分数函数的值域

合集下载

分式函数值域的求法

分式函数值域的求法
1 7 0
( 海 县 岔路 镇 初 级 中 学 . 江 宁 海 3 5 0 ) 宁 浙 1 6 6

要 : 数 的值 域 是 中学 数 学 的重 要 内容 。 域 的 求 法 很 多 , 文基 于 数 学 思 想 : 程 思想 及 数 形 结合 思想 给 出 函 值 本 方
了分 式 函 数值 域 的 两 种求 法 . 关键 词 : 函数 :值 域 :数 学 思 想
而 函数 的值域 问题 却是联 系各种 知识 点 的纽带. 函数 值域 方法很 多 , 求 下面 基于 数学 思想 给 出求 形 如
F : ( ) 分 式 函数值域 的两 种方法 .
1用 方 程 思 想 求 值 域
例 1 求 函数 y 2 6 c 。 : : + 斛 ( ≠0) 的值 域

解: 变形得 似 6 +( )0 此二 次方 程有 实数解 , A= ‘ 4 (_ > , 4 (— ≤6 . + c =, 则 b 一 0c y) 10 即 a c Y) ‘
当。, c ,y 喾; 。 解 ≥ 或≤ . 。时 得 ≤ 或 当 时 得 , 竽 解 ≥ , y
( ) O 1
收 稿 日期 :0 8 I — 2 2 0 一 10 作 者 简 介 : 晓 阳 ( 9 5 ) 男 , 江 宁 海人 , 海 县 岔路 镇 初 级 中 学一 级 教 师 , 江 省 农 村 中小 学 教 师 “ 雁 工 程 ” 娄 16 一 , 浙 宁 浙 领 省 级 骨 干初 中数 学 教 师班 学 员 ( 宁波 项 目 ) 。
注 : g x) 1时, 当 ( = 函数 F = () 为 F ) ( ) ( ,因而 y a‘ b + = - x+ x c为分式 函数 的特殊 情形.

例析用判别式法求分式函数值域之困惑

例析用判别式法求分式函数值域之困惑

百花园地新课程NEW CURRICULUM判别式法是求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域的常用方法。

但是很多学生在学习和运用判别式法的过程中,发现运用判别式法求值域时,有时候是对的,有时候又是错的,其中的原因究竟为何并不清楚,后来干脆不用判别式法而改用其他方法。

其实只要你掌握了判别式法的理论依据及易错点,一般来说,求形如y =ax 2+bx+c dx 2+ex+f(a 2+d 2≠0)的分式型二次函数值域还是比较方便的。

下面就本人对判别式法的一些理解,来分析一下为什么用判别式法有时是对的,有时候又是错的。

首先,让我们通过一道例题来看一下,判别式法求形如y =ax 2+bx+c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数值域的一般步骤及其理论依据。

例1:求函数y =x 2+x -1x 2+x -6的值域。

解:由y =x 2+x -1x 2+x -6可得(y -1)x 2+(y -1)x -6y +1=0★10当y -1=0即y =1时,★式可化为-5=0显然不成立。

20当y -1≠0即y ≠1时,★式为关于x 的一元二次方程Δ=(y -1)2-4(y -1)(1-6y )≥0得y ≥1或y ≤15由10、20可得y ∈(-∞,15)∪(1,+∞)即所求函数的值域为y ∈(-∞,15)∪(1,+∞)。

例2:求函数y =2x 2-x +1x 2+2x -3的值域。

解:由y =2x 2-x +1x 2+2x -3可得(y -2)x 2+(2y +1)x -3y -1=0★10当y -2=0即y =2时,★式可化为5x -7=0得x =75因为函数y =2x 2-x +1x 2+2x -3的定义域为(-∞,-3)∪(-3,1)(1,+∞)而x =75∈(-∞,-3)∪(-3,1)(1,+∞)所以,y =2符合题意。

20当y -2≠0即y ≠2时,★式为关于x 的一元二次方程Δ=(2y +1)2+4(y -2)(3y+1)≥0得y ≥2+11√4或y ≤2-11√4由10、20可得y ≥2+11√4或y ≤2-11√4即所求函数的值域为(-∞,2-11√4]∪[2+11√4,+∞)注:由上述例1和例2可以看出,用判别式法求值域大致可分为四步:1.将分式形如y =ax 2+bx +c dx 2+ex+f (a 2+d 2≠0)的分式型二次函数转化为关于x 的整式方程(dy-a )x 2+(ye-b )x +yf -c =0★。

二次分式函数值域的求法

二次分式函数值域的求法

二次分式函数值域的求法首先,我们先来了解什么是二次分式函数。

y = f(x) = (ax^2 + bx + c) / (dx^2 + ex + f),其中a、b、c、d、e、f都是实数且d不等于0。

要求二次分式函数的值域,就是要确定函数f(x)的所有可能取值。

我们先来看一般情况下的二次分式函数。

假设二次分式函数的分母dx^2 + ex + f有两个不同的实根x1和x2、那么,显然x可以取任意实数值,因为任何实数值代入到二次分式函数中都能找到对应的x,使得分母不为0。

所以,可以确定二次分式函数的取值范围是整个实数集。

接下来,我们来看一些特殊情况下的二次分式函数。

情况一:分母为常数的情况假设分母dx^2 + ex + f = C(C为常数)。

那么这个二次分式函数的分母恒为C,不会出现分母为0的情况。

所以此时的二次分式函数的值域也是整个实数集。

情况二:分母为一个一次函数的情况假设分母dx^2 + ex + f只有一个实根x0。

那么此时的二次分式函数y = f(x)就有一个由实根x0确定的竖直渐近线,即在x=x0这个点处,函数值可能无限大。

在其他的实数点处,函数值可能有限。

所以此时的值域是整个实数集。

情况三:分母为一个完全平方的情况假设分母dx^2 + ex + f可以因式分解为(dx + g)^2(g为常数)。

那么此时的二次分式函数y = f(x)可以写成分式 (ax^2 + bx + c) /(dx + g)^2、这样,分母为(dx + g)^2,表明了这个二次分式函数有一个由分母的因式(dx + g)确定的零点,即在x=-g这个点处,函数值可能无限大。

