福建省三明市2014届高三5月质量检查(数学文) Word版含答案
三明市高中毕业班5月质量检查文科数学试题含答案
三明市普通高中毕业班质量检查文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}13M x y x ==-,集合{}210N x x =-<,则M N =( )A .1{13x x ⎫-<≤⎬⎭B .1{3x x ⎫≥⎬⎭C .1{3x x ⎫≤⎬⎭D .}1{13xx ≤< 2.复数134ii-+(其中i 是虚数单位)在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量(3,1),(,1)a b x ==-,若a b -与b 共线,则x 的值等于( ) A . -3 B .1 C .2 D .1或24.现有,A B 两门选修课供甲、乙、丙三人随机选择,每人必须且只能选其中一门,则甲乙两人都选A 选修课的概率是( ) A .14 B .13 C. 12 D .235.若变量,x y 满足约束条件011x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,则2y x +的最大值为( )A .14 B .12C. 1 D .2 6.已知命题1:p 若sin 0x ≠,则1sin 2sin x x+≥恒成立;2:0p x y +=的充要条件是1xy=-.则下列命题为真命题的是( ) A .12p p ∧ B .12p p ∨ C. 12()p p ∧⌝ D .12()p p ⌝∨7. 执行如图所示的程序框图,运行相应的程序,若输入x 的值为2,则输出S 的值为( )A .64B .84C .340D .1364 8.已知函数()sin()3)()2f x x x πϕϕϕ=++<的图象关于直线x π=对称,则cos 2ϕ=( )A .3-B .12- C. 12 D 39.已知中心在原点的双曲线,其右焦点与圆22410x x y -++=的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是( ) A .23 B .(1,2) C. 23)+∞ D .(2)+∞ 10.函数1(0)1()1()(0)1nxx xf x n x x x⎧>⎪⎪+=⎨-⎪<⎪-⎩的图象大致是( )A. B. C.D .11.在ABC ∆中,BAC ∠的平分线交BC 边于D ,若2,1AB AC ==,则ABD ∆面积的最大值为( ) A .12 B .23 C. 34D .1 12.已知球O 的半径为1,,A B 是球面上的两点,且3AB =P 是球面上任意一点,则PA PB ⋅的取值范围是( )A .31[,]22-B .13[,]22- C. 1[0,]2 D .3[0,]2第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知3sin 5α=,且(0,)2πα∈,则tan()4πα+= . 14.若抛物线2(0)y ax a =>上任意一点到x 轴距离比到焦点的距离小1,则实数a 的值为 .15.某几何体的三视图如图所示,设该几何体中最长棱所在的直线为m ,与直线m 不相交的其中一条棱所在直线为n ,则直线m 与n 所成的角为 .16.已知函数22()log ,()f x x g x x ==,则函数(())y g f x x =-零点的个数为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1n nn b a +=,求数列{}n b 前n 项和n T . 18.某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照[]0,2,(2,4],,(14,16]分成8组,制成了如图1所示的频率分布直方图.(Ⅰ)求频率分布直方图中字母a 的值,并求该组的频率;(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数m 的值(保留两位小数); (Ⅲ)如图2是该市居民张某1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x ∧=+.若张某1~7月份水费总支出为312元,试估计张某7月份的用水吨数.19.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠=, 2AD AP ==,22AB DP ==,E 为CD 的中点,点F 在线段PB 上.(Ⅰ)求证:AD PC ⊥;(Ⅱ)当三棱锥B EFC -的体积等于四棱锥P ABCD -体积的16时,求PFPB的值. 20.已知直线y x m =+与抛物线24x y =相切,且与x 轴的交点为M ,点(1,0)N -.若动点P 与两定点,M N 所构成三角形的周长为6. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设斜率为12的直线l 交曲线C 于,A B 两点,当PN MN ⊥时,证明APN BPN ∠=∠. 21.已知函数3215()36f x x ax bx =++-(0,)a b R >∈,()f x 在1x x =和2x x =处取得极值,且125x x -=,曲线()y f x =在(1,(1))f 处的切线与直线20x y +-=垂直. (Ⅰ)求()f x 的解析式; (Ⅱ)证明关于x 的方程21(1)()0x k ekf x -'+-=至多只有两个实数根(其中()f x '是()f x 的导函数,e 是自然对数的底数).请考生在(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目记分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.若直线l 的极2cos()204πρθ--=,曲线C 的极坐标方程为2sin cos ρθθ=,将曲线C 上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线1C . (Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求||||PA PB +的值. 23.选修4-5:不等式选讲已知函数()|2||21|f x x a x =-+-,a R ∈.(Ⅰ)当3a =时,求关于x 的不等式()6f x ≤的解集; (Ⅱ)当x R ∈时,2()13f x a a ≥--,求实数a 的取值范围.试卷答案一、选择题1-5: ACAAB 6-10:DBCDC 11、12:B 、B二、填空题13.7 14.14 15.3π16.3 三、解答题17. 解:(Ⅰ)22n n S a =-, 当1n =时,1122a a =-,则12a =, 当2n ≥时,22n n S a =-,1122n n S a --=-, 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2的等比数列,所以2nn a =.(Ⅱ)因为11(1)()22nn n n b n +==+, 2311112()3()4()(1)()2222n n T n =⨯+⨯+⨯+++⨯,2341111112()3()4()(1)()22222n n T n +=⨯+⨯+⨯+++⨯, 两式相减,即得12311111112()()()()(1)()222222n n n T n +=⨯++++-+, 1121111()()()2222n T =+++31111()()(1)()222n n n +++-+, 111[1()]11122(1)()122212n n n T n +-=+-+-, 111111()(1)()2222n n n T n +=+--+,所以13(3)()2n n T n =-+. 18.解:(Ⅰ)∵(0.020.040.080.130.080.030.02)21a +++++++⨯=, ∴0.10a =.第四组的频率为:0.120.2⨯=.(Ⅱ)因为0.0220.0420.0820.102(8)0.130.5m ⨯+⨯+⨯+⨯+-⨯=,所以0.50.4888.150.13m -=+≈.(Ⅲ)∵17(123456)62x =+++++=,且233y x ∧=+,∴7233402y =⨯+=.所以张某7月份的用水费为31264072-⨯=. 设张某7月份的用水吨数x 吨, ∵1244872⨯=<∴124(12)872x ⨯+-⨯=,15x =. 则张某7月份的用水吨数15吨.19. 解:(Ⅰ)证明:在平行四边形ABCD 中,连接AC ,因为22AB =2BC =,45ABC ∠=,由余弦定理得2842222cos 454AC =+-=,得2AC =, 所以90ACB ∠=,即BC AC ⊥,又//AD BC , 所以AD AC ⊥,又2AD AP ==,22DP =PA AD ⊥,AP AC A =,所以AD ⊥平面PAC ,所以AD PC ⊥. (Ⅱ)因为E 为CD 的中点,∴14BEC ABCDS S ∆=四边形, ∵侧面PAD ⊥底面ABCD ,侧面PAD底面ABCD AD =,PA AD ⊥,∴PA ⊥平面ABCD .设F 到平面ABCD 的距离为h ,∵16B EFC F BEC F ABCD V V V ---==,∴111363BEC ABCD S h S PA ∆⋅⨯=⋅⋅⋅, ∴23h PA =,所以13PF PB =. 20.解:(Ⅰ)因为直线y x m =+与抛物线24x y =相切,所以方程24()x x m =+有等根,则16160m +=,即1m =-,所以(1,0)M .又因为动点P 与定点(1,0),(1,0)M N -所构成的三角形周长为6,且2MN =,所以42PM PN MN +=>=,根据椭圆的定义,动点P 在以,M N 为焦点的椭圆上,且不在x 轴上, 所以24,22a c ==,得2,1a c ==,则3b =即曲线C 的方程为221(0)43x y y +=≠.(Ⅱ)设直线l 方程1(1)2y x t t =+≠±,联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2230x tx t ++-=, 23120t ∆=-+>,所以22t -<<,此时直线l 与曲线C 有两个交点,A B ,设1122(,),(,)A x y B x y ,则12x x t +=-,2123x x t =-,∵PN MN ⊥,不妨取3(1,)2P ,要证明APN BPN ∠=∠恒成立,即证明0AP BP K K +=,即证121233220y y x x --+=,也就是要证122133()(1)()(1)022y x y x --+--=, 即证121212()2()320x x t x x x x t ++-++-=,由韦达定理所得结论可得此式子显然成立, 所以APN BPN ∠=∠成立.21.解:(Ⅰ)2()2f x x ax b '=++,因为()f x 在1x x =和2x x =处取得极值,所以1x x =和2x x =是方程220x ax b ++=的两个根,则122x x a +=-,12x x b =,又125x x -=,则21212()45x x x x +-=,所以2445a b -=.由已知曲线()y f x =在(1,(1))f 处的切线与直线20x y +-=垂直,所以可得(1)1f '=,即211a b ++=,由此可得244520a b a b ⎧-=⎨+=⎩,解得121a b ⎧=⎪⎨⎪=-⎩. 所以32115()326f x x x x =+--.(Ⅱ)对于21(1)()0x k e kf x -'+-=,(1)当0k =时,得10x e -=,方程无实数根;(2)当0k ≠时,得2111x x x k k e -+-+=,令211()x x x g x e -+-=, 22(1)(2)()x xx x x x g x e ee e --+-'=-=- 当(,1)(2,)x ∈-∞-+∞时,()0g x '<;当1x =-或2时,()0g x '=;当(1,2)x ∈-时,()0g x '>.∴()g x 的单调递减区间是(,1)-∞-和(2,)+∞,单调递增区间是(1,2)-. 函数()g x 在1x =-和2x =处分别取得极小值和极大值.2(())=(1)0g x g e -=-<极小,5(())=g(2)=0g x e>极大,对于211()x x x g x e-+-=,由于10x e ->恒成立. 且21y x x =+-是与x 轴有两个交点,开口向上的抛物线,所以曲线()y g x =与x 轴有且只有两个交点,从而()g x 无最大值,2min (())(())g x g x e ==-极小.若0k <时12k k ⇒+≤-,直线1y k k =+与曲线()y g x =至多有两个交点; 若1502(())k k g x k e >⇒+≥>=极大,直线1y k k=+与曲线()y g x =只有一个交点;综上所述,无论k 取何实数,方程21(1)()0x k ekf x -'+-=至多只有两实数根.22.解:(Ⅰ)曲线C 的直角坐标方程为2y x =,所以曲线1C 的直角坐标方程为22(1)y x =-. (Ⅱ)由直线l 2cos()204πρθ--=,得cos sin 20ρθρθ+-=,所以直线l 的直角坐标方程为20x y +-=,又点(2,0)P 在直线l 上,11 / 11 所以直线l 的参数方程为:22222x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),代入1C 的直角坐标方程得22240t t +-=,设,A B 对应的参数分别为12,t t ,则8160∆=+>,1222t t +=-124t t =-,所以1212||||||||||PA PB t t t t +=+=-21212()4t t t t =+-81626=+=23.解:(Ⅰ)当3a =时,不等式()6f x ≤为|23||21|6x x -+-≤, 若12x <时,不等式可化为(23)(21)446x x x ----=-+≤,解得1122x -≤<, 若1322x ≤≤时,不等式可化为(23)(21)26x x --+-=≤,解得1322x ≤≤, 若32x >时,不等式可化为(23)(21)446x x x -+-=-≤,解得3522x <≤, 综上所述,关于x 的不等式()6f x ≤的解集为15|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (Ⅱ)当x R ∈时,()|2|21|f x x a x =-+-≥|212||1|x a x a -+-=-, 所以当x R ∈时,2()13f x a a ≥--等价于2|1|13a a a -≥--,当1a ≤时,等价于2113a a a -≥--,解得141a -≤≤;当1a >时,等价于2113a a a -≥--,解得1113a <≤所以a 的取值范围为[14,113]+.。
高考专题福建省三明市高三五月质量检查数学(文)试题(原卷版).docx
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式22121[()()()]n s x x x x x x n ---=-+-++- (13)V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于( )A .1i -+B .1i +C .1i --D .1i -2.已知集合{|02}A x x =<<,{|1}B x x =<,则A B I 为( )A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是( )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是( )A .0x ∀≤,都有20x x ->B .0x ∀>,都有02≤-x xC .0∃>x ,使得02<-x xD .0x ∃≤,使得20x x ->7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为( )A .22B 2C .2D .228.某几何体的三视图如右图所示,则该几何体的表面积是( ) A .12B .2C .222+ D .329.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为( ) A .81 B .41 C .21D .4310. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:11 1正视图俯视图侧视图(0),()(0);x xg xx x⎧≥⎪=⎨--<⎪⎩()()ln0,()ln()0;x xu xx x⎧>⎪=⎨-<⎪⎩1()h x xx=+;()cosv x x=.其中是“Z函数”的是()A.()g x B.()h x C.()u x D.()v x第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置.13.在等差数列{}na中,若34=a,则=7S.14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21ee则12e e⋅=______.15.已知0,0,a b>>若直线01:21=++yaxl与直线03)1:22=+-+byxal(互相垂直,则ab的最小值是.16.定义(,)nF A B表示所有满足{}12,,,nA B a a a=⋅⋅⋅U的集合,A B组成的有序集合对(,)A B的个数.试探究12(,),(,),F A B F A B⋅⋅⋅,并归纳推得(,)nF A B=_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分频率/组距0.0160.0180.0300.024布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数; (Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率. 18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一 个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成 公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T . 19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥(Ⅲ) 若32==AB PD ,,ο60=∠ABC ,求三棱锥ABC P -的体积.20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -. (Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积MAB S D =AB 的方程;若不存在,请说明理由.1a2a 3a 4a5a 6a 7a 8a 9a……PABECD22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数). (Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.。
福建省三明市三校2014届下学期高三年级联考数学试卷(文科)
