第三章 烯烃和炔烃 亲电加成反应

合集下载

第六讲 第三章 不饱和烃:烯烃和炔烃(2)

第六讲 第三章 不饱和烃:烯烃和炔烃(2)

C C
+
H-X
-X -
C=C H
+
+X快
C=C X H
乙烯基碳正离子
由于卤素的吸电子作用, 阶段。 几 1 由于卤素的吸电子作用,反应能控制在加一分子 HX 阶段。 加成, 加成 常用汞盐和铜盐做催化剂。 点 2 与HCl加成,常用汞盐和铜盐做催化剂。 讨 3 与卤化氢的加成,在相应卤离子(如:(CH3 )4N+Cl-)存在下, 与卤化氢的加成,在相应卤离子( 存在下, 论 通常进行反式加成。例如: 通常进行反式加成。例如:
*1. Markovnikov规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 规则 不对称烯烃与氯化氢等极性试剂进行加成反应时, 氢原子总是加到含氢较多的双键碳原子上, 氢原子总是加到含氢较多的双键碳原子上,氯原子或其它原子或基团则加 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 到含氢较少的或不含氢的双键碳原子上。这条经验规则简称马氏规则。 例如
CH3CH2CH=CH2 + HBr HAc 80% (CH3)2C=CH2 + HCl CH3CH2CH2CH2Br
~100%
(CH3)2C CH3 Cl
第 六 讲 (6)
*2. 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 不对称炔烃与卤化氢等极性试剂进行加成反应时,也符合马氏规则。 Br 例如 (CH3)2CHC CH HBr (CH3)2CHC=CH2 HBr (CH3)2CH C CH3
NaCl CH2=CH2 + Br2 水溶液
Br H2C CH2 Br 1,2-二溴乙烷 二溴乙烷
Cl H2C CH2 Br 1-氯-2-溴乙烷 氯 溴乙烷

第三章烯烃和炔烃

第三章烯烃和炔烃

(2)编号:从最靠近双键的一端开始,将主链 碳原子依次编号 (使双键具有最低位次,使取 代基具有较低位次)。
1 23 4 5 6
H CH3 C CH CH2 C
CH3
CH3
2,5-二甲基-2-己烯
CH3
2,5-dimethyl-2-hexene
(3)命名:将双键的位次标明在烯烃名称的前
面(只写出双键碳原子中位次较小的一个),
棕色褪去。
Br
作为烯烃的鉴别
CCl4 0℃
CHCH3
Br
加成活性:氟﹥氯﹥溴﹥碘
立体选择性:主要得到反式加成产物
2.加氢卤酸
C C + HX
(1)对称烯烃的亲电加成反应
CC HX
CH3CH2 C
H
CH2CH3 C
H
+ HBr
CH3Cl -30℃
CH3CH2CH2CHCH2CH3
Br
(2)不对称烯烃的亲电加成
R CH CH2 + HBr
R CHCH3
Br 主要产物
RCH2CH2Br
马氏规则(Markovnikov)
马氏规则(Markovnikov)
当不对称烯烃与不对称试剂(卤化氢等) 加成时,不对称试剂中带正电荷的部分总是加 到碳碳双键中含氢较多的碳原子上,带负电荷 的部分则是加到碳碳双键中含氢较少的碳原子 上,这一规则称为马氏规则。
低”。 若分子中同时含有双键和三键,应从最先 遇到双键和三键的一端开始;若在主链两 端等距离处遇到双键和三键,应从最靠近 双键的一端开始。
3.命名: 标出三键位次(含有双键时,应标出
双键位次;命名时写成 “ 几烯几炔”)。 取代基的位次及排列顺序同烷烃命名法。