其它实数点处函数值可能有限。

所以此时的值域是整个实数集。

综上所述,无论是一般情况还是特殊情况,二次分式函数的值域都是整个实数集。

为了更好地理解二次分式函数值域的求法,我们可以通过绘制函数图象来进行观察。

例如,考虑函数f(x)=(2x^2+3x+1)/(x^2+2x+1)。

分式函数三种值域求法

分式函数三种值域求法

分式函数三种值域求法
在求解分式函数的值域时,通常可以使用以下三种方法:
1. 构造法:通过对分式函数进行构造,确定函数的值域范围。

具体步骤如下:
- 将分式函数表示为一个等式,将等式中的分母进行因式分解,找出分母的零点,得到不可取的值。

- 根据分式函数的定义域限制和函数的性质,确定分子函数和分母函数的值域范围。

- 根据值域范围的限制,求解分式函数的值域。

2. 导数法:对分式函数求导,利用导数的性质来确定值域范围。

具体步骤如下:
- 首先找到分式函数的定义域,并求出其导数。

- 根据导数的增减性分析函数的单调性,并确定函数的极值点。

- 根据函数的单调性和极值点,确定值域范围。

3. 图像法:通过绘制函数的图像,观察其图像特征来确定函数的值域范围。

具体步骤如下:
- 绘制分式函数的图像,可以使用计算机软件、图
形计算器等工具。

- 观察图像的函数曲线,确定函数的最大值、最小值和区间。

- 根据图像的特征,确定函数的值域范围。

这三种方法可以根据具体情况选择使用,有时也可以结合使用以求得更准确和全面的值域范围。

在实际应用中,可以根据具体的分式函数和问题的要求来选择适合的方法。

分式函数求值域

分式函数求值域

分式型函数供值域的要领探讨之阳早格格创做正在教教中,笔者时常逢到一类函数供值域问题,此类函数是以分式函数形式出现,有一次式比一次式,两次式比一次式,一次式比两次式,两次式比两次,当前对付那类问题举止探讨.一、形如d cx bax x f ++=)((0,≠≠b o a )(一次式比一次式)正在定义域内供值域. 例1:供2312)(++=x x x f ()32-≠x 的值域. 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}⎩⎨⎧≠32/y y普遍性论断,d cx bax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域}⎩⎨⎧≠c a y y /例2:供2312)(++=x x x f ,()2,1∈x 的值域.分解:由于此类函数图像不妨通过反比列函数图像仄移得出,所以办理正在给定区间内的值域问题,咱们不妨绘出函数图像,供出其值域.解:2312)(++=x x x f =233132+-x ,是由xy 31-=背左仄移32,进与仄移32得出,通过图像瞅察,其值域为⎪⎭⎫ ⎝⎛85,53小结:函数闭系式是一次式比一次式的时间,咱们收当前此类函数的真量是反比率函数通过通常得出的,果此咱们不妨做出其图像,去供函数的值域.二、形如供xa x x f +=)(()0≠a 的值域.分解:此类函数中,当0<a ,函数为单调函数,较简朴,正在此咱们没有干计划,当0>a 时, 对付函数供导,,1)(2'xa x f -=0)('>x f 时,),(a x -∞∈⋃+∞,a ),0)('<x f 时,),0()0,(a a x ⋃-∈,根据函数单调性,咱们不妨干出此类函数的大概图像,其咱们常道的单勾函数,通过图像供出其值域.例3)上递三、用),nmx c bx ax x f +++=2)((0,0≠≠a m )正在定义内供值域的问题.例3:(2010沉庆文数)已知0t >,则则函数241t t y t-+=的最小值为_______.解:41142-+=+-=t t t t t y ,∴>o t 由基原没有等式天2-≥y例4:供)1(21)(2>++-=x x x x x f 的值域.解:令,1,1+==-t x t x 则则2)1()1()(2++++=t t tx f =341432++=++t t t t t,其中t .0>则由基原没有等式得71)(≤x f例5:供)21(12224)(2->+++=x x x x x f 的值域.解:令,12+=x t 则21-=t x ,t t t x f 2)21(2214)(2+-+⎪⎭⎫⎝⎛-==t t t 22+-=12-+t t,其中0>t ,由基原式得122)(-≥x f小结:对付于此类问题,咱们普遍换元整治后,将函数形成)0()(>+=a x ax x f 那典型的函数,办理此类函数注意应用基原没有等式,当基原没有等式没有成的时间,注意应用单勾函数的思维去办理此类问题三、形如)0,0()(22≠≠++++=m a c bx mx c bx ax x f 正在定义域内供值域.例5:供11222++++=x x x x y 的值域. 分解:当定义域为R 时,咱们采与判别式法供此类函数的值域.当定义域没有为R 时,没有该采与此法,可则有大概堕落.此时,咱们要根据函数闭系的特性,采与其余要领. 解:012>++x x恒恒创造,所以此函数的定义域为R x ∈,将函数整治成闭于x 的圆程,1222++=++x x y yx yx ,,0)1()1()2(2=-+-+-y x y x y 当,02≠-y 闭于x的圆程恒有解,则)1)(2(4)1(2----=∆y y y ,0≥即371≤≤y ,隐然,2=y 也创造,所以其值域为{}371/≤≤y y以上是供此类函数的罕睹要领,但是共教们正在解题历程中.没有要拘泥以上要领,咱们要根据简直函数的特性采与相对付应的要领,多思索,闻一知十,那以去办理此类问题便很简单了.。

函数详解之分式函数

函数详解之分式函数

函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。

分式函数值域

分式函数值域

分式函数值域
分式函数定义为由两个或多个分数组成的表达式。

其中一个分数叫称分子,另一个叫分母,将它们用符号“/”表示,就叫做分式函数。

分式函数的值域,是指分式函数定义的所有可能解的集合。

分式函数的值域要看其分母,当其分母不为零时,该函数为可除函数,函数的值域是实数集合。

而当其分母为零时,该函数不可除,函数的值域为空集合。

首先,要正确判断一个分式函数的分母是否为零,而不是仅仅把所有分数都另为0来判断。

正确判断方法是:先把分式函数化简,化简得到原分数之后,才能正确判断它的分母是否为零。

其次,若分式函数的分母不为零,则函数的值域就是实数集合。

但是,若分子存在负数的话,由定义可知,分式函数值域只包含正数、负数和零而不包括分子的值,所以由此可得分式函数的值域为:
$$
\lbrace x \mid x \in \mathbb{R}, x \geq 0 \lor x \leq 0\rbrace
$$
再次,在计算分式函数的值域的过程中,要注意函数的取值范围,以及x的可能取值范围。

有时,可能会有一定的条件限制x的取值范围,这样就要根据函数定义及其特性作出相应的修正来计算分式函数的值域。

如何求两类分式三角函数的值域

如何求两类分式三角函数的值域

分式三角函数值域问题的难度一般较大.解答此类问题,不仅要将函数式进行合理的变形,还需关注分母不为0的隐含条件,由此根据函数的定义域来求解.本文主要探讨两类分式三角函数值域问题及其解法,以期帮助同学们更加透彻地了解这两类问题的解法.类型一:y =a 1sin x +b 1a 2sin x +b 2或y =a 1sin x +b 1a 2cos x +b 2型分式三角函数形如y =a 1sin x +b 1a 2sin x +b 2或y =a 1sin x +b 1a 2cos x +b 2的分式三角函数值域问题比较常见,解答此类问题,通常有两种思路:(1)先根据函数式明确分母不为0时函数的定义域,然后将函数式变形为sin x =f ()y ,cos x =f ()y ,tan x =f ()y 的形式,再利用三角函数的有界性求得函数的值域;(2)将y 视为参数,把函数式变形为关于y 的方程,利用一次方程的性质或者二次方程的判别式来建立关于y 的不等式,解不等式即可求得值域.例1.求函数y =sin x +1sin x +2的值域.解:由y =sin x +1sin x +2可得sin x =2y -11-y ,因为||sin x ≤1,所以||||||2y -11-y ≤1,即()2y -12≤()1-y 2,解得0≤y ≤23,所以函数y =sin x +1sin x +2的值域为éëùû0,23.解答本题,要先通过恒等变换将函数式变形,再利用三角函数的有界性||sin x ≤1建立关于y 的不等式,解该不等式求就能求出函数的值域.例2.求函数f ()x =sin x +1cos x +2的值域.解:令t =tan x2,由万能公式可得sin x =2t 1+t 2,cos x =1-t 21+t 2,将其代入y =sin x +1cos x +2可得:y =t 2+2t +1t 2+3,整理得:()y -1t 2-2t +()3y -1=0,因为tan x2∈R ,所以t ∈R ,当y -1=0时,t =1;当y -1≠0时,根据∆≥0得0≤y ≤43,且y ≠1,因此函数f ()x 的值域为éëùû0,43.我们根据万能公式将tan x2用t 替换,通过换元将问题转化为关于t 的一元二次方程()y -1t 2-2t +()3y -1=0有解的问题,由一元二次方程的根的判别式建立不等式,进而求得函数的值域.类型二:y =a 1sin x cos x()sin x +a 2()cos x +a 3型分式三角函数解答形如y =a 1sin x cos x()sin x +a 2()cos x +a 3的分式三角函数值域问题,要先根据同角的三角函数关系式sin 2x +cos 2x =1以及完全平方公式,将sin x cos x 用sin x +cos x 表示出来,以便把函数式转化为只含有sin x +cos x 的式子,这样根据辅助角公式和正余弦函数的性质就能顺利求得函数的值域.例3.已知θ∈æèöø0,π2,则2sin θcos θ()sin θ+1()cos θ+1的值域为_____.解:令t =sin θ+cos θ,∴t =2sin æèöøθ+π4,∵θ∈æèöø0,π2,θ+π4∈æèöøπ4,3π4,∴t ∈(]1,2,∴t 2=1+2sin θcos θ,∴sin θcos θ=t 2-12,∴2sin θcos θ()sin θ+1()cos θ+1=2()t -1t +1=2-4t +1,而在(]1,2上g ()t =2-4t +1单调递增,∴0<2-4t +1≤6-42,∴函数2sin θcos θ()sin θ+1()cos θ+1的值域为(]0,6-42.本题较为复杂,解答时需先根据重要三角函数不等式将函数式进行变形,然后设t =sin θ+cos θ,通过换元将问题转化为求g ()t 在(]1,2上的最值,根据反比例函数的性质即可解出.在求值域的过程中,需注意自变量的取值范围,若自变量的取值范围错误,则所求的值域也必定是错误的.总的来说,求解分式三角函数值域问题的关键是要明确函数式的特征,据此将函数式进行适当的变形,如变形为sin x =f ()y 、cos x =f ()y 、tan x =f ()y 的形式、一元二次方程、反比例函数等,再根据三角函数的有界性和方程的性质就能求得最值.(作者单位:安徽省蚌埠市怀远县包集中学)方法集锦45。