福建省三明市三校2014届下学期高三年级联考数学试卷(文科) 有答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡对应的位置上. 1.复数()3i -1i 的共轭复数....是 A .3i - B .3i + C .3i --D .3i -+2.若集合},0{2m A =,}2,1{=B ,则“1=m ”是“}2,1,0{=B A ”的 A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件3.已知等差数列{}n a 的公差为()0d d ≠,且36101332a a a a +++=,若8m a =,则m 为 A .12B . 8C .6D . 44.如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A . 84,4.8B . 84,1.6C . 85,4D . 85,1.65.已知抛物线2x ay =的焦点恰好为双曲线222y x -=的上焦点,则a = A .1 B .4C .8D .166.程序框图输出S 的值为 A .62B .126C .254D .5107.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为 A .81 B .161C .271 D .838.已知m 是两个正数2,8的等比中项,则圆锥曲线122=+my x 的离心率是 A .23或25 B .23 C .5D .23或5 9.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是 A .若α⊥γ,α⊥β,则γ∥β B .若m ∥n ,m ⊂α,n ⊂β,则α∥β C .若m ∥n ,m ∥a ,则n ∥α D .若m ∥n ,m ⊥a ,n ⊥β,则α∥β10.定义在R 上的偶函数)(x f 满足:对任意的]0,(,21-∞∈x x )(21x x ≠,有0))()()((1212>--x f x f x x 恒成立. 则当*N n ∈时,有A .)1()()1(-<-<+n f n f n fB .)1()()1(+<-<-n f n f n fC .)1()1()(+<-<-n f n f n fD . )()1()1(n f n f n f -<-<+11.将奇函数()sin()(0,0,)22f x A x A ππωφωφ=+≠>-<<的图像向左平移6π个单位得到的图象关于原点对称,则ω的值可以为 A .2B .3C .4D . 612.把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25) …,则第50个括号内各数之和为A .390B .392C .394D . 396第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.注意把解答填入到答题卷上. 13.已知ABC ∆中,4AB =,1AC =,3=∆ABC S ,则AB AC ⋅的值为 .14.一个几何体的三视图及其尺寸(单位:cm) ,如图3所示,则该几何体的侧面积为 cm .15.已知x 和y 满足约束条件0,210,20.y x y x y ≥⎧⎪++<⎨⎪++>⎩则21y x --的取值范围为 .16.若)()()()(x f x f y x f x f +=+满足,则可写出满足条件的一个函数解析式.2)(x x f =类比可以得到:若定义在R上的函数)2();()()()1(),(2121x g x g x x g x g ⋅=+满足)()(,)3(;3)1(2121x g x g x x g <<∀=,则可以写出满足以上性质的一个函数解析式为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.注意把解答填入到答题卷上. 17.(本小题满分12分) 图3俯视图侧(左)视图已知数列{}n a 的前n 项和为n S ,142n n S a +=-,且12a =(Ⅰ) 求证:对任意n N *∈,12n n a a +-为常数C ,并求出这个常数C ; (Ⅱ)11+=n n n a a b 如果,求数列{b n }的前n 项的和.18.(本小题满分12分)已知21cos 2sin 23)(2--=x x x f (x ∈R). (Ⅰ)求函数()x f 的最小值和最小正周期;(Ⅱ)设∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且c =3,f (C )=0,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值. 19.(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗? 20.(本题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M 是BD 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.4侧视图俯视图MDEBAC N(Ⅰ)求出该几何体的体积。
高考专题福建省三明市高三五月质量检查数学(文)试题(解析版).docx
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式22121[()()()]n s x x x x x x n ---=-+-++- (13)V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于( )A .1i -+B .1i +C .1i --D .1i -【答案】B 【解析】试题分析:由(1)1i i i -=+.所以选B. 考点:复数的运算.2.已知集合{|02}A x x =<<,{|1}B x x =<,则A B I 为( )A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >【答案】B【解析】试题分析:集合{|02}A x x =<<,{|1}B x x =<,则A B I {|01}x x =<<.故选B. 考点:1.集合的描述的表示.2.集合的交集.3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是( )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是( )A .0x ∀≤,都有20x x -> B .0x ∀>,都有02≤-x x C .0∃>x ,使得02<-x x D .0x ∃≤,使得20x x ->5.函数32()34f x x x =-+-的单调递增区间是 ( )A .(,0)-?B .(2,0)-C .(0,2)D .(2,)+?6. 某程序框图如图所示,若输入2x π=,则该程序运行后输出的b a ,值分别是( )A .0,1 B. 1,1 C. 1,0 D. 0,07.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为 ( )A .22B 2C .2D .22【答案】D 【解析】试题分析:依题意可得所截的弦长是一个以直径为4的等腰三角形的直角边,所以弦长为22故选D. 考点:1.直线与圆的位置关系.2.解三角形的知识.开始输入xx a sin =x b cos = ?b a <a m =b a = mb =是否 输出b a ,结束8.某几何体的三视图如右图所示,则该几何体的表面积是( )A .12+B .2C .222+ D .32111B CDA9.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为( ) A .81B .41 C .21D .43111正视图俯视图侧视图1O12x-y=0xy10. 对于函数()f x在定义域内的任意实数x及(0)x m m+>,都有()()0f x f x-+=及()()f x m f x+>成立,则称函数()f x为“Z函数”.现给出下列四个函数:(0),()(0);x xg xx x⎧≥⎪=⎨--<⎪⎩()()ln0,()ln()0;x xu xx x⎧>⎪=⎨-<⎪⎩1()h x xx=+;()cosv x x=.其中是“Z函数”的是()A.()g x B.()h x C.()u x D.()v x11.在边长为2的等边ABC∆中,D是AB的中点,E为线段AC上一动点,则⋅的取值范围是()A.23[,3]16B.23[,2]16C.3[,3]2D.[2,9]【答案】A【解析】试题分析:设,2(02)EC x EA x x=∴=-≤≤,1AD DB==.由ED EB ⋅2222(2)5()()(2)23222x x EA AB EA AD x x x --=+⋅+=---+=-+u u u r u u u r u u u r u u u r .所以ED EB ⋅∈23[,3]16.故选A.考点:1.向量的运算.2.二次函数的最值.3.平面向量的基本定理. 12.设函数()f x 的导函数为()f x ',那么下列说法正确的是( )A.若()'0f x =o ,则x o 是函数()f x 的极值点B. 若x o 是函数()f x 的极值点,则()'0f x =oC. 若x o 是函数()f x 的极值点,则()'f x o 可能不存在D.若()'0f x =o 无实根 ,则函数()f x 必无极值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置.13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.【答案】1 【解析】试题分析:假设椭圆的长半轴为a ,半焦距为c .则双曲线的半实轴'a c =,半焦距'c a =.所以两曲线的离心率分别为,,21e e 则12e e ⋅= 1.考点:1.圆锥曲线的基本性质.2.对比归纳的思想.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的 最小值是 .16.定义(,)n F A B 表示所有满足{}12,,,n A B a a a =⋅⋅⋅U 的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. ….17.(本小题满分12分)某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n 份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数;(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.∴第四组[80,90)的频数:0.024105012⨯⨯=;第五组[90,100]的频数:0.01610508⨯⨯=; 用分层抽样的方法抽取5份得:频率/组距 0.0120.016 0.018 分80 60 50 70 90 100 0.030 0.024∴所求概率:63105P == . ………………………………………………………12分 考点:1.统计图表的识别.2.统计图表中众数的估算.3.分层抽样.4.古典概型. 18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一 个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成 公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T .试题解析:(Ⅰ)依题意得512a a d =+,312d ∴=+,所以1d =. ……………………………………………2分 又321()a a q a d q ==+Q ,2q =,1a2a 3a 4a5a 6a 7a 8a 9a……考点:1.等差数列的性质.2.等比数列的性质.3.分类递推的数学思想. 19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥(Ⅲ) 若32==AB PD ,,ο60=∠ABC ,求三棱锥ABC P -的体积.【答案】(Ⅰ)参考解析;(Ⅱ)参考解析;3【解析】试题分析:(Ⅰ)由22==AD DC ,:1:2PE EC =,即可得到线段成比例,即得到直线平行,再根据直线与平面平行的判断定理即可得到结论.(Ⅱ)由平面⊥PAC 平面ABC ,AC PD ⊥于点D ,并且AC 是平面PAC 与平面ABC 的交线,根据平面垂PABECD直的性质定理即可得PD 垂直平面ABC ,再根据平面与平面垂直的判断定理即可得到结论.(Ⅲ)由22==AD DC 即可得AC=3.又由32==AB PD ,,ο60=∠ABC , 在三角形ABC 中根据余法一:ABC ∆中,,3=AB ,60ο=∠ABC 3=AC ,由正弦定理ABC AC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=, 因为AC AB >,所以ACB ABC ∠<∠,则6ACB π∠=,因此2CAB π∠=, …………8分△ABC 的面积233332121=⋅⋅=⋅=∆AB AC S ABC . …………………………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. …………………………12分 法二:ABC ∆中,3=AB ,ο60=∠ABC 3=AC ,由余弦定理得:ο60cos 2222⋅⋅-+=BC AB BC AB AC ,所以2360AC -=,所以233(AC AC ==-或舍去). …………………………………8分△ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆οBC AB S ABC . ……………10分所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. ……………………12分 考点:1.线面平行.2.面面垂直.3.三角形的余弦定理.4.三棱锥的体积.20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -.(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积 42MAB S D =?若存在,请求出直线AB 的方程;若不存在,请说明理由.得到方程:2440y ty --=, …………………………………………………6分 设11(,)A x y ,22(,)B x y ,则124y y t +=,124y y ⋅=-.…………………7分 121||(||||)2MAB MAF MBS S S S MF y y D D D =+=?∵120y y ⋅<,∴12||||y y +2121212||()4y y y y y y =-=+-241t =+, ……9分 又||2MF =,∴21241422MAB S t D =创+……………………………………10分 解得1t =?, ………………………………………………………………11分故直线AB 的方程为:1x y =±+.即10x y +-=或10x y --=.…………………12分解法二:(Ⅰ)(同解法一)故直线AB 的方程为:(1)y x =±-.即10x y +-=或10x y --=. ………12分考点:1.抛物线的性质.2.直线与抛物线的关系.3.弦长公式,点到直线的距离.4.运算能力.21.(本小题满分12分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积12121122(,)(,)(,)a a b b a b a b ⊗=⊗=a b . 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q 为)(x f y =的图象上的动点,且满足OQ OP =⊗+u u u r u u u r m n (其中O 为坐标原点). (Ⅰ)请用0x 表示OP ⊗u u u r m ;(Ⅱ)求)(x f y =的表达式并求它的周期;(Ⅲ)把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数)(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数.因此002,31sin ,2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即003,2sin 2,x x x y π⎧-⎪⎪=⎨⎪=⎪⎩ ………………………………6分 所以11()sin()226y f x x π==-,它的周期为4π. ………………………………8分 (Ⅲ))62sin(21)(π-=x x g 在⎥⎦⎤⎢⎣⎡3,0π上单调递增,在⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 又111(0),(),()43224g g g ππ=-==, ……………………………10分 时,或当4141-21<≤=t t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内只有一个零点; 时,当2141<≤t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内有两个零点; 当14t <-或14t >时,函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内没有零点. …………………………12分考点:1.三角函数的性质.2.向量的数量积.3.新定义问题.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数).(Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.所以曲线()y f x =在1x =处的切线方程为(e 1)e(1)y x --=--,即e 2e 10x y +-+=. …………………………5分又1122(e,())(e,())PA PB x f x x f x ⋅=-⋅-u u u r u u u r121212(e)(e)(e)(e)(ln 1)(ln 1)x x x x x x =--+----121212(e)(e)(ln ln ln 2)x x x x x x =---+0=从而PA PB ⊥,点A ,B ,P 可构成直角三角形. ………………………14分考点:1.导数的几何意义.2.函数的极值.3.分类讨论的数学思想.4.向量的数量积.5.运算能力.。
【三明市月质检】福建省三明市届高三月质量检查(数学理)Word版含答案(高考)
2014年三明市普通高中毕业班质量检查理 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题), 第Ⅱ卷第21题为选考题,其他题为必考题.本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签)笔或碳素笔书写,字体工整、笔记清楚.4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 5.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s = 13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足i 45i z =- (其中i 为虚数单位),则复数z 为A .54i -B .54i -+C .54i +D .54i --2.已知集合}1)2lg(|{<-=x x A ,集合}8221|{<<=x x B ,则A B I 等于A .(2,12)B .(2,3)C .(1,3)-D .(1,12)-3.观察下列关于两个变量x 和y 的三个散点图,它们从左到右的对应关系依次为A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4. 设b a ,是两条不同直线,βα,是两个不同平面,下列四个命题中正确的是A .若b a ,与α所成的角相等,则b a //B .若α//a ,β//b ,βα//,则b a //C .若α⊥a ,β⊥b ,βα⊥,则b a ⊥D .若α⊂a ,β⊂b ,b a //,则βα// 5.在二项式1()nx x-的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是 A .-56B .-35C . 35D .566.设0a >且1a ≠,命题p :函数()xf x a =在R 上是增函数 ,命题q :函数3()(2)g x a x =-在R 上是减函数,则p 是q 的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知双曲线221()my x m -=∈R 与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为A.y =B.y x =±C .13y x =±D .3y x =±8.如图是某个四面体的三视图,若在该四面体的外接球内任取一 点,则点落在四面体内的概率为A .913p B . 113p C .D .169p9.已知函数11,[0,2],()1(2),(2,),2x x f x f x x ì--?ïïï=íï-??ïïïî则函数()ln(1)y f x x =-+的零点个数为 A .1B .2C .3D .410.在数列{}n a 中,112a =,且55n n a a +≥+,11n n a a +≤+,若数列{}n b 满足1n n b a n =-+,则数列{}n b 是A .递增数列B .递减数列C .常数列D .摆动数列第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡相应位置. 11.曲线21y x =+与直线0,1x x ==及x 轴所围成的图形的面积是 . 12.执行如图所示的程序框图,若输入的5a =,则输出的结果是__ __.13.已知变量,x y 满足约束条件1,1,3,2x y x y y ⎧⎪-≤⎪+≥⎨⎪⎪≤⎩若,x y 取整数,则目标函数2z x y =+的最大值是 .14.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为 .15.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件: (ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=; (ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=; (ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕, 则称集合A 对于运算“⊕”构成“对称集”. 