大学有机化学第三章 烯烃和炔烃

大学有机化学第三章   烯烃和炔烃

CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质

烯烃炔烃的反应

烯烃炔烃的反应

CH CH2 n CH3
CH CH2 n
PP
是一种半结晶的热塑性塑料。具有较高的 耐冲击性,机械性质强韧,抗多种有机溶
剂和酸碱腐蚀。在工业界有广泛的应用,
是平常常见的高分子材料之一。澳大利亚
的钱币也使用聚丙烯制作。
PS 聚苯乙稀 是一种无色透明的塑料材料。具 有高于100摄氏度的玻璃转化温度,因此 经常被用来制作各种需要承受开水的温度 的一次性容器,以及一次性泡沫饭盒等。
α-氢原子的反应
(a)卤化反应
烯烃与 X2反应的两种形式(例:丙烯+Cl2):
H3C CH CH2 + Cl2
CCl4 液相
Cl Cl H3C CH CH2
双键上的亲电加成
烯丙位
500 ~ 600oC 气相
Cl H2C CH CH2
烯丙位氯代的条件: 高温(气相)、Cl2低浓度
饱和碳上的自由基取代
H
R R" R' C C H
OH OH
酮、醛 邻二醇
R
R"
CC
R'
H
O
环氧化物
氧化反应,氧化产物随氧化剂和氧化条件的不同而异。
用KMnO4溶液来鉴 定不饱和烃。
用低温,中性或碱性稀KMnO4氧化,生成顺式α -二醇
3RCH
CH2 + 2KMnO4 + 4H2O 中碱性性介或质3RCH CH2 + OH OH
C(
CH2) 7COOH
KMnO4, H2O, 常温 pH 7.5 , 92%~96%
CH3( CH2)7C C( CH2)7COOH OO
在强烈条件下氧化时,非端位炔烃生成羧酸(盐),端位炔烃生成羧酸(盐)、 二氧化碳和水。

第3章答案

第3章答案

F
Br
C=C
H
CH2CH2CH3
C=C
(3) ↑Cl
I↑
(4) ↑CH3
CH(CH3)2 ↑
(Z)-1-氟-1-氯-2-溴-2-碘乙烯
(Z)-3-异基-2-己烯
(二) 写出下列化合物的构造式,检查其命名是否正确,如有错误予以改 正,并写出正确的系统名称。
(1) 顺-2-甲基-3-戊烯
CH3
1
CH3 CH 3 2 CH3 5 4 C=C
分子内亲电加成
CH3
CH3
(十一) 预测下列反应的主要产物,并说明理由。
HCl
解:(1) CH2=CHCH2C CH HgCl2
Cl CH3 CHCH2C CH
双键中的碳原子采取sp2杂化,其电子云的s成分小于采取sp杂化的叁
键碳,离核更远,流动性更大,更容易做为一个电子源。
所以,亲电加成反应活性:C=C>C C
32 1
CH3CHCH2CHC CH
(4)
CH3 C4 H=C5 HC6H3
3-异丁基-4-己烯-1-炔
(一) 用Z,E-标记法命名下列各化合物:
Cl
CH3
C=C
(1) ↓CH3
Cl ↑
(E)-2,3-二氯-2-丁烯
F
CH3
C=C
(2) ↑Cl
CH2CH3↑
(Z)- 2-甲基-1-氟-1-氯-1-丁烯
第三章 烯烃和炔烃习题
用系统命名法命名下列各化合物:
2
34
CH3CH2C CHCH3
(1)
1 CH2 CH3
3-甲基-2-乙基-1-丁烯
(2) 对称甲基异丙基乙烯
1
2

第三章 烯烃和炔烃

第三章 烯烃和炔烃
双键在环上,以环为母体, 双键在链上,链为母体,环为取代基。
课堂作业:P74 习题3.3
3.4 烯烃和炔烃的物理性质
H 3C H H CH3 H3C H3C H H
:
0
0.33 0 /10-30 c.m
b.p.
m.p.
1oC
-105.6oC
4oC
-138.9oC
HOOC
H
H
COOH
O O O
C-H:
110.2pm (Csp3-Hs)
轨道形状: 碳的电负性: pka:

随 S 成 份 的 增 大, 逐 渐 增 大。 ~50 ~40 ~25
1 烯双键碳是sp2杂化。 2 键是由p轨道侧面重叠形成。
3 由于室温下烯双键不能自由 旋 转,所以有Z,E异构体。
3.2 烯和炔的异构现象
CH3CH2CH CH2
3.5 烯和炔的化学性质
反应部位:
氧化反应 (亲电)加成反应
C C C H
C C H C H
α–氢的反应 炔氢的反应
由于π键易于断裂,加成反应是 烯烃和炔烃的主要反应: 烯烃:
X Y+ C C C C X Y
炔烃:
X Y+ C C C X C Y
X C X
Y C Y
试剂的两部分分别与重键两端的C原子 结合,形成新的σ键反应——加成反应
3.5.1 加氢(催化氢化)
烯烃和炔烃在催化剂存在下,与氢气 进行加成反应,生成烷烃:
H H C C +
催化剂 H2 室温
C
C
催化剂:Pt, Pd, Ni
H H R C CH + 2H2
Ni 室温
R C C H H