第二章第2讲函数的定义域和值域

第二章第2讲函数的定义域和值域

第2讲 函数的定义域和值域1.常见函数定义域的求法 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为{x |x ≠k π+π2,k ∈Z }.2.基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =kx(k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R . [做一做] 1.(2015·浙江杭州模拟)函数y =16-4x 的值域是( ) A .[0,+∞)B .[0,4]C .[0,4)D .(0,4) 解析:选C.∵4x >0,∴0≤16-4x <16,∴0≤y <4.2.函数y =x +1+12-x的定义域为________.答案:[-1,2)∪(2,+∞)1.求函数定义域应注意的四点(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合. (2)不要对解析式进行化简变形,以免定义域发生变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接. 2.求函数值域的六种基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +dax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法:利用函数所表示的几何意义,借助于图象的直观性来求函数的值域.[做一做]3.函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 答案:C4.若x -4有意义,则函数y =x 2-6x +7的值域是________.解析:∵x -4有意义,∴x -4≥0,即x ≥4.又∵y =x 2-6x +7=(x -3)2-2,∴y min =(4-3)2-2=1-2=-1.∴其值域为[-1,+∞). 答案:[-1,+∞)考点一__求函数的定义域(高频考点)____________函数的定义域是高考的重点内容,考查时多以选择题和填空题形式出现,一般难度较小,高考对定义域的考查主要有以下四个命题角度: (1)求分式型函数的定义域; (2)求无理型函数的定义域; (3)求对数型函数的定义域; (4)求抽象函数的定义域.(1)(2015·广东惠州第二次调研)函数f (x )=log 2(3x -1)的定义域为( ) A .[1,+∞) B .(1,+∞)C .[0,+∞) D .(0,+∞)(2)函数f (x )=1-|x -1|x -1的定义域为____________.(3)(2015·山东莱芜模拟)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2C.⎝⎛⎭⎫32,+∞D.⎣⎡⎭⎫12,2 [解析] (1)要使函数有意义,必须满足3x -1>0,解得x >0,故选D. (2)由⎩⎨⎧1-|x -1|≥0x ≠1⇒⎩⎨⎧0≤x ≤2x ≠1⇒0≤x <1或1<x ≤2.(3)要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤30<2-x <1⇒32≤x <2.故选B.[答案] (1)D (2)[0,1)∪(1,2] (3)B本例(2)变为函数f (x )=1-|x -1|a x -1(a >0且a ≠1),结果如何?解:由⎩⎪⎨⎪⎧1-|x -1|≥0a x -1≠0⇒⎩⎨⎧0≤x ≤2x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].[规律方法] 简单函数定义域的类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].1.(1)(2013·高考山东卷)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1](2)函数y =lg (2-x )12+x -x 2+(x -1)0的定义域是__________. (3)(2015·广东佛山模拟)已知f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为__________.解析:(1)由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0,所以函数f (x )的定义域为(-3,0],故选A.(2)由⎩⎪⎨⎪⎧2-x >0,12+x -x 2>0x -1≠0,得⎩⎪⎨⎪⎧x <2,-3<x <4,x ≠1,所以-3<x <2且x ≠1,故所求函数的定义域为{x |-3<x <2且x ≠1}.(3)∵0≤x ≤3,∴0≤x 2≤9, ∴-1≤x 2-1≤8,∴函数y =f (x )的定义域是[-1,8].答案:(1)A (2){x |-3<x <2且x ≠1} (3)[-1,8] 考点二__求函数的值域________________________求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2)y =1-x 21+x 2;(3)y =x +4x (x <0);(4)f (x )=x -1-2x . [解] (1)(配方法)y =x 2+2x =(x +1)2-1, ∵y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15, 即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =1-x 21+x 2=21+x 2-1,∵1+x 2≥1,∴0<21+x 2≤2.∴-1<21+x2-1≤1.即y ∈(-1,1].∴函数的值域为(-1,1]. (3)∵x <0,∴x +4x=-⎝⎛⎭⎫-x -4x ≤-4,当且仅当x =-2时等号成立, ∴y ∈(-∞,-4].∴函数的值域为(-∞,-4]. (4)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎝⎛⎦⎤-∞,12. 法二:(单调性法)f (x )的定义域为⎝⎛⎦⎤-∞,12,容易判断f (x )为增函数,所以f (x )≤f ⎝⎛⎭⎫12=12,即函数的值域是⎝⎛⎦⎤-∞,12. [规律方法] 求函数值域,应根据解析式的结构特点,选择适当的方法,而常用的方法有:(1)观察法;(2)配方法;(3)换元法;(4)分离常数法;(5)单调性法;(6)数形结合法.在求函数值域时,除了上述常用的方法外,还有很多方法,应注意选择最优的解法.总之,求函数值域的关键是重视对应法则的作用,还要特别注意定义域对值域的制约.2.求下列函数的值域:(1)y =x -3x +1; (2)y =x 2-x x 2-x +1; (3)y =log 3x +log x 3-1(x >1).解:(1)法一:y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.法二:由y =x -3x +1,得yx +y =x -3.解得x =y +31-y ,所以y ≠1,即函数的值域是{y |y ∈R ,y ≠1}.(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即函数的值域为⎣⎡⎭⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t -1(t ≠0),x >1,t >0,y ≥2t ·1t -1=1,当且仅当t =1t即log 3x =1,x =3时,等号成立,故函数的值域是[1,+∞).考点三__与函数定义域、值域有关的参数问题__若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .(0,34)C .[0,34]D .[0,34)[解析] 要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立.①当m =0时,得到不等式3≠0,恒成立;②当m ≠0时,要使不等式恒成立,须⎩⎪⎨⎪⎧m >0,Δ=(4m )2-4×m ×3<0,即⎩⎨⎧m >0m (4m -3)<0或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m (4m -3)<0.解得0<m <34.由①②得0≤m <34.故选D.[答案] D[规律方法] 求解定义域为R 或值域为R 的函数问题时,都是依据题意对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.3.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.答案:5,[学生用书P 18])考题溯源——求函数的定义域(2014·高考山东卷)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞)C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) [解析] 由题意知⎩⎪⎨⎪⎧x >0,(log 2x )2>1,解得x >2或0<x <12.故选C.[答案] C[考题溯源] 本题源于教材人教A 必修1P 73,练习第2题,“求下列函数的定义域.(2)y =1log 2x ,(4)y =log 3x ”.1.函数f (x )=ln (x +1)-x 2-3x +4的定义域为__________.解析:要使函数有意义,必须且只需⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,即⎩⎪⎨⎪⎧x >-1(x +4)(x -1)<0,解不等式组得-1<x <1.因此函数f (x )的定义域为(-1,1).答案:(-1,1)2.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 答案:[-1,0]1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f (x )=x 2+aB .f (x )=ax 2+1C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C.当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10] 解析:选D.要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10].故选D. 3.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2] 解析:选C.-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.4.若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( )A .[-1,2015]B .[-1,1)∪(1,2015]C .[0,2016]D .[-1,1)∪(1,2016] 解析:选B.令t =x +1,则由已知函数y =f (x )的定义域为[0,2 016]可知f (t )中0≤t ≤2 016,故要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015,x -1≠0解得-1≤x <1或1<x ≤2015.故函数g (x )的定义域为[-1,1)∪(1,2 015].5.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).,则f (x )的值域是( )A .[-94,0]∪(1,+∞)B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)解析:选D.令x <g (x ),即x 2-x -2>0,解得x <-1或x >2.令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2.故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2(x <-1或x >2),x 2-x -2(-1≤x ≤2).当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f (12)≤f (x )≤f (-1),即-94≤f (x )≤0.故函数f (x )的值域是[-94,0]∪(2,+∞).6.下表表示y 是x 的函数,则函数的值域是________.解析:函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 答案:{2,3,4,5}7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是__________.解析:根据题意可得f [f (x )]=11x +1+1,要使函数有意义,只需⎩⎨⎧x +1≠0,1x +1+1≠0,解得x ≠-1且x ≠-2,故函数f [f (x )]的定义域为{x |x ≠-1且x ≠-2}.答案:{x |x ≠-1且x ≠-2}8.(2015·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎡⎦⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ],∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13,∴a =2,b =4,a +b =6.答案:69.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1.即函数f (x )在[1,b ]上单调递增.∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a ,b 的值分别为32,3.10.已知函数f (x )的值域为[38,49],求函数g (x )=f (x )+1-2f (x )的值域.解:∵38≤f (x )≤49,∴13≤1-2f (x )≤12,令t =1-2f (x ),则f (x )=12(1-t 2),令y =g (x ),∴y =-12(t 2-1)+t .∴当t =13时,y 有最小值79,当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78.1.(2015·河南漯河模拟)已知A ,B 是非空数集,定义A ⊕B ={x |x ∈A ∪B ,且x ∉A ∩B }.若A ={x |y =x 2-3x },B ={y |y =3x },则A ⊕B =( )A .[0,3)B .(-∞,3)C .(-∞,0)∪(3,+∞)D .[0,3]解析:选B.分析得到A =(-∞,0]∪[3,+∞),B =(0,+∞),A ∪B =R ,A ∩B =[3,+∞),所以A ⊕B =(-∞,3).2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若对任意的x ∈[a ,b ],都有|f (x )-g (x )|≤1成立,则称f (x )和g (x )在[a ,b ]上是“亲密函数”,区间[a ,b ]称为“亲密区间”.若f (x )=x 2+x +2与g (x )=2x +1在[a ,b ]上是“亲密函数”,则其“亲密区间”可以是( )A .[0,2]B .[0,1]C .[1,2]D .[-1,0]解析:选B.在同一坐标系中作出函数f (x )及g (x )的图象,如图所示.由题意作出与g (x )=2x +1的距离为1的平行线y =2x +2的图象,由图并结合“亲密函数”的定义可知其“亲密区间”可以是[0,1].3.已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为________,值域为________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图象向左平移2个单位得到函数f (x +2)的图象,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2].答案:[-2,-1] [1,2]4.若函数y =kx 2-6kx +(k +8)的值域为[0,+∞),则k 的取值范围是________.解析:当k =0时,原函数可化为y =8=22,此时值域不是[0,+∞),从而k ≠0. 当k ≠0时,想满足题意,则有⎩⎪⎨⎪⎧k >0,Δ=(-6k )2-4×k ×(k +8)≥0.解得k ≥1,从而k 的取值范围为[1,+∞). 答案:[1,+∞)5.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减, ∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4. 6.(选做题)已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域;(2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ](a >0).(2)当a =14时,函数f (x )的定义域为⎣⎡⎦⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎡⎦⎤1,32, f (x )=F (t )=t t 2-2t +4=1t +4t -2,当t =4t时,t =±2∉⎣⎡⎦⎤1,32, 又t ∈⎣⎡⎦⎤1,32时,t +4t单调递减,F (t )单调递增,F (t )∈⎣⎡⎦⎤13,613. 即函数f (x )的值域为⎣⎡⎦⎤13,613.。

