①,在Rt △ABC 中,∠BAC =90°,AB =2,AC =4,点D 为BC 的中点,过点D 作射线DE ⊥DF ,分别交AB ,AC 于点E ,F ,当DE ⊥AB ,DF ⊥AC 时,DEDF =________; (2)类比探究若∠EDF 绕着点D 旋转到图②的位置,(1)中其他条件不变,DEDF =________;若改变点D 的位置,当CD BD =a b 时,求DEDF 的值,请就图③的情形写出解答过程;图① 图②第1题图(3)问题解决如图③,AB =2,AC =4,连接EF ,当CD =____时,△DEF 为等腰直角三角形;当CD =____时,△DEF 与△ABC 相似.图③ 第1题图解:(1)2;【解法提示】∵DE ⊥AB ,DF ⊥AC ,∠BAC =90°,∴DF ∥AE ,DE ∥AC ,∴△BED∽△BAC,△CDF∽△CBA,∴DEAC=BDBC,DFAB=CDBC,∵点D为BC的中点,AB=2,AC=4,∴DE4=12,DF2=12,∴DE=2,DF=1,∴DEDF=2.(2)2;【解法提示】如解图①,过点D作DM⊥AB于点M,作DN⊥AC于点N,∵∠A=∠DMA=∠DNA=90°,∴∠MDN=90°,∵∠MDE+∠EDN=∠NDF +∠EDN,∴∠MDE=∠NDF,又∵∠DME=∠DNF,∴△DEM∽△DFN,∴DEDF=DMDN,由(1)可得DMDN=2,∴DEDF=2.第1题解图①如解图②,过点D作DG⊥AB于点G,作DH⊥AC于点H,∴∠GDH=90°,∴∠EDG+∠GDF=∠FDH+∠GDF=90°,∴∠EDG=∠FDH,又∵∠DGE=∠DHF=90°,第1题解图②∴△DGE∽△DHF,∴DEDF=DGDH,∵∠BAC=90°,∴DG ∥AC ,DH ∥AB ,∴△BDG ∽△BCA ,△CDH ∽△CBA , ∴DG AC =BD BC ,CD BC =DH AB , ∵CD BD =a b ,∴BD BC =BD BD +CD =b a +b ,CD BC =CD BD +CD =a a +b ,∴DG 4=b a +b ,DH 2=aa +b ,∴DE DF =DG DH =2ba ; (3)453;855或 5.【解法提示】∵∠EDF =90°,∴当△DEF 为等腰直角三角形时,DE =DF ,由(2)中的结论可知,DE DF =2ba =1,∴a =2b ,∴BC =3b ,在Rt △ABC 中,∵AB =2,AC =4,由勾股定理得BC =22+42=25,∴CD =23BC =453.∵∠EDF =∠A =90°,∴△DEF 与△ABC 相似有两种情况:①当△DEF ∽△ABC 时,DE AB =DF AC ,即DE DF =AB AC =12,∴2b a =12,∴a =4b ,∴CD =45BC =855;②当△DEF ∽△ACB 时,DE AC =DF AB ,即DE DF =AC AB =2,∴2b a =2,∴a =b ,∴CD =12BC= 5.综上所述,当CD =855或5时,△DEF 与△ABC 相似.2.在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为2的等边三角形,E 是AC 上一点,小亮以BE 为边向BE 的右侧作等边三角形BEF ,连接CF .(1)如图①,当点E 在线段AC 上时,EF 、BC 相交于点D ,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E 在线段AC 上运动时,点F 也随着运动,若四边形ABFC 的面积为734,求AE的长;(3)如图②,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系,并说明理由;(4)如图②,当△ECD的面积S1=36时,求AE的长.图①图②第2题图解:(1)△ABE≌△CBF.理由如下:∵△ABC与△EBF都是等边三角形,∴AB=CB,BE=BF,∠ABC=∠EBF=60°,∴∠CBF=∠ABE=60°-∠CBE,∴△ABE≌△CBF(SAS);(2)由(1)知点E在运动过程中始终有△ABE≌△CBF.∵S四边形BECF=S△BCF+S△BCE,∴S四边形BECF=S△ABC,∵△ABC是边长为2的等边三角形,∴S△ABC=34×22=3,∴S四边形BECF=3,又∵S四边形ABFC =734,∴S △ABE =S 四边形ABFC -S 四边形BECF =334, 在△ABE 中,∵∠A =60°,∴AB 边上的高为AE ·sin60°,则S △ABE =12AB ·AE ·sin60°=12×2×32AE =334,∴AE =32; (3)S 2-S 1= 3.理由如下:∵△ABC 与△EBF 都是等边三角形,∴AB =CB ,BE =BF ,∠ABC =∠EBF =60°,∴∠CBF =∠ABE =60°+∠CBE ,∴△ABE ≌△CBF , ∴S △ABE =S △CBF ,∴S △FDB =S △ECD +S △ABC , ∴S △FDB -S △ECD =S △ABC =3,即S 2-S 1=3; (4)由(3)知S 2-S 1=3,即S △FDB -S △ECD =3, 由S △ECD =36得S △BDF =736,∵△ABE ≌△CBF , ∴AE =CF ,∠BAE =∠BCF =60°,又∵∠BAE =∠ABC =60°,得∠ABC =∠BCF ,∴CF ∥AB ,则在△BDF 中,DF 边上的高是AC ·sin60°=3,∴12DF ×3=736,解得DF =73,设CE =x ,则2+x =CD +DF =CD +73, ∴CD =x -13,在△ABE 中,由CD ∥AB 得,CD AB =CE AE ,即x -132=xx +2,化简得3x2-x-2=0,∴x=1或x=-23(舍),即CE=1,∴AE=3.3.如图①,在菱形ABCD中,∠ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G,连接FB.(1)过D点作DH⊥AB,垂足为点H,若DH=23,BE=14AB,求DG的长;(2)连接CP,求证:CP⊥FP;(3)如图②,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP,CP,那么第(2)问的结论成立吗?若成立,求出PFCP的值;若不成立,请说明理由.图①图②第3题图(1)解:∵四边形ABCD为菱形,∠ABC=60°,∴DA∥BC,CD=CB,∠CDG=∠CBA=60°,∴∠DAH=∠ABC=60°,∵DH⊥AB,∴∠DHA=90°,在Rt△ADH中,sin∠DAH=DH AD,∴AD=DHsin∠DAH=2332=4,又∵AB=AD,∴BE=14AB=14×4=1,∵EF∥AD,∴∠PDG=∠PEF,∵P为DE的中点,∴PD=PE,又∵∠DPG=∠EPF,∴△PDG≌△PEF(ASA),∴DG=EF,又∵EF=BE,∴DG=EF=1;(2)证明:如解图①,连接CG,CF,第3题解图①由(1)知△PDG≌△PEF,∴PG=PF,∵EF∥AD,AD∥BC,∴EF ∥BC ,∴∠FEB =∠CBA =60°, ∵EF =BE ,∴△BEF 为等边三角形, ∴BF =EF =BE ,∠EBF =60°, ∵DG =EF ,∠ABC =60°,∴BF =DG ,∠CBF =∠ABC =∠CDG =60°, 在△CDG 与△CBF 中,⎩⎨⎧CD =CB∠CDG =∠CBF DG =BF, ∴△CDG ≌△CBF (SAS), ∴CG =CF , ∵PG =PF , ∴CP ⊥FP ;(3)解:CP ⊥FP 仍成立.如解图②,过D 作EF 的平行线,交FP 的延长线于点G ,连接CG ,CF ,第3题解图②易证△PEF ≌△PDG ,∴DG =EF =BF , ∵DG ∥EF , ∴∠GDP =∠FEP , ∵DA ∥BC , ∴∠ADP =∠PEC ,∴∠GDP -∠ADP =∠FEP -∠PEC , ∴∠GDA =∠BEF =60°,∴∠CDG =∠ADC +∠GDA =120°, ∵∠CBF =180°-∠ABC =120°, 在△CDG 和△CBF 中,⎩⎨⎧CD =CB∠CDG =∠CBF ,DG =BF∴△CDG ≌△CBF (SAS), ∴CG =CF ,∠DCG =∠FCB , ∵PG =PF ,∴CP ⊥PF ,∠GCP =∠FCP , ∵∠DCB =180°-∠ABC =120°, ∴∠DCG +∠GCE =120°, ∴∠FCE +∠GCE =120°, 即∠GCF =120°,∴∠FCP=12∠GCF=60°,在Rt△CPF中,tan∠FCP=tan60°=PFCP= 3.∴PFCP= 3.4.已知点O是△ABC内任意一点,连接OA并延长到点E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF,与BC交于点H,再连接EF.(1)如图①,若△ABC为等边三角形,求证:①EF⊥BC;②EF=3BC;(2)如图②,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请说明理由;(3)如图③,若△ABC是等腰三角形,且AB=AC=kBC,求EF与BC之间的数量关系.图①图②图③第4题图(1)证明:①如解图①,连接AH,∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF , ∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC , 又∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF , ∴EF ⊥BC ;②由①得AH ⊥BC ,AH =12EF , ∵在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∴32BC =12EF , ∴EF =3BC ;(2)解:EF ⊥BC 仍然成立,EF =BC ; 【解法提示】如解图②,连接AH ,∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,又∵△ABC是以BC为斜边的等腰直角三角形,∴AH⊥BC,AH=BH=12BC,又∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=12EF,AH∥EF,∴EF⊥BC,EF=2AH=BC,∴(1)中的结论①EF⊥BC仍成立,但结论②不成立,EF 与BC的关系应为EF=BC;(3)解:如解图③,连接AH,第4题解图③∵四边形OBFC是平行四边形,∴BH=HC=12BC,OH=HF,又∵△ABC是等腰三角形,AB=kBC,∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2=(kBC )2-(12BC )2=(k 2-14)BC 2, ∴AH =4k 2-12BC ,又∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF , ∴4k 2-12BC =12EF , ∴EF =4k 2-1 BC .5.如图①,在△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连接BD . (1)求证:BD =AC ;(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .①如图②,当点F 落在AC 上(F 不与C 重合)时,若BC =4,tan C =3,求AE 的长;②如图③,△EHF 是由△BHD 绕点H 逆时针旋转30°得到的,设射线CF 与AE 相交于点G ,连接GH .试探究线段GH 与EF 之间满足的等量关系,并说明理由.