第三章 烯烃 炔烃 二烯烃

第三章  烯烃 炔烃 二烯烃

第三章烯烃炔烃二烯烃Ⅰ学习要求1. 了解不饱和烃的结构特点,熟练掌握烯烃、炔烃、二烯烃及烯烃顺反异构体的系统命名。

2. 掌握不饱和烃的化学反应及其应用,熟练掌握应用亲电加成反应历程,马氏规则及其影响因素判断加成反应的主要产物(或方向)。

3. 了解共轭体系的类型,掌握应用诱导效应和共轭效应判断亲电加成反应的速率。

4. 掌握鉴别烯烃、炔烃的化学方法。

5. 掌握各类碳正离子的稳定性顺序。

Ⅱ内容提要一.不饱和烃的结构1. 烯烃的官能团是碳碳双键,形成双键的两个碳原子是sp2杂化。

碳碳双键是由一个碳碳σ键和一个碳碳π键组成,具有刚性,不能绕碳碳双键自由旋转。

π键的键能较小,易被极化,容易和亲电试剂发生亲电加成反应。

2. 在炔烃分子中碳碳叁键是官能团,形成叁键的两个碳原子是sp杂化,碳碳叁键是直线型,其中两个π键相互垂直。

sp杂化的碳原子的电负性较sp2杂化的碳原子电负性大,所以炔烃中的π键比烯烃的π键较难极化,亲电加成反应炔烃较烯烃难。

3. 共轭二烯烃在结构特征上是指碳碳单键和碳碳双键交替排列的情况。

即分子中有四个sp2杂化的碳原子依次相连,称做共轭链。

共轭二烯烃的四个sp2碳原子共存在于同一平面,形成两个π键的四个p轨道相互平行,π键电子可在共轭链上离域,这种共轭体系的π键又称离域大π键。

它更易极化,亲电反应活性高于独立的π键。

4. 共轭体系是指在分子、离子或自由基中能够形成π键或p轨道离域的体系,在共轭体系中π键电子或p轨道电子不是定域,而是离域的。

这种电子在共轭体系中离域并传递的电子效应称共轭效应。

共轭体系与非共轭体系相比较,具有较低的热力学能,有较高的化学反应活性和特有的化学性质,存在有键长平均化现象。

共轭体系又具体分为:π–π共轭体系、p–π共轭体系、p–p共轭体系、σ–π超共轭体系和σ–p超共轭体系。

5. 共轭效应是指π键电子或p轨道电子在共轭体系中间离域并传递而产生的电子效应,仅存在于共轭体系中;诱导效应则是指σ键电子在σ键中偏移并传递的电子效应,存在于所有的极性σ键中。

chapt 3烯烃 炔烃和二烯烃

chapt 3烯烃 炔烃和二烯烃
α
CH3
CH
CH2
+
Cl2
500。 C
α
CH2 Cl
CH
CH2
(四) 聚合反应
nCH2=CH2 高 温 高 压
CH2-CH2 n
(五) 金属炔化物的生成
HC CH + 2AgNO3 + 2NH3.H2O
AgC
HC
CAg
+ 2NH4NO3 + 2H2O
乙炔银(白色)
CH + Cu2Cl2 + 2NH3.H2O CuC CCu + 2NH4Cl + 2H2O
HBr
有过氧化物
C H3C H2C H C H2 H Br
反―马氏规则‖
注意:氯化氢、碘化氢无过氧化物效应
该反应不使用HX的水溶液,以避免烯烃与水加成。
HX对烯烃加成的相对活性:
HI HBr HCl HF
因为:在HF中,F的原子半径小,但电负性大, 故对H原子的束缚力较大,不易离解出H+和F-。 3.加 H2SO4
CH 2=CH
CH 3CH=CH
CH 2=CHCH 2
乙 基 烯
丙烯基
烯 基 丙
三 烯烃和炔烃的物理性质
与烷烃的不同之处:
不同碳原子的电负性: 三键碳原子>双键碳原子>饱和碳原子。 偶极矩:端炔>端烯(但极性较弱)。如: CH3CH2C≡CH
μ 2.67×10-30 C· m
CH3CH2CH=CH2
C C2H5
P-2 催化剂
C2H5 C H C
C2H5 H
采用Na(或Li)/液NH3还原炔烃将得到反式烯烃。
Na , 液 NH3 。 - 78 C C2H5 C H C (CH )3CH3 2 H