下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法; ②{}A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有 .(把所有正确的序号都填上)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率. 17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,AB AD ⊥, 平面PAD ⊥平面ABCD ,若8,AB =2DC =,AD =4PA =,45PAD ∠=o,且13AO AD =u u u r .(Ⅰ)求证:PO ⊥平面ABCD ; (Ⅱ)设平面PAD 与平面PBC 所成二面角的大小为(090)θθ<≤o o,求cos θ的值.18.(本小题满分13分)已知点,A B 是抛物线2:2(0)C y px p =>上不同的两点,点D 在抛物线C 的准线l 上,且焦点F 到直线20x y -+=的距离为2. (I )求抛物线C 的方程;(Ⅱ)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行x 轴. 请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明. 19.(本小题满分13分)若函数()sin cos (,)f x a x b x a b R =+?,非零向量(,)a b =m ,我们称m 为函数()f x 的“相伴向量”,()f x 为向量m 的“相伴函数”.(Ⅰ)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->的最小正周期为2π,求函数()f x 的“相伴向量”;PABCD O 17题图2n(Ⅱ)记向量=n 的“相伴函数”为g()x ,将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移23π个单位长度,得到函数()h x ,若6(2),(0,)352h ππαα+=∈,求sin α的值;(Ⅲ)对于函数()sin cos 2x x x ϕ=,是否存在“相伴向量”?若存在,求出()x ϕ“相伴向量”;若不存在,请说明理由.20.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R),211()() (0)2g x x m x m m=-+>,且()y f x =在点 (1,(1))f 处的切线方程为10x y --=.(Ⅰ)求,a b 的值;(Ⅱ)若函数()()()h x f x g x =+在区间(0,2)内有且仅有一个极值点,求m 的取值范围;(Ⅲ)设1(,) ()M x y x m m>+为两曲线() ()y f x c c =+∈R ,()y g x =的交点,且两曲线在交点M 处的切线分别为12,l l .若取1m =,试判断当直线12,l l 与x 轴围成等腰三角形时c值的个数并说明理由.21.本题设有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求二阶矩阵M ;(Ⅱ)若曲线22:221C x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程. (2)(本小题满分7分)选修4—4:坐标系与参数方程已知在平面直角坐标系xOy 中,圆M 的方程为()2241x y -+=.以原点O 为极点,以x 轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线l 的极坐标方程为1sin 62πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)求直线l 的直角坐标方程和圆M 的参数方程; (Ⅱ)求圆M 上的点到直线l 的距离的最小值.(3)(本小题满分7分)选修4—5:不等式选讲设函数()211f x x x =--+.(Ⅰ)求不等式()0f x £的解集D ;(Ⅱ)若存在实数{|02}x x x 危?a 成立,求实数a 的取值范围.2014年三明市普通高中毕业班质量检查理科数学试题参考解答及评分标准一、选择题1.D 2.B 3.D 4.C 5.A 6.D 7.A 8.C 9.B 10.C 二.填空题: 11.4312.62 13.5 14.162π 15.①、③ 三、解答题: 16.解:(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=. ………………………………………………2 分所以抽取的40件产品中,合格产品的数量为400.832⨯=. ……………………………3 分 则X 可能的取值为0,1,2, …………………………………………4分 所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为7分故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. …………………9分 (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, ……………10分 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭. ……………………………………………13分17.解:(Ⅰ)因为 13AO AD =u uu r u u u r,AD =,所以AO = ……………1分在PAO ∆中,由余弦定理2222cos PO PA AO PA AO PAO =+-⋅∠, 得(2224248PO =+-⨯⨯=, ……………………………………3分 PO ∴=222PO AO PA ∴+=, ………………………………………………4分PO AD ∴⊥, …………………………………………………………………5分又Q 平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD . ………………………………………………………………6分(Ⅱ)如图,过O 作//OE AB 交BC 于E ,则OA ,OE ,OP 两两垂直,以O 为坐标原点,分别以OA ,OE ,OP 所在直线为z x 、y 、轴,建立空间直角坐标系O xyz -, …………………………7分则)0,0,0(O ,,A B,(2,0),(0,0,C P - ………8分(6,0)BC ∴=--u u , PB u u u r=8,-,……………………9分 设平面PBC 的一个法向量为=()x ,y ,z n ,由,,BC PB ⎧⊥⎪⎨⊥⎪⎩u u u u r u u u r n n 得60,80,y y ⎧--=⎪⎨+-=⎪⎩即,3,y z x ⎧=⎪⎨=-⎪⎩取1x =则3y z ==-,所以(1,3)=--n 为平面PBC 的一个法向 量. ……………………………11分AB ⊥Q平面PAD , ()0,8,0AB ∴=uu u r为平面PAD 的一个法向量.所以 cos ,AB AB AB =⋅u u u ru uu r g u u u r n n n == , ………………………………12分cos cos ,6AB θ∴==u u u r n . …………………………………………………13分18. 解:(I )因为(,0)2p F , 依题意得d ==, …………………………2分解得2p =,所以抛物线C 的方程为24y x = …………………………………4分 (Ⅱ)①命题:若直线AB 过焦点F ,且直线AD 过原点O ,则直线BD 平行x 轴.…………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x y B x y , ………………………6分由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=, 124y y ∴=-, ……………………………………………8分直线AD 的方程为11yy x x =, ……………………………………………9分所以点D 的坐标为11(1,)yx --,112211144y y y x y y ∴-=-=-=, ……………………………………………………12分∴直线DB 平行于x 轴. ………………………………………………………13分 ②命题:若直线AB 过焦点F ,且直线BD 平行x 轴,则直线AD 过原点O .…………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x y B x y , ………………………6分由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=, 124y y ∴=-, ……………………………………………8分即点B 的坐标为224(,)x y -, ……………………………………………9分∵直线BD 平行x 轴,∴点D 的坐标为14(1,)y --, …………………………10分∴11(,)OA x y =u u u r ,14(1,)OD y =--u u u r ,由于111114()(1)0x y y y y ---=-+=,∴OA u u u r ∥OD u u ur ,即,,A O D 三点共线, ……………………………………………12分∴直线AD 过原点O . ………………………………………………………13分 ③命题:若直线AD 过原点O ,且直线BD 平行x 轴,则直线AB 过焦点F .…………………………………5分设直线AD 的方程为 (0)y kx k =≠,则点D 的坐标为(1,)k --, …………6分 ∵直线BD 平行x 轴,∴B y k =-,∴24B k x =,即点B 的坐标为2(,)4k k -, ……………………8分由2,4,y kx y x =⎧⎨=⎩得224k x x =, ∴244,,A A x y k k ==即点A 的坐标为244(,)k k , ……………………………10分∴2244(1,),(1,)4k FA FB k k k =-=--u u u r u u u r ,由于224444(1)()(1)04k k k k k k k k---⋅-=-+-+=,∴FA u u u r ∥FB u u u r,即,,A F B 三点共线, ………………………………………12分∴直线AB 过焦点F . ………………………………………………………13分19.解:(Ⅰ)22()(sin cos )2cos 2f x x x x ωωω=++-22sin cos sin 21cos 22x x x x ωωωω=++++-sin 2cos2x x ωω=+)4x πω=+, ………………………………………1分依题意得222ππω=,故12ω=. ………………………………………2分∴()sin cos f x x x =+,即()f x 的“相伴向量”为(1,1). ………3分(Ⅱ)依题意,g()cos 2sin()6x x x x π=+=+, ……………………………4分将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到函数12sin()26y x π=+, ………………………………………………………5分再将所得的图象上所有点向左平移23π个单位长度,得到12()2sin[()]236h x x ππ=++, 即11()2sin()2cos 222h x x x π=+=, ……………………………6分∵6(2)35h πα+=,∴3cos()65πα+=,∵(0,)2πα∈,∴2(,)663πππα+∈,∴4sin()65πα+=, ……………8分∴sin sin[()]sin()cos cos()sin 666666ππππππαααα=+-=+-+=………………………………………………………10分(Ⅲ)若函数()sin cos 2x x x ϕ=存在“相伴向量”,则存在,a b ,使得sin cos2sin cos x x a x b x =+对任意的x R ∈都成立,……………11分 令0x =,得0b =,因此sin cos2sin x x a x =,即sin 0x =或cos2x a =, 显然上式对任意的x R ∈不都成立,所以函数()sin cos 2x x x ϕ=不存在“相伴向量”. …………………………13分(注:本题若化成3()sin sin x x x ϕ=-2,直接说明不存在的,给1分)20. 解:(Ⅰ)()af x b x'=+,∴(1)1f a b '=+=,又(1)0f b ==,∴1,0a b ==. …………………………………3分(Ⅱ)211()ln ()2h x x x m x m=+-+; ∴11()()h x x m x m'=+-+由()0h x '=得1()()0x m x m--=,∴x m =或1x m=. …………………………………5分∵0m >,当且仅当102m m <<≤或102m m<<≤时,函数()h x 在区间(0,2)内有且仅有一个极值点. …………………………………6分若102m m <<≤,即102m <≤,当(0,)x m ∈时()0h x '>;当(,2)x m ∈时()0h x '<,函数()h x 有极大值点x m =,若102m m <<≤,即2m ≥时,当1(0,)x m ∈时()0h x '>;当1(,2)x m∈时()0h x '<,函数()h x 有极大值点1x m=,综上,m 的取值范围是1|022m m m ⎧⎫<≤≥⎨⎬⎩⎭或. …………………………………8分(Ⅲ)当1m =时,设两切线12,l l 的倾斜角分别为,αβ, 则1tan ()()2f x g x x xαβ''===-,t a n =,∵2x >, ∴,αβ均为锐角, …………………………………………9分当αβ>,即21x <<时,若直线12,l l 能与x 轴围成等腰三角形,则2αβ=;当αβ<,即1x >12,l l 能与x 轴围成等腰三角形,则2βα=.由2αβ=得,2tan 1βαββ==-2t an t an2t an , 得212(2)1(2)x x x ---=,即23830x x -+=,此方程有唯一解(2,1x =+,直线12,l l 能与x 轴围成一个等腰三角形.……11分 由2βα=得, 2tan 1αβαα==-2t a n t a n2t a n , 得21211x x x⋅--2=,即322320x x x --+=, 设32()232F x x x x =--+,2()343F x x x '=--,当(2,)x ∈+∞时,()0F x '>,∴()F x 在(2,)+∞单调递增,则()F x在(1)++∞单调递 增,由于5()02F <,且512+,所以(10F +<,则(1(3)0F F +<, 即方程322320x x x --+=在(2,)+∞有唯一解,直线12,l l 能与x 轴围成一个等腰三角形. 因此,当1m =时,有两处符合题意,所以直线12,l l 能与x 轴围成等腰三角形时,c 值的个数 有2个. ………………………………………14分21.(1)解:(Ⅰ)设1234A ⎛⎫= ⎪⎝⎭,则12234A ==-,1213122A --⎛⎫⎪∴= ⎪-⎝⎭,…………2分 21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. …………………………3分 (Ⅱ)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭Q ,即,2,x x y y x y ''=-⎧⎨''=-+⎩ …………………………………………4分代入22221x xy y ++=可得()()()()2222221x y x y x y x y ''''''''-+--++-+=,即22451x x y y ''''-+=,故曲线C '的方程为22451x xy y -+=. ……………………………………7分21.(2)解:(Ⅰ)由1sin 62πρθ⎛⎫+= ⎪⎝⎭,得1sin cos cos sin 662ππρθθ⎛⎫+= ⎪⎝⎭,1122x y ∴=,即10x -=, ………………………1分 设4cos ,sin ,x y ϕϕ-=⎧⎨=⎩4cos ,sin ,x y ϕϕ=+⎧∴⎨=⎩ ………………………2分 所以直线l的直角坐标方程为10x +-=;圆M 的参数方程4cos ,sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数). …………………………………3分(Ⅱ)设()4cos ,sin M ϕϕ+,则点M 到直线l 的距离为32sin 62d πϕ⎛⎫++ ⎪⎝⎭==, ………………………5分∴当sin 16πϕ⎛⎫+=- ⎪⎝⎭即22()3k k Z πϕπ=-+∈时,min 12d =. 圆M 上的点到直线l 的距离的最小值为12. ………………………7分(21)(3)解:(Ⅰ)当1x ≤-时,由()20f x x =-+≤得2x ≥,所以x ∈∅;当112x -<≤时,由()30f x x =-≤得0x ≥,所以102x ≤≤; 当12x >时,由()20f x x =-≤得2x ≤,所以122x <≤. …………2分综上不等式()0f x ≤的解集D {}02x x =≤≤. ………………3分 (=+ ……………………………………4分由柯西不等式得2(31)((2))8x x ?+-=,∴≤ …………………………………………………………5分当且仅当32x =时取“=”, ∴ a的取值范围是(-?. …………………………………………………7分。
2014-2015高三(文)期考试卷答案(定稿卷答案)
三明市B 片区高中联盟校2014-2015学年第一学期阶段性考试高三数学(文科)试题参考答案一、选择题(每题5分,本题共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B D C C ADBCACB二、填空题(每题4分,本题共16分)13、3 14、0.85 15、 4- 16、 83π 三、解答题(本题共74分) 17.(本小题12分)解:(Ⅰ)依题意727735a-=,∴100a = ………………………………………………………3分 (Ⅱ)1151201251281321245x ++++== ………………………………………………………5分 ∴这5名考生的语文成绩的方差()()()()()22222211151241201241251241281241321245s ⎡⎤=⨯-+-+-+-+-⎣⎦2222219414835.65⎡⎤=⨯++++=⎣⎦…………………………………………………………………8分 (III)设成绩不低于550分的文科5名考生分别为a 、b 、c 、d 、e, 成绩不低于550分的理科2名考生分别为A 、B ,则所有可能出现的结果有:(a,b), (a,c),(a,d),(a,e),(a,A),(a,B),(b,c),(b,d),(b,e),(b,A),(b,B),(c,d),(c,e),(c,A),(c,B),(d,e), (d,A),(d,B),(e,A),(e,B),(A,B)总共有21种…………………………………………………………………………………………10分 设至少抽到一名理科生的事件为M ,则事件M 发生的结果共有(a,A),(a,B),(b,A),(b,B), (c,A),(c,B). (d,A),(d,B),(e,A),(e,B),(A,B)共11种……………………………………………………………………………………………………11分 故11()21P M =即在成绩不低于550分的文理科所有考生中抽取2名进一步质量分析,至少抽到一名理 科生的概率为1121…………………………………………………………………………………………12分 18.(本小题12分) 解:(Ⅰ)设等比数列{}n a 的公比为q 由221,33a q ==得,112,3a q ==…………………………………………………………………2分 所以1123n n a -⎛⎫=⋅ ⎪⎝⎭……………………………………………………………………………………4分12[1]133[1]1313n nn S ⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-……………………………………………………………………6分(Ⅱ)由(Ⅰ)可知13[1]3nn S ⎛⎫=- ⎪⎝⎭故33log (3)21n n b n S n =+-=+……………………………………………………………………8分 所以数列11{}n n b b +的前n 项和 1113557(21)(23)n T n n =+++⨯⨯++=1111111[()()()]235572123n n -+-++-++ =111()2323n -+=69n n +……………………………………………………………………………12分 19(本小题12分)(Ⅰ)证明:连接AC 交BD 于点O ,连接MO ,底面ABCD 是正方形,故O 为AC 的中点,又M 为PC 的中点,∴MO 是∆PAC 的中位线,∴PA//MO …………………………………………1分 又PA ⊄平面BDM ,MO ⊂平面BDM∴PA ∥平面BDM …………………………………3分(Ⅱ)解:取AD 的中点QPA=PD ∴P Q ⊥AD又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD=AD ,PQ ⊂平面PAD∴PQ ⊥平面ABCD ……………………………………………………………………………6分 由PA=PD=AD=4,得PQ=23由底面ABCD 是边长为4的正方形,得14482BCD S ∆=⨯⨯= ∴P B C D V -=11163823333BCDS PQ ∆⋅=⨯⨯= 即三棱锥P-BCD 的体积是1633……………………………………………………………………8分(III)当N 为AB 中点时,MN PCD ⊥平面,………………………………………………………9分理由如下:当N 为AB 中点时,取PD 的中点R ,连接,,MN MR AR ,则11//,//22RM DC AN DC ∴//RM AN RM AN =且∴四边形ANMR 是平行四边形。