图① 图② 图③第5题图(1)证明:∵∠ABC =45°,AH ⊥BC , ∴△ABH 是等腰直角三角形, ∴BH =AH ,在△BHD 和△AHC 中,⎩⎨⎧BH =AH∠BHD =∠AHC DH =CH, ∴△BHD ≌△AHC (SAS), ∴BD =AC ;(2)解:①如解图①,过点H 作HM ⊥AE 交AE 于点M ,第5题解图①在Rt △AHC 中,tan C =3, ∴AHHC =3, ∴BH =AH =3CH , 又∵BC =4,∴BC =BH +HC =4CH =4,∴CH=1,BH=3,由旋转的性质可以得到,HE=BH=3,HF=DH=HC=1,∠EHF=∠AHB=∠AHC=90°,∴∠EHA=∠FHC,∴∠EAH=∠C=∠AEH,∴AM=EM,∴tan∠EAH=tan C=3,设AM=x,则HM=AM·tan∠EAH=3x,在Rt△AHM中,由AH2=AM2+HM2,得32=x2+(3x)2,∴x=310 10,∴AE=2AM=2x=310 5;②EF=2GH.理由:设AH交CG于点N,如解图②,由旋转的性质可得,HE=HB=HA,HF=HD=HC,∵旋转角度为30°,∴∠FHD=∠BHE=30°,∴∠EHA=∠FHC=120°,第5题解图②∴∠FCH=∠GAH=30°,又∵∠ANG=∠HNC,∴△ANG∽△CNH,∴∠AGN=∠CHN=90°,GN AN=HN CN,又∵∠GNH=∠ANC,∴△GNH∽△ANC,∴GHAC=GNAN=12,∵由(1)可知,△BHD≌△AHC. ∴△EHF≌△AHC,∴EF=AC,∴EFGH=ACGH=2,∴EF=2GH.6.我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=____BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________;猜想论证(2)在图①中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明;拓展应用(3)如图④,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.图①图②图③图④第6题图解:(1)①12;② 4;【解法提示】①由旋转可得到AB=AB′=AC=AC′,∵∠BAC=60°,∴∠B′AC′=120°,∴∠AB′C′=30°,又∵AD为B′C′上的中线,∴AD⊥B′C′,∴AD=12AB′=12AB=12BC;②由“旋补三角形”定义可得:∠B′AC′=90°,易证△AB′C′≌△ABC,∴B′C′=BC,∵点D为B′C′的中点,∴AD=12BC=4.(2)AD=12BC.证明:如解图①,延长AD至E,使DE=AD.第6题解图①∵AD是△ABC的“旋补中线”,∴B′D=C′D.∴四边形AB′EC′是平行四边形,∴EC′∥B′A,EC′=B′A,∴∠AC′E+∠B′AC′=180°.由定义可知∠B′AC′+∠BAC=180°,B′A=BA,AC=AC′,∴∠AC′E=∠BAC,EC′=BA,∴△AC′E≌△CAB,∴AE=BC,∵AD=12AE,∴AD=12BC;(3)存在;证明:如解图②,作PE垂直平分BC,且使PE=CD,连接P A,PB,PC,PD,可得PC=PB,∵∠DCE=∠CEP=90°,∴PE∥CD;∴四边形PECD为矩形;∴PE=CD=23,PD=CE=AD=6,∠PDC=90°;∴tan∠PCE=PECE=33,∴∠PCE=∠PBE=30°,即∠BPC=120°,又由∠ADC=150°,可得∠ADP=60°,∴△P AD为等边三角形,第6题解图②∴PD=P A,∠APD=60°.∵∠BPC+∠DP A=120°+60°=180°,∴△PCD是△P AB的“旋补三角形”;取CD的中点M,连接PM,可得DM =3,PD =6.由勾股定理得PM =DM 2+PD 2=(3)2+62=39, ∴△P AB 的“旋补中线”长为39.7.如图,在△ABC 中,矩形EFGH 的一边EF 在AB 上,顶点G 、H 分别在BC 、AC 上,CD 是边AB 上的高,CD 交GH 于点I ,若CI =4,HI =3,AD =92,矩形DFGI 恰好为正方形.(1)求正方形DFGI 的边长;(2)如图,延长AB 至P ,使得AC =CP ,将矩形EFGH 沿BP 的方向向右平移,当点G 刚好落在CP 上时,试判断移动后的矩形与△CBP 重叠部分的形状是三角形还是四边形,为什么?第7题图解:(1)∵四边形EFGH 为矩形, ∴HG ∥EF ,∴HI AD =CI CD ,即392=4CD ,解得CD =6,∴ID =CD -CI =2,即正方形DFGI 的边长为2; (2)移动后的矩形与△CBP 重叠部分的形状是三角形. 理由如下:如解图,设在移动过程中,当点G 刚好落在CP 上时,矩形EFGH 移动到矩形E ′F ′G ′H ′,∵AC =PC ,CD ⊥AB , ∴∠A =∠P ,AD =PD , 在△AEH 和△PF ′G ′中,∵⎩⎨⎧∠A =∠P∠AEH =∠PF ′G ′EH =F ′G ′,第7题解图∴△AEH ≌△PF ′G ′(AAS), ∴AE =PF ′, ∵AD =PD ,∴AD -AE =PD -PF ′, 即DE =DF ′=3, ∵HG ∥AB , ∴△CHG ∽△CAB , ∴HG AB =CI CD ,即3+2AB =44+2,解得AB =152, ∴DB =AB -AD =3,∴DB=DF′,即点F′与点B重合,也就是说在移动过程中,当点G刚好落在CP上时,矩形EFGH的F点刚好运动到点B,∴移动后的矩形与△CBP重叠部分的形状是三角形.8.如图①,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF∶F A=1∶5.(1)如图②,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.①求四边形BHMM′的面积;②直线EF上有一动点N,求△DNM周长的最小值.(2)如图③,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.图①图②图③备用图第8题图解:(1)①在▱ABCD中,AB=6,∵直线EF垂直平分CD,∴EF⊥CD,∵CD∥AB,∴EF⊥BH,又∵DH⊥AB,∴四边形EFHD为矩形,∴DE=FH=3,又∵BF∶F A=1∶5,∴AH=2,第8题解图①∵Rt△AHD∽Rt△MHF,∴HMFH=AHDH,即HM3=24,∴HM=1.5,根据平移的性质,MM'=CD=6,如解图①,连接BM,∴四边形BHMM′的面积为12×(6+4)×1.5=7.5;②如解图②,连接CM交直线EF于点N,连接DN,第8题解图②∵直线EF垂直平分CD,∴CN=DN,∵MH=1.5,∴DM=2.5,在Rt△CDM中,MC2=DC2+DM2,∴MC2=62+(2.5)2,解得MC=6.5,∴MN+DN=MN+CN=MC,∴△DNM周长的最小值为DM+MC=9;(2)∵BF∥CE,∴QFQF+4=BFCE=13,∴QF=2,∴PK=PK′=6,如解图③,过点K′作E′F′∥EF,分别交CD于点E',交QK于点F',第8题解图③当点P在线段CE上时,在Rt△PK′E′中,PE′2=PK′2-E′K′2,∴PE′=25,∵Rt△PE′K′∽Rt△K′F′Q,∴PE′K′F′=E′K′QF′,即252=4QF′,解得QF′=45 5,第8题解图④∴PE=PE′-EE′=25-455=655,∴CP=15-655,同理可得,如解图④,当点P在线段DE上时,CP′=15+655,综上所述,CP的长为15-655或15+655.9.问题发现(1)如图①,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD =40°,连接AC,BD交于点M.填空:①ACBD的值为________;②∠AMB的度数为________.类比探究(2)如图②,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;拓展延伸(3)在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M.若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.图①图②备用图第9题图解:(1)①1;②40°;(2)ACBD=3,∠AMB=90°;理由如下:∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,∴CODO=AOBO=3,∠COD+∠AOD=∠AOB+∠AOD,即∠AOC=∠BOD,∴△AOC∽△BOD,∴ACBD=CODO=3,∠CAO=∠DBO.∵∠AOB=90°,∴∠DBO+∠ABD+∠BAO=90°.∴∠CAO+∠ABD+∠BAO=90°,∴∠AMB=90°;(3)①点C与点M重合时,如解图①,同理得:△AOC∽△BOD,∴∠AMB=90°,设BD=x,则AC=3x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=7,∴AB=2OB=27,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(3x)2+(x-2)2=(27)2,解得x1=3,x2=-2(舍去),∴AC=33;②点C与点M重合时,如解图②,同理可得:∠AMB=90°,ACBD=3,设BD=x,则AC=3x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(3x)2+(x+2)2=(27)2解得x1=-3(舍去),x2=2,∴AC=23,综上所述,AC的长为33或2 3.图①图②第9题解图10.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E作EN∥AD交AM的延长线于点N.(1)当A,B,C三点在同一条直线上时(如图①),直接写出线段AD与NE的数量关系为________.(2)将图①中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图②),判断△ACN是什么特殊三角形并说明理由.(3)将图①中△BCE绕点B旋转到图③位置,此时A,B,M三点在同一直线上.求证:若AC=32,AD=1,则四边形ACEN的面积为21 2.图①图②图③第10题图(1)解:AD=NE.【解法提示】∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.∴△ADM≌△NEM(AAS).∴AD=NE;(2)解:△ACN为等腰直角三角形.理由如下:∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一条直线上,∴∠ABC=180°-∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形;(3)证明:如解图,连接CM.第10题解图∵AD∥NE,M为DE的中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE,∵AD∥NE,∴AN⊥NE,在四边形BCEN中,∵∠BCE=∠BNE=90°,∴∠NBC+∠NEC=360°-180°=180°,∵∠NBC+∠ABC=180°,∴∠ABC=∠NEC,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形,由(1)可知,△AMD≌△NME,∴AM=MN,AD=NE=1,∴CM⊥AN,AM=CM=MN,∵AC=32,∴AM=CM=MN=3,∴S四边形ACEN =S△AMC+S直角梯形MNEC=12×3×3+12×(3+1)×3=212.31。