函数定义域值域

函数定义域值域

函数定义域值域
函数定义域(Domain)是指函数输入的取值范围。

通常表示为一个符号集合,如{x x∈R}表示定义域是所有实数。

函数值域(Range)是指函数输出的取值范围。

通常表示为一个符号集合,如{y y∈[0,∞)}表示值域是非负实数。

在函数图像中,定义域通常在x轴上表示,值域在y轴上表示。

函数图像中除了定义域和值域,还包括曲线(或折线段)、坐标轴、标度等。

函数定义域和值域的确定是解决函数问题的基础。

例如,在分式函数f(x)的定义中,分母不能为零,因此函数的定义域必须排除分母为零的情况。

在数字函数g(x)=x^2中,所有非负实数都是曲线上的点,因此函数的值域是非负实数。

分式型函数值域的探索

分式型函数值域的探索

二次分式型函数 =
(1n ≠ 0 .2
/ i —
i' 0- v z
图1
0 ∈I 的值域问题. , ) 这样既可以让学生联系前
面所学知识, 巩固探求 的效果, 考查学 生的数学 转化能力、 知识 的迁移能力, 同时也体现 出问题 难度设置呈现“ 螺旋式上升” .
== =
a2
a2
套具有逻辑先后顺序的概念组合, 让学生在一定
_
时间内学习、 探索一套逐渐 加深、 拓展的复杂概
念体系. 比如二次分式型函数 : a X+ c = l2 b = x+ l l
a …a n + A ab A 毒 , 2 b 2 堕 2) ( / + \
原因在于 () 木 中的x 不能是 和 2 或重根X = 1 , l
2 这是很特殊 的情况, 时只需求 出 () , 此 半 式中
的 取 1 和 2 或重根 1 2 时相应的Y 去 , ( ) 值,
掉这些 值即可. 平时遇到的二次分式型函数多
数为此类, 因而多数学生会形成思维 定势, 直接
02 十 D 2
a2x

对勾 型函数Y= + a( a>0的值域 问题, )


学生都非常熟悉, 首先考虑均值不等式有
十 D 2
现结构不太 明显, 思上述三种变换过程可以发 反 现: 的系数均为 1 ① ;② 分式 的分子 中不含 X
的项. 于是有
l= y I
I+ I
≥2 ,
于是Y≥2 , 或Y≤一 . 2 但是当 ∈【 +
1+ , ∞) 还能用均值不等式求值域吗?答案 时,
21 年第 1期 01 2
数 学教 学

小班专题分式函数值域求法

小班专题分式函数值域求法

专题:分式函数值域求法数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决解析几何有关最值问题的一个重要工具. 首先我们给出分式函数的定义:形如()()()p x f x q x =的函数叫做分式函数,其中)(x p 、()q x 是既约整式且()q x 的次数不低于一次.下面就)(x p 、()q x 的次数不超过二次的分式函数进行分类讨论.1、一次分式函数:(1)定义:()p x 、()q x 的次数不高于一次的分式函数叫做一次分式函数,即形如(),,0ax b f x x A c cx d+=∈≠+的函数. (2)求法:一次分式函数值域的通常求法是逆求法,即改写成1()x f y -=,由于x A ∈,则A y f ∈-)(1,解出y 的取值范围,即函数f(x)的值域.例1、求函数232x y x +=-,[]3,8x ∈的值域. 解:改写成232y x y +=-,因为[]3,8x ∈,所以23382y y +≤≤-, 解得1996y ≤≤,即原函数的值域是19,96⎡⎤⎢⎥⎣⎦.2、二次分式函数:(1)定义:()p x 、()q x 至少有一个的次数是二次的分式函数叫做二次分式函数, 即形如22(),,ax bx c f x x A a d dx ex f++=∈++、不全为零的函数. (2)解法:若A=2|0x dx ex f ++≠{},则可采用根的判别式法求值域.例2、求函数224544x x y x x ++=++的值域. 解:化为关于x 的方程2(1)4(1)450y x y x y -+-+-=.若1y =,则方程无解,即1y ≠.因为R x ∈,所以0∆≥,解得1y ≥,即原函数的值域是(1,+∞)。

若A 2|0x dx ex f ++≠{},则再分类讨论。

2.1.(1)定义:形如2()c f x dx ex f=++,,0x A d ∈≠且0c ≠的函数. (2)解法:先利用二次函数的性质求出分母的值域,再利用复合函数的单调性求出函数()f x 的值域.例3、求函数21(),[3,5]23f x x x x =∈---的值域. 解:令[)(]22()23(1)4,3,33,5g x x x x x =--=--∈-⋃,则[)(]()4,00,12g x =-⋃,所以函数()f x 的值域是11(,][,)412-∞-⋃+∞.2.2.(1)定义:形如2()bx c f x dx ex f+=++,,0x A d ∈≠且0b ≠ (*) 或2()ax bx c f x ex f++=+,,0x A a ∈≠且0e ≠的分式函数. (2)解法:下面就形式(*)讨论解法.≠ ⊂2.2.1.若c=0,则分子分母同除以x ,得()f x =b f dx e x++. 只要讨论函数(),f g x dx x A x=+∈且0x ≠的值域. 不妨设0d >.若0f <,则函数()g x 在(,0)-∞和(0,)+∞上分别是增函数;若0f >,则函数()g x在和[上分别是减函数,在)+∞和(,-∞上分别是增函数.这样利用函数()g x 的单调性,先求出()g x 的值域,从而求出函数()f x 的值域.例4、求函数2(),[1,)24x f x x x x =∈+∞++的值域. 解:1(),142f x x x x=≥++.令4(),1g x x x x =+≥,则()4g x ≥, 所以函数()f x 的值域是1(0,]6.2.2.2.若0c ≠,则换元,令t bx c =+,转化为2.2.1.形式的分式函数.例5、求函数21(),(1,1)(1,3)23x f x x x x +=∈-⋃+-的值域. 解:令1t x =+,则21,(0,2)(2,4)44t y t t t t==∈⋃--. 因为4(,0)(0,3)t t -∈-∞⋃,所以函数()f x 的值域是1(,0)(,)3-∞⋃+∞.2.3.(1)定义:形如22(),,0ax bx c f x x A a dx ex f++=∈≠++且0d ≠的分式函数. (2)解法:2.3.1.若0b c ==或0e f ==,则分子分母同除以2x ,转化为求关于1x的二次函数的值域,从而求出函数()f x 的值域.例6、求函数221(),[,1]413x f x x x x =∈-+的值域. 解:22111(),[1,3]1411(2)3f x xx x x==∈-+--.因为函数 211()(2)3,[1,3]g x x x =--∈的值域是[3,2]--,所以函数()f x 的值域是11[,]23--.2.3.2.若分子分母有一个是完全平方式,不妨设22()(),,0a x m f x x A a dx ex f+=∈≠++且0d ≠,则可令t x m =+,转化为2.3.1形式的分式函数.例7、求函数2244(),[1,0]45x x f x x x x ++=∈-++的值域. 解:令2t x =+,则222111,[,1]1121t y t t t==∈++.因为2151[,2]4t +∈, 所以函数()f x 的值域是14[,]25.2.3.3.若都不是前两种形式的分式函数,则改写成部分分式,即:2()()ae af b x c a d d f x d dx ex f-+-=+++,转化为2.2形式的分式函数. 例8、求函数2245(),[0,2]43x x f x x x x ++=∈++的值域. 解:2222()11,[0,2]43(2)1f x x x x x =+=+∈+++-,所以函数()f x 的值域是175[,]153.。