【三明市5月质检】福建省三明市2014届高三5月质量检查(数学理)
2014年普通高中毕业班质量检查(一)理 科 数 学第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足i 45i z =- (其中i 为虚数单位),则复数z 为 ( ) A .54i - B .54i -+ C .54i + D .54i -- 2.已知集合}1)2lg(|{<-=x x A ,集合}8221|{<<=x x B ,则A B 等于( ) A .(2,12)B .(2,3)C .(1,3)-D .(1,12)-3.观察下列关于两个变量x 和y 的三个散点图,它们从左到右的对应关系依次为( )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关 4. 设b a ,是两条不同直线,βα,是两个不同平面,下列四个命题中正确的是( )A .若b a ,与α所成的角相等,则b a //B .若α//a ,β//b ,βα//,则b a //C .若α⊥a ,β⊥b ,βα⊥,则b a ⊥D .若α⊂a ,β⊂b ,b a //,则βα// 5.在二项式1()nx x-的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是( ) A .-56B .-35C . 35D .566.设0a >且1a ≠,命题p :函数()x f x a =在R 上是增函数 ,命题q :函数3()(2)g x a x =-在R 上是减函数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知双曲线221()my x m -=∈R 与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为( )A .y =B .y x =C .13y x =±D .3y x =± 8.如图是某个四面体的三视图,若在该四面体的外接球内任取一 点,则点落在四面体内的概率为( )A .913p B . 113p C .169p D .169p9.已知函数11,[0,2],()1(2),(2,),2x x f x f x x ì-- ïïï=íï-? ïïïî则函数()ln(1)y f x x =-+的零点个数为A .1B .2C .3D .410.在数列{}n a 中,112a =,且55n n a a +≥+,11n n a a +≤+,若数列{}n b 满足1n n b a n =-+,则数列{}n b 是 A .递增数列B .递减数列C .常数列D .摆动数列第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡相应位置.11.曲线21y x =+与直线0,1x x ==及x 轴所围成的图形的面积是 .12.执行如图所示的程序框图,若输入的5a =,则输出的结果是__ __.13.已知变量,x y 满足约束条件1,1,3,2x y x y y ⎧⎪-≤⎪+≥⎨⎪⎪≤⎩若,x y 取整数,则目标函数2z x y =+的最大值是 .14.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为 .15.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件: (ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=; (ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=; (ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕, 则称集合A 对于运算“⊕”构成“对称集”. 下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法; ②{}A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有 .(把所有正确的序号都填上)2n三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ;(Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率. 17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,AB AD ⊥, 平面PAD ⊥平面ABCD ,若8,AB =2DC =,AD =4PA =,45PAD ∠=,且13AO AD =.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)设平面PAD 与平面PBC 所成二面角的大小为(090)θθ<≤,求cos θ的值.18.(本小题满分13分)已知点,A B 是抛物线2:2(0)C y px p =>上不同的两点,点D 在抛物线C 的准线l 上,且焦点F 到直线20x y -+=的距离为2. (I )求抛物线C 的方程;(Ⅱ)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行x 轴. 请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明. 19.(本小题满分13分)若函数()sin cos (,)f x a x b x a b R =+ ,非零向量(,)a b =m ,我们称m 为函数()f x 的“相伴向量”,()f x 为向量m 的“相伴函数”.PABCD O 17题图(Ⅰ)已知函数22()(sin cos )2cos 2(0)f x x x x ωωωω=++->的最小正周期为2π,求函数()f x 的“相伴向量”;(Ⅱ)记向量=n 的“相伴函数”为g()x ,将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象上所有点向左平移23π个单位长度,得到函数()h x ,若6(2),(0,)352h ππαα+=∈,求sin α的值; (Ⅲ)对于函数()sin cos 2x x x ϕ=,是否存在“相伴向量”?若存在,求出()x ϕ“相伴向量”;若不存在,请说明理由.20.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R),211()() (0)2g x x m x m m=-+>,且()y f x =在点 (1,(1))f 处的切线方程为10x y --=.(Ⅰ)求,a b 的值;(Ⅱ)若函数()()()h x f x g x =+在区间(0,2)内有且仅有一个极值点,求m 的取值范围;(Ⅲ)设1(,) ()M x y x m m>+为两曲线() ()y f x c c =+∈R ,()y g x =的交点,且两曲线在交点M 处的切线分别为12,l l .若取1m =,试判断当直线12,l l 与x 轴围成等腰三角形时c值的个数并说明理由.21.本题设有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换若二阶矩阵M 满足:12583446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求二阶矩阵M ;(Ⅱ)若曲线22:221C x xy y ++=在矩阵M 所对应的变换作用下得到曲线C ',求曲线C '的方程. (2)(本小题满分7分)选修4—4:坐标系与参数方程已知在平面直角坐标系xOy 中,圆M 的方程为()2241x y -+=.以原点O 为极点,以x 轴正半轴为极轴,且与直角坐标系取相同的单位长度,建立极坐标系,直线l 的极坐标方程为1sin 62πρθ⎛⎫+= ⎪⎝⎭.(Ⅰ)求直线l 的直角坐标方程和圆M 的参数方程;(Ⅱ)求圆M 上的点到直线l 的距离的最小值.(3)(本小题满分7分)选修4—5:不等式选讲设函数()211f x x x =--+.(Ⅰ)求不等式()0f x £的解集D ;(Ⅱ)若存在实数{|02}x x x 危 a 成立,求实数a 的取值范围.2014年三明市普通高中毕业班质量检查理科数学试题参考解答及评分标准一、选择题1.D 2.B 3.D 4.C 5.A 6.D 7.A 8.C 9.B 10.C 二.填空题: 11.4312.62 13.5 14.162π 15.①、③ 三、解答题: 16.解:(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=. ………………………………………………2 分所以抽取的40件产品中,合格产品的数量为400.832⨯=. ……………………………3 分 则X 可能的取值为0,1,2, …………………………………………4分所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为7分故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. …………………9分 (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, ……………10分 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭. ……………………………………………13分 17.解:(Ⅰ)因为13AO AD =,AD =,所以AO = ……………1分 在PAO ∆中,由余弦定理2222cos PO PA AO PA AO PAO =+-⋅∠, 得(22242482PO =+-⨯⨯=, ……………………………………3分PO ∴=222PO AO PA ∴+=, ………………………………………………4分 PO AD ∴⊥, …………………………………………………………………5分又平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD . ………………………………………………………………6分(Ⅱ)如图,过O 作//OE AB 交BC 于E ,则OA ,OE ,OP 两两垂直,以O 为坐标原点,分别以OA ,OE ,OP 所在直线为z x 、y 、轴,建立空间直角坐标系O xyz -, …………………………7分 则)0,0,0(O,,A B ,(42,2,0),C P - (8)分(6,0)BC ∴=--,PB =8,-,……………………9分 设平面PBC 的一个法向量为=()x ,y ,zn ,由,,BC PB ⎧⊥⎪⎨⊥⎪⎩n n 得60,80,y y ⎧--=⎪⎨+-=⎪⎩即,3,y z x ⎧=⎪⎨=-⎪⎩取1x =则3y z ==-,所以(1,3)=-n 为平面PBC 的一个法向量. ……………………………11分 AB ⊥平面PAD , ()0,8,0AB ∴=为平面PAD 的一个法向量. 所以cos ,ABAB AB =⋅n n n==, ………………………………12分 cos cos ,6AB θ∴==n . …………………………………………………13分18. 解:(I )因为(,0)2p F , 依题意得2d ==, …………………………2分 解得2p =,所以抛物线C 的方程为24y x = …………………………………4分(Ⅱ)①命题:若直线AB 过焦点F ,且直线AD 过原点O ,则直线BD 平行x 轴.…………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x y B x y , ………………………6分 由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=,124y y ∴=-, ……………………………………………8分直线AD 的方程为11yy x x =, ……………………………………………9分所以点D的坐标为11(1,)yx --,112211144y y y x y y ∴-=-=-=, ……………………………………………………12分 ∴直线DB 平行于x 轴. ………………………………………………………13分 ②命题:若直线AB 过焦点F ,且直线BD 平行x 轴,则直线AD 过原点O . …………………………………5分设直线AB 的方程为1x ty =+,1122(,),(,)A x y B x y , ………………………6分由21,4,x ty y x =+⎧⎨=⎩ 得2440y ty --=, 124y y ∴=-, ……………………………………………8分即点B 的坐标为224(,)x y -, ……………………………………………9分∵直线BD 平行x 轴,∴点D 的坐标为14(1,)y --, …………………………10分∴11(,)OA x y =,14(1,)OD y =--,由于111114()(1)0x y y y y ---=-+=,∴OA ∥OD ,即,,A O D 三点共线, ……………………………………………12分∴直线AD 过原点O . ………………………………………………………13分 ③命题:若直线AD 过原点O ,且直线BD 平行x 轴,则直线AB 过焦点F .…………………………………5分设直线AD 的方程为 (0)y kx k =≠,则点D 的坐标为(1,)k --, …………6分 ∵直线BD 平行x 轴,∴B y k =-,∴24B k x =,即点B 的坐标为2(,)4k k -, ……………………8分由2,4,y kx y x =⎧⎨=⎩得224k x x =, ∴244,,A A x y k k ==即点A 的坐标为244(,)k k , ……………………………10分∴2244(1,),(1,)4k FA FB k k k =-=--,由于224444(1)()(1)04k k k k k k k k---⋅-=-+-+=,∴FA ∥FB ,即,,A F B 三点共线, ………………………………………12分 ∴直线AB 过焦点F . ………………………………………………………13分19.解:(Ⅰ)22()(sin cos )2cos2f x x x x ωωω=++-22sin cos sin 21cos 22x x x x ωωωω=++++- sin 2cos 2x x ωω=+)4x πω=+, ………………………………………1分依题意得222ππω=,故12ω=. ………………………………………2分 ∴()sin cos f x x x =+,即()f x 的“相伴向量”为(1,1). ………3分(Ⅱ)依题意,g()cos 2sin()6x x x x π=+=+, ……………………………4分将g()x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到函数12sin()26y x π=+, ………………………………………………………5分再将所得的图象上所有点向左平移23π个单位长度,得到12()2sin[()]236h x x ππ=++, 即11()2sin()2cos 222h x x x π=+=, ……………………………6分∵6(2)35h πα+=,∴3cos()65πα+=,∵(0,)2πα∈,∴2(,)663πππα+∈,∴4sin()65πα+=, ……………8分∴3sin sin[()]sin()cos cos()sin 66666610ππππππαααα=+-=+-+=. ………………………………………………………10分(Ⅲ)若函数()sin cos 2x x x ϕ=存在“相伴向量”,则存在,a b ,使得sin cos 2sin cos x x a x b x =+对任意的x R ∈都成立,……………11分 令0x =,得0b =,因此sin cos 2sin x x a x =,即sin 0x =或cos 2x a =, 显然上式对任意的x R ∈不都成立,所以函数()sin cos 2x x x ϕ=不存在“相伴向量”. …………………………13分 (注:本题若化成3()sin sin x x x ϕ=-2,直接说明不存在的,给1分) 20. 解:(Ⅰ)()af x b x'=+,∴(1)1f a b '=+=,又(1)0f b ==, ∴1,0a b ==. …………………………………3分(Ⅱ)211()ln ()2h x x x m x m=+-+; ∴11()()h x x m x m'=+-+由()0h x '=得1()()0x m x m--=,∴x m =或1x m=. …………………………………5分 ∵0m >,当且仅当102m m <<≤或102m m<<≤时,函数()h x 在区间(0,2)内有且仅有一个极值点. …………………………………6分 若102m m <<≤,即102m <≤,当(0,)x m ∈时()0h x '>;当(,2)x m ∈时()0h x '<,函数()h x 有极大值点x m =,若102m m <<≤,即2m ≥时,当1(0,)x m ∈时()0h x '>;当1(,2)x m∈时()0h x '<,函数()h x 有极大值点1x m=,综上,m 的取值范围是1|022m m m ⎧⎫<≤≥⎨⎬⎩⎭或. …………………………………8分(Ⅲ)当1m =时,设两切线12,l l 的倾斜角分别为,αβ,则1tan ()()2f x g x x xαβ''===-,tan =, ∵2x >, ∴,αβ均为锐角, …………………………………………9分当αβ>,即21x <<时,若直线12,l l 能与x 轴围成等腰三角形,则2αβ=;当αβ<,即1x >12,l l 能与x 轴围成等腰三角形,则2βα=.由2αβ=得,2tan 1βαββ==-2t a n ta n2t a n ,得212(2)1(2)x x x ---=,即23830x x -+=,此方程有唯一解(2,1x =,直线12,l l 能与x 轴围成一个等腰三角形.……11分 由2βα=得, 2tan 1αβαα==-2t an tan2t an ,得21211x x x⋅--2=,即322320x x x --+=, 设32()232F x x x x =--+,2()343F x x x '=--,当(2,)x ∈+∞时,()0F x '>,∴()F x 在(2,)+∞单调递增,则()F x在(1)+∞单调递增,由于5()02F <,且512,所以(10F <,则(1(3)0F F <, 即方程322320x x x --+=在(2,)+∞有唯一解,直线12,l l 能与x 轴围成一个等腰三角形. 因此,当1m =时,有两处符合题意,所以直线12,l l 能与x 轴围成等腰三角形时,c 值的个数 有2个. ………………………………………14分21.(1)解:(Ⅰ)设1234A ⎛⎫= ⎪⎝⎭,则12234A ==-,1213122A --⎛⎫⎪∴= ⎪-⎝⎭,…………2分 21582131461122M -⎛⎫⎛⎫⎛⎫ ⎪∴== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. …………………………3分 (Ⅱ)11112x x x x x M M y y y y y -'''-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=∴== ⎪ ⎪ ⎪ ⎪ ⎪⎪'''-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即,2,x x y y x y ''=-⎧⎨''=-+⎩ …………………………………………4分代入22221x xy y ++=可得()()()()2222221x y x y x y x y ''''''''-+--++-+=,即22451x x y y ''''-+=,故曲线C '的方程为22451x xy y -+=. ……………………………………7分 21.(2)解:(Ⅰ)由1sin 62πρθ⎛⎫+= ⎪⎝⎭,得1sin cos cos sin 662ππρθθ⎛⎫+= ⎪⎝⎭,11222x y ∴+=,即10x -=, ………………………1分 设4cos ,sin ,x y ϕϕ-=⎧⎨=⎩4cos ,sin ,x y ϕϕ=+⎧∴⎨=⎩ ………………………2分所以直线l的直角坐标方程为10x -=;圆M 的参数方程4cos ,sin x y ϕϕ=+⎧⎨=⎩ (ϕ为参数). …………………………………3分(Ⅱ)设()4cos ,sin M ϕϕ+,则点M 到直线l 的距离为32sin 62d πϕ⎛⎫++ ⎪⎝⎭==, ………………………5分泉州中远学校2014届高三毕业班数学试卷11∴当sin 16πϕ⎛⎫+=- ⎪⎝⎭即22()3k k Z πϕπ=-+∈时,min 12d =. 圆M 上的点到直线l 的距离的最小值为12. ………………………7分(21)(3)解:(Ⅰ)当1x ≤-时,由()20f x x =-+≤得2x ≥,所以x ∈∅; 当112x -<≤时,由()30f x x =-≤得0x ≥,所以102x ≤≤; 当12x >时,由()20f x x =-≤得2x ≤,所以122x <≤. …………2分 综上不等式()0f x ≤的解集D {}02x x =≤≤. ………………3分 (= ……………………………………4分由柯西不等式得2(31)((2))8x x ?+-=,∴≤, …………………………………………………………5分 当且仅当32x =时取“=”, ∴ a的取值范围是(- . …………………………………………………7分。