中考数学专题复习几何探究练习(二)

中考数学专题复习几何探究练习(二)

中考数学专题复习几何探究练习(二)学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.[感知]如图①,在①ABCD中,点E为CD的中点,连接BE并延长交AD的延长线于点F.求证:点E是BF的中点,点D是AF的中点;[应用]如图①,在四边形ABCD中,AD//BC,①BAD=90°,AB=4,AD=3,点E是CD的中点,BE①CD,BE、AD的延长线相交于点F,则AF=.[拓展]如图①,在①ABC中,点D是AC的中点,点E是AB上一点,1=2BEEA,BD,CE相交于点F,则EFFC=.2.【教材呈现】华师版九年级上册数学教材第103页的部分内容.例:如图,在Rt△ABC中,∠ACB=90°,∠A=30°.求证:BC=12AB.证明:作邻边AB上的中线CD,则请你结合图①,将证明过程补充完整.【结论应用】如图①,在Rt△ACB中,∠ACB=90°,∠A=30°,D是AB的中点.过点D作DE∥BC交AC于点E.则线段AB与DE的数量关系为.【拓展提升】一副三角板按图①所示摆放,得到△ABD和△BCD.其中∠ADB=∠BCD=90°,∠A=60°.∠CBD=45°.点E为AB的中点,过点E作EF⊥CD于点F.若AB=8cm.则EF的长为cm.3.【问题原型】如图,在矩形ABCD中,对角线AC、BD交于点O,以AC为直径作O.求证:点B、D在O上.请完成上面问题的证明,写出完整的证明过程.【发现结论】矩形的四个顶点都在以该矩形对角线的交点为圆心,对角线的长为直径的圆上.【结论应用】如图,已知线段2AB=,以线段AB为对角线构造矩形ACBD.求矩形ACBD面积的最大值.【拓展延伸】如图,在正方形ABCD中,2AB=,点E、F分别为边AB、CD的中点,以线段EF为对角线构造矩形EGFH,矩形EGFH的边与正方形ABCD的对角线AC交于M、N两点,当MN的长最大时,矩形EGFH的面积为_____________________4.【问题原型】如图①,四边形ABDE 、AGFC 都是正方形,AB AC >,连结CE 、BG .求证:BG CE =.【发现结论】如图①,设图①中的直线CE 与直线BG 交于点H .求证:EH BG ⊥.【结论应用】将图①中的正方形AGFC 绕着点A 顺时针旋转角度(0360)αα︒<<︒,在整个旋转过程中,当点E 、C 、G 三点在同一条直线上时,若3AB =,2AC =,借助图①,直接写出BG 的长.5.【教材呈现】下图是华师版九年级上册数学教材第103页的部分内容.如图,在Rt△ABC中,①ACB=90°,CD是斜边AB上的中线.求证:12CD AB=.证明:延长CD至点E,使DE=CD,连结AE、BE.请根据教材提示,结合图①,写出完整的证明过程.图①【结论应用】(1)如图,在四边形ABCD中,90ABC ADC∠=∠=︒,45DAC∠=︒,30BAC∠=︒,E是AC的中点,连结BE、BD.则DBE∠的度数为°.(2)在ABC中,已知13AB=,12BC=,5CA=,D为边AB的中点,DE AB⊥且与ACB∠的平分线交于点E,则DE的长为.6.教材呈现:如图是华师版九年级上册第64页的课后习题.如图,在ABC中,点D是边AB的四等分点,//DE AC,//DF BC,8AC=,12BC=.求四边形DECF的周长.(1)请完成该题目(补充说明:题目中的点D是边AB靠近点A的四等分点).(2)小明和小静在复习该题目时分别对这个题目进行了改编,请分别解答小明和小静提出的问题.①小明提出的问题是:如图①,在ABC中,点D是边AB靠近点A的四等分点,//DE AC,//DF BC.当四边形DECF为菱形时,求AC与BC的数量关系?①小静提出的问题是:如图①,在ABC中,点D是边AB靠近点A的四等分点,//DE AC,//DF BC,8BC=,60A∠=︒.则四边形DECF面积的最大值是___________.7.【教材呈现】下图是华师版九年级上册数学教材102﹣103页的部分内容.性质:直角三角形的斜边中线等于斜边的一半给出上述性质证明中的部分演绎推理的过程如下:已知:如图1,在①ABC中,①ACB=90°,CD为斜边AB上的中线.求证:CD=AB证明:如图2,延长CD至点E,使DE=CD,连接AE,BE.【问题解决】请结合图3将证明过程补充完整.【应用探究】(1)如图4,在①ABC中,AD是高,CE是中线,点F是CE的中点,DF①CE,点F 为垂足,①AEC=78°,则①BCE为度.(2)如图5,在线段AC上有一点B,AB=4,AC=11,分别以AB和BC为边作正方形ABED和正方形BCFG,点E落在边BG上,连接DF,点H为DF的中点,连接GH,则GH的长为.参考答案:1.(1)证明见解析;(2)8;(3)13. 【解析】【分析】(1)通过证①DEF ①①CEB ,然后结合▱ABCD 的性质可以得到所证结论成立;(2)与(1)同理可得①DEF ①①CEB ,从而有DF =BC ,结合已知可以证得四边形DFCB 是菱形,所以可得DF =BD ,由勾股定理可得BD =5,最后即可得到AF =8;(3)过A 作AG ①EC 交BD 延长线于G ,则与(1)同理可得AG =FC ,再由平行线分线段成比例可得EF EF BE FC AG BA ==,最后根据1=2BE EA 可以得到结论. 【详解】解:(1)证明:①▱ABCD ,①AF ①BC ,AD =BC ,①①F =①EBC ,①在①DEF 和①CEB 中, F EBC DEF BEC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩①①DEF ①①CEB ,①BE =EF ,DF =BC =AD ,①点E 是BF 的中点,点D 是AF 的中点;(2)与(1)同理可得①DEF ①①CEB ,①DF =BC ,又由已知可得DF ①BC ,①四边形DFCB 是平行四边形,①BE ①CD ,①四边形DFCB 是菱形,①DF =BD ,①①BAD =90°,AB =4,AD =3,①BD =5,①AF =AD +DF =3+5=8,故答案为8;(3)如图,过A作AG①EC交BD延长线于G,与(1)同理可得①ADG①①CDF,①AG=FC,①AG①EF,①EF EF BE FC AG BA==,①1=2 BEEA,①11 =123 BE BEBA BE EA==++,①13 EFFC=,故答案为13.【点睛】本题考查三角形全等的判定与应用,熟练掌握构造辅助线证三角形全等的方法、三角形全等的判定与性质、平行线分线段成比例定理、及类比的思维方法是解题关键.2.【教材呈现】见解析;【结论应用】BC=4DE;【拓展提升】2+6.【解析】【分析】【教材呈现】根据直角三角形斜边上的中线等于斜边一半,可得CD=BD=AD,再证明△BCD是等边三角形,即可证明结论;【结论应用】取BC的中点,连接DF,应用(1)的结论可得BC=12AB,再证明四边形CEDF是平行四边形,应用平行四边形性质即可得到答案;【拓展提升】过点A作AG①CD交CD的延长线于点G,应用(1)的结论可得出AD,再运用解直角三角形或勾股定理求出BD,BC,AG,最后应用三角形中位线定理即可求出EF.【详解】解:【教材呈现】如图①,作斜边AB上的中线CD,则CD=BD=AD,①①ACB=90°,①A═30°,①①B=90°﹣①A═90°﹣30°=60°,①①BCD是等边三角形,①BC=CD=12AB.【结论应用】如图①,取BC的中点,连接DF,①①ACB=90°,①A=30°,①BC=12AB,①D,F分别是AB,BC的中点,①DF①AC,①DE①BC,①四边形CEDF是平行四边形,①DE=CF=12BC,①DE=14BC,即BC=4DE.故答案为:BC=4DE.【拓展提升】如图①,过点A作AG①CD交CD的延长线于点G,连接AC,交EF于H,①①ADB=①BCD=90°,①A=60°.①CBD=45°,①①ABD=30°,①AD=12AB=12×8=4(cm),①BD=AB•sin①A=8sin60°=43(cm),①BC=BD•cos①CBD=43cos45°=26(cm),①①BDC=90°﹣①CBD=45°,①①ADG=180°﹣①ADB﹣①BDC=45°,①①G=90°,①AG=AD•sin①ADG=4sin45°=22(cm),①EF①CD,BC①CD,AG①CD,①AG①EF①BC,①点E为AB的中点,∴16cm2EH BC==,12cm2FH AG==①EF=EH HF+=(2+6)cm;故答案为:2+6.【点睛】本题考查了直角三角形性质,特殊角三角函数值,三角形中位线定理,平行四边形的判定与性质等,熟练掌握直角三角形性质和平行四边形的判定与性质是解题关键.3.问题原型:见解析;结论应用:见解析;发现结论:2;拓展延伸:2【解析】【分析】问题原型:运用矩形对角线互相平分且相等,即可求证四点共圆;结论应用:根据结论矩形面积最大时为正方形,利用对角线的长求得正方形的面积;拓展延伸:由上一问的结论,可知四边形EGFH为正方形, 证明四边形AEOH是正方形,继而求得面积【详解】解:【问题原型】①AC为O直径,①OA为O半径.令OA r=.①四边形ABCE为矩形,①AC BD=,12OA OC AC==,.12OB OD BD==①OB OD OA r===.①点B、D在O上.【结论应用】连续CD交AB于点O,过点D作DE AB⊥于点E.①DE OD≤.由【发现结论】可知,点D在以AB为直径的圆上,即112OD OA AB===,①当1DE OD==即AB CD⊥时,矩形ACBD的面积最大.2AB CD==①矩形ACBD的面积最大值为22112222AB=⨯=.【拓展延伸】如图,连接GH,设AC与EF的交点为O四边形ABCD是正方形2AB∴=,90BAD ADC∠=∠=︒,//AE DF点E、F分别为边AB、CD的中点1AE EB CF FD∴====,2EF=∴四边形AEFD是矩形//EF AD∴EF AB⊥,由【结论应用】可知,2EF=时,矩形EGFH的面积最大为2122EF=此时四边形EGFH为正方形,此时MN最大,EF GH∴⊥,112EO OF OH OG EF=====∴四边形AEOH是正方形∴112AE AH AB===∴2222112EH AE AH=+=+=∴正方形EGFH的面积为:22(2)2EH==【点睛】本题考查了矩形的性质,正方形的性质与判定,灵活运用矩形,正方形的性质和判定是解题的关键.4.【问题原型】见解析;【发现结论】见解析;【结论应用】72-或7+2【解析】【分析】【问题原型】根据题意直接运用全等三角形的判定证明EAC BAG△≌△即可得出答案;【发现结论】由题意结合全等三角形的性质EAC BAG△≌△得到①AEC=①ABG,进而通过直角三角形的互余关系进行角的等量代换即可;【结论应用】根据题意分EG在AE的右侧和EG在AE的左侧两种情况,进而利用全等三角形的判定与勾股定理进行分析计算即可.【详解】解:【问题原型】①四边形ABDE,AGFC都是正方形,①AE=AB,AC=AG,①EAB=①CAG=90︒.①①EAC+①CAB=①GAB+①CAB=90︒.①①EAC=①BAG.①EAC BAG△≌△.①BG=CE.【发现结论】如图,设EH与AB交于点O.①四边形ABDE是正方形,①①EAB=90︒.①①AEO+①AOE=90︒.①EAC BAG△≌△,①①AEC=①ABG.①①BOH=①AOE,①①OBH+①BOH=90︒.①①OHB=90︒.①EH①BG.【结论应用】当EG在AE的右侧时,如图:①EAC BAG△≌△,CG为正方形AGFC的对角线,①①ACG=①AGC=45︒,①ACE=①AGB=135︒,①①EGB=1354590︒-︒=︒,①3AB AE==,2AC AG==,①222222CG=+=,223332BE=+=,设,22BG CE m EG m===+,则有222BG EG BE+=,得到()222218m m++=,解得72m=-或72m=--(舍去);当EG在AE的左侧时,如图:①EAC BAG△≌△,①BG EC=,①①ACE=①AGB=45︒,①CGB=90︒,设EG=n,同理可得n=72-,①227272BG EC CG EG==+=+-=+,综上,BG=72-或7+2.【点睛】本题考查全等三角形的旋转问题以及正方形的性质,熟练掌握全等三角形的判定与性质以及勾股定理与设参法的应用是解题的关键.5.【教材呈现】见解析;【结论应用】(1)15;(2)132 【解析】【分析】[教材呈现]倍长中线,求证四边形ACBE 为矩形,根据矩形的性质得证;[结论应用](1)连接DE,求得DEB ∠的度数,从而求得DBE ∠;(2)以点D 为圆心,DA 为半径作圆交直线DE 于点F ,连接CF ,AF ,BF ,求证E 、F 两点重合,从而求得DE 的长.【详解】[教材呈现]证明:延长CD 到E ,使DE CD =,连接AE 、BE ,CD 是斜边AB 上的中线,AD BD ∴=,又DE CD =,∴四边形ACBE 是平行四边形又90ACB ∠=︒,ACBE ∴是矩形, CE AB ∴=,1122CD CE AB ∴==; [结论应用]解:(1)连接DE ,如下图①90ABC ADC ∠=∠=︒,E 是AC 的中点①12DE AC BE EC === 又①45DAC ∠=︒,30BAC ∠=︒①90,60DEC BEC ∠=︒∠=︒①150DEB ∠=︒①180152DEBDBE︒-∠∠==︒(2)以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,13AB=,12BC=,5CA=.222BC CA AB∴+=,ABC∆∴为直角三角形,①DE AB⊥,∴90DBE∠=︒11904522FCB FDB∴∠=∠=⨯︒=︒,CE平分ACB∠,1452ECB ACB∴∠=∠=︒,FCB ECB∴∠=∠,AB为圆的直径,90AEB∴∠=︒,AEB∴∆是直角三角形,11322DE DF AB∴===.【点睛】此题主要考查了直角三角形斜边的中线等于斜边的一半这一性质,涉及了勾股定理、圆的性质等有关内容,熟练掌握有关性质的证明和应用是解题的关键.6.(1)18;(2)①3BC AC=;① 63【解析】【分析】(1)根据点D是边AB靠近点A的四等分点,得到14AD AB=,34BD AB=,再根据DE①AC,得到△BED①△BCA,即34DE BDAC AB==由此求解即可;(2)①由(1)得34DE AC=,14DF BC=根据四边形DECF是菱形,可得DE=DF,由此求解即可;①根据①BED①①BCA,34DE BDAC AB==,即可得到916BED ABCS S=△△,同理116ADF ABCS S=△△,从而推出63=168ABC ABCDECFS S S=△△四边形,要想四边形DECF面积最大,即三角形ABC的面积最大,再根据A、B、C三点共圆,且弦BC=8,弦BC所对的圆心角度数为120°,如图所示,分别过点A作AE①BC,OF①BC,过点O作OP①AE于P,得出当且仅当A、O、F 三点共线的时候,此时AE有最大值,即三角形ABC的面积有最大值,由此求解即可.【详解】解:(1)①点D是边AB靠近点A的四等分点,①14AD AB=,34BD AB=,①DE①AC,①①BED①①BCA,①34 DE BDAC AB==,①364DE AC==,同理可以求得134DF BC==,①DE①AC,DF①BC,①四边形DECF是平行四边形,①CF=DE=6,CE=DF=3,①四边形DECF的周长=CF+DE+CE+DF=18;(2)①由(1)得34DE AC=,14DF BC=①四边形DECF是菱形,①DE=DF,①3144AC BC=,①3BC AC=;①①DE ①AC ,①①BED ①①BCA ,①34DE BD AC AB ==, ①916BED ABC S S =△△, 同理116ADF ABC S S =△△, ①63=168ABC ABC DECF S S S =△△四边形, ①要想四边形DECF 面积最大,即三角形ABC 的面积最大,①BC =8,①A =60°,①可以看做A 、B 、C 三点共圆,且弦BC =8,弦BC 所对的圆心角度数为120°, 如图所示,分别过点A 作AE ①BC ,OF ①BC ,过点O 作OP ①AE 于P ,①1=42ABC S BC AE AE =△, 由垂径定理可知,4BF BC ==,60BOF COF ==∠∠,①83sin 3BF BO OA FOB ===∠,43=tan 3BF OF FOB =∠, 则四边形OFEP 是矩形,①OF =PE ,①AE OE OF ≤+, 当且仅当A 、O 、F 三点共线的时候,此时AE 有最大值,即三角形ABC 的面积有最大值, ①43AE AO OF =+=,①4=163ABC S AE =△,①3==638ABC DECF S S △四边形.【点睛】本题主要考查了相似三角形的性质与判定,菱形的性质,垂径定理,圆周角定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.7.问题解决:见解析;应用探究:(1)26︒;(2)322【解析】【分析】问题解决:根据题意证明ADC BDE ≌即可;应用探究:(1)设=BCE α∠, 根据直角三角形斜边上的中线等于斜边的一半以及等边对等角可得,EDB EBD ∠=∠DEC DCE α∠=∠=,三角形的外角性质求得3AEC B ECB α∠=∠+∠=,即378α=︒;(2)延长FG 至M ,使得GM GF =,过点D 作DN MG ⊥于点N ,根据正方形的性质以及矩形的性质可得,DN MN 得到长,根据勾股定理即可求得DM ,根据中位线的性质即可求得GH 的长.【详解】问题解决:如图3,延长CD 至点E ,使DE =CD ,连接AE ,BECD 为斜边AB 上的中线,AD BD ∴=,DE CD =,∴四边形ACBE 是平行四边形又90ACB ∠=︒∴四边形ACBE 是矩形,∴CE AB =1122CD CE AB ∴== ∴直角三角形的斜边中线等于斜边的一半应用探究:(1)连接ED ,如图,设=BCE α∠AD 是ABC 的高AD BC ∴⊥CE 是中线AE EB ∴=∴Rt ABD △中,12DE AB AE BE === EDB EBD ∴∠=∠ 点F 是CE 的中点,DF ①CE ,DE DC ∴=DEC DCE α∴∠=∠=2EDB DEC DCE α∴∠=∠+∠=2EBD EDB α∴∠=∠=3AEC B ECB α∴∠=∠+∠=78AEC ∠=︒378α=︒26α∴=︒即26BCE ∠=︒故答案为:26(2)如图,延长FG 至M ,使得GM GF =,过点D 作DN MG ⊥于点N ,四边形,ABED BCFG 是正方形,AB =4,AC =11,则四边形DNGE 是矩形1147FG BC AC AB ∴==-=-=743MN MG NG ∴=-=-=,743DN EG BG BE ==-=-=Rt MND △中223332DM =+=MG GF =,H H 为DF 的中点,13222HG DM ∴== 故答案为:322【点睛】 本题考查了正方形的性质,矩形的性质与判定,平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.。