第三章-烯烃和炔烃-亲电加成反应

第三章-烯烃和炔烃-亲电加成反应

2S2
2Px1 2Py1 Pz
3SP2 Pz
.
a)SP2杂化轨道由1/3s轨道和2/3p轨道组成;
b)成键能力较sp3杂化轨道弱,但比未杂化轨道强
c)杂化轨道对称轴在同一平面,夹角120°,未杂化 2p轨道垂直这一平面。
3、π键:
未杂化的p轨道沿对称轴平行方向(“肩并肩”)重 叠成形成π键,构成π键的电子叫做π电子。
C2H5C CC2H5 P-2 催化剂
C2H5 C
H
C2H5 C
H
液氨钠与二取代乙炔反应得反式产物
C2H5C
Na , 液NH3
C(CH2)3CH3
- 78 。C
C2H5 C
H
H
C (CH2)3CH3
烯炔与氢加成优先发生在三键上
H2 RC C (CH2)n-CH=CH2 Pt-BaSO4 喹啉 CHR CH (CH2)n-CH=CH2
CH2 CHCH2C CH
+ Br2
-C20C。lC4
CH2 CHCH2C CH Br Br
4,5-二溴-1-戊炔
(2)加卤化氢 烯烃与卤化氢加成生成一卤代烷
C = C + HX
C-C
HX的反应活性:
HX
HI > HBr > HCl > HF (HF加成无实用价值 )
如乙烯的加成
CH2=CH2 + HX → CH3CH2X
C
C
4. 键与 键的差异: 键
①存在的情况

a.可以单独存在
键必须与键共存仅存
b.存在于任何共价键中 在于不饱和键如双键等
②成键方式 沿对称轴平行方向“肩并
沿轴向“头碰头”重叠 肩”重叠

小议烯烃和炔烃的加成反应

小议烯烃和炔烃的加成反应

小议烯烃和炔烃的加成反应13031417 杨春怀内容摘要:烯烃和炔烃在结构上的共同点都表现在碳碳双键、碳碳叁键的不饱和牲上。

在一定条件下都能和氢、卤素等试剂发生一系列的加成反应。

但是两者又有较明显的区别,炔烃比烯烃难发生亲电加成,易发生亲核加成反应。

本文从烯烃和炔烃的结构上进行比较来寻找性质差别的原因。

关键词:烯烃 炔烃 亲电 亲核 加成反应烯烃和炔烃都属于不饱和的链状碳氢化合物,都有易断裂的兀键,能发生加成反应。

当亲电试剂存在时,炔烃的加成反应比烯烃缓慢。

如:乙烯能使溴的四氯化碳溶液立即退色。

而乙炔需要几分钟以后才能褪色。

又如当分子中同时存在双键和叁键时,与溴反应首先进行的是双键的加成反应:炔烃虽然较难发生亲电加成,.但是炔烃能发生一系列的亲核加成。

如乙炔在NaoH 或KOH 存在下,可以和醇、硫醇、酚等含有“活泼”氢的有机化合物发生亲核加成,生成乙烯基化合物。

C C H H H C H H C C H+Br-Br C Br H H C Br H C H H C C H 90%C H CH R-OH ROC H CH 2C H CH RS C H CH 2RSH C H C H ArO C H CH 2Ar-OH 100℃~200℃ 烯烃和炔烃都属于不饱和烃,为什么同是π键,在发生加成反应时表现出这些差别呢?性质上的差异,必然存在结构上的差异。

我们从烯烃的结构中可知,在碳一碳双键中,原子平面的上下有pai 电子云,这些pai 电子云参与把碳原子核拉拢在一起作用要比sita 电子云小,pai 电子本身被束缚得较松。