福建省福州市2014届高三5月综合练习文科数学试卷(带解析)
福建省福州市2014届高三5月综合练习文科数学试卷(带解析)1.设集合A={x|x 2-(a+3)x+3a=0},B={x|x 2-5x+4=0},集合A ∪B 中所有元素之和为8,则实数a 的取值集合为( )A.{0}B.{0,3}C.{1,3,4}D.{0,1,3,4} 【答案】D 【解析】试题分析:由题意可得{1,4}B =,当3a =时{3}A =所以{1,3,4}A B =,所以符合集合A ∪B 中所有元素之和为8,当1a =时{1,3,4}A B =符合题意.当4a =时{1,3,4}A B =符合题意.当3,1,4a ≠时{1,3,4,}AB a =.所以1340,0a a +++=∴=.故选D.考点:1.集合的概念.2.集合的运算.2.抛物线y=2x 2的准线方程为( ) A.14y =-B.18y =-C.12x =D.14x =- 【答案】B【解析】试题分析:依题意可得抛物线可化为212x y =,所以准线的方程为18y =-.故选B. 考点:抛物线的性质 3.已知a ∈R,且a≠0,则"11"<a是“a>1”的( ). A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件 【答案】B 【解析】 试题分析:由111,0,0a a a a -<∴<∴<或1a >.所以"11"<a是“a>1”的必要不充分条件.故选B考点:1.分式不等式的解法.2.充要条件. 4.函数y=ln(x+1)与1y x=的图像交点的横坐标所在区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) 【答案】B 【解析】试题分析:依题意令1()ln(1)f x x x =+-,(1,0)(0,)x ∈-+∞.函数y=ln(x+1)与1y x=的图像交点的横坐标所在区间等价于函数的()f x 的图象与x 轴的交点的所在的范围.依据零点定理,因为1(1)ln 21,(2)ln 302f f =-<=->,即(1)(2)0f f <.故选B. 考点:1.函数零点问题.2.等价变换的数学思想.3.函数与方程的关系. 5.执行如图所示的程序框图,如果输出的结果为158,则判断框内应填入的条件是( ) A.k<3 B.k>3 C.k<4 D.k>4【答案】C 【解析】试题分析:依题意可得1,1k p ==时得到3,22p k ==;再进入循环得到7,34p k ==;再进入循环15,38p k ==.即退出循环所以4k <.故选C 考点:1.程序框图.2.递推的数学思想. 6.某公司的一品牌电子产品,2013年年初,由于市场疲软,产品销售量逐渐下降,五月份公司加大了宣传力度,销售量出现明显的回升,九月份,公司借大学生开学之际,采取了促销等手段,产品的销售量猛增,十一月份之后,销售量有所回落.下面大致能反映出公司2013年该产品销售量的变化情况的图象是( )【答案】C 【解析】 试题分析:由于销售量逐渐下降,所以图象呈下降趋势;公司借大学生开学之际,采取了促销等手段,产品的销售量猛增,所以图象以更陡的向上走向;五月份公司加大了宣传力度,销售量出现明显的回升,即图象有向上的趋势;十一月份之后,销售量有所回落,所以图象向下的趋势.故选C.考点:1.函数的图象.2.实际问题的应用.7.函数)36sin(2ππ-=xy (0≤x≤9)的最大值与最小值的和为( ).A.32-B.0C.-1D.31-- 【答案】A 【解析】试题分析:由(0≤x≤9),可得73636x ππππ-≤-≤,所以函数)36sin(2ππ-=xy ,min max 2y y ==所以最大值与最小值的和为32-.故选A.考点:1.三角函数的性质.2.三角函数的图象.8.如图,半径为R 的圆C 中,已知弦AB 的长为5,则AC AB ⋅=( )A.25 B.225 C.25R D.225R 【答案】B 【解析】试题分析:连结BC ,由余弦定理可得22255cos 252R R A R R +-==⨯,所以25cos 2AB AC AB AC A ⋅==.故选B. 考点:1.向量的数量积.2.三角形的余弦定理.9.已知直线a,b 异面, ,给出以下命题:①一定存在平行于a 的平面α使α⊥b ;②一定存在平行于a 的平面α使b ∥α;③一定存在平行于a 的平面α使b α⊂;④一定存在无数个平行于a 的平面α与b 交于一定点.则其中论断正确的是( ) A.①④ B.②③ C.①②③ D.②③④ 【答案】D 【解析】试题分析:若直线,a b 不是异面垂直则不可能存在平行于a 的平面α使α⊥b ,所以①不正确;②③④正确;故选D.考点:1.线面平行的位置关系.2.异面直线的概念.10.已知P(x,y)为椭圆22:12516x y C +=上一点,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为( )125D.1【答案】A【解析】试题分析:由椭圆上任一点P(x,y)满足0M P M F⋅=的点M是唯一的.由于222P F P M F M=+,要求PM的最小值又1FM=,即需求PF的最小值,由题意可知椭圆上的点到焦点距离最短距离为a c-.即为2.所以||PM故选A.考点:1.椭圆的性质.2. 数形结合的思想.3.等价转换的思想.11.在△ABC中,若a、b、c分别为角A、B、C所对的边,且cos2B+cosB+cos(A-C)=1,则有( ).A.a、c、b 成等比数列B.a、c、b 成等差数列C.a、b、c 成等差数列D.a、b、c成等比数列【答案】D【解析】试题分析:由cos cos()B A C=-+,2cos212sinB B=-.所以cos2B+cosB+cos(A-C)=1可化为22sin sin sin,B AC b ac=∴=.所以,,a b c成等比数列.故选D.考点:1.三角函数的恒等变换.2.正弦定理.3.方程中的消元思想.12.已知(),()f xg x都是定义在R上的函数,()0g x≠,()'()'()()f xg x f x g x>,且()()xf x ag x=(01a a>≠且),(1)(1)5(1)(1)2f fg g-+=-,对于数列(){}()f ng n(n=1,2, ,10),任取正整数k(1≤k≤10),则其前k项和大于1516的概率是( ).A.310B.25C.12D.35【答案】D【解析】试题分析:由()0g x≠,且2()'()()()'()[]'0()[()]f x f xg x f x g xg x g x-=<.所以函数()()f xg x在R上递减.又由于()()xf x ag x=(01a a>≠且).所以()()xf xag x=递减,即可得01a<<.由(1)(1)5(1)(1)2f fg g-+=-可得151,,222a a aa+===(舍去).所以(){}()f ng n是一个首项为12,公比为12的等比数列,由等比数列求和公式即可得到当5n≥是符合条件即和大于1516的概率为63105=.故选D. 考点:1.函数导数的运算.2.数列的求和公式.3.概率问题.13.一个容量为20的样本数据分组后,分组与频数分别如下(]10,20,2;(]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 .【答案】710【解析】试题分析:依题意(]10,50的频率数为14.所以样本在(]10,50上的频率是1472010P ==. 考点:1.统计知识.2.概率问题.14.已知函数)sin(2)(ϕω+=x x f (其中R ∈x ,0>ω,πϕπ<<-)的部分图象如图所示,则函数f(x)的解析式是 .【答案】 【解析】试题分析:由题意可得,,24612T T πππω=+=∴=.又()212f π-=即可解得23πϕ=.所以函数f(x)的解析式是2()2sin(2)3f x x π=+. 考点:1.三角函数的图象.2.待定系数的思想.3.三角方程的解法.15. 某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】12【解析】试题分析:该几何体是类似墙角的三棱锥,假设一条直角的棱长为x ,则三条直角棱长分别为x 所以体积为1162V ===.当且仅当x =.考点:1.三视图.2.函数最值问题.3.空间想象能力.16.已知32()69,,f x x x x abc a b c =-+-<<且()()()0f a f b f c ===,现给出如下结论:①0)1()0(>⋅f f ;②0)1()0(<⋅f f ;③0)3()0(>⋅f f ;④;0)3()0(<⋅f f ; ⑤()f x 的极值为1和3.其中正确命题的序号为 . 【答案】②③ 【解析】试题分析:依题意可得函数'()3(1)(3)f x x x =--.令'()0,1,3f x x x =∴==.所以函数()f x 在(,1)-∞和(3,)+∞上递增,在(1,3)递减,又()()()0f a f b f c ===,所以(1)0,(3)0f f ><.又(0)f abc =-.由32()69()()()f x x x x abc x a x b x c =-+-=---可得,69a b c ab ac bc ++=⎧⎨++=⎩.所以229()9(6)69(3)0ab c a b c c c c c =-+=--=-+=->(3c >).又因为1,0b a >∴>.所以(0)0f abc =-<.所以②③正确. 若()f x 的极值为1和3,则可得(1)41(3)3f abc f abc =-=⎧⎨=-=⎩.即3abc =-与0abc >矛盾,所以不成立.所以正确的选项是②③. 考点:1.函数的极值.2.函数与方程的根的问题.3.反证的数学思想.4.函数的单调性的应用.17.已知{}n a 是一个公差大于0的等差数列,且满足362755,16a a a a =+=. (1)求数列{}n a 的通项公式;(2)若数列{}n a 和数列{}n b 满足等式:123232222n n nb b b b a =+++⋅⋅⋅+(n 为正整数)求数列{}n b 的前n 项和n S .【答案】(1)21n a n =- ;(2)226n n S +=-【解析】试题分析:(1)由362755,16a a a a =+=,根据等差数列的性质将27a a +换成36a a +再解方程组即可得到36,a a .即可得到通项公式.(2)由(1)可得数列{}n a 的通项公式,根据已知条件即可求出1b .当2n ≥时利用递推一项即可得到数列{}n b 的通项公式,由此得到一个分段的数列{}n b .再根据2n ≥时求出前n 项和,再验证n=1是否成立,即可得到结论.(1){a n }是一个公差大于0的等差数列,且满足362755,16a a a a =+=..2,115,0,16,55636363=⎩⎨⎧==>⎩⎨⎧=+=∴d a a d a a a a 故又公差21n a n =- 4分(2)n ≥2时,2,12,2,2)32(1221111=====---=+b a b b n n b n n nn 又 ∴⎩⎨⎧≥==+2,21,21n n b n n 8分 n ≥2时,S n =(4+8+ +2n+1)-2=62221)21(42-=---+n n n=1时也符合,故S n =2n+2-6 12分考点:1.等差数列的性质.2.递推的数学思想.3.等比数列的性质.4.分类的思想. 18.如图,经过村庄A 有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M 、N (异于村庄A),要求PM =PN =MN =2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).【答案】参考解析 【解析】试题分析:假设角AMN 的值为θ,由三角形AMN 中角NAM 为060.由正弦定理可得到AM 的表达式,在三角形AMP 中利用余弦定理表示出AP 的值,由角θ的取值范围,再根据三角函数的单调性知识即可得到结论.本小题用了五种解法分别从三角,坐标系,圆等方面入手.解法一:设∠AMN =θ,在△AMN 中,sin 60MN ︒=()sin 120AMθ︒-.因为MN =2,所以AM sin(120°-θ). 2分 在△APM 中,cos ∠AMP =cos(60°+θ). 4分AP 2=AM 2+MP 2-2 AM·MP·cos∠AMP =163sin 2(120°-θ)+4-2×2θ)cos(60°+θ) 6分=163sin 2(θsin(θ+60°)cos(θ+60°)+4=83[1-cos (2θθ+120°)+4=-83θ+120°)+cos (2θ+120°)]+203 =203-163sin(2θ+150°),θ∈(0,120°). 10分当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值答:设计∠AMN 为60︒时,工厂产生的噪声对居民的影响最小. 12分解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. 2分 在△AMN 中,∠ANM =∠PMD =θ,∴sin 60MN ︒=sin AMθ,AM =3θ,∴AD =3sin θ+2cos θ,(θ≥2π时,结论也正确). 4分AP 2=AD 2+PD 2=sin θ+2cos θ)2+(2sin θ)2=163sin 2θθcos θ+4cos 2θ+4sin 2θ 6分=163·12cos 22θ-+3θ+4=3sin2θ-83cos2θ+203 =203+163sin(2θ-6π),θ∈(0,23π). 10分当且仅当2θ-6π=2π,即θ=3π时,AP 2取得最大值12,即AP 取得最大值 此时AM =AN =2,∠PAB =30° 12分解法三:设AM =x,AN =y,∠AMN =α. 在△AMN 中,因为MN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2 AM·AN·cos∠MAN,即x 2+y 2-2xycos60°=x 2+y 2-xy =4. 2分 因为sin 60MN ︒=sin AN α,即2sin 60︒=sin yα,所以sin αy,cos α=22422x y x +-⨯⨯=()224x x xy x+-=24x y -. 4分cos ∠AMP =cos(α+60°)=12cos αα=12·24x y -y =24x y -. 6分在△AMP 中,AP 2=AM 2+PM 2-2 AM·PM·cos∠AMP, 即AP 2=x 2+4-2×2×x ×24x y -=x 2+4-x(x -2y)=4+2xy. 10分 因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy,即xy≤4.所以AP 2≤12,即当且仅当x =y =2时,AP 取得最大值答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小. 12分 解法四(坐标法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系.设M(x 1,0),N(x 22),P(x 0,y 0).∵MN =2, ∴(x 1-x 2)2+3x 22=4. 2分MN 的中点K(122x x +2).∵△MNP 为正三角形,且MN =2,∴PK ⊥MN,∴PK 2=(x 0-122x x +)2+(y 02)2=3,k MN ·k PK =-1,即212x x -·021222y x x x x +-=-1, 4分 ∴y 020-122x x +),∴(y 02)2=()212223x x x - (x 0-122x x +)2 ∴(1+()212223x x x -)(x 0-122x x +)2=3,即2243x (x 0-122x x +)2=3,∴(x 0-122x x +)2=94x 22. ∵x 0-122x x +>0 ∴x 0-122x x +=32x 2,∴x 0=12x 1+2x 2,∴y 0x 1. 6分 ∴AP 2=x 02+y 02=(2x 2+12x 1)2+34x 12=x 12+4x 22+2x 1x 2 =4+4x 1x 2≤4+4×2=12, 10分 即答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小. 12分解法五(几何法):由运动的相对性,可使△PMN 不动,点A 在运动.由于∠MAN =60°,∴点A 在以MN 为弦的一段圆弧(优弧)上, 4分 设圆弧所在的圆的圆心为F ,半径为R ,由图形的几何性质知:AP 的最大值为PF +R. 6分 在△AMN 中,由正弦定理知:sin 60MN︒=2R, ∴R分 ∴FM =FN =R又PM =PN,∴PF 是线段MN 的垂直平分线. APMNBCFE设PF 与MN 交于E ,则FE 2=FM 2-ME 2=R 2-12=13. 即FEPE∴PF∴AP 的最大值为PF +R =答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小. 12分 考点:1.解三角形的知识.2.正余弦定理.3.坐标法解题思想等.19.把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为a ,第二次掷出的点数为b .试就方程组322ax by x y +=⎧⎨+=⎩(※)解答下列问题:(1)求方程组没有解的概率;(2)求以方程组(※)的解为坐标的点落在第四象限的概率.. 【答案】(1)112 ;(2)112【解析】试题分析:(1)由方程组322ax by x y +=⎧⎨+=⎩没解,即相对应的两条直线平行,所以可求得,a b 的关系式,再列举,a b 的符合情况的个数,由于总的基本事件的个数为36.即可得结论.(2)由方程组322ax by x y +=⎧⎨+=⎩的解为坐标的点落在第四象,即将解出该方程组的解,由方程组的解对应一个点,根据点落在第四象限的坐标特点,即可得到,a b 的关系式,从而列举符合,a b 关系的情况的个数.再根据古典概型的概念得到结论. (1)由题意知,总的样本空间有36组 1分 方法1:若方程没有解,则12a b=,即2b a = 3分 (方法2:带入消元得(2)32b a y a -=-,因为320a -≠,所以当 2b a =时方程组无解) 所以符合条件的数组为(1,2),(2,4),(3,6), 4分 所以313612p ==,故方程组没有解的概率为1125分 (2)由方程组322ax by x y +=⎧⎨+=⎩得26023202b x b aa yb a -⎧=>⎪⎪-⎨-⎪=<⎪-⎩6分若2b a >,则有332b a >⎧⎪⎨>⎪⎩ 即2,3,4,5,6,4,5,6a b ==符合条件的数组有(2,5),(2,6)共有2个 8分若2b a <,则有332b a <⎧⎪⎨<⎪⎩ 即1,2,1b a ==符合条件的数组有(1,1)共1个 10分∴所以概率为1213612p +== , 即点P 落在第四象限且P 的坐标满足方程组(※)的概率为112. 12分 考点:1.两直线的位置关系.2.古典概型.3.列举归纳的数学思想. 20.已知正△ABC 的边长为a , CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A-DC-B,如图所示. (1)试判断折叠后直线AB 与平面DEF 的位置关系,并说明理由;(2)若棱锥E-DFC 的体积为243,求a 的值;(3)在线段AC 上是否存在一点P,使BP ⊥DF ?如果存在,求出AC AP的值;如果不存在,请说明理由.【答案】(1)平行; (2)2a =; (3)存在AP :AC=1:3 【解析】试题分析:(1)由于E 、F 分别是AC 和BC 边的中点,所以在翻折后的三角形ABC 中,AB EF .由线面平行的判定定理可得结论.(2)由棱锥E-DFC 的体积为243,因为△ABC 沿CD 翻折成直二面角A-DC-B ,并且AD ⊥平面BCD ,即由三棱锥的体积公式,即可求出结论. (3)在线段AC 上是否存在一点P,使BP ⊥DF,即转化为直线与平面垂直的问题,假设存在点P 作PK DC ⊥,k 为垂足,连结BK 即可得到直线DF ⊥平面BPK ,所以可得DF BK ⊥.