分式形式函数值域

分式形式函数值域
分式函数求值域
新泰一中 闫辉
一:只在分母中含有变量的 例1 分析:求值域之前要考虑函数的定义域。只在分母上含有变量,可先求 分母部分函数的取值范围,再利用整体代换的思想求反比例函数的值 域。 解:函数的定义域为 又 令,则且 从而,且 由的图像知,当且时, 所以原函数的值域为 二:分子分母中都有变量,且变量同次幂,分离常数 例2 分析:将分子转化成分母的形式,注意变量形式。再利用例1的方法。 解:函数定义域为 = 令,则 由的图像可知,当时, ,从而 所以原函数的值域为 三:分子分母都有变量,且变量不同次幂,将高次幂转化成低次幂的形 式 例3 解:函数的定义域为 令, 则, 由对号函数性质知 当时,(当且仅当时等号成立) 当时,(当且仅当时等号成立) 所以,或 从而原函数的值域为 例4 解:函数定义域为 时, 时,
令且 由例3可知 所以 综上, 注:以上仅是求分式函数值域的一些方法,还有待进一步完善,希望大 家批评指正

分式函数三种值域求法

分式函数三种值域求法

分式函数三种值域求法分式函数是指由多项式函数构成的有理函数。

它包含了一个或多个分子和一个分母,其中分子和分母可以是多项式。

分式函数在数学和实际问题中的应用广泛,了解如何求解分式函数的值域对于我们理解和解决问题至关重要。

在这篇文章中,我将介绍三种常见的方法来求解分式函数的值域,它们分别是图像法、限制法和分解法。

这些方法各有特点,可以帮助我们更加全面地了解和解决分式函数的问题。

让我们来学习图像法。

图像法是通过绘制分式函数的图像来确定其值域的一种方法。

我们可以根据分式函数的定义域和其在定义域内的行为来判断其值域。

具体来说,我们可以观察分式函数的图像是否有水平渐近线、垂直渐近线或者有界。

水平渐近线表示分式函数在无穷远处趋于某个值,垂直渐近线表示分式函数在某个点处的值趋于无穷大或无穷小,而有界表示分式函数在某个区间内的值处于有限范围内。

通过观察这些特征,我们可以确定分式函数的值域。

让我们来学习限制法。

限制法是通过限制分式函数的变量取值范围来确定其值域的一种方法。

对于分式函数,我们通常会限制其变量的取值范围,避免分母为零或分式函数没有定义的情况。

通过解决限制条件,我们可以确定分式函数的值域。

让我们来学习分解法。

分解法是通过将分式函数拆分成更简单的形式来确定其值域的一种方法。

我们可以将分式函数进行因式分解,得到其最简形式。

在分解过程中,我们可能会发现一些因子可以抵消,使得分式函数的值域更加清晰和简单。

通过分解分式函数,我们可以更好地理解其值域。

通过以上三种方法,我们可以综合考虑分式函数的图像、限制条件和分解形式,来确定其值域。

对于每个具体的问题,我们可以根据实际情况选择最适合的方法来求解。

对于分式函数三种值域求解法的个人看法,我认为每种方法都有其独特的优势和适用场景。

图像法可以将抽象的数学概念通过图像的形式呈现出来,直观易懂,适合直观思维的人。

限制法可以通过限制变量的取值范围,直接对分式函数的值域进行约束,适合求解特定范围内的问题。

求函数值域的三种方法

求函数值域的三种方法

题较为复杂,需要同时用到多种方法才能使问题获
解,同学们在解题时要善于分析,注意随机应变,优化
解题的方案.
(作者单位:新疆哈密市第三中学)
Copyright©博看网 . All Rights Reserved.

{ } ∴原函数
y
=
1-x 2x + 5
的值域为
y|y

-
1 2
.
该函数为分式的形式,需运用分离常数法来解答.
首先将原函数化简,使常数与变量分离,由于该函数
的 分 母 不 为 0,便 能 快 速 求 得 函 数 的 值 域 为
{ } y|y

-
1 2
.
除了上述这三种方法,求函数值域的技巧还有很
多,比如不等式法、配方法、开方法等.有的函数值域问
变量分离为
y
=
a c
+
b
-
ad c
cx + d
(ad

bc)
的形式,求得分式
部分的值域,便可快速得到函数的值域.

3.求函数
y
=
1-x 2x + 5
的值域.
解:∵y =
1-x 2x + 5
=
-
1 2
(2x
+
5)
+
2x + 5
7 2
=
-
1 2
+
7 2 2x + 5