课标版数学中考第二轮专题复习-22探索题新题型训练(...(1.02M)

课标版数学中考第二轮专题复习-22探索题新题型训练(...(1.02M)

课标版数学中考第⼆轮专题复习-22探索题新题型训练(...(1.02M)中考数学探索题训练1、我们平常⽤的数是⼗进制数,如2639=2×103+6×102+3×101+9×100,表⽰⼗进制的数要⽤10个数码(⼜叫数字):0,1,2,3,4,5,6,7,8,9。

在电⼦数字计算机中⽤的是⼆进制,只要两个数码:0和1。

如⼆进制中101=1×22+0×21+1×20等于⼗进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于⼗进制中的数23,那么⼆进制中的1101等于⼗进制的数。

2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后⼀个奇数是19时),它们的和是。

3、⼩王利⽤计算机设计了⼀个计算程序,输⼊和输出的数据如下表:A 、618 B 、638 C 、658D 、6784、如下左图所⽰,摆第⼀个“⼩屋⼦”要5枚棋⼦,摆第⼆个要11枚棋⼦,摆第三个要17枚棋⼦,则摆第30个“⼩屋⼦”要枚棋⼦.5、如下右图是某同学在沙滩上⽤⽯⼦摆成的⼩房⼦,观察图形的变化规律,写出第n 个⼩房⼦⽤了块⽯⼦。

6、如下图是⽤棋⼦摆成的“上”字:(1)(2)(3)第4题第⼀个“上”字第⼆个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需⽤和枚棋⼦;(2)第n个“上”字需⽤枚棋⼦。

7、如图⼀串有⿊有⽩,其排列有⼀定规律的珠⼦,被盒⼦遮住⼀部分,则这串珠⼦被盒⼦遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n个图形中有个点。

2020年中考数学二轮专项——几何动态探究题(含答案)

2020年中考数学二轮专项——几何动态探究题(含答案)