通过三角形的相似即可得到所求的结论. (1)AB//平面DEF,如图.在△ABC 中,∵E,F 分别是AC,BC 的中点,故EF//AB, 又AB ⊄平面DEF,∴AB//平面DEF, 4分(2)∵AD ⊥CD,BD ⊥CD, 将△ABC 沿CD 翻折成直二面角A-DC-B∴AD ⊥BD,AD ⊥平面BCD,取CD 中点M,则EM//AD,∴EM ⊥平面BCD,且EM=a/22431634312=⨯⨯=a a V ,a=2. 8分 (3)存在满足条件的点P.做法:因为三角形BDF 为正三角形,过B 做BK ⊥DF,延长BK 交DC 于K,过K 做KP//DA,交AC 于P.则点P 即为所求. 证明:∵AD ⊥平面BCD , KP//DA,∴PK ⊥平面BCD,PK ⊥DF,又 BK ⊥DF,PK ∩BK=K,∴DF ⊥平面PKB,DF ⊥PB.又∠DBK=∠KBC=∠BCK=30°,∴DK=KF=KC/2. 故AP :OC=1:2,AP :AC=1:3 12分考点:1.图形的翻折.2.线面间的位置关系.3.开放性题的等价变换.4.空间想象力.21.已知焦点在y 轴,顶点在原点的抛物线C 1经过点P(2,2),以C 1上一点C 2为圆心的圆过定点A(0,1),记N M 、为圆2C 与x 轴的两个交点. (1)求抛物线1C 的方程;(2)当圆心2C 在抛物线上运动时,试判断MN 是否为一定值?请证明你的结论; (3)当圆心2C 在抛物线上运动时,记m AM =,n AN =,求mnn m +的最大值.【答案】(1)x 2=2y ;(2)定值2;(3)【解析】试题分析:(1)由焦点在y 轴,顶点在原点的抛物线假设为22(0)x py p =>,又C 1经过点P(2,2),即可求出抛物线的p .即可得抛物线的方程.(2)当圆心2C 在抛物线上运动时,写出圆2C 的方程,再令y=0即可求得圆的方程与x 轴的两交点的坐标,计算两坐标的差即可得到结论.(3)当圆心2C 在抛物线上运动时,由(1)可得M,N 的坐标(其中用圆心2C 的坐标表示).根据两点的距离公式即可用圆心2C 的坐标表示m,n 的值,将mnn m +适当变形,再根据基本不等式即可求得mnn m +的最大值. (1)由已知,设抛物线方程为x 2=2py,22=2p ×2,解得p=1.所求抛物线C 1的方程为x 2=2y.-------3分(2)法1:设圆心C 2(a,a 2/2),则圆C 2的半径r=222)12(-+a a圆C 2的方程为222222)12()2()(-+=-+-a a a y a x . 令y=0,得x 2-2ax+a 2-1=0,得x 1=a -1,x 2=a+1.|MN|=|x 1-x 2|=2(定值).------7分法2:设圆心C 2(a,b),因为圆过A(0,1),所以半径r=22)1(-+b a ,,因为C 2在抛物线上,a 2=2b,且圆被x 轴截得的弦长|MN|=2122)1(22222222=+-=--+=-b a b b a b r (定值)---7分(3)由(2)知,不妨设M(a-1,0),N(a+1,0),22202;0,m n m n m n n m mn m n m n a a n m n m ======++====+=≠+=时时,m na n m=+故当且仅当取得最大值 考点:1.抛物线的性质.2.最值问题.3.基本不等式的应用. 22.已知函数()xax b f x e x+=(,,0a b R a ∈>且). (1)若2,1a b ==,求函数()f x 的极值; (2)设()(1)()xg x a x e f x =--.① 当1a =时,对任意)(0,x ∈+∞,都有()1g x ≥成立,求b 的最大值; ② 设()()g x g x '为的导函数.若存在1x >,使()()0g x g x '+=成立,求ba的取值范围. 【答案】(1)参考解析; (2)①-1-e -1,②(-1,+∞) 【解析】试题分析:(1)由函数()xax b f x e x+=(,,0a b R a ∈>且),且2,1a b ==,所以对函数()f x 求导,根据导函数的正负性可得到结论(2)①当1a =时,对任意)(0,x ∈+∞,都有()1g x ≥成立,即)(0,x ∈+∞时,(2)1x be x x--≥恒成立. 由此可以通过分离变量或直接求函数的最值求得结果,有分离变量可得b≤x 2-2x -x x e 在x ∈(0,+∞)上恒成立.通过求函数h(x)=x 2-2x -x x e (x >0)的最小值即可得到结论.②若存在1x >,使()()0g x g x '+=.通过表示'()g x 即可得到b a =322321x x x --,所以求出函数u(x)=322321x x x -- (x >1)的单调性即可得到结论.(1)当a =2,b =1时,f (x)=(2+1x)e x,定义域为(-∞,0)∪(0,+∞). 所以f ′(x)=()()2121x x x+-e x. 2分令f ′(x)=0,得x 1=-1,x 2=1,列表由表知f (x)的极大值是f (-1)=e -1,f (x)的极小值是f (12)=分 (2)① 因为g (x)=(ax -a)e x-f (x)=(ax -b x-2a)e x, 当a =1时,g (x)=(x -b x-2)e x. 因为g (x)≥1在x ∈(0,+∞)上恒成立, 所以b≤x 2-2x -xxe 在x ∈(0,+∞)上恒成立. 7分 记h(x)=x 2-2x -x x e (x >0),则h′(x)=()()121xxx e e-+. 当0<x <1时,h′(x)<0,h(x)在(0,1)上是减函数;当x >1时,h′(x)>0,h(x)在(1,+∞)上是增函数;所以h(x)min =h(1)=-1-e -1;所以b 的最大值为-1-e -1. 9分 解法二:因为g (x)=(ax -a)e x-f (x)=(ax -b x-2a)e x, 当a =1时,g (x)=(x -b x-2)e x. 因为g (x)≥1在x ∈(0,+∞)上恒成立, 所以g(2)=-2b e 2>0,因此b <0. 5分g′(x)=(1+2b x )e x +(x -b x -2)e x=()()221x x x b e x --.因为b <0,所以:当0<x <1时,g′(x)<0,g(x)在(0,1)上是减函数;当x >1时,g′(x)>0,g(x)在(1,+∞)上是增函数.所以g(x)min =g(1)=(-1-b)e -17分 因为g (x)≥1在x ∈(0,+∞)上恒成立,所以(-1-b)e -1≥1,解得b≤-1-e -1因此b 的最大值为-1-e -1. 9分②解法一:因为g (x)=(ax -b x -2a)e x ,所以g ′(x)=(2b x +ax -b x -a)e x. 由g (x)+g ′(x)=0,得(ax -b x -2a)e x +(2b x+ax -b x -a)e x=0,整理得2ax 3-3ax 2-2bx +b =0.存在x >1,使g (x)+g ′(x)=0成立.等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. 11分因为a >0,所以b a =322321x x x --.设u(x)=322321x x x --(x >1),则u′(x)=()2233841621x x x ⎡⎤⎛⎫-+⎢⎥⎪⎝⎭⎢⎥⎣⎦-. 因为x >1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以b a >-1,即ba的取值范围为(-1,+∞). 14分 解法二:因为g (x)=(ax -b x -2a)e x ,所以g ′(x)=(2b x +ax -b x -a)e x.由g (x)+g ′(x)=0,得(ax -b x -2a)e x +(2b x+ax -b x -a)e x=0,整理得2ax 3-3ax 2-2bx +b =0.存在x >1,使g (x)+g ′(x)=0成立.等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. 11分设u(x)=2ax 3-3ax 2-2bx +b(x≥1)u′(x)=6ax 2-6ax -2b =6ax(x -1)-2b≥-2b 当b≤0时,u′(x)≥0 此时u(x)在[1,+∞)上单调递增,因此u(x)≥u(1)=-a -b因为存在x >1,2ax 3-3ax 2-2bx +b =0成立 所以只要-a -b <0即可,此时-1<ba≤0 12分 当b >0时,令x 0=34a a34a a+32>1,得u(x 0)=b >0,又u(1)=-a -b <0于是u(x)=0,在(1,x 0)上必有零点 即存在x >1,2ax 3-3ax 2-2bx +b =0成立,此时ba>0 13分综上有ba的取值范围为(-1,+∞)------14分考点:1.函数的极值.2.函数最值.3.函数恒成立问题.4.存在性的问题.5.运算能力.。
高考专题福建省三明市高三五月质量检查数学(文)试题(解析版)
高中数学学习材料金戈铁骑整理制作本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式22121[()()()]n s x x x x x x n ---=-+-++- (13)V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于( )A .1i -+B .1i +C .1i --D .1i -【答案】B 【解析】试题分析:由(1)1i i i -=+.所以选B. 考点:复数的运算.2.已知集合{|02}A x x =<<,{|1}B x x =<,则AB 为( )A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >【答案】B 【解析】试题分析:集合{|02}A x x =<<,{|1}B x x =<,则A B {|01}x x =<<.故选B.考点:1.集合的描述的表示.2.集合的交集.3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是( )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是( )A .0x ∀≤,都有20x x -> B .0x ∀>,都有02≤-x x C .0∃>x ,使得02<-x x D .0x ∃≤,使得20x x ->5.函数32()34f x x x =-+-的单调递增区间是 ( )A .(,0)-?B .(2,0)-C .(0,2)D .(2,)+?6. 某程序框图如图所示,若输入2x π=,则该程序运行后输出的b a ,值分别是( )A .0,1 B. 1,1 C. 1,0 D. 0,0开始输入xx a sin = x b cos = ?b a <a m =b a = mb =是否 输出b a ,结束7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为 ( )A .22B .2C .2D .22 【答案】D 【解析】试题分析:依题意可得所截的弦长是一个以直径为4的等腰三角形的直角边,所以弦长为22.故选D. 考点:1.直线与圆的位置关系.2.解三角形的知识.8.某几何体的三视图如右图所示,则该几何体的表面积是( )A .12+B .2C .222+ D .32111正视图俯视图侧视图111B CDA9.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为( ) A .81 B .41 C .21D .431O12x-y =0xy10. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:(0),()(0);x x g x x x ⎧≥⎪=⎨--<⎪⎩()()ln 0,()ln()0;x x u x x x ⎧>⎪=⎨-<⎪⎩1()h x x x =+;()cos v x x =.其中是“Z 函数”的是( )A .()g xB .()h xC .()u xD .()v x11.在边长为2的等边ABC ∆中,D 是AB 的中点,E 为线段AC 上一动点,则ED EB ⋅的取值范围是( ) A .23[,3]16 B .23[,2]16 C .3[,3]2D .[2,9] 【答案】A 【解析】试题分析:设,2(02)EC x EA x x =∴=-≤≤,1AD DB ==.由ED EB ⋅2222(2)5()()(2)23222x x EA AB EA AD x x x --=+⋅+=---+=-+.所以ED EB ⋅∈23[,3]16.故选A.考点:1.向量的运算.2.二次函数的最值.3.平面向量的基本定理.12.设函数()f x 的导函数为()f x ',那么下列说法正确的是( )A.若()'0f x= ,则x 是函数()f x 的极值点B. 若x 是函数()f x 的极值点,则()'0f x=C. 若x 是函数()f x 的极值点,则()'f x 可能不存在D.若()'0f x=无实根 ,则函数()f x 必无极值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置.13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.【答案】1 【解析】试题分析:假设椭圆的长半轴为a ,半焦距为c .则双曲线的半实轴'a c =,半焦距'c a =.所以两曲线的离心率分别为,,21e e 则12e e ⋅= 1.考点:1.圆锥曲线的基本性质.2.对比归纳的思想.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的 最小值是 .16.定义(,)n F A B 表示所有满足{}12,,,n AB a a a =⋅⋅⋅的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. ….17.(本小题满分12分)某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n 份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6. (Ⅰ)估计所抽取的数学成绩的众数;(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.∴第四组[80,90)的频数:0.024105012⨯⨯=;第五组[90,100]的频数:0.01610508⨯⨯=; 用分层抽样的方法抽取5份得:频率/组距 0.0120.016 0.018 分80 60 50 70 90 100 0.030 0.024∴所求概率:63105P == . ………………………………………………………12分 考点:1.统计图表的识别.2.统计图表中众数的估算.3.分层抽样.4.古典概型.18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一 个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成 公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T .试题解析:(Ⅰ)依题意得512a a d =+,312d ∴=+,所以1d =. ……………………………………………2分 又321()a a q a d q ==+,2q =,1a2a 3a 4a5a 6a 7a 8a 9a……考点:1.等差数列的性质.2.等比数列的性质.3.分类递推的数学思想.19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥(Ⅲ) 若32==AB PD ,, 60=∠ABC ,求三棱锥ABC P -的体积.【答案】(Ⅰ)参考解析;(Ⅱ)参考解析;(Ⅲ)3【解析】试题分析:(Ⅰ)由22==AD DC ,:1:2PE EC =,即可得到线段成比例,即得到直线平行,再根据直线与平面平行的判断定理即可得到结论. PAB EC D(Ⅱ)由平面⊥PAC 平面ABC ,AC PD ⊥于点D ,并且AC 是平面PAC 与平面ABC 的交线,根据平面垂直的性质定理即可得PD 垂直平面ABC ,再根据平面与平面垂直的判断定理即可得到结论.(Ⅲ)由22==AD DC 即可得AC=3.又由32==AB PD ,, 60=∠ABC , 在三角形ABC 中根据余法一:ABC ∆中,,3=AB ,60 =∠ABC 3=AC , 由正弦定理ABC AC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=, 因为AC AB >,所以ACB ABC ∠<∠,则6ACB π∠=,因此2CAB π∠=, …………8分△ABC 的面积233332121=⋅⋅=⋅=∆AB AC S ABC . …………………………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. …………………………12分 法二:ABC ∆中,3=AB , 60=∠ABC 3=AC ,由余弦定理得:60cos 2222⋅⋅-+=BC AB BC AB AC ,所以2360AC AC --=, 所以233(AC AC ==-或舍去). …………………………………8分△ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆ BC AB S ABC . ……………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. ……………………12分 考点:1.线面平行.2.面面垂直.3.三角形的余弦定理.4.三棱锥的体积.20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -.(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积 42MAB S D =?若存在,请求出直线AB 的方程;若不存在,请说明理由.得到方程:2440y ty --=, …………………………………………………6分设11(,)A x y ,22(,)B x y ,则124y y t +=,124y y ⋅=-.…………………7分 121||(||||)2MAB MAF MBS S S S MF y y D D D =+=?∵120y y ⋅<,∴12||||y y +2121212||()4y y y y y y =-=+-241t =+ , ……9分又||2MF =,∴21241422MAB S t D =创+= ……………………………………10分 解得1t =?, ………………………………………………………………11分 故直线AB 的方程为:1x y =±+.即10x y +-=或10x y --=.…………………12分解法二:(Ⅰ)(同解法一)故直线AB 的方程为:(1)y x =±-.即10x y +-=或10x y --=. ………12分 考点:1.抛物线的性质.2.直线与抛物线的关系.3.弦长公式,点到直线的距离.4.运算能力.21.(本小题满分12分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积12121122(,)(,)(,)a a b b a b a b ⊗=⊗=a b . 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q 为)(x f y =的图象上的动点,且满足OQ OP =⊗+m n (其中O 为坐标原点).(Ⅰ)请用0x 表示OP ⊗m ;(Ⅱ)求)(x f y =的表达式并求它的周期;(Ⅲ)把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数)(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数. 因此002,31sin ,2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即003,2sin 2,x x x y π⎧-⎪⎪=⎨⎪=⎪⎩ ………………………………6分 所以11()sin()226y f x x π==-,它的周期为4π. ………………………………8分 (Ⅲ))62sin(21)(π-=x x g 在⎥⎦⎤⎢⎣⎡3,0π上单调递增,在⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 又111(0),(),()43224g g g ππ=-==, ……………………………10分 时,或当4141-21<≤=t t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内只有一个零点;时,当2141<≤t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内有两个零点; 当14t <-或14t >时,函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内没有零点. …………………………12分 考点:1.三角函数的性质.2.向量的数量积.3.新定义问题.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数).(Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.所以曲线()y f x =在1x =处的切线方程为(e 1)e(1)y x --=--,即e 2e 10x y +-+=. …………………………5分又1122(e,())(e,())PA PB x f x x f x ⋅=-⋅-121212(e)(e)(e)(e)(ln 1)(ln 1)x x x x x x =--+----121212(e)(e)(ln ln ln 2)x x x x x x =---+0=从而PA PB ⊥,点A ,B ,P 可构成直角三角形. ………………………14分 考点:1.导数的几何意义.2.函数的极值.3.分类讨论的数学思想.4.向量的数量积.5.运算能力.。