7
又∵
2 2x +
5

0
,∴
y

-
1 2
知识导航
求函数值域的三种方法

分式型值域

分式型值域

分式型值域【学习目标】1.了解分式型值域问题的适用范围,掌握解决分式型值域问题的方法;2.会针对不同情况选择合适的方法求分式型值域.【学习重难点】1.在函数综合性问题中识别出分式型值域问题,并利用合适的方法求解;2.注意讨论分子/分母为0的特殊情况.【知识精讲】1.ax by cx d+=+(一次比一次)的值域 (1)分离常数法先将分式分离常数,再根据反比例函数图像求出值域. 例如:求212x y x +=-的值域.()2152152222x x y x x x -++===+---, 根据图像求得()()5,00,2x ∈-∞+∞-U ,因此原函数值域为()(),22,-∞+∞U . (2)秒杀法ax b d y x cx d c +⎛⎫=≠- ⎪+⎝⎭值域为|a y y c ⎛⎫≠ ⎪⎝⎭或写作,,a a c c ⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭U ; ax b y cx d+=+,(),x p q ∈值域为()()(),f p f q 或()()(),f q f p (由()f p ,()f q 大小决定).2.2ax bx cy mx n ++=+和2mx n y ax bx c+=++(二次比一次/一次比二次)的值域(1)求2ax bx cy mx n ++=+型值域可通过凑配法或大除法,转化为1x x+型函数(对勾函数)或1x x-型函数的值域问题. 例如:求2241x x y x ++=+值域.311y x x =+++,设()10t x t =+≠,则函数转化为3y t t=+,根据对勾函数图像,原函数的值域为(),⎡-∞-+∞⎣U . (2)求2mx ny ax bx c+=++的值域可通过取倒数转化为(1),注意要加上0y =的情况.例如:求2124x y x x +=++的值域.①1x ≠-时,211324111y x x x x x ==++++++,由于()31,1x x ⎡++∈-∞-+∞⎣+U,66y ⎡⎫⎛∈⎪ ⎢⎪ ⎣⎭⎝⎦U ; ②1x =-时,0y =.综上原函数值域为66⎡⎢⎣⎦.(3)万能∆法将函数转化为关于x 的一元二次方程,再通过0∆≥来计算y 的取值范围. 例如:求2124x y x x +=++的值域.函数可化为()221410yx y x y +-+-=,0y =时,1x =-;0y ≠时,()()2=214410y y y ∆---≥,解得y ≤≤,故原函数值域为⎡⎢⎣⎦.注:该方法不适用于分式函数可约分的情况.3.22ax bx cy mx nx p ++=++(二次比二次)(1)通过分离常数法转化为2mx ny ax bx c+=++型函数值域的问题.(2)万能△法,步骤与2中相同.【经典例题】例1. 求下列函数值域(1)323x y x +=- (2)224x y x +=-(3)4526x y x +=-,()1,2x ∈【答案】(1){}|3y y ≠(2)1|2y y ⎧⎫≠⎨⎬⎩⎭(3)139,24y ⎛⎫∈-- ⎪⎝⎭【解析】(1)直接利用秒杀法写结果;(2)直接利用秒杀法写结果; (3)()914f =-,()1322f =-,因此原函数值域为139,24⎛⎫-- ⎪⎝⎭.【总结】一次比一次型值域问题可以直接使用秒杀法解决.【变式】 求下列函数值域(1)sin 22sin x y x +=-(2)3sin 32cos 10x y x -=+(3)221xx y =+【答案】(1)1,33⎡⎤⎢⎥⎣⎦(2)5,08⎡⎤-⎢⎥⎣⎦(3)()0,1【解析】(1)设sin t x =,则原函数转化为22t y t+=-,[]1,1t ∈-,代入1t =和1t =-可得原函数值域为1,33⎡⎤⎢⎥⎣⎦;(2)()3sin 33sin 12cos 102cos 5x x y x x --==⋅+--,可看作点()cos ,sin x x 和()5,1-连线斜率k 的32倍,由于()cos ,sin x x 在单位圆221x y +=上,当过定点()5,1-的直线与单位圆相切时k 取最值,联立()22115x y y k x ⎧+=⎪⎨-=+⎪⎩,由0∆>可解得5,012k ⎡⎤∈-⎢⎥⎣⎦,故原函数值域为5,08⎡⎤-⎢⎥⎣⎦;(3)设2x t =,则原函数化为1ty t =+,()0,t ∈+∞,可化为111y t =-+,根据反比例函数图像可得原函数值域为()0,1.例2. 2019郑州二模高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大A.,32⎛⎫ ⎪⎝⎭B.(]0,2C.{}0,1,2D.{}0,1,2,3【答案】C【解析】设2x t =,则()312t f x t +=+,()0,t ∈+∞,可化为()512221f x t =++,根据反比例函数图像可得原函数值域为1,32⎛⎫⎪⎝⎭,则函数()y f x =⎡⎤⎣⎦的值域为{}0,1,2. 故选:C .【总结】要从综合性问题中识别出分式函数值域问题,再通过换元法转化为一次比一次型值域,求值域时注意换元后定义域的变化.例3. 求下列函数值域(1)231x x y x++=(2)2231x x y x ++=+(3)[]236,1,12x x y x x-+=∈--【答案】(1)(][),15,-∞+∞U (2)(),⎡-∞-+∞⎣U (3)[]3,4【解析】(1)函数可化为13y x x =++,由于1y x x=+(对勾函数)的值域为(][),22,-∞-+∞U ,故原函数值域为(][),15,-∞+∞U ;(2)设1t x =+,函数可化为222t y t t t+==+,其值域为(),⎡-∞-+∞⎣U ,故原函数值域为(),⎡-∞-+∞⎣U ;(3)设2t x =-,[]1,3t ∈,则函数可化为244=1t t y t t t-+=+-,[]1,3t ∈,根据对勾函数图像可得原函数值域为[]3,4.【总结】二次比一次型值域问题可以转化为对勾函数值域问题解决,或转化为关于x 的一元二次方程,再根据0∆≥计算y 的取值范围.求下列函数值域 (1)2y(2)321x x y x -+=-【答案】(1)5,2⎡⎤+∞⎢⎥⎣⎦(2){}|1y y ≠-【解析】(1)设t =[)2,t ∈+∞,则函数可化为211t y t t t+==+,[)2,t ∈+∞,根据对勾函数图像可得原函数值域为5,2⎡⎤+∞⎢⎥⎣⎦.(2)函数定义域为{}|1x x ≠,因此函数可化为2y x =-()1x ≠,值域为{}|1y y ≠-.注:该题目采用万能∆法求解会得到错解y ∈R ,因为忽略了定义域{}|1x x ≠.例4. 求下列函数值域(1)21xy x =+ (2)234xy x =+(3)()21,1,33x y x x x +=∈-+∞++ 【答案】(1)11,22⎡⎤-⎢⎥⎣⎦(2)33,44⎡⎤-⎢⎥⎣⎦(3)10,3⎛⎤⎥⎝⎦【解析】(1)0x =时,0y =;0x ≠时函数可化为11y x x=+,由于1y x x=+(对勾函数)的值域为(][),22,-∞-+∞U ,此时值域为11,00,22⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦U ;综上原函数值域为11,22⎡⎤-⎢⎥⎣⎦;(2)函数可化为关于x 的一元二次方程2340yx x y -+=,0y =时,0x =;0y ≠时,29160y ∆=-≥,解得3344y -≤≤;综上原函数值域为33,44⎡⎤-⎢⎥⎣⎦; (3)设1t x =+,()0,t ∈+∞,则函数可化为21=111t y t t t t=++++,()0,t ∈+∞,由于11t t ++在()0,t ∈+∞的取值范围是[)3,+∞,则原函数的值域为10,3⎛⎤ ⎥⎝⎦. 【总结】一次比二次型值域问题中分母可转化为对勾函数的值域问题,需要注意讨论分子为0的情况;另可化为关于x 的一元二次方程,再根据0∆≥计算y 的取值范围.求下列函数值域(1)241x y x =+(2)2cos 2sin 3cos 4x y x x -=+- 【答案】(1)10,2⎡⎤⎢⎥⎣⎦(2)3,17⎡⎤⎢⎥⎣⎦【解析】(1)设2t x =,[)0,t ∈+∞,0t ≠时函数可化为2111t y t tt ==++,由于1t t +在()0,t ∈+∞时的取值范围是[)2,+∞, 原函数值域为10,2⎛⎤⎥⎝⎦;0t =时,0y =;综上,原函数值域为10,2⎡⎤⎢⎥⎣⎦;(2)cos t x =,[]1,1t ∈-,函数可化为22221113433212t t y t t t t t t --===-+--+-⎛⎫--++ ⎪-⎝⎭[]1,1t ∈-, 因为[]23,1t -∈--,由对勾函数图像可得1721,123t t ⎡⎤-++∈--⎢⎥-⎣⎦, 故原函数值域为3,17⎡⎤⎢⎥⎣⎦.例5. 2019辽宁二模当1x >时,不等式211x x a x -+≤-有解,则实数a 的取值范围是( ) A.(],2-∞B.[)2,+∞C.[)3,+∞D.(],3-∞【答案】C【解析】设()211x x f x x -+=-,函数可化为()()1111111f x x x x x x =+=-++>--, 根据对勾函数图像可得()f x 值域为[)3,+∞,若不等式211x x a x -+≤-有解,必有 3a ≥,即a 的取值范围是[)3,+∞,故选:C .【总结】题目表面是根据不等式求参数范围,但其本质依然是分式函数的求值域问题.例6. 已知()28721442x f x x x ++=++,求()f x 的值域.【答案】[]1,4-【解析】()()()2242138721442211x x f x x x x ++++==++++, 故()2431x f x x +=+,设()2431x y f x x +==+,转化为2430yx x y -+-=,0y =时,34x =-;0y ≠时,()16430y y ∆=--≥,解得14y -≤≤;综上()f x 的值域为[]1,4-.【总结】先利用配凑法求出函数的解析式,再用一次比二次型值域求解.例7. 求下列函数值域(1)()2211x y x +=+ (2)22222x x y x x -+=++(3)222311x x y x x ++=++【答案】(1)[]0,2(2)5,37⎡⎤⎢⎥⎣⎦(3)1⎡+⎢⎣ 【解析】(1)函数可化为关于x 的一元二次方程()21210y x x y --+-=,1y =时,1x =;1y ≠时,()24410y ∆=--≥,解得02y ≤≤; 综上原函数值域为[]0,2;(2)函数可化为关于x 的一元二次方程()()()221210y x y x y -+++-=, 2y =时,23x =-;2y ≠时,()()()218210y y y ∆=+---≥,解得537y ≤≤;综上原函数值域为5,37⎡⎤⎢⎥⎣⎦;(3)函数可化为关于x 的一元二次方程()()22310y x y x y -+-+-=,2y =时,1x =;2y ≠时,()()()234210y y y ∆=----≥,解得11y ≤+综上原函数值域为1⎡⎢⎣. 【总结】二次比二次值域问题,可使用万能∆法解决,需要注意讨论二次项系数为0的情况.例8. 不等式22222311x x a x x -+>--+对于任意实数x 恒成立,则a 的取值范围是__________【答案】⎡⎣【解析】()222231x x f x x x -+=-+,根据万能∆法可求出其值域为102,3⎛⎤⎥⎝⎦,不等式22222311x x a x x -+>--+对于任意实数x 成立,则必有212a -≤,解得a ⎡∈⎣,故答案为:a ⎡∈⎣.【总结】“对于任意实数恒成立”这类条件,关键在于获取边界条件;本题通过二次比二次型值域问题,求出222231x x x x -+-+的最小值为3,想要让不等式恒成立,则需要使得21a -“比最小值的还小”,据此列式解出a 的取值范围.【变式】已知函数2281mx x ny x ++=+定义域为R ,值域[]1,9,求m ,n .【答案】5m =,5n =【解析】将函数转换为()280y m x x y n --+-=,y m ≠时,()()6440y m y n ∆=---≥,化简得()()16y m y n --≤,1,9是方程()()16y m y n --=的两个根,代入解得5m n ==; y m =时,5m n ==满足题意;故5m =,5n =.【课后练习】1.求函数213x y x +=-的值域.2.设函数()22ax bf x x +=+ 的值域为[]1,4-,求a 、b 的值.3.求函数的值域221223x x y x x -+=-+.【课后练习答案】1.【答案】{}|2y y ≠【解析】使用秒杀法直接得到原函数值域为{}|2y y ≠.2.【答案】a =±6b =【解析】令()22ax b y f x x +==+即220yx ax y b -+-=, 方程有根,可得()2420a y y b ∆=--≥即22840y by a --≤,函数的值域为[]1,4-,所以1-和4是方程22840y by a --=的两根,由韦达定理得a =±6b =.3.【答案】31,102⎡⎫⎪⎢⎣⎭【解析】原函数可化为()()22121310y x y x y ---+-=,12y =时,方程无解; 12y ≠时,()()()221421310y y y ∆=----≥, 整理得2201630y y -+≤,解得31102y ≤<,故原函数的值域为31,102⎡⎫⎪⎢⎣⎭.。