这种松散的pai 电子特别容易被寻求电子的试剂所利用。

因此在许多反应中,碳一碳双键是一种电子的来源,也可以说它起着一个碱的作用,与它反应的化合物就是缺电子的化合物,也就是酸,这些寻求一对电子的酸性试剂称为亲电试剂。

烯烃的亲电加成,换句话说是酸性试剂进攻的加成反应。

而在炔烃的不饱和键中,乙炔分子中两个π键构成一个具有很大对称性的圆柱状的π电子云。

有机合成-烯烃和炔烃的性质

有机合成-烯烃和炔烃的性质

C
C
图 3.14 裸露的 π电子云
亲电试剂 (electrophiles): 缺电子的试剂(例如:H+)
亲电加成反应:不饱和烃受亲电试剂进攻后,π键断
裂,试剂的两部分分别加到重键两端的碳原子上。
(1)与卤素的加成
(a) 与溴和氯加成
(CH3)2CHCH CHCH3 + Br2
CCl4
0℃
(CH3)2CHCH Br
HgSO4 H2SO4
CH3(CH2)3C
CH H
1–己炔
烯醇
OH CH3(CH2)3C CH H
O CH3(CH2)3C CH3
酮式–烯醇式互变异构 (keto-enol tautomerism):
O C H O C C C H
2–己酮
官能团的转换:
O C C C H(R)
不对称炔烃与H2O的加成反应符合Markovnikov 规则

R2C CR2 + X H
第二步:
H
卤负离子与碳正离子结合

R2C CR2 + X
R2C CR2 X H
决定反应速率的一步是碳正离子的生成。
烯烃同卤化氢加成的反应机理
图 3.17 生成碳正离子的示意图
图 3.18 卤负离子与碳正离子结合的示意图
(d) 碳正离子
R R'
+
C
120 °
R"
图 3.20 碳正离子的结构
Br C C Br
型离子 溴负离子从反面进攻,其结果是反式加成 反应的立体化学:
Br H Br H
反式加成
H Br H
Br Br
反–1,2–二溴环戊烷

有机化学第三章烯烃和炔烃

有机化学第三章烯烃和炔烃

125.9
126.8 125.9 126.8 126.8 119.7 115.5
顺-CH3CH2CH=CHCH3
反-CH3CH2CH=CHCH3 CH3CH2C(CH3)=CH2 (CH3)2CHC(CH3)=CH2 (CH3)2C=CHCH3 (CH3)2C=C(CH3)2
119.7
115.5 119.2 117.2 112.5 111.3
( Ni(Al) + NaOH
Ni + 骨架镍 NaAlO2 + H2
H2 压力: Pt, Pd :常压及低压 Raney Ni :中压(4~5MPa) 温度:
)
常温(<100°C)
(1) 催化氢化及机理
乙烯催化氢化反应机理的示意图
氢化过程中的能量变化
无催化剂 有催化剂 (可能多步骤)
E2
能量
E1
催化氢化时炔烃与烯烃活性的比较
炔烃比烯烃容易进行催化加氢,当分子中同时存在双键和叁
键时,催化氢化首先发生在叁键上。
CH3 HC C C CH CH2CH2 OH + H2
Pd, CaCO3 喹啉, 80%
CH3 H2C CH C CH CH2CH2 OH
加氢成烯烃
保持不变
N
喹啉
催化加氢反应时立体选择性
不饱和烃
不饱和烃: 含有碳碳重键的化合物。 烯烃(alkenes)
H H C C H H
H C C H
炔烃(alkynes)
例子 通式 官能团
CnH2n
CnH2n-2
C C
C C
3.1 烯烃和炔烃的结构
3.1.1 碳碳双键的组成
碳原子的sp2杂化过程示意图