数学_2014年福建省某校高考数学模拟试卷(文科)(5月份)(含答案)
2014年福建省某校高考数学模拟试卷(文科)(5月份)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1. 设复数z1=1+i,z2=2+bi,若z1⋅z2为纯虚数,则实数b=()A 2B −2C 1D −12. 下列求导运算正确的是()A (x+1x )′=1+1x2B (x2cosx)′=−2xsinxC (3x)′=3x log3eD (log2x)′=1xln23. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A −2B −3C −4D −54. 运行下面的程序,如果输入的n是6,那么输出的p是()A 120B 720C 1440D 50405. 将一个总体分为A,B,C三层,其个体数之比为5:2:3,若用分层抽样抽取容量为200的样本,则应从C中抽取的个体数是()A 20B 40C 60D 806. 将函数y=cos(x−π3)的图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度,所得函数图象的一条对称轴为( )A x=π9 B x=π8C x=π2D x=π7. 已知函数f(x)={−2x,(−1≤x≤0),√x,(0<x≤1),则下列图象错误的是()Ay=f(x−1)的图象 B y=f(|x|)的图象 Cy =f(−x) 的图象 Dy =f(x)的图象8.如图,在正方体ABCD −A 1B 1C 1D 1中,点E 、F 分别在A 1D 、AC ,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是( ) A 相交但不垂直B 相交且垂直C 异面D 平行9. 已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →⋅NB →,其中λ为常数,则动点M 的轨迹不可能是( ) A 圆 B 椭圆 C 抛物线 D 双曲线 10. 已知F 1,F 2分别是双曲线x 2a2−y 2b 2=1(a >0, b >0)的左右焦点,P 为双曲线右支上一点,且满足|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率e 的值为( )A 2B 53C 54D 3211. 已知a >b ≥2,现有下列不等式: ①b 2>3b −a ; ②1+4ab >2(1a +1b); ③ab >a +b ; ④log a 3>log b 3. 其中正确的是( )A ②④B ①②C ③④D ①③12. 设A 是整数集的一个非空子集,对于k ∈A ,如果k −1∉A 且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1, 2, 3, 4, 5, 6, 7, 8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有几个( ) A 3 B 4 C 5 D 6二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13. 式子log 3√2743的值为________. 14. 设命题p:2x−1x−1<0,命题q:x 2−(2a +1)x +a(a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________12] .15. 设点(a, b)是区域{x +y −4≤0x >0y >0内的随机点,记A ={关于x 的一元二次函数f(x)=ax 2−4bx +1(a >0)在[1, +∞)上是增函数},则事件A 发生的概率是________.16.如图所示,△ABC 是边长为1的正三角形,且点P 在边BC 上运动.当PA →⋅PC →取得最小值时,则cos∠PAB 的值为________.三、解答题:本大题共6小题,共74分.解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤.17. 已知等差数列{a n }中,S n 是它前n 项和,设a 6=2,S 10=10. (1)求数列{a n }的通项公式;(2)若从数列{a n }中依次取出第2项,第4项,第8项,…,第2n 项,…,按取出的顺序组成一个新数列{b n },试求数列{b n }的前n 项和T n .18. 某学校甲、乙两位学生参加数学竞赛的培训,在培训期间,他们参加5次预赛,成绩记录如下:(II)现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参赛更合适?并说明理由.19. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且∠A 满足:2cos 2A −2√3sinAcosA =−1.(1)若a =2√3,c =2,求△ABC 的面积; (2)求b−2ca⋅cos(60∘+C)的值.20. 如图,在四棱锥P −ABCD 中,底面ABCD 是边长为3的正方形,平面PCD ⊥底面ABCD ,E 是PC 的中点. (1)求证:PA // 平面BDE ; (2)若PD =PC =√22DC ,求证:平面PDA ⊥平面PCB ;(3)若侧棱PD ⊥底面ABCD ,PD =4.求△PAD 以PA 为轴旋转所围成的几何体体积. 21. 已知椭圆C:x 2a 2+y 2b 2=1,(a >b >0),直线(m +3)x +(1−2m)y −m −3=0(m ∈R)恒过的定点F 为椭圆的一个焦点,且椭圆上的点到焦点F 的最大距离为3,(1)求椭圆C的方程;(2)若直线MN为垂直于x轴的动弦,且M、N均在椭圆C上,定点T(4, 0),直线MF与直线NT交于点S.求证:①点S恒在椭圆C上;②求△MST面积的最大值.22. 已知函数f(x)=1x2−x+2alnx有两个极值点x1,x2且x1<x22(1)求实数a的取值范围,并写出函数f(x)的单调区间;(2)判断方程:f(x)=(a+1)x根的个数并说明理由;(3)利用消元法表示出函数f(x2),利用导数研究函数f(x2)的单调性,即可证明不等式.2014年福建省某校高考数学模拟试卷(文科)(5月份)答案1. A2. D3. C4. A5. C6. C7. B8. D9. C10. B11. D12. D13. −1414. [0,15. 1316. 5√132617. 解:(1)设数列{a n}首项,公差分别为a1,d.则由已知得a1+5d=2①10a1+10×9d=10②2联立①②解得a1=−8,d=2,所以a n=2n−10(n∈N∗).(2)b n=a2n=2⋅2n−10=2n+1−10(n∈N∗),−10n=2n+2−10n−4.所以T n=b1+b2+...+b n=4(1−2n)1−218. 解:(1)作出的茎叶图如下:(2)派甲参赛比较合适.理由如下: x 甲¯=15(82+82+79+95+87)=85,x 乙¯=15(95+75+80+90+85)=85,s 甲2=15[(79−85)2+(82−85)2+(82−85)2+(87−85)2+(95−85)2=31.6, s 乙2=15[(75−85)2+(80−85)2+(85−85)2+(90−85)2+(95−85)2=50,…∵ x 甲¯=x 乙¯,s 甲2<s 乙2,∴ 甲的成绩较稳定,派甲参赛比较合适. 19. 解:(1)∵ 2cos 2A −2√3sinAcosA =−1, ∴ 1+cos2A −√3sin2A =1−2(√32sin2A −12cos2A)=1−2sin(2A −π6)=−1,即sin(2A −π6)=1∵ A 为三角形内角,即0<A <π, ∴ 2A −π6∈(−π6, 11π6),∴ 2A −π6=π2,即A =π3, 在△ABC 中,由余弦定理得: cosA =b 2+c 2−a 22bc=b 2+4−124b=12,解得:b =4或b =−2(舍去), ∴ S △ABC =12bcsinA =12×4×2×√32=2√3;(2)已知等式b−2ca⋅cos(60∘+C),利用正弦定理asinA =bsinB =csinC =2R , 变形得:2RsinB−2×2RsinC2RsinA⋅cos(60∘+C)=sinB −2sinC sinA ⋅cos(60∘+C)=sin(120∘−C)−2sinC sinA ⋅cos(60∘+C) =√32cosC−32sinC √32cos(60=√3cos(60∘√32cos(60=2.20. (1)证明:连接AC 交BD 于O ,连接EO .∵ ABCD 是正方形,∴ O 为AC 中点, ∵ 已知E 为PC 的中点, ∴ OE // PA .…又∵ OE ⊂平面BDE ,PA ⊄平面BDE ,∴ PA // 平面BDE .… (2)证明:在△DPC 中,PD =PC =√22DC ,∴ PD 2+PC 2=DC 2,即DP ⊥PC .…又已知:平面PCD ⊥底面ABCD ,平面PCD ∩平面ABCD =DC ,BC ⊥DC ; ∴ BC ⊥平面PDC ,PD ⊂平面PDC ,∴ PD ⊥BC ,… BC 与PC 相交且在平面PBC 内.∴ PD ⊥平面PCB ,PD ⊂平面PDA ,∴ 平面PDA ⊥平面PCB .…(3)解:过D 作PA 的垂线.垂足为H ,则几何体为以DH 为半径,分别以PH ,AH 为高的两个圆锥的组合体.…侧棱PD ⊥底面ABCD ,∴ PD ⊥DA ,PD =4,DA =DC =3,∴ PA =5 DH =PD⋅DA PA=4×35=125, (10)V =13πDH 2⋅PH +13πDH 2⋅AH =13πDH 2⋅PA =13π×(125)2×5=485π…21. 解:(1)直线(m +3)x +(1−2m)y −m −3=0可化为 m(x −2y −1)+3x +y −3=0, 所以{x −2y −1=03x +y −3=0,解得{x =1y =0.所以F(1, 0).则c =1,又a +c =3,所以a =2,则b 2=a 2−c 2=3. 所以椭圆方程为x 24+y 23=1;(2)①设直线MN 的方程为x =s ,M 的坐标为(s, t),N 的坐标为(s, −t).且s 、t 满足3s 2+4t 2=12.MF 的直线方程为y =ts−1(x −1),NT 的直线方程为y =−ts−4(x −4). 联立解得交点S(5s−82s−5,3t 2s−5),代入椭圆方程3x 2+4y 2=12得, 3(5s −8)2+36t 2=12(2s −5)2,化简得:3s 2+4t 2=12. 所以点S 恒在椭圆C 上;②直线MS 过点F(1, 0),设方程为x =my +1,M(x 1, y 1),S(x 2, y 2).S △MST =12×3|y 1−y 2|=32√(y 1+y 2)2−4y 1y 2.联立{x =my +13x 2+4y 2=12,得(3m 2+4)y 2+6my −9=0. y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 所以S △MST =18√m 2+1(3m 2+4)2.设m 2+1=u(u ≥1),则m 2+1(3m 2+4)2=u(3u+1)2=19u+1u+6.由对勾函数可知9u +1u 在(0,13)上位减函数,(13,+∞)上为增函数, 所以9u +1u 的最小值为10.所以S △MST ≤18×14=92.22. 解:(1)由题设知,函数f(x)的定义域为(0, +∞), f′(x)=x −1+2a x=x 2−x+2ax,且f′(x)=0有两个不同的根,∴ x 2−x +2a =0,即2a =−x 2+x 且x >0有两个交点. 2a =−x 2+x =−(x −12)2+14∈(0, 14)有两个交点 求得:解得0<a <18, ∴ a 的取值范围是(0, 18).又x 1=1−√1−8a2,x 2=1+√1−8a2,∴ 0<x <x 1或x >x 2,f′(x)>0, 当x 1<x <x 2时,f′(x)<0, ∴ f(x)单调增区间为(0, 1−√1−8a2)和(1+√1−8a2, +∞).单调减区间为(1−√1−8a 2, 1+√1−8a2).(2)由已知方程:f(x)=(a +1)x ,即12x 2−x +2alnx −ax −x =0 ∴ 令m(x)=12x 2−(a +2)x +2alnx ,m′(x)=x −(a +2)+2a x=x 2−(a+2)x+2ax=(x−a)(x−2)x,m(a)=−12a 2−2a +2alna <0,m(2)=−2−2a +2aln2<0,x →0时,m(x)→−∞; x →+∞时,m(x)→+∞; ∴ m(x)有且只有1个零点, ∴ 原方程有且只有一个根. (3)由(1)可知{x 1+x 2=1x 1x 2=2a ,则2a =(1−x 2)x 2, 并且由1+√1−8a2得:x 2∈(12,1),∵ f(x)=12x 2−x +2alnx =12x 2−x +x 1x 2lnx ,f(x 2)=12x 22−x 2+(x 2−x 22)lnx 2,则f′(x 2)=x 2−1+(1−2x 2)lnx 2+x 2−x 22x 2=(1−2x 2)lnx 2,其中x 2∈(12,1),∴ f′(x 2)>0,函数f(x)在(12,1)递增; ∴ f(x)>f(12)=12×14−12+(12−14)⋅ln 12=−3−2ln28.故f(x 2)>−3−2ln28.。
福建省三明市2014届高三5月质量检查文科数学试卷(带解析)
福建省三明市2014届高三5月质量检查文科数学试卷(带解析)1)A C【答案】B【解析】所以选B.考点:复数的运算.2)A【答案】B【解析】B{|x=故选B.考点:1.集合的描述的表示.2.集合的交集.3的三个散点图,它们从左到右的对应关系依次是()A.正相关、负相关、不相关 B.负相关、不相关、正相关C.负相关、正相关、不相关 D.正相关、不相关、负相关【答案】D【解析】试题分析:有相关性可知从左到右的第一个图是正相关,第二个图相关性不明确,所以不相关,第三个图是负相关.故选D.考点:1.相关性的概念.2.数形结合的数学思想.4.命题:)AC【答案】C【解析】试题分析:由命题:命题:.故选C.考点:1.命题的否定.2.全称命题与特称命题的关系. 5( )A【答案】C 【解析】故选C.考点:1.函数的导数.2.函数的单调性. 6)A【答案】A 【解析】.故选A.考点:1.程序框图.2.换元的程序.7( )A【答案】D【解析】试题分析:依题意可得所截的弦长是一个以直径为4的等腰三角形的直角边,所以弦长为故选D.考点:1.直线与圆的位置关系.2.解三角形的知识.8.某几何体的三视图如右图所示,则该几何体的表面积是()A【答案】A【解析】试题分析:依题意可得三棱锥的表面积由四个直角三角形构成.故选A.考点:1.三视图.2.几何体的表面积.3.空间向量能力.9)A正视图俯视图侧视图【答案】D 【解析】x,y 的取值范围如图所示.所以所求的概率为故选D.考点:1.线性规划.2.几何概型.10..现给出下列四个函数:数”的是( )ABCD【答案】A【解析】.且是递增函数;偶函数所以B 不正确为奇函数但当时所以CD 不正确.故选A.考点:1.函数的性质.2.分段函数的性质.3.新定义.4.函数的单调性.11.在边长为2的取值范 围是( ) A【答案】A【解析】试题分析:设,.由.所以故选A.考点:1.向量的运算.2.二次函数的最值.3.平面向量的基本定理.12)A.的极值点B. 是函数C. )x可能不存在D.必无极值点【答案】B【解析】试题分析:依题意可得函数的导函数为零是函数存在极值的必要不充分条件.所以A、C选项不正确.B选项正确.,但函数0,所以D选项不正确.故选B.考点:1.原函数与导函数的关系.2.反正法的思想.13【答案】21【解析】考点:1.等差数列的性质.2.等差数列的求和公式.14.已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心【答案】1【解析】试题分析:考点:1.圆锥曲线的基本性质.2.对比归纳的思想.15最小值是 . 【答案】2 【解析】试题分析:依题意可得.所以2.考点:1.直线间的位置关系.2.基本不等式.16{1,B a =2(,),F A B ⋅⋅⋅【解析】况,并计算出排序的个数.即属于集合的拆分问题.如果2,3, ,n个元素的个数分别为.所以)=++另解用递推的方法解决.考点:1.拆分的数学思想.2.集合的子集.3.分类归纳的数学思想.17.某校为了解高一期末数学考试的情况,进行成绩分析,得到数学成绩频率分布直方图(如图所示)数为6.(1)估计所抽取的数学成绩的众数;(25个学生,并从这5个学生中任取21人的概率.【答案】(1)75;(2【解析】 试题分析:(1)由直方图估计所抽取的数学成绩的众数,概率最大数学成绩的是在70-80(260.12.所以总人数为50.0.24,0.16,所以这两组的抽取的人数分别为12,8人. 用分层抽样的方法这两组中共抽取5个学生,所以这两组分别抽取了3,2人. 从这5个学生中任取2人进行点评共有10种情况.1人的共有6种.所以即可求得结论.(1)由频率分布直方图可知:样本的众数为75. 3分 (24分用分层抽样的方法抽取5份得:7分则从5个同学中任取210种.1共6种.. 12分考点:1.统计图表的识别.2.统计图表中众数的估算.3.分层抽样.4.古典概型.18行的第一.(1(2【答案】(1(2【解析】试题分析:(1差,又由第二行起,.(2所以由等比数列的前n项和的公式可求的结论.(12分所以qd,的值分别为 6分(2n1由(17分又根据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列,9分12分考点:1.等差数列的性质.2.等比数列的性质.3.分类递推的数学思想.19(1(2(3【答案】(1)参考解析;(2)参考解析;(3【解析】试题分析:(1平行,再根据直线与平面平行的判断定理即可得到结论.(2AC是平面PAC与平面ABC的交线,根据平面垂直的性质定理即可得PD垂直平面ABC,再根据平面与平面垂直的判断定理即可得到结论.(3)AC=3.在三角形ABC中根据余弦定理即可求得BC的值.所以三角形ABC的面积可以求出来,由于PD垂直于平面ABC所以PD为三棱锥的高,即可求得结论.= 2分(1EC DC⊄PABDE平面3分(2分分8分10分12分8分10分12分考点:1.线面平行.2.面面垂直.3.三角形的余弦定理.4.三棱锥的体积.20.(1)求抛物线的方程,并写出焦点坐标;(2【答案】(1)参考解析;(2【解析】试题分析:(1的值,即可得到抛物线方程与焦点坐标(2x轴,依题意不可能垂直于y轴,所以假设直线再联立抛物线方程,由韦达定理以及弦长公式即可得到AB的弦长.由点到直线的距离公式即可得到点M到直线AB的距离..解法一:(14分(26分7分, 9分分11分12分解法二:(1)(同解法一)(2不符合题意. 5分6分7分9分10分11分12分考点:1.抛物线的性质.2.直线与抛物线的关系.3.弦长公式,点到直线的距离.4.运算能力.21..(1(2(3,得到函数.个数.【答案】(1(2)参考解析;(3)参考解析【解析】试题分析:(1)由向量,定义一种向量积..(2)由(1.(3)由(2.(12分 (2 (,)(2x y =4分分8分(310分12分考点:1.三角函数的性质.2.向量的数量积.3.新定义问题. 22.(1(2)一个极值点,且足条件:【答案】(1(2)(ⅱ)参考解析【解析】试题分析:(1即可求出结论.(2)(ⅰ)由(1.已知条件即方程的根的个数来判定即可得到三点是不同点的点.通过向量的数量积可得到三点可构成直角三角形.(1 2分4分5分(2)8分9分10分11分由上可得点A,14分考点:1.导数的几何意义.2.函数的极值.3.分类讨论的数学思想.4.向量的数量积.5.运算能力.。
市高中毕业班质量检查文科数学试题