函数的定义域和值域

函数的定义域和值域
1 1 由于t≥0,所以y≤2,故函数的值域是 -∞,2.
法二:(单调性法)容易判断f(x)为增函数,而其定义域应满足1
1 1 1 1 -2x≥0,即x≤2,所以y≤f2=2,即函数的值域是-∞,2.
返回
[精析考题]
[例3] (2011· 湖南高考)已知函数f(x)=ex-1,g(x)=-x2 ( ) +4x-3.若有f(a)=g(b),则b的取值范围为 A.[2- 2,2+ 2] C.[1,3] B.(2- 2,2+ 2) D.(1,3)
意义外,还要考虑实际问题对函数自变量的制约.
返回
二、函数的值域
1.在函数概念的三要素中,值域是由 定义域 和 对应关系 所
确定的,因此,在研究函数值域时,既要重视对应关系的 作用,又要特别注意定义域对值域的制约作用. 2.基本初等函数的值域 (1)y=kx+b(k≠0)的值域是 R. (2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为 2 2 4 ac - b 4ac-b {y|y≥ 4a } ;当a<0时,值域为 {y|y<= 4a } .
1 即x>-2且x≠0.
[答案]
C
返回
[精析考题] [例2] 求下列函数的值域,并指出函数有无最值.
1-x2 (1)y= ; 1+x2 4 (2)y=x+x(x<0); (3)f(x)=x- 1-2x.
返回
[自主解答] ∴0<
1-x2 2 2 (1)y= = - 1 ,∵ 1 + x ≥ 1, 1+x2 1+x2
D.[-3,5]
返回
解析:由题意可得:
-3≤x+1≤5, -3≤x-2≤5.
解不等式组可得:-1≤x≤4.

求分式函数值域的几种方法

求分式函数值域的几种方法

求分式函数值域的几种方法摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.关键词:分式函数 值域 方法.1 引言求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析.2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域如果分式函数变形后可以转化为2122ay b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域.例1 求21231y x x =-+的值域. 解:2131248y x =⎛⎫--⎪⎝⎭,因为231248x ⎛⎫-- ⎪⎝⎭≥18-,所以函数的值域为:(],8-∞-∪()0,+∞.例2 求函数221x xy x x -=-+的值域.解:2111y x x -=+-+, 因为22112x x x ⎛⎫-+=- ⎪⎝⎭34+≥34,所以34-≤2101x x -<-+, 故函数的值域为1,13⎡⎫-⎪⎢⎣⎭.先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件.2.2 利用判别式法求分式函数的值域我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ∆=-≥0常常利用这一结论来求分式函数的值域.例1 求223434x x y x x -+=++的值域.解:将函数变形为()()()2133440y x y x y -+++-=①,当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以∆≥0,即()()()334144y y y +---7507y y =-+-≥0, 解得,17≤y ≤1或1y <≤7,又当1y =时,0x =,故函数的值域为1,77⎡⎤⎢⎥⎣⎦.例2 函数2221x bx cy x ++=+的值域为[]1,3,求b ,c 的值.解:化为()20y x bx y c --+-=,⑴当2y ≠时()()42x R b y y c ∈⇒∆=---≥0,⇒()224428y c y c b -++-≥0,由已知()2244280y c y c b -++-=的两根为1,3, 由韦达定理得,2c =,2b =±. ⑵当2y =时20cx b-==有解 综上⑴和⑵,2b =±,2c =.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题: 1、函数定义域为R (即分母恒不为0)时用判别式求出的值域是完备的.2、当x 不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使()22222111y a x b x c a x b x c ++=++的判别式0∆=的y 值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.2.3 利用函数单调性求分式函数的值对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数21(,1)1x y x R x x -=∈≠-+的值域. 解:211x y x -=+=2(1)31x x +-+321x =-+, 当1x >-时,31x +是x 减函数进而y 是x 的增函数,于是(),2y ∈-∞-; 当1x <-时,同样y 是x 的增函数,于是y ∈()2,+∞; 所以211x y x -=+(1)x ≠-的值域为(),2-∞-∪()2,+∞. 在求分式函数时我们常运用函数ay x x=+的单调性的结论: ⑴当0a >时在(-∞和)+∞上增函数,在)⎡⎣和(上是减函数.⑵当0a <时在(),0-∞和()0,+∞上是增函数.例2 求函数24xy x x =-+(1≤x ≤3)的值域. 解:0x ≠所以41xy x x=+-.令4t x x=+在[]1,2上是减函数,在[]2,3是上增函数,所以2x =时,min 4t =;1x =时,max 5t =; 所以[]4,5t ∈,[]13,t t -∈,故值域为11,43⎡⎤⎢⎥⎣⎦.2.4 利用反函数法求分式函数的值域设()y f x =有反函数,则函数()y f x =的定义域是它反函数的值域,函数()y f x =的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1求函数251xy x =+的值域. 解:由于函数251x y x =+1()5x ≠-的映射是一一映射因此反函数存在,其反函数为25x y x =- 明显知道该函数的定义域为2|5x x ⎧⎫≠⎨⎬⎩⎭, 故函数的值域为2,5⎛⎫-∞ ⎪⎝⎭∪2,5⎛⎫+∞ ⎪⎝⎭.说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用ax by cx d+=+(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种方法目的是找关于y 的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.2.5 利用方程法求分式函数的值域在1999年第2期《数学教学》第38页给出了下面的结论和证明.对函数()y f x =()x D ∈将其视为方程若能通过同解变形得到单值函数()x g y =*()y A ∈即()y f x =()x D ∈⇔()x g y =*()y A ∈则*A 即为()y f x =的值域利用这一结论函数问题转化为方程问题.又在2006年第2期《数学教学》“用方程法求函数值域”一文中给出了这样的引理及其证明.引理:设函数()y f x =的定义域为A 值域为B ,又设关于x 的方程()y f x =在A 中有解的y 的取值集合为C ,则C B =.例1 (2005年全国高考理科卷Ⅲ第22题)已知函数247()2x f x x -=-[]0,1x ∈求函数()f x 的值域解:247()2x f x x-=-,[]0,1x ∈,所以2247y xy x -=-,[]0,1x ∈, 即24(72)0x yx y +-+=,[]0,1x ∈.这样函数的值域即为关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解的y 的取值集.令()g x =24(72)x yx y +-+,[]0,1x ∈,则关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解⇔(0)(1)g g ⋅≤0或(0)0(1)00122444(72)0g g b ya b ac y y >⎧⎪>⎪⎪⎨<-=-<⎪⨯⎪-==⨯--≥⎪⎩⇔72-≤y ≤3-或4-≤y ≤72-⇔4-≤y ≤3, 即所求函数的值域为[]4,3--.2.6 利用换元法求分式函数的值域当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.例1求函数]0,1[,5444)(22-∈++++=x x x x x x f 的值域. 解:令2+=x t ,则]1,21[1,1111222∈+=+=t t t t y .因为]2,45[112∈+t , 所以函数)x (f 的值域是]54,21[.例2 求函数423(1)x y x =+的值域.解:令tan x θ=,(,)22ππθ∈-, 则44233tan tan (1tan )sec y θθθθ==+=42sin cos θθ =2221sin sin 2cos 2θθθ≤32221sin sin 2cos 23θθθ⎛⎫++ ⎪⎝⎭427=. 当且仅当2tan 2θ=时“=”成立.所以函数423(1)x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域 .在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.2.6 利用不等式法求分式函数的值域“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数224(1)(3)x y x +=+(1)x >-的值域.解:224(1)(1)4(1)4x y x x +=++++244(1)41x x =++++. 因为10x +>,所以411x x +++≥4,则41481x x +++≥+,所以0y <≤2438=(当1x =时取等号),故函数的值域为(]0,3. 例2 设123n S n =++++,n N ∈求1()(32)nn S f n n S +=+的最大值.(2000年全国高中数学联赛)解:1()(32)n n S f n n S +=+(1)2(1)(2)(32)2n n n n n +=+++⋅2(32)(2)3464n n n n n n ==++++, 即化为了求分式函数最值的问题1()6434f n n n =++.又因为6434n n++≥34+50=, 当64n n =即8n =时“=”成立,所以对任何n N ∈有()f n ≤150, 故()f n 的最大值为150.例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.2.8 斜率法求分式函数的值域数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过11(,)A x y ,22(,)B x y 的直线AB L 的斜率为2121AB y y k x x -=-,我们可以考虑把分式函数化为斜率式并利用数形结合法来求函数的值域.例1 求函数232()()2(32)3t f t t t =>-的最小值. 解:函数()f t 可变形为()f t 23064t t -=-2()3t >,设2(6,3)A t t ,(4,0)B 则()f t 看作是直线AB 的斜率, 令6x t =,23y t =则212(4)x y x =>.在直角坐标系中A 点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小. 过点(4,0)B 直线方程为:(4)y k x =-将它代入212x y =, 有212480x kx k -+=,则0∆=推算出43k =此时8x =, 即8t =时,min 4()3f t =. 例2 求211x x y x +-=+1(2-≤x ≤1)的值域.解:2()1(1)x x y x +-=--,令(1,1)A -,2(,)B x x x +,则AB y k =,点B 的轨迹方程为2y x x =+1(2-≤x ≤1), 111(,)24B --,2(1,2)B ,152AB k =-,212AB k =,所以51,22AB y k ⎡⎤=∈-⎢⎥⎣⎦,即函数的值域为51,22⎡⎤-⎢⎥⎣⎦.斜率法同样可以运用在形如ax by cx d+=+的分式函数中,函数的值域就转化为求直线斜率的范围给出了这样的结论:对于函数ax by cx d+=+22(0,0,0)c a b bc ad ≠+≠-≠,x ∈[],m n ,若记{}1min (),()m f m f n =,{}2max (),()m f m f n =,则当dx c=-(),m n ∈时值域为(]1,m -∞∪[)2,m ∞.当dx c=-∉(),m n 时,值域为[]12,m m .3 结论整篇文章介绍了求分式函数八种比较常用的方法,可以根据题目不同的特点灵活选取不同的方法,而实际上在我们通常遇到的题目中并不是只用一种方法就能解决问题,而是要综合几种方法.当然有一些特殊的分式函数,在求值域的时就会用到特殊的方法.但是最重要的是每种方法都要注意其函数的定义域.参考文献:[1]贾士代.用方程法求函数值域[J] . 数学教学,2006(2):21[2]王习建. 21112222a x b x c y a x b x c ++=++型函数值域的求法[J] .数理化解题研究 ,2003(6):25[3]张莲生.sin sin a x by c x d+=+ 的值域的求法[J] .数理天地(高中版),2001(10):19-20[4]王建海. 活用均值不等是巧解数学题[J] .数学教学通讯,2003(12):17 [5]钟国雄 .一个函数最小值问题的多种解法[J] . 中学生数学,2002(5):23 [6]江思容、望孝明 .求最值问题的若干途径[J] . 中学数学研究,2003(8):35 [7]傅洪海、陈宏. 关于反函数求值域的思考[J] . 数学教学, 1999(2):29-30 [8]陈士明.从求()bf x x x a=++的单调区间谈起[J] . 数学教学,1999(2):27-28。