第三章烯烃和炔烃 亲电加成

第三章烯烃和炔烃 亲电加成

(E)-3-甲基-2-戊烯
(Z)-3-甲基-2-戊烯
(E)-3-methyl-2-pentene
cis-3-methyl-2-pentene
(Z)-3-methyl-2-pentene
trans-3-methyl-2-pentene
3, 3-二甲基-2-乙基丁烯
(Z)-3-甲基-2-戊烯
2,4-二甲基己烯
3-甲基-2-乙基- 1- 丁烯
2. 主链编号
编号时从有不饱和键的一端开始,这样使不饱和键的位次最小。在主链的名 称前写出不饱和键的位次并用“-”隔开。取代基的表示方法和烷烃相同,但是 取代基和主链间也要用“-”隔开。
3. 分子中有两个以上的不饱和键时,用“二烯”或“二炔”等表示主链的名称,并在 名称前标出双键的位次。
三、催化氢化 1. 催化加氢 在催化剂存在下,有机化合物与氢分子发生的反应称为催化氢化(catalytic hydrogenation).
2. 氢化热及烯烃稳定性 1mol不饱和化合物氢化时放出的热量称为氢化热。 氢化热越大,分子的内能越高,越不稳定。 相同数目碳原子的烯烃,反式比顺式稳定,双键碳原子上的基团越多,越稳定。
O
H = 226.9KJ mol-1
H2C
HC
CH
CH
CH2
2H2
CH3CH2CH2CH2CH3
H =254.4KJ mol-1
共轭能=254.4-226.9=27.5KJ.mol-1
(3)折射率较高
2. p- π共轭
π轨道中的电子
H
P轨道中的电子
Cl C C H
H H C H C H C H
空的p轨道
数的烯烃和环烷烃还有功能团异构。

第三章不饱和烃烯烃和炔烃

第三章不饱和烃烯烃和炔烃

同理,B 氧化后生成丙酮和 CO2, (CH3)2C 和 CH2 ,把二者连接起来,即得到 B 的构
造异构式为 (CH3)2C=CH2 。C 氧化后仅生成乙酸,说明它未氧化前具有 CH3CH ,而它和
化合物 A、B 为同分异构体,都是含四个碳原子的烯烃说明它具有对称结构,把两个
CH3CH 连接起来,即得到 C 的构造式CH3CH=CHCH3 。
CH3
CH CH3
H3C CH C CH CH3
4,4-二甲基-2-戊烯
3-甲基-1-丁炔
通常将碳碳双键处于端位的烯烃,统称α-烯烃。碳碳三键处于端位的炔烃,一般称为端
位炔烃。
2、烯烃顺反异构体的命名
顺反命名法:
两个相同原子或基团处于双键碳原子同一侧的称为顺式,反之称为反式。但当两个双键
碳原子所连接的四个原子或基团都不相同时,则难用顺反命名法命名。
2)在满足最低系列原则下,优先考虑双键,使其具有较小编号;
3)书写:称某碳“烯”某“炔”;
4)若双键和三键处于相同的位次供选择时,优先给双键较低编号。
HC C CH2 CH2 CH CH2
1-己烯-5-炔
二、结构与性质
1、结构: 烯烃为 sp2 杂化,余下一个未参与杂化的 p 轨道,垂直与三个杂化轨道对称轴所在的平
臭氧化: 生成醛和/或酮。根据生成醛和酮的结构,就可推断烯烃的结构。炔烃与臭氧反应生成羧 酸。 臭氧除和碳碳三键以及双键外,其他官能团很少反应,分子的碳架也很少发生重排,故 此反应可根据产物的结构测定重键的位置和原化合物的结构。 环氧化反应: 烯烃与过氧酸(简称过酸)反应生成 1,2-环氧化物,常用的过氧酸有过氧甲酸、过氧 乙酸、过氧苯甲酸、过氧间氯苯甲酸、过氧三氟乙酸等。 3)α-氢原子的反应