2020年中考数学二轮专项——几何动态探究题类型一动点探究题1. 如图,在矩形ABCD中,AB=4,AD=6,点E,F分别是AB,BC边上的两动点,且EF=2,点G 为EF的中点,点H为AD边上一动点,连接CH,GH,则GH+CH的最小值为________.第1题图2. (2019锦江区二诊)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点D是线段BC上一动点,连接AD,以AD为边作△ADE,使△ADE∽△ABC,则△ADE的最小面积与最大面积之比等于______.第2题图3. (2019金牛区二诊)如图,矩形ABCD中,AB=5,BC=7,点E是对角线AC上的动点,EH⊥AD,垂足为H,以EH为边作正方形EFQH,连接AF,则∠AFE的正弦值为________.第3题图4. 如图,两个全等的三角形△ABC和△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,点E在BC边上从点B向点C移动(点E不与B、C重合),在运动过程中,DE始终经过点A,EF与AC相交于点M,当△AEM是等腰三角形时,BE的长为__________.第4题图5. 如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点P是边AB上一动点,过点P作BC的垂线交BC 于点D ,点F 与点B 关于直线PD 对称,连接AF ,当△AFC 是等腰三角形时,BD 的长为________.第5题图6. (2018成都黑白卷)如图,△ABC 内接于半径为2的⊙O ,∠ABC =45°,∠ACB =60°,点D 为AB ︵的中点,点M 、N 分别是CD 、AC 上的动点,则MA +MN 的最小值为________.第6题图7. 如图,在矩形ABCD 中,点E 是对角线AC 上的动点,连接BE ,MN 是BE 的垂直平分线,分别交AB 、BC 于点M 、N ,连接EM 、EN .过点E 作EF ⊥AD 于点F ,已知AB =1,BC =2.若△AEM 是直角三角形,则EF 的长为________.第7题图8. 如图,在矩形ABCD 中,AC 和BD 交于点O ,点E 是边BC 上的动点,连接EO 并延长交AD 于点F ,连接AE ,已知AB =1,BC =3,若△AEF 是等腰三角形,则DF 的长为________.第8题图9. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =3,点M 是直线BC 上一动点,且∠CAM +∠CBA =45°,则BM 的长为________.第9题图10. (2019锦江区一诊)如图,矩形OABC的边OC在x轴上,边OA在y轴上,A点坐标为(0,2).点D 是线段OC上的一个动点,连接AD,以AD为边作矩形ADEF,使边EF过点B,连接OF.当点D与点C 重合时,所作矩形ADEF的面积为6.在点D的运动过程中,当线段OF有最小值时,直线OF的解析式为________.第10题图类型二平移探究题1. 如图,矩形ABCD中,点E是BC边上一点,连接AE,将△ABE向右平移得到△DCF,连接AF.若四边形AEFD为菱形,AF=45,BE∶EC=3∶2,则AD长为________.第1题图2.如图,在Rt△AOB中,OA=2,OB=4,点E在OB上,且∠OAE=∠OB A.将△AEO沿AO方向向右平移得到△A′E′O′,连接A′B、BE′.当A′B+BE′取得最小值时,则EE′的长是________.第2题图3. 如图,在Rt△ABC中,AB=AC=2,∠A=90°,D是AB延长线上一点,过点B在AD上方作射线BE,使得∠DBE=45°.将△ABC沿射线BE平移,得到△A′B′C′,其中点A,B,C的对应点分别是A′,B′,C′,连接A′B,C′B,则A′B+C′B的最小值是________ .第3题图4. (2018成都黑白卷)如图,在▱ABCD中,AB=6,∠BAD=45°,∠ABD=75°,点E为线段BD边上一动点,连接AE,第一步:将△AED剪下平移到△BGC处;第二步:将△ABE剪下平移到△DCF处;第三步:将△BGC沿BC的中垂线翻转180°后得到△CG′B;第四步:将△CFD沿DC的中垂线翻转180°后得到△DF′C,连接F′G′;当点E在BD上移动时,F′G′的最小值为________.第4题图类型三旋转探究题1. 如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD 绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,在旋转过程中,CF的最大长度是________.第1题图2. 在Rt △ABC 中,∠ACB =90°,tan ∠BAC =12.点D 在边AC 上(不与A ,C 重合),连接BD ,F 为BD 中点.若BC =6,点D 在边AC 的三等分点处,将线段AD 绕点A 旋转,点F 始终为BD 中点,则线段CF 长度的最大值是________.第2题图3. 如图,在Rt △ABC 中,∠BAC =90°,AB =4,AC =3,点D ,E 分别是AB ,AC 的中点,点G ,F 在BC 边上(均不与端点重合),DG ∥EF .将△BDG 绕点D 顺时针旋转180°,将△CEF 绕点E 逆时针旋转180°,拼成四边形MGFN ,则四边形MGFN 周长l 的取值范围是________.第3题图4. (2019高新区二诊)如图,△ABC ,△EFG 分别是边长为2和233的等边三角形,D 是边BC 、EF 的中点,直线AG 、FC 相交于点M ,当△EFG 绕点D 旋转一周时,点M 经过的路径长为________.第4题图5. 如图,△ABC 和△CDE 都是等腰直角三角形(∠ACB =∠DCE =90°).保持△ABC 固定不动,将△CDE 绕点C 顺时针旋转一周,连接AD 、AE 、BD ,直线AE 与BD 相交于点H ,点P 、M 、N 分别是AD 、AB 、DE 的中点,若AC =4,CD =2,则在旋转过程中,△PMN 的面积的最大值为________.第5题图类型四折叠探究题1. 如图,在矩形ABCD中,AB=6,AD=8,E是AB的中点,点F是BC边上的动点,将△EBF沿EF 所在的直线折叠到△EGF的位置,连接GD,则GD的最小值是______.第1题图2. 如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10.设AE=x,则x的最大值和最小值的和是______.第2题图3. (2019淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B 落在矩形内点P处,连接AP,则tan∠HAP=________.第3题图4. (2019金牛区二诊)如图,在等腰直角三角形ABC 中,∠ACB =90°,在△ABC 内有一点P ,已知∠1=∠2=∠3,将△BCP 以直线PC 为对称轴翻折,使点B 与点D 重合,PD 与AB 交于点E ,连接AD ,将△APD 的面积记为S 1,将△BPE 的面积记为S 2,则S 2S 1的值为________.第4题图5. 如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,点D 是边BC 的中点,点E 是边AB 上任意一点(点E 不与点B 重合),沿DE 翻折△DBE ,使点B 落在点F 处,连接AF ,则线段AF 的长取最小值时,BF 的长为________.第5题图6. (2019都江堰区一诊)如图,已知在△ABC 中,AB =AC ,BC =8,D 、E 两点分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 正好落在边AC 上的点M 处,并且AC =4AM ,设BD =m ,那么∠ACD 的正切值是______.(用含m 的代数式表示)第6题图7. (2019成华区二诊)已知一个矩形纸片ABCD ,AB =12,BC =6,点E 在BC 边上,将△CDE 沿DE 折叠,点C 落在C ′处,DC ′,EC ′分别交AB 于点F ,G ,若GE =GF ,则sin ∠CDE 的值为________.第7题图8. (2019成都黑白卷)如图,在平行四边形ABCD 中,点E 为AD 边的中点,将△ABE 沿BE 翻折,得到△FBE ,连接DF 并延长交BC 于点G ,若BE =AD =10,平行四边形ABCD 的面积为60,则FG = ________.第8题图9. 如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为EF,展开后再过点B折叠矩形纸片,使点A落在EF上的点N处,折痕BM与EF相交于点Q,再次展平,连接BN,MN,延长MN交BC于点G.P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是______.第9题图10. 如图,四边形纸片ABCD中,AD⊥AB,AB∥DC,AB=6,AD=CD=3,点E,F分别在线段AB,AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在四边形ABCD内部时,PD的最小值为______.第10题图参考答案类型一 动点探究题1. 9 【解析】如解图,由题意可知,点G 在以点B 为圆心,1为半径的14圆弧上运动.作点C 关于AD 的对称点C ′,连接C ′B 交AD 于点H ,交以点B 为圆心,1为半径的圆于点G ,由两点之间线段最短,此时C ′B 的值最小,最小值为BC 2+CC ′2=62+82=10,∵GH +CH =GH +C ′H =BC ′-BG =9,∴GH +CH 的最小值为9.第1题解图2. 925【解析】如解图,∵点D 为BC 边上一动点,∴AD 的最小值为AD 1,最大值为AD 2,∵在Rt △ABC 中,AB =3,BC =5,∴AC =52-32=4,∵S △ABC =AB ·AC 2=BC ·AD 12,解得AD 1=125,∵AD 2为最大值4,∴最小面积与最大面积之比=(125∶4)2=925.第2题解图3. 513【解析】∵四边形EFQH 是正方形,∴∠EHA =90°,设HE =HQ =x ,AH =y ,∵四边形ABCD 是矩形,∴∠D =90°,∴HE ∥CD ,AD ∥EF ,∴△AHE ∽△ADC ,∴HE CD =AH AD ,即x 5=y 7,设x =5k ,则y =7k ,∵四边形EFQH 是正方形,∴HQ ∥EF ,∴∠AFE =∠QAF ,在Rt △AQF 中,AF =(5k )2+(12k )2=13k ,∴sin ∠AFE =sin ∠QAF =QF AF =5k 13k =513. 4. 1或116【解析】∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE ≠AM ;①当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC -EC =6-5=1;②当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA ,又∵∠C =∠C ,∴△CAE ∽△CBA ,∴CE CA =AC BC ,∴CE =AC 2CB =256,∴BE =BC -EC =6-256=116.综上所述,BE 的长是1或116. 5. 22或2-1 【解析】∵在Rt △ABC 中,AB =AC =2,∴BC =2 2.①当AF =CF 时,∠F AC =∠C =45°,∴∠AFC =90°,∴AF ⊥BC ,∴BF =CF =12BC =2,∵直线PD 垂直平分BF ,∴BD =12BF =22;②当CF =CA =2时,BF =BC -CF =22-2,∵直线PD 垂直平分BF ,∴BD =12BF =2-1;③当AF =AC 时,点F 与点B 重合(舍去).综上所述,BD 的长为22或2-1. 6. 6 【解析】如解图,连接OA 、OC ,∵∠ABC =45°,OA =OC =2,∴∠AOC =90°,∴AC =2OA =22,在CB 上取一点A ′,使CA ′=CA ,∵∠ACB =60°,∴△A ′CA 为等边三角形,过点A ′作A ′N ′⊥AC 于点N ′,∵点D 为AB ︵的中点,∴CD 为∠ACB 的平分线,∴点A 与点A ′关于直线CD 对称,连接A ′M ,∴A ′M=AM ,即AM +MN =A ′M +MN ,根据直线外一点到直线上的所有连线中,垂线段最短,∴A ′N ′的长即为MA +MN 的最小值,∵A ′C =AC =22,∠ACB =60°,∴A ′N ′=A ′C ·sin60°=22×32=6,即MA +MN 的最小值为 6.第6题解图7. 13或5-255【解析】如解图①,当∠AME =90°时,易知四边形AMEF 是矩形,且四边形BMEN 是正方形.∵ME ∥BC ,∴AM ME =AB BC =12,∴AM +BM =AM +2AM =1,则EF =AM =13;如解图②,当∠AEM =90°时,易证△AEM ∽△ABC ,∴AE ME =AB CB =12,∴ME =2AE ,则BM =ME =2AE ,AM =5AE ,∴AB =AM +BM =2AE +5AE =1,解得AE =5-2.又∵EF ∥CD ,∴EF AE =CD AC =15,∴EF =55(5-2)=5-255.综上,若△AEM 是直角三角形,则EF 的长为13或5-255.图① 图②第7题解图 8. 43或1或1-63 【解析】如解图①,当AE =AF 时,设BE =DF =a ,则AF =AE =3-a .在Rt △ABE中,由AE 2=AB 2+BE 2得(3-a )2=12+a 2,解得a =43;如解图②,当AE =EF 时,设BE =DF =a ,则AF =3-a ,由AF =2BE ,得3-a =2a ,解得a =1;如解图③,当AF =EF 时,设BE =DF =a ,则AF =EF =3-a .由∠F AE =∠FEA =∠AEB 可得AB =AG =1,易知EG =BE =a ,∴FG =3-2a .在Rt △AFG 中,由AF 2=AG 2+FG 2得(3-a )2=12+(3-2a )2,解得a =1-63或a =1+63(不符合题意,舍去).综上,若△AEF 是等腰三角形,则DF 的长为43或1或1-63.图① 图② 图③第8题解图 9. 135或175【解析】①当M 在线段BC 上时,如解图,过点M 作MH ⊥AB 于点H ,∵∠CAM +∠CBA =45°,∠ACB =90°,∴∠BAM =45°.∵AC =2,BC =3,∴AB =13.∵Rt △BHM ∽Rt △BCA ,∴MH AC =BH BC=BM BA .设MH =2x ,则2x 2=BH 3=BM 13,∴BH =3x ,BM =13x ,在Rt △AHM 中,AH =MH =2x ,∵AB =BH +AH =13,∴5x =13,x =135,BM =13x =135;②当M 在BC 延长线上时,如解图,则∠CAM ′+∠CBA =45°,又∵∠CAM + ∠CBA =45°,∴∠CAM =∠CAM ′.又∵AC ⊥BM ′,∴CM =CM ′.由①得CM =BC -BM =25,∴BM ′=175;③当M 在CB 的延长线上时,不存在∠CAM +∠CBA =45°.综上所述,BM 的长为135或175.