2-2函数的定义域和值域

2-2函数的定义域和值域

已知二次函数f(x)=ax2+bx(a、b是常数,且a≠0)
满足条件:f(2)=0,且方程f(x)=x有两个相等实根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为
[m,n]和[2m,2n]?如存在,求出m、n的值;如不存在,说 明理由.
3.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x) =x+x2. (1)求x<0时,f(x)的解析式; (2)问是否存在这样的非负数a,b,当x∈[a,b]时, f(x)的值域为[4a-2,6b-6]?若存在,求出所有的a, b值;若不存在,请说明理由.
求下列函数的值域,并指出函数有无最值.
(1)y= (2)y= (3)y= (2)所求函数的值域为(-∞,-4]∪[4,+∞).函数无最值. (3) 函数有最大值 ,无最小值. 【解】函数有最大值为1,无最小值.
2.求下列函数的值域: (1)y=-x2+2x(x∈[0,3]); (2)y= (3)y=x+
的定义域;
(2)已知f(x)的定义域是[-2,4],求f(x2-3x)的定义域.
【解】
(1) 函数的定义域是(-3,0)∪(2,3).
(2) 故f(x2-3x)的定义域是[-1,1]∪[2,4].
1.(1)求函数f(x)= (2)若函数f(
的定义域; ,
-1)的定义域是
求f(x)的定义域. 解:(1) {x|x∈R且x≠-2,x≠±3}. (2)f(x)的定义域是
二、基本初等函数的值域
1.y=kx+b(k≠0)的值域是 R. 2.y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为 {y|y≥ 3.y= } ;当a<0时,值域为 {y|y≤ } .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数函数的值域
这里说的是二次即二次以下分式函数的值域,由于高二学了一阶导数,笔者见到不少学生学了导数之后,看到分式函数想都不想就直接求导做,毫无疑问是可以做出来的,但是,对于分式的导数,比原函数还要麻烦,如果函数很简单,用导数似乎有些大材小用,如果函数很复杂,求导之后就更加复杂,做起来也比较麻烦,因此,对于此类分式函数题目求最值,轻易莫求导!!!
下面进入正题,这里说的分式函数大致以下几种形式:y=,
y=,y=,y=其中y=与y=
基本一致
对于这个问题,一般来说可能会用到三个方法:分离常数、均值不等式、几何法(构造斜率)、反函数法、判别式法。

反函数法和判别式法这里不再赘述,以下我们分别讨论
首先,对于最简单的分式线性函数y=,反函数法在此不再赘述,即是反解出x,利用定义域求值域,这里说下分离常数法,这个方法很重要,要谨记
例1:若x∈[-1,2)求函数y=的值域
解一(分离常数法):y=
=
=2+
由x∈[-1,2)则y∈(-∞,1]
分离常数的目的是为了将自变量“挤”到分母或分子,则函数单调性、值域显而易见
解二(构造斜率法):原式可看作点A(2,1)到点P(x,2x)的斜率,其中P在直线y=2x(x∈[-1,2))上,作出图像即可得到答案构造斜率法运用时要注意,若定点与动点连线中有x轴的垂线,则垂线应画成虚线,它是正、负无穷的分界线(斜率k=tanθ)
反函数法略
然后是分子或分母中出现二次,无论是在分子还是在分母,处理方法基本一致。

同样用到类似分离常数的配凑方法,对于功底不好的同学,可以对一次式换元,
例2求函数y==,x∈[0,2]
解一:令t=x+2(t∈[2,4]),则x=t-2
则y==
分子分母同除以t后得,y=t+-6≥2-6(当且仅当t=时“=”成立)
这里注意,由于均值不等式存在一正、二定、三相等的限制条件,如果符号和相等不能满足,那么就要另求他法了。

解二:同上面构造斜率,只不过动点却是在开口向上的抛物线y=x²-2x上,这里的处理办法是,连接定点使与抛物线相切、及定点与给定区间端点,切点可用联立抛物线与直线方程,由判别式△=0可求,比较三点斜率定出值域
若分子为二次,处理与上相似,只是注意构造斜率时,动点在开口向左或右的抛物线上。

最后一种是分子分母均为二次,要先分离常数,转化为第二种类型
例3:求函数y=(x∈[-2,1])的值域
解一:y=
=2+
以下处理与第二种类型相同
特别注意到,这里分子只有二次项的特殊情况,直接分子分母同除以x²,则分母转化为关于1/x的二次三项式,问题轻松解决。

由于做得比较匆忙,过程不怎么到位,其他还有碰到三角函数,则可利用三角恒等变换以及三角的正余弦相互关系利用构造斜率求解等等方法,请读者自行探讨。

原创:房周泉(风之天炼)
2010年9月11日星期六23:43。

相关文档
最新文档