3第三章 烯烃与炔烃

3第三章 烯烃与炔烃

以乙烯分子为例
三个sp2杂化轨道同一平面上彼此成120º角,还剩下一个2p轨道垂 直于sp2轨道所在的平面上。
sp2杂化轨道
2p轨道
120º
在乙烯分子中,所有的原子都在同一平面上。两个p轨道侧面重叠形成的 键叫π键,其电子云分布在分子平面的上下两侧,通常说π键是垂直于由 σ键所形成的平面。
(CH3)2C=CH2 + H + O H (CH3)3C+ + O H (H3C)3 C + O H H + O H H 快 H 快 (H3C)3 C + O H (CH3)3COH + H3O+ H H 慢 + (CH3)2CCH3 + O H H
异丁烯接受质子转变成叔丁基正离子,后者与水结合生成烊盐,烊盐 脱去质子后变成叔丁醇。
117°
H
121.7°
H C H
C
0.108nm
H
0.134nm
C=C 键能:610.9 kJ/mol
三、π键的特性 由于π键是由两个平行的p轨道侧面重叠形成的,重叠 程度较小,因此容易断裂。 π键电子云对称分布于σ键所在平面的上下,不是轴对 称的,所以成键原子不能围绕键轴自由旋转,否则π键断裂 。正因为如此,烯烃存在着顺反异构现象。
2
顺反异构
由于双键两侧的基团在空间的位置不同而引起的异构叫做顺反异构。 顺式:两个相同的基团处于双键同侧。反式:两个相同的基团处于双 键反侧(异侧)。
例如,2-丁烯存在两个顺反异构体
CH3 C H C
CH3 H
CH3 H
H C C CH3
顺-2- 丁烯
反-2-丁烯
有顺反异构体的烯烃必须是每个双键碳原子上都连有不同的原子或原 子团 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5-甲基-1,3,6-庚三烯
5.同时含有叁键和双键的化合物称为烯炔。其命名 选取含双键和叁键最长的碳链作为主链。位次的 编号通常使不饱和键位次最小.
5
4
3
CH3CH =CH
2
C
=C1 H
3 _ 戊烯 _ 1 _ 炔
CH3
= = 7
6 54
3
2
1
Hale Waihona Puke CH3C CCH CH2CH CH2
4 _ 甲基 _ 1 _ 庚烯 _ 5 _ 炔
④键的性质
a.键能:较大 b.旋转:可自由旋转 c.极化度:较小
较小 不能自由旋转 较大
二.炔烃的结构
1.乙炔的结构
乙炔是线形分子,叁键的键长为0.12nm,比C=C
键的键长短。键能为835KJ/mol,比双键键能
610KJ/mol.大,比三倍单键的键能1036KJ/mol.小
得多
0.120nm
HCCH
烯烃是含有碳碳双键(C=C)即烯键的 烃,碳碳双键是烯烃的官能团, (单烯烃、 二烯烃和多烯烃).单烯烃的通式为CnH2n它与 环烷烃互为同分异构体.
炔烃是含有 –C C-叁键的不饱和脂肪烃, 二烯烃是含有两个C=C双键的不饱烃与炔烃互 为同分异构体,两的者通式为CnH2n-2
§3-1 烯烃和炔烃的分子结构
CH2=CHCH2CH3
(a)
CH3CH=CHCH3
(b)
CH2=CCH3 CH3
(c)
位置异构:由于碳-碳双键位置的不同而产生的异构
如a与b
官能团异构: 烯与环烷烃, 如
a、b、c与d
(d)
二、烯烃的顺反异构:
顺反异构:分子中各原子或基团的连接方式和次序 相同,但由于自由旋转受阻而在空间排 列方式不同产生的异构体
180°
0.106nm
2.叁键及电子云形状
sp杂化
激发
2Px 2Py 2Pz
2P
2S
2S
杂化
2P
sp杂化电子云形状和成键情况
SP
3、两个相互垂直的π键
HCCH
围绕两个碳原子核心的圆柱状的π电子云
§3-2 烯烃和炔烃的同分异构
一、构造异构(碳架异构、位置异构和官能团异构)
碳架异构:分子中原子连接次序不同.如a,b与c
碳原子数超过十时,须在烯或炔字前加碳字 叫“某碳烯” 如
CH3(CH2)8CH=CH-CH3 2-十二碳烯
4.分子中含有两个或更多双键或叁键时,合并用
“二、三、四等”字表明,同时尽可能以最低 的
数字标出各自的位置
CH3-C=CH-CH2-CH=CH2 CH C-C C-CH-C CH
CH3
CH3
5-甲基-1,4-己二烯
C
C
4. 键与 键的差异: 键
①存在的情况