第9题解图10. y =113x 【解析】当点D 与点C 重合时,如解图,过F 作FG ⊥y 轴于点G ,连接OF ,∵S △ABC =12S 矩形 AOCB =12S 矩形ADEF =3,∴S 矩形AOCB =6,∵A 点坐标为(0,2),∴OA =2,∴OC =3,∵∠F AD =90°,易得△FGA ∽△AOD ,∴FG AO =AG DO ,即FG AG =AO DO =23,设|FG |=2a ,|AG |=3a 由勾股定理得OF =OG 2+FG 2=(2+3a )2+(2a )2=13a 2+12a +4,令t =13a 2+12a +4,∴t =13a 2+12a +4=13(a +613)2+4,∴当a =-613时,t 有最小值.∴|FG |=|2×(-613)|=1213,|AG |=|3×(-613)|=1813,点F 的横坐标为1213,纵坐标为1813+2=4413,设OF 解析式为y =kx (k ≠0),求得k =113,故函数的解析式为y =113x .第10题解图类型二 平移探究题1. 5 【解析】∵四边形AEFD 为菱形,∴AE =EF ,∵将△ABE 向右平移得到△DCF ,∴BE =CF ,AB =CD ,∵BE ∶EC =3∶2,设BE =3k ,EC =2k ,∴BC =EF =5k ,∴AE =5k ,∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠B =90°,∴AB =AE 2-BE 2=4k ,∴AB 2+BF 2=AF 2,即(4k )2+(8k )2=(45)2,∴k =1,∴AD =BC =5.2. 67 【解析】∵OA =2,OB =4,∠OAE =∠OBA ,∠EOA =∠AOB =90°,∴△OAE ∽△OBA ,∴OA OB =OE OA ,即24=OE 2,解得OE =1,如解图,过点A 作AB ′⊥OA ,并使AB ′=BE =3.易证△AB ′A ′≌△EBE ′,∴B ′A ′=BE ′,∴A ′B +BE ′=A ′B +B ′A ′.当点B 、A ′、B ′在同一条直线上时,A ′B +B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′,∴AA ′OA ′=AB ′OB =34,∴AA ′OA =37,AO =2,∴AA ′=37×2=67,∴EE ′=AA ′=67.第2题解图3. 25 【解析】如解图,作射线CC ′,AA ′,AA ′交BC ′于点O ,过点C 作CF ∥AB 交AA ′于F ,连接BF ,由平移性质得AA ′∥BE ∥CC ′,∵∠EBD =45°,∴∠F AB =∠C ′CF =45°,∵Rt △ABC 中,AB =AC ,∠CAB =90°,∴易得四边形ABFC 是正方形,∴∠FCB =45°,∴∠C ′CB =90°,∵A ′C ′=BF ,∠A ′OC ′=∠FOB ,∠C ′A ′O =∠BFO =45°,∴△A ′OC ′≌△FOB ,∴BO =C ′O ,∴CO =C ′O =BO ,延长FC 到G ,使得CG =CF ,连接A ′G ,则CO 是△FGA ′的中位线,∴A ′G =2CO =BC ′,∴BC ′+BA ′=BA ′+A ′G ,∴当点B 、A ′、G 在同一条直线上时,BG 取得最小值,那A ′B +C ′B 取得最小值.∵在Rt △GFB 中,BF =AC =2,FG =2CF =4,∴BG =25,∴A ′B +C ′B 的最小值为2 5.第3题解图 4. 32+62 【解析】由翻转可得△BG ′C ≌△CGB ≌△DEA ,∴CG ′=AE ,∠BCG ′=EAD ,同理可得CF ′=AE ,∠DCF ′=∠BAE ,∴∠BCG ′+∠DCF ′=∠EAD +∠BAE =45°,在平行四边形ABCD 中,∠BAD =∠BCD =45°,∴∠G ′CF ′=∠G ′CB +∠BCD +∠DCF ′=90°.∴△G ′CF ′为等腰直角三角形,由勾股定理可得F ′G ′=2CG ′=2AE ,当AE ⊥BD 时,AE 的值最小,即此时F ′G ′的值最小,∵△AED ≌△BGC ,△ABE ≌△DCF ,且∠AED =∠AEB =90°,∴∠BGC =∠AED =90°,∠DFC =∠AEB =90°,∴BG ∥DF ,又∵BG =AE =DF ,∴四边形BGFD 为矩形,如解图,过点B 作BM ⊥AD 于点M ,在Rt △ABM 中,∵∠BAM =∠ABM =45°,AB =6,∴AM =BM =6×22=3,∵∠ABD =75°,∴∠DBM =∠ABD -∠ABM =75°-45°=30°,∴∠ADB =60°,∴在Rt △DBM 中,BD =BM sin60°=2,MD =BM tan60°=1,∴AD =AM +MD =1+3,∵S △BAD =12BD ·AE =12AD ·BM ,即2AE =(1+3)×3.∴AE =3+32,∴F ′G ′的最小值为32+62.第4题解图类型三 旋转探究题1. 10+2 【解析】如解图,取AB 的中点M ,连接MF 和CM ,∵在Rt △ABC 中,∠ACB =90°,AC=6,BC =2,∴AB =AC 2+BC 2=210.∵M 为AB 中点,∴CM =12AB =10,∵将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,∴AP =AD =4,∵M 为AB 中点,F 为BP 中点,∴FM =12AP =2.当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,此时CF =CM +FM =10+2.第1题解图2. 4+35 【解析】如解图①,当AD =13AC 时,取AB 的中点M ,连接MF 和CM ,∵∠ACB =90°,tan ∠BAC =12,且BC =6,∴AC =12,AB =6 5.∵M 为AB 中点,∴CM =35,∵AD =13AC ,∴AD =4.∵M 为AB 中点,F 为BD 中点,∴FM =12AD =2,∴当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,此时CF =CM +FM =2+35;如解图②,当AD =23AC 时,取AB 的中点M ,连接MF 和CM ,同理可得CF 的最大值为4+35,综上,线段CF 的长度的最大值为4+3 5.第2题解图3. 7<l <17 【解析】如解图,过点A 作AH ∥DG ,∵DG ∥EF ,∴DG ∥EF ∥AH ,∵点D 为AB 的中点,将△BDG 绕点D 顺时针旋转180°后到△ADM 的位置,∴BG =AM ,MG ∥AH 且MG =AH ,同理CF =AN ,NF ∥AH 且NF =AH ,∴四边形MGFN 是平行四边形,∴MN =GF =AM +AN =BG +CF .在Rt △ABC 中,∵AB =4,AC =3,∴由勾股定理得BC =5,即MN +GF =5,在△ABH 中,由三角形的三边关系可得AB -BH <AH <AB +BH ,同理AC -CH <AH <AC +CH ,两式相加得AB +AC -(BH +CH )<2AH <AB +AC +(BH +CH ),∴4+3-5<2AH <4+3+5,即2<2AH <12,l =MG +GF +NF +MN =2AH +BC ,∵BC =5,2<2AH <12,∴7<l <17.第3题解图4. 4π3【解析】如解图,连接AD 、DG .∵△ABC 和△EFG 均是等边三角形,D 分别是BC 和EF 的中点,∴BD =CD ,DE =DF ,∴AD ⊥BC ,GD ⊥EF ,∴∠ADC =∠GDF =90°,∴∠ADG =∠CDF ,∵AD CD=DG DF=tan60°,∴△ADG ∽△CDF ,∴∠DAG =∠DCF ,∴∠AMC =90°,∴点M 的轨迹是以AC 为直径的圆,且来回共两个三分之一圆,∴点M 运动的路径长为4π3.第4题解图5. 92【解析】∵△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD =90°,∴AC =BC ,CE =CD ,∠ACB +∠BCE =∠BCE +∠ECD ,∴∠ACE =∠BCD ,∴△ACE ≌△BCD ,∴AE =BD ,∠CAE =∠CBD ,∴∠HBA +∠HAB =∠HBC +∠CBA +∠HAB =∠CBA +∠CAB =90°,∴BD ⊥AE .∵P ,M 分别是AD ,AB的中点,∴PM ∥BD ,且PM =12BD ,同理,PN ∥AE ,且PN =12AE ,∴PM ⊥PN ,PM =PN ,∴△PMN 是等腰直角三角形,∴S △PMN =12PM 2=18BD 2,∴当BD 最大时,△PMN 的面积最大,∵△CDE 绕点C 旋转,∴点D 在以C 为圆心,CD 为半径的圆上,∴当点D 在BC 的延长线上时,BD 最大,此时BD =AC +CD =6,∴△PMN 面积的最大值为18×62=92.第5题解图类型四 折叠探究题1. 73-3 【解析】如解图,由EG =EB =3,可得当点G 在DE 上时,此时GD 的值最小,根据折叠的性质,△EBF ≌△EGF ,∴EG ⊥GF ,EG =EB ,∵E 是AB 边的中点,AB =6,∴AE =EG =3,∵AD =8,∴Rt △ADE 中,DE =82+32=73,∴GD =73-3.第1题解图2. 8 【解析】设折痕为PQ ,点P 在AB 边上,点Q 在BC 边上.如解图①,当点Q 与点C 重合时,AE 最小,根据翻折对称性可得EC =BC =10,在Rt △CDE 中,CE 2=ED 2+CD 2,即102=(10-AE )2+62,解得AE =2,即x =2;如解图②,当点P 与点A 重合时,AE 最大,根据翻折对称性可得AE =AB =6,即x =6,所以x 的最大值和最小值的和是8.图① 图②第2题解图 3. 43 【解析】如解图,连接PB 交CH 于点E .在Rt △BCH 中,BC =2,BH =12AB =32,∵△PCH 是由△BCH 折叠得到的,∴PB ⊥CH ,BE =PE ,PH =HB .∴∠HPB =∠HBP .∵AH =BH ,∴AH =PH .∴∠P AH =∠APH .∴∠APH +∠BPH =12(∠P AB +∠APB +∠ABP )=90°.∴AP ∥CH ,∴tan ∠HAP =tan ∠BHC =BC BH =43.第3题解图 4. 12 【解析】如解图,连接BD ,延长CP 交BD 于点F ,由翻折可知CF ⊥BD ,BF =DF ,∠BPF =∠DPF ,∵∠1=∠2=∠3,△ABC 是等腰直角三角形,∴∠1+∠ACP =∠2+∠ACP =90°,∠2+∠PBC =∠3+∠PBC =45°,∴∠APC =90°,∠DPF =45°,DF =FB =PF ,∴△APC ≌△CFB ,∴AP =CF ,CP=BF =PF ,∴AP =BD ,∴四边形ADBP 是平行四边形,∴S 2S 1=12.第4题解图5. 1255【解析】由题意得:DF =DB ,∴点F 在以D 为圆心,BD 长为半径的圆上,如解图,连接AD 交⊙D 于点F .此时AF 的值最小,∵点D 是边BC 的中点,∴CD =BD =3,由勾股定理得:AD 2=AC 2+CD 2,∵AC =4,∴AD =5,∵FD =3,∴F A =5-3=2,即线段AF 长的最小值是2,连接BF ,过点F 作FH ⊥BC 于点H ,∵∠ACB =90°,∴FH ∥AC ,∴△DFH ∽△DAC ,∴DF DA =DH DC =HF CA ,即35=DH 3=HF 4,∴HF =125,DH =95,∴BH =245,∴BF =BH 2+HF 2=1255.第5题解图6. 10m -253【解析】如解图,作AH ⊥BC 于点H ,MG ⊥BC 于点G ,连接EM 、MD 、BM ,∵AB =AC ,BC =8,AH ⊥BC ,∴CH =4,∵AC =4AM ,∴CM ∶AC =3∶4,∵AH ∥MG ,∴CG HC =CM AC =34,即CG 4=34,解得CG =3,∴BG =5,∴DG =m -5,由翻折的性质可知MD =BD =m ,在Rt △MGD 中,依据勾股定理可知:MG =MD 2-GD 2=m 2-(m -5)2=10m -25,∴tan ∠ACD =tan ∠ACG =MG CG =10m -253.第6题解图 7. 1010 【解析】设CE =x ,则BE =6-x .根据折叠的对称性可知DC ′=DC =12,C ′E =CE =x .在△FC ′G 和△EBG 中,⎩⎪⎨⎪⎧∠C ′=∠B =90°∠FGC ′=∠EGB GF =GE,∴△FC ′G ≌△EBG (AAS).∴FC ′=BE =6-x .∴DF =12-(6-x )=6+x .连接FE ,在Rt △FC ′E 和Rt △EBF 中,⎩⎪⎨⎪⎧FC ′=BE EF =EF,∴Rt △FC ′E ≌Rt △EBF (HL).∴FB =EC ′=x .∴AF =12-x .在Rt △ADF 中,AD 2+AF 2=DF 2,即36+(12-x )2=(6+x )2,解得x =4.∴CE =4.在Rt △CDE 中,DE 2=DC 2+CE 2,则DE =410.∴sin ∠CDE =CE DE =1010. 8. 2 【解析】∵将△ABE 沿BE 翻折,得到△FBE ,∴AE =EF ,∠AEB =∠FEB ,∴∠AEB =12(180°-∠DEF ),∵E 为AD 边的中点,∴AE =DE ,∴DE =EF ,∴∠EDF =∠EFD ,∴∠EDF =12(180°-∠DEF ),∴∠AEB =∠EDF ,∴BE ∥DG ,∵四边形ABCD 是平行四边形,∴DE ∥BG ,∴四边形BEDG 为平行四边形,∴DE =BG ,DG =BE =10,∵四边形ABCD 是平行四边形,且面积等于60,AE =DE ,∴S △ABE =14S ▱ABCD =15,如解图,连接AF 交BE 于H ,则AH ⊥BE ,AH =HF ,∵BE =10,∴AH =3,∴AF =6,∵BE ∥DG ,∴AF ⊥DG ,∴DF =AD 2-AF 2=8,∴FG =DG -FD =2.第8题解图9. 3 【解析】如解图,连接AN ,∵∠ABM =∠MBN =30°,∠BNM =∠BAM =90°,∴∠BMG =∠BNM -∠MBN =90°-30°=60°,∴∠MBG =∠ABG -∠ABM =90°-30°=60°,∴∠BGM =180°-60°-60°=60°,∴∠MBG =∠BMG =∠BGM =60°,∴△BMG 为等边三角形,∵点N 是MG 的中点,∴BN ⊥MG ,∵BG=BM =AB cos ∠ABM =433,∴BN =BG ·sin60°=433×32=2,根据题意易知E 点和H 点关于BM 对称,∴PH =PE ,∴P 与Q 重合时,PN +PH 的值最小,此时PN +PH =PN +PE =EN ,∵EN =BN 2-BE 2=22-(2÷2)2=3,∴PN +PH =3,∴PN +PH 的最小值是 3.第9题解图10. 35-6【解析】如解图①,设A的对应点为P1,连接ED,过P1作PP1⊥ED于点P,∴在Rt△P1PD 中,DP1>DP,∴当点A的对应点P落在线段ED上时,此时PD有最小值,即当EP取最大值时,PD有最小值,而点E在线段AB上,∴当点E与点B重合时,如解图②,即EP最大,从而此时PD取得最小值,在Rt△ADB中,BD=AB2+AD2=35,∵PB=AB=6,∴DP=BD-BP=35-6.图①图②第10题解图。