a.可以单独存在
键必须与键共存仅存
b.存在于任何共价键中 在于不饱和键如双键等
②成键方式 沿对称轴平行方向“肩并
沿轴向“头碰头”重叠 肩”重叠
③电子云分布
a.集中于两原子核中 间,呈圆柱形分布
a. 电子云分布在 键 所在平面的上下,呈块状 分布
b. 键有一个对称轴, 只有对称面,对称面上 轴上电子云密度最大 的电子云密度最小
2S2
2Px1 2Py1 Pz
3SP2 Pz
.
a)SP2杂化轨道由1/3s轨道和2/3p轨道组成;
b)成键能力较sp3杂化轨道弱,但比未杂化轨道强
c)杂化轨道对称轴在同一平面,夹角120°,未杂化 2p轨道垂直这一平面。
3、π键:
未杂化的p轨道沿对称轴平行方向(“肩并肩”)重 叠成形成π键,构成π键的电子叫做π电子。
CH3 H
H
CC 反-2-丁烯 CH3
E-2-丁烯
H3C
CH3
第三章 烯烃和炔烃 亲电加成反应
【教学要求】 ❖ ①熟悉烯烃、炔烃和二烯烃的结构 ❖ ②掌握烯烃、炔烃和二烯烃的命名 ❖ ③了解炔烃的物理性质 ❖ ④熟练掌握烯烃、炔烃的化学性质 ❖ ⑤理解亲电加成、自由基加成反应历程 ❖ ⑥理解共轭体系及共轭效应 ❖ ⑦了解重要烯烃的用途和石油化工
第三章 烯烃和炔烃 亲电加成反应
双键与叁键位次相同时则给双键以最低编号
CH =CCH2CH =CH2
1 _ 戊烯 _ 4 _ 炔
CH=CH2 CH3C =CCH CH2CH=CHCH3
5 _ 乙烯基 _ 2 _ 辛烯 _ 6 _ 炔
几个重要的烯基
烯基:烯烃分子去掉一个氢原子后剩下的一价
基团
CH2=CH CH3CH=CH CH2=CH-CH2 CH2= C–CH3
是)
1.选含有双键的最长碳链为主链,并按主链的碳
原子数称为“某烯”或“某炔”
CH3 CH CH=CH2
CH3 C =CH
CH3CH2CH2 CH2CH3
(CH3)2CH
CH CH3 CH3
2.编号从最靠近不饱和键一端开始,使双键或叁键
的位次最小.
3.书写取代基与烷烃相同,不饱和键的位置标用 位号较小的一个标在主体名称的前面, 如前二例 3 _ 甲基 _ 2 _ 乙基_ 1 _ 己烯 2 , 3 , 5 _ 三甲基 _ 3 _ 己烯
一.烯烃的结构: 1.乙烯的结构
乙烯分子中的所有原子在同一平面键角接 近于120⁰ . 碳碳双键由π键与σ键组成
H
H
C=C
H
H
单双键键长、键能比较表
碳—碳双键
键 长(nm)
0.134
键 能(Kj/mol) 610.0
碳--碳单键 0.154 345.6
2.碳原子的SP2杂化
C: 1S22S22Px12Py1
H3C H
CH3 CC
H 顺式
H3C
H
CC
H 反式 CH3
顺反异构产生的条件:
1.分子中有限制自由旋转的因素,如双键或环平面 2.双键所连的两个碳子各连有不同的原子或基团.
a C
b
c C
d
a≠ b c≠ d
炔烃是直线型分子不存在顺反异构
§3-3 烯烃和炔烃的命名
一.系统命名 法 (烯、炔的命名与烷烃相似,不同的
1.依次对双键碳原子上所连接的原子或基团按 “次序规则”排序。
2.两双键碳原子上优先的原子或基团在同侧为Z 型,在异侧为E型。
a
c
CC
b Z构型 d
a
d
CC
b E构型 c
条件 a>b c>d
CH 3 H
CH 3 CC
H
顺-2-丁烯
Z-2-丁烯
H3C
H
CC
H3CH2C
CH3
反-3- 甲基-2-戊烯
Z-3-甲基-2-戊烯
乙烯基 丙烯基(1-丙烯基) 烯丙基(2-丙烯基) 异丙烯基
二、顺反异构体的命名
顺反标记法:两个双键碳原子上有相同原子或 基团时,相同基在同一侧冠以“顺”字,在异 侧时冠以“反”字。如
H3C
CH3
CH3CH=CHCH 3
CC
2-丁烯
H
H
顺-2-丁烯
H3C
H
CC
H 反-2-丁烯CH3
Z、E标记法:
相关文档
最新文档