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题

于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==3;(上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC(2)通过观察、测量、猜想:BF=__________,并结合图②证明你的猜想;题型五几何图形探究题类型一几何图形静态探究1.2017·成都)问题背景:如图①,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC1BC2BD2AB AB迁移应用:如图②,△ABC△和ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图③,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.2.(2017·许昌模拟)在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC12于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;PE(3)把正方形 ABCD 改为菱形,其他条件不变(如图③),若∠ACB =α,求 的值.(用 河 BF PE含 α 的式子表示)3.(2014· 南)(1)问题发现 如图①,△ACB △和 DCE 均为等边三角形,点 A ,D ,E 在同一直线上,连接 BE.填空:①∠AEB 的度数为__________;②线段 AD ,BE 之间的数量关系为__________.(2) 拓展探究如图②,△ACB △和 DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点 A ,D ,E 在同一直线上,CM △为 DCE 中 DE 边上的高,连接 BE ,请判断∠AEB 的度数及线段 CM , AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形 ABCD 中,CD = 2,若点 P 满足 PD =1,且∠BPD =90°,请直接 写出点 A 到 BP 的距离.可以得到:DE ∥BC ,且 DE = BC.(不需要证明) 长.4.(2017· 春改编)【再现】如图①,在△ABC 中,点 D ,E 分别是 AB ,AC 的中点,1 2【探究】如图②,在四边形 ABCD 中,点 E ,F ,G ,H 分别是 AB ,BC ,CD ,DA 的 中点,判断四边形 EFGH 的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形 ABCD 中,满足什么条件时,四边形 EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形 ABCD 中,点 E ,F ,G ,H 分别是 AB ,BC ,CD ,DA 的中点, 对角线 AC ,BD 相交于点 O.若 AO =OC ,四边形 ABCD 面积为 5,求阴影部分图形的面积AC 于点 F ,点 H 是线段 AF 上一点,求 的值. 可以过点 D 做 DG ∥BC ,交 AC 于点 G ,先证 GH =AH.再证 GF =CF ,从而求得AC 的值为 度之比是 3∶1,求 的值; 如图③,若在△ ABC 中,AB =AC ,∠ADH =∠BAC =36°,记 =m ,且点 D ,E 的 运动速度相等,试用含 m 的代数式表示 的值(直接写出结果,不必写解答过程) .新5.(2016· 乡模拟)问题背景:已知在△ ABC 中,AB 边上的动点 D 由 A 向 B 运动(与 A ,B 不重合),同时,点 E 由点 C 沿 BC 的延长线方向运动(E 不与 C 重合),连接 DE 交 AC HF(1)初步尝试如图①,若△ ABC 是等边三角形,DH ⊥AC ,且 D ,E 的运动速度相等,小王同学发现 HF__________;(2)类比探究如图②,若在△ ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点 D ,E 的运动速AC HF(3)延伸拓展 BC ACAC HF河①当α=0°时,=__________;②当α=180°时,=__________;试判断:当0°≤α<360°时,AE的大小有无变化?请仅就图②的情形给出证明.类型二几何图形动态探究1.(2015·南)如图①,在△R t ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现AE AEBD BD(2)拓展探究BD(3)问题解决△当EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图①,已知∠AOB=150°,∠BOC=120°△,将BOC绕点C按顺时针方向旋转60°△得ADC.①∠DAO的度数是__________;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠ C =90°,∠B =∠E =30°.(1)操作发现如图②,固定△ ABC △,使 DCE 绕点 C 旋转.当点 D 恰好落在 AB 边上时,填空: ①线段 DE 与 AC 的位置关系是__________;②设△ BDC 的面积为 S △1, AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是__________; (2) 猜想论证当△ DEC 绕点 C 旋转到图③所示的位置时,小明猜想(1)中 S 1 与 S 2 的数量关系仍然 成立,并尝试分别作出了△ BDC △和 AEC 中 BC 、CE 边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC =60°,点 D 是其角平分线上一点,BD =CD =4,DE ∥AB 交 BC 于点 E(如图④),若在射线 BA 上存在点 F ,使 S △DCF =S △BDC ,请直接写出相应的 BF 的长.4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB=α,点D是AB 边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.在 △Rt ADH 中,DH =AD· c os30°= 3AD , ∴HF 4.5=cos30°,∴BF ==3 3.题型五 第 22 题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°,∴∠DAB =∠CAE ,⎧⎪DA =EA在△DAB 和△EAC 中,⎨∠DAB =∠EAC ,∴△DAB ≌△EAC;⎪⎩AB =AC,图②) ②解:结论:CD = 3AD +BD.理由:如解图①,作 AH ⊥CD 于 H.∵△DAB ≌△EAC ,∴BD =CE ,2∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD = 3AD +BD ;拓展延伸:①证明:如解图②,作 BH ⊥AE 于 H ,连接 BE.∵四边形 ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA = BD =BC ,∵E 、C 关于 BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆,∴∠ADC =∠AEC =120°,∴∠FEC =60°,∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2,∴AH =HE =2.5,FH =4.5,在 △Rt BHF 中,∵∠BFH =30°,BF 3 2 2.(1)证明:∵四边形 ABCD 是正方形,P 与 C 重合,∴OB =OP ,∠BOC =∠BOG = 90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO ,(2)解:猜想=.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∴BF=MF.即BF=BM.∴BF=PE.即=;由(2)同理可得BF=BM,∠MBN=∠EPN,∴△BMN∽△PEN,∴=.在△Rt BNP中,tanα=,∴BM=tanα,即2BF=tanα,∴BF=tanα.⎧⎪∠GBO=∠EPO在△BOG和△POE中,⎨OB=OP,∴△BOG≌△POE(ASA);⎪⎩∠BOG=∠POEBF1PE2证明:如解图①,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB,∴NB=NP.∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,∴∠MBN=∠NPE,⎧⎪∠MBN=∠NPE在△BMN和△PEN中,⎨NB=NP,⎪⎩∠MNB=∠PNE∴△BMN≌△PEN(ASA),∴BM=PE.12∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,⎧⎪∠BPF=∠MPE⎨PF=PF,∴△BPF≌△MPF(ASA).⎪⎩∠PFB=∠PFM11BF122PE2(3)解:如解图②,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.12BM BNPE PNBNPNPE PE PE23.解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,(3)点 A 到 BP 的距离为 3-1 或 . ∴ 3=2AH +1.∴AH = 3-1;⎧⎪AC =BC⎨∠ACD =∠BCE ,⎪⎩CD =CE∴△ACD ≌△BCE(SAS).∴∠ADC =∠BEC.∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点 A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE.在△ACD 和△BCE 中,⎧⎪CA =CB⎨∠ACD =∠BCE ,⎪⎩CD =CE∴△ACD ≌△BCE(SAS).∴AD =BE ,∠ADC =∠BEC.∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°.∵点 A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME.∵∠DCE =90°,∴DM =ME =CM ,∴AE =AD +DE =BE +2CM ;3+1 2 2理由如下:∵PD =1,∴点 P 在以点 D 为圆心,1 为半径的圆上.∵∠BPD =90°,∴点 P 在以 BD 为直径的圆上.∴点 P 是这两圆的交点.①当点 P 在如解图①所示位置时,连接 PD 、PB 、PA ,作 AH ⊥BP ,垂足为 H ,过点 A 作 AE ⊥AP ,交 BP 于点 E ,∵四边形 ABCD 是正方形,∴∠ADB =45°.AB =AD =DC =BC = 2,∠BAD =90°.∴BD =2.∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以 BD 为直径的圆上,∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形.又∵△BAD 是等腰直角三角形,点 B 、E 、P 共线,AH ⊥BP ,∴由(2)中的结论可得:BP =2AH +PD.2或.∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,理由:连接AC,BD,同(1)知,EF=AC,同【探究】的方法得,FG=BD,∴FG∥BD,FG=,∴△BD CFG∽△CBD,∴△CFG=,∴S△BCD=4S△CFG,2S4②当点P在如解图②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,同理可得:BP=2AH-PD.∴3=2AH-1.∴AH=3+12.综上所述:点A到BP的距离为3-13+1224.解:【探究】平行四边形.理由:如解图①,连接AC,1212综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,1212∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴EFGH是菱形;(2)如解图②,由【探究】得,四边形EFGH是平行四边形,∵F,G是BC,CD的中点,1S1△BCD4同理:S△ABD=4S△AEH,5∵四边形ABCD面积为5,∴△S BCD+S△ABD=5,∴S△CFG+S△AEH=4,同理:△S DHG+S5=,△BEF∵FG ∥BD ,FG = BD ,∴CM =OM = OC ,同理:AN =ON = OA ,∴AC =2;GH +GF =AH +CF ,即 HF =AH +CF ,∴HF = AC ,即 =2;(3) =.理由如下:∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴ ==m ,∴GH =mDH5 5∴S四边形EFGH =S四边形ABCD -错误! CFG +S △AEH +S △DHG +S △BEF )=5-2=2,设 AC 与 FG ,EH 相交于 M ,N ,EF 与 BD 相交于 P ,1 1 12 2 2∵OA =OC ,∴OM =ON ,易知,四边形 ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , 1 5∴S 阴影=2S 四边形 EFGH =4.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD , 由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,⎧⎪∠GDF =∠CEF在△GDF 与△CEF 中,⎨∠GFD =∠EFC ,⎪⎩GD =CE∴△GDF ≌△CEF(AAS),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF ,HF(2)如解图①,过点 D 作 DG ∥BC 交 AC 于点 G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°, ∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD· t an 60°= 3GD. 由题意可知,AD = 3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.⎧⎪∠GDF =∠CEF在△GDF 与△CEF 中,⎨∠GFD =∠EFC ,⎪⎩CE =GD∴△GDF ≌△CEF(AAS),∴GF =CF.1 AC2 HFAC m +1HF m如解图②,过点 D 作 DG ∥BC 交 AC 于点 G , 易得 AD =AG ,AD =EC ,∠AGD =∠ACB.在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,GH BCDH AC由△ADG∽△ABC可得===m.∵DG∥BC,∴==m.∴FG=mFC.∴GH+FG=m(AH+FC)=m(AC-HF),即HF=m(AC-HF).∴AC=.∴AE=45÷2=25,BD=8÷2=4,∴AE==.∵AC BCAE BD BD BC82(2)当0°≤α<360°时,的大小没有变化,DC BC2∴△ECA∽△DCB,∴==;=mAH.DG BC BCAD AB ACFG GDFC ECHF m类型二几何图形动态探究1.解:(1)①当α=0°时,∵△R t ABC中,∠B=90°,∴AC=AB2+BC2=(8÷2)2+82=45,∵点D、E分别是边BC、AC的中点,255BD42②如解图①,当α=180°时,可得AB∥DE,AE AC455=,∴===;AEBD∵∠ECD=∠ACB,∴∠ECA=∠DCB,EC AC5又∵==,AE EC5BD DC2(3)①当D在AE上时,如解图②,∵AC=45,CD=4,CD⊥AD,∴AD=AC2-CD2=(45)2-42=80-16=8,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=45;∴DE = AB = ×(8÷2)= ×4=2,∴AE =AD -DE =8-2=6,由(2)可得 = ,∴= .②当 D 在 AE 延长线上时,如解图③,连接 BD ,过点 D 作 AC 的垂线交 AC 于点 Q , 过点 B 作 AC 的垂线交 AC 于点 P ,∵AC =4 5,CD =4,CD ⊥AD ,∴AD = AC 2-CD 2= (4 5)2-42= 80-16=8,∵原图中点 D 、E 分别是边 BC 、AC 的中点,1 1 1 AE 52 2 2 BD 2BD = 65212 55 综上所述,BD 的长为 4 5或 12 55.2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°;②线段 OA ,OB ,OC 之间的数量关系是 OA 2+OB 2=OC 2.如解图①,连接 OD .∵△BOC 绕点 C 按顺时针方向旋转 60°得△ADC , ∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°. 在 △R t ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2, ∴OA 2+OB 2=OC 2;(2)①当 α=β=120°时,OA +OB +OC 有最小值.作图如解图②, 将△AOC 绕点 C 按顺时针方向旋转 60°得△A′O′C ,连接 OO′. ∴ △A ′O ′△C ≌ AOC ,∠OCO ′=∠ACA′=60°.∴O′C =OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角 形.∴OC =O′C =OO′,∠COO ′=∠CO′O =60°.∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C =120°.∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为 1 时,OA +OB +OC 的最小值为 A′B = 3.3.解:(1)①∵△DEC 绕点 C 旋转使点 D 恰好落在 AB 边上,∴AC =CD , ∵∠BAC =90°-∠B =90°-30°=60°,②∵∠B =30°,∠C =90°,∴CD =AC = AB ,∴∠DBC =∠DCB = ×60°=30°,∴△ACD 是等边三角形,∴∠ACD =60°,又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;12∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边 AC 、AD 上的高相等,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即 S 1=S 2;(2)∵△DEC 是由△ABC 绕点 C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°, ∴∠ACN =∠DCM ,⎧⎪∠ACN =∠DCM∵在△ACN 和△DCM 中,⎨∠CMD =∠N =90°,⎪⎩AC =DC∴△ACN ≌△DCM(AAS),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即 S 1=S 2;(3)如解图,过点 D 作 DF 1∥BE ,易求四边形 BEDF 1 是菱形, ∴BE =DF 1,且 BE 、DF 1 上的高相等,此时 △S DCF 1=S △BDE ; 过点 D 作 DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°,1∵BF 1=DF 1,∠F 1BD =2∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴ △DF 1F 2 是等边三角形,∴DF 1=DF 2, ∵BD =CD ,∠ABC =60°,点 D 是角平分线上一点,12∴∠CDF 1=180°-∠BCD =180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,⎧⎪DF 1=DF 2∵在△CDF 1 和△CDF 2 中,⎨∠CDF 1=∠CDF 2,⎪⎩CD =CD∴△CDF △1≌ CDF 2(SAS),∴点 F 2 也是所求的点,∵∠ABC =60°,点 D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD = ×60°=30°,∴BE =ED = ×4÷cos 30°=2÷ = ,,BF 2=BF 1+F 1F 2= 3 3 3 3故 BF 的长为 或 .∴△DFB 是等腰直角三角形∴BD =DF = 2BF.∴△ADE ∽△FCD.∴ = .∵DF ∥AC ,∴ = .∴ = = .∴BD = 2AE.∵∠ABC =∠EAC = ,∴△α BDC ∽△AEC ,∴ = ,又∵ =2cos α ,∴BD =2cos α ·AE.12又∵BD =4,1 3 4 32 2 3∴BF 1= 4 3 4 3 4 3 8 3 + = ,4 3 8 33 34.解:(1)当 α=60°时,△ABC 、△DCE 是等边三角形,∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD , 即∠BCD =∠ACE ,⎧⎪EC =DC在△BDC 和△AEC 中,⎨∠BCD =∠ACE ,⎪⎩AC =BC∴△BDC ≌△AEC(SAS),∴BD =AE ; (2)BD = 2AE ;理由如下:如解图①,过点 D 作 DF ∥AC ,交 BC 于 F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α =45°,∴∠ABC =∠ACB =∠DFB =45°.2∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD.AE ADFD FCBD AD AE BD 2BF CF BD BF 2(3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α, ∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,BD BCAE ACBCAC5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°,∵∠DCF=60°,∴∠ACF=∠BCD,AC=BC⎧⎪在△ACF和△BCD中,⎨∠ACF=∠BCD,∴△ACF≌△BCD(SAS),⎪⎩CF=CD∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②相等;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°-30°=30°,∴∠DCE=∠FCE,CD=CF⎧⎪在△DCE和△FCE中,⎨∠DCE=∠FCE,⎪⎩CE=CE∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,AC=BC⎧⎪在△ACF和△BCD中,⎨∠ACF=∠BCD,⎪⎩CF=CD∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=BD,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2;理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°-45°=45°,∴∠DCE=∠FCE,CD=CF⎧⎪在△DCE和△FCE中,⎨∠DCE=∠FCE,⎪⎩CE=CE∴△DCE≌△FCE(SAS),∴DE=EF,在△Rt AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.。

题型八 几何图形探究题【2021中考数学二轮复习题型专练】

题型八 几何图形探究题【2021中考数学二轮复习题型专练】

(2)解:当点E在线段BA的延长线上,CD是△ACB的角平分线时,BC =AE+CF,如解图①,延长CD,EF交于点M.由(1)同理可证 △MED≌△CBD(AAS),∴ME=BC,
由(1)证明过程同理可得出MF=CF,AE=EF,∴BC=ME=EF+MF =AE+CF;当点E在线段BA的延长线上,CD是△ACB的外角平分线时 ,AE=CF+BC.如解图②,延长CD交EF于点M,由(1)证明过程同理可 得△MED≌△CBD(AAS),CF=FM,∴BC=EM,
2. (2020·泰安)小明将两个直角三角形纸片如图①那样拼放在同一平面上, 抽象出如图②的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC= ∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.
探究发现: (1)当点F为线段CE的中点时,连接DF(如图②),小明经过探究,得到结 论:BD⊥DF.你认为此结论是否成立?_是___.(填“是”或“否” )
又∵AB=BC,∴∠ACB=∠CAB=∠FAE, ∵EF∥BC,∴∠F=∠FCB, ∴EF=AE,∴AE=FE=FM+ME=CF+BC;
(3)解:CF=18或CF=6, 当DE=2AE=6时,题图①中,由(1)得:AE=3,BC=AB=BD+DE +AE=15, ∴CF=AE+BC=3+15=18; 题图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,∴CF= BC-AE=9-3=6; 题图③中,DE小于AE,故不存在.故答案为18或6.
=∠CDA,∴△BDM∽△CDA,∴BCMA =DAMD = 3 ,∵AC=2 3 ,∴BM=2 3
× 3 =6,∴AM= BM2-AB2 =2 5 ,∴AD=12 AM= 5 .
1. (2020·牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD= DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题集训9 几何问题探究
一、选择题
1.如图,线段AB 是⊙O 的直径,点C 在圆上,∠AOC =80°,点P 是线段AB 延长线上的一动点,连结PC ,则∠APC 的度数不可能的是( A )
A .40°
B .30°
C .20°
D .15°
【解析】∠APC =∠CBO -∠BCP ,而∠CBO =40°,故∠APC <40°.
,第1题图) ,第2题图)
2.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连结DF ,则下列结论中错误的是( D )
A .△AEF ∽△CA
B B .CF =2AF
C .DF =DC
D .tan ∠CAD = 2 【解析】A
E =ED =12AD ,△FEA ∽△FBC ,由相似成比例知FC A
F =BC AE =21
,∴CF =2AF ,B 正确.又AC ⊥BE ,∴△AEF ~△CAB ,A 正确.连结EC ,∵E 为AD 中点,∴EB =EC ,△EBC 为等腰三角形,∴∠ECD =∠EBA ,∠ECB =∠EBC =∠AEF =∠ACD ,又△CFB ∽△CBA ∽△BFA ,∴FC BC =BC AC =BF AB =AB BE ,而BE =EC ,AB =DC ,∴FC BC =DC EC
,∴△FDC ∽△BEC ,∴DF =DC ,C 正确. 二、填空题
3.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连结OA ,OB .点P 是半径OB 上任意一点,连结AP .若OA =5 cm ,OC =3 cm ,则AP 的长度可能是__6__cm.(写出一个符合条件的数值即可)
,第3题图) ,第4题图)
4.如图,边长为1的正方形ABCD 的对角线AC ,BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM ,PN 分别与OA ,OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM ,PN 分别交AB ,BC 于E 、F 两点,连结EF 交OB 于点G ,则下列结论中正确的是__(1),(2),(3)__.
(1)EF =2OE ;(2)S 四边形OEBF ∶S 正方形ABCD =1∶4;(3)BE +BF =2OA ;(4)在旋转过程中,
当△BEF 与△COF 的面积之和最大时,AE =34. 【解析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA),则可证得结论;
(2)由(1)易证得S 四边形OEBF =S △BOC =14
S 正方形ABCD ,则可证得结论;(3)由BE =CF ,可得BE +BF =BC ,然后由等腰直角三角形的性质,证得BE +BF =2OA ;(4)首先设AE =x ,则BE =CF =1-x ,BF =x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;故答案为:(1),(2),(3).
三、解答题
5. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .
(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是__EH =FH __,并证明.
(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.
解:(1)添加:EH =FH ,证明:∵点H 是BC 的中点,∴BH =CH ,在△BEH 和△CFH 中,⎩⎪⎨⎪⎧BH =CH ,∠BHE =∠CHF ,EH =FH ,
∴△BEH ≌△CFH (SAS )
(2)∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形,∵当BH =EH 时,则BC =EF ,∴平行四边形BFCE 为矩形
6.在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B ,C 不重合),连
结AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M .
(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);
(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.
解:(1) ∠AMQ =45°+α.理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α,又∵QH⊥AP ,∠AHM =90°,∴∠AMQ =180°-∠AHM -∠PAB =45°+α
(2)线段MB 与PQ 之间的数量关系:PQ =2MB.理由如下:连结AQ ,过点M 做ME⊥QB ,∵AC ⊥QP ,CQ =CP, ∴∠QAC =∠PAC =α,∴∠QAM =α+45°=∠AMQ, ∴AP =AQ =QM ,
在Rt △APC 和Rt △QME 中,⎩⎪⎨⎪⎧∠PAC =∠MQE ,∠ACP =∠QEM ,AP =QM ,
∴Rt △APC ≌Rt △QME (AAS ), ∴PC =ME, ∴△
MEB 是等腰直角三角形,∴12PQ =22
MB ,∴PQ =2MB。

相关文档
最新文档