2014年三明市普通高中毕业班质量检查文 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式22121[()()()]n s x x x x x x n ---=-+-++- (13)V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只 有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于A .1i -+B .1i +C .1i --D .1i - 2.已知集合{|02}A x x =<<,{|1}B x x =<,则A B I 为A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关 4.命题:“0>∀x ,都有02≥-x x ”的否定是A .0x ∀≤,都有20x x ->B .0x ∀>,都有02≤-x x C .0∃>x ,使得02<-x x D .0x ∃≤,使得20x x -> 5.函数32()34f x x x =-+-的单调递增区间是A .)0,(-∞B .(2,0)-C .(0,2)D .),2(+∞ 6. 某程序框图如图所示,若输入2x π=,则该程序运行后输出的b a ,值分别是A .0,1 B. 1,1 C. 1,0 D. 0,0开始 输入xx a sin = x b cos =?b a <a m =b a =mb =是否 输出b a ,结束7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为A B .2 D .8.某几何体的三视图如右图所示,则该几何体的表面积是A .1B .2C .22+ D .329.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为A .81 B .41 C .21D .4310. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:(0),()(0);x g x x ≥=<⎪⎩()()ln 0,()ln()0;x x u x x x ⎧>⎪=⎨-<⎪⎩ 1()h x x x=+;()cos v x x =.其中是“Z 函数”的是A .()g xB .()h xC .()u xD .()v x11.在边长为2的等边ABC ∆中,D 是AB 的中点,E 为线段AC 上一动点,则⋅的取值范围是A .23[,3]16 B .23[,2]16 C .3[,3]2D .[2,9] 12.设函数()f x 的导函数为()f x ',那么下列说法正确的是 A.若()'0fx =o ,则x o 是函数()f x 的极值点B. 若x o 是函数()f x 的极值点,则()'0fx =oC. 若x o 是函数()f x 的极值点,则()'f x o 可能不存在 D.若()'0fx =o 无实根 ,则函数()f x 必无极值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的 最小值是 .16.定义(,)n F A B 表示所有满足{}12,,,n A B a a a =⋅⋅⋅U 的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.正视图俯视图侧视图三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n 份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数; (Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T .19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥ (Ⅲ) 若32==AB PD ,,ο60=∠ABC ,求三棱锥ABC P -的体积.1a2a 3a 4a5a 6a 7a 8a 9a……PABECD20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -.(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积MAB S D =AB 的方程;若不存在,请说明理由.21.(本小题满分12分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积12121122(,)(,)(,)a a b b a b a b ⊗=⊗=a b . 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q 为)(x f y =的图象上的动点,且满足OQ OP =⊗+u u u r u u u rm n (其中O 为坐标原点). (Ⅰ)请用0x 表示OP ⊗u u u rm ; (Ⅱ)求)(x f y =的表达式并求它的周期; (Ⅲ)把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数 )(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数). (Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.2014年三明市普通高中毕业班质量检查文科数学试题参考解答及评分标准一、选择题:1.B 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.A 11.A 12.B 二、填空题:13.21; 14.1; 15.2; 16.3n. 三、解答题:17.解:(Ⅰ)由频率分布直方图可知:样本的众数为75. ……………………………3分 (Ⅱ)由频率分布直方图可得:第三组[50,60)的频率:0.012100.12⨯=,所以60.1250n =÷=, ………………………………………………………………4分∴第四组[80,90)的频数:0.024105012⨯⨯=;第五组[90,100]的频数:0.01610508⨯⨯=; 用分层抽样的方法抽取5份得: 第四组[80,90]抽取:125320⨯=;第五组[90,100]抽取:85220⨯=. …………7分 记抽到第四组[80,90)的三位同学为123,,A A A ,抽到第五组[90,100]的两位同学为12,B B 则从5个同学中任取2人的基本事件有:1213111223(,),(,),(,),(,),(,),A A A A A B A B A A2122(,),(,)A B A B ,313212(,),(,),(,)A B A B B B ,共10种.其中分数在[90,100]恰有1人有:111221223132(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B ,共6种.∴所求概率:63105P == . ………………………………………………………12分 18.解:(Ⅰ)依题意得512a a d =+,312d ∴=+,所以1d =. ……………………………………………2分 又321()a a q a d q ==+Q ,2q =,所以q d ,的值分别为1,2. …………………………………6分 (Ⅱ)记第n 行第1个数为A ,由(1)可知:1(1)A a n d n =+-=, ………………7分 又根据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列, 所以第n 行共有(21)n -个数, ………………………………9分∴第n 行各数为以n 为首项,2q =为公比的等比数列,因此其总数的和2121(12)212n n n T n n ---==--g . …………………………12分 19.解:(Ⅰ)2,//PE ADDE PA EC DC==∴Q,……2分 ,PAB DE 平面⊄Θ,PAB PA 平面⊂;平面PAB DE //∴ ………………3分(Ⅱ)因为平面⊥PAC 平面ABC , 且平面PAC I 平面ABC AC =,PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC , ……………6分 又⊂PD 平面PAC ,所以平面⊥PAC 平面ABC .…………7分 (Ⅲ)由(Ⅱ)可知PD ⊥平面ABC .法一:ABC ∆中,,3=AB ,60ο=∠ABC 3=AC ,由正弦定理ABCAC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=, 因为AC AB >,所以ACB ABC ∠<∠,则6ACB π∠=,因此2CAB π∠=, …………8分△ABC 的面积233332121=⋅⋅=⋅=∆AB AC S ABC . …………………………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. …………………………12分 法二:ABC ∆中,3=AB ,ο60=∠ABC 3=AC ,由余弦定理得:ο60cos 2222⋅⋅-+=BC AB BC AB AC,所以260AC -=,所以AC AC ==舍去). …………………………………8分 △ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆οBC AB S ABC . ……………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. ……………………12分 20.解法一:(Ⅰ)由已知得:12p-=-,从而抛物线方程为24y x =, 焦点坐标为(1,0)F . ……………………4分 (Ⅱ)由题意,设:AB 1x ty =+,并与24y x =联立,得到方程:2440y ty --=, …………………………………………………6分PABECD设11(,)A x y ,22(,)B x y ,则124y y t +=,124y y ⋅=-.…………………7分121||(||||)2MAB MAF MBS S S S MF y y D D D =+=?∵120y y ⋅<,∴12||||y y+12||y y =-==, ……9分又||2MF =,∴122MAB S D =创……………………………………10分 解得1t =?, ………………………………………………………………11分 故直线AB 的方程为:1x y =±+.即10x y +-=或10x y --=.…………………12分 解法二:(Ⅰ)(同解法一)(Ⅱ)当AB x ⊥轴时,||24AB p ==,11||||24422MAB S MF AB D =?创=, 不符合题意. ……………………………………………………………5分 故设:AB (1)y k x =-(0k ¹),并与24y x =联立,得到方程:2222(24)0k x k x k -++=, ……………………………6分设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =. …………………7分 12||=AB x x p ++224(1)=k k +,点M 到直线AB的距离为d ==, ………………9分∴221141||22MAB k S AB dk D +=?创()== …………10分 解得1k =?, …………………………………………………………11分 故直线AB 的方程为:(1)y x =±-.即10x y +-=或10x y --=. ………12分21.解:(Ⅰ)000011(2,)(2,sin )22OP x y x x ⊗==u u u r m , ……………2分(Ⅱ)OQ OP =⊗+u u u r u u u rQ m n ,所以000011(,)(2,sin )(,0)(2,sin )2332x y x x x x ππ=+=+,……………………4分 因此002,31sin ,2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即003,2sin 2,x x x y π⎧-⎪⎪=⎨⎪=⎪⎩ ………………………………6分 所以11()sin()226y f x x π==-,它的周期为4π. ………………………………8分(Ⅲ))62sin(21)(π-=x x g 在⎥⎦⎤⎢⎣⎡3,0π上单调递增,在⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 又111(0),(),()43224g g g ππ=-==, ……………………………10分时,或当4141-21<≤=t t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内只有一个零点; 时,当2141<≤t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内有两个零点; 当14t <-或14t >时,函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内没有零点. …………………………12分 22. 解:(Ⅰ)e()ln f x x x'=-, ……………………………………2分 (1)e f '=-,又(1)e 1f =-, …………………………………………4分所以曲线()y f x =在1x =处的切线方程为(e 1)e(1)y x --=--,即e 2e 10x y +-+=. …………………………5分 (Ⅱ)(ⅰ)对于e()ln f x x x '=-,定义域为(0,)+?. 当0e x <<时,ln 1x <,e 1x -<-,∴e()ln 0f x x x'=-<;当e x =时,()110f x '=-=; 当e x >时,ln 1x >,e 1x ->-,∴e()ln 0f x x x'=->, ………………8分 所以()f x 存在唯一的极值点e ,∴e m =,则点P 为(e,0). …………………9分 (ⅱ)若1e x =,则122ln ln 1x x x =+,122ln ln 2ln 2x x x ⋅+=+, 与条件1212ln ln ln 2x x x x ⋅=⋅+不符,从而得1e x ¹.同理可得2e x ¹. ………………………………………………10分若12x x =,由1212ln ln ln 2x x x x ⋅=⋅+211(ln )2ln 20x x ⇒-+=,此方程无实数解,从而得12x x ¹. ………………………………………………………11分 由上可得点A ,B ,P 两两不重合.又1122(e,())(e,())PA PB x f x x f x ⋅=-⋅-u u u r u u u r121212(e)(e)(e)(e)(ln 1)(ln 1)x x x x x x =--+----121212(e)(e)(ln ln ln 2)x x x x x x =---+0=从而PA PB ⊥,点A ,B ,P 可构成直角三角形. ………………………14分。
2014-2015高三(文)期考试卷答案(定稿卷答案)
三明市B 片区高中联盟校2014-2015学年第一学期阶段性考试高三数学(文科)试题参考答案13、3 14、0.85 15、 4- 16、 83π 三、解答题(本题共74分) 17.(本小题12分)解:(Ⅰ)依题意727735a-=,∴100a = ………………………………………………………3分 (Ⅱ)1151201251281321245x ++++== ………………………………………………………5分 ∴这5名考生的语文成绩的方差()()()()()22222211151241201241251241281241321245s ⎡⎤=⨯-+-+-+-+-⎣⎦2222219414835.65⎡⎤=⨯++++=⎣⎦…………………………………………………………………8分 (III)设成绩不低于550分的文科5名考生分别为a 、b 、c 、d 、e, 成绩不低于550分的理科2名考生分别为A 、B ,则所有可能出现的结果有:(a,b), (a,c),(a,d),(a,e),(a,A),(a,B),(b,c),(b,d),(b,e),(b,A),(b,B),(c,d),(c,e),(c,A),(c,B),(d,e), (d,A),(d,B),(e,A),(e,B),(A,B)总共有21种…………………………………………………………………………………………10分 设至少抽到一名理科生的事件为M ,则事件M 发生的结果共有(a,A),(a,B),(b,A),(b,B), (c,A),(c,B). (d,A),(d,B),(e,A),(e,B),(A,B)共11种……………………………………………………………………………………………………11分 故11()21P M =即在成绩不低于550分的文理科所有考生中抽取2名进一步质量分析,至少抽到一名理 科生的概率为1121…………………………………………………………………………………………12分 18.(本小题12分) 解:(Ⅰ)设等比数列{}n a 的公比为q 由221,33a q ==得,112,3a q ==…………………………………………………………………2分 所以1123n n a -⎛⎫=⋅ ⎪⎝⎭……………………………………………………………………………………4分12[1]133[1]1313n nn S ⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-……………………………………………………………………6分 (Ⅱ)由(Ⅰ)可知13[1]3nn S ⎛⎫=- ⎪⎝⎭故33log (3)21n n b n S n =+-=+……………………………………………………………………8分 所以数列11{}n n b b +的前n 项和 1113557(21)(23)n T n n =+++⨯⨯++=1111111[()()()]235572123n n -+-++-++ =111()2323n -+=69nn +……………………………………………………………………………12分 19(本小题12分)(Ⅰ)证明:连接AC 交BD 于点O ,连接MO ,底面ABCD 是正方形,故O 为AC 的中点, 又M 为PC 的中点,∴MO 是∆PAC 的中位线,∴PA//MO …………………………………………1分又PA ⊄平面BDM ,MO ⊂平面BDM∴PA ∥平面BDM …………………………………3分 (Ⅱ)解:取AD 的中点QPA=PD ∴P Q ⊥AD又平面PAD ⊥平面ABCD ,平面PAD⋂平面ABCD=AD ,PQ ⊂平面PAD∴PQ ⊥平面ABCD ……………………………………………………………………………6分 由PA=PD=AD=4,得PQ= 由底面ABCD 是边长为4的正方形, 得14482BCD S ∆=⨯⨯= ∴P B C D V -=118333BCD S PQ ∆⋅=⨯⨯= 即三棱锥P-BCD 的体积是3……………………………………………………………………8分(III)当N 为AB 中点时,MN PCD ⊥平面,………………………………………………………9分理由如下:当N 为AB 中点时,取PD 的中点R ,连接,,MN MR AR ,则11//,//22RM DC AN DC ∴//RM AN RM AN =且∴四边形ANMR 是平行四边形。
高考专题福建省三明市高三五月质量检查数学(文)试题(解析版)
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.
2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.
3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回.
参考公式:
样本数据12,x x ,…,n x 的标准差 锥体体积公式
22121[()()()]n s x x x x x x n
---=-+-++-… 13V Sh = 其中x -
为样本平均数 其中S 为底面面积,h 为高
柱体体积公式 球的表面积、体积公式 V Sh = 2344,3
S R V R ==ππ 其中S 为底面面积,h 为高 其中R 为球的半径
第I 卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.设i 是虚数单位,那么复数(1i)i -等于( )
A .1i -+
B .1i +
C .1i --
D .1i - 【答案】B
【解析】
试题分析:由(1)1i i i -=+.所以选B.
考点:复数的运算.
2.已知集合{|02}A x x =<<,{|1}B x x =<,则A B 为( ) A .{|0}x x < B .{|01}x x << C .{|12}x x << D .{|2}x x >。
福建省三明市2014届高三5月质量检查理科数学试卷(带解析)
福建省三明市2014届高三5月质量检查理科数学试卷(带解析)1)A 【答案】D 【解析】故选D. 考点:复数的运算.2)A B C D 【答案】B 【解析】试题分析:由,.所以B {3}x =故选B. 考点:1.集合的运算.2.对数不等式.3.指数不等式.3.观察下列关于两个变量 )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关 【答案】D 【解析】试题分析:有相关性可知从左到右的第一个图是正相关,第二个图相关性不明确,所以不相关,第三个图是负相关.故选D.考点:1.相关性的概念.2.数形结合的数学思想.4 )AC【答案】C【解析】A不正确;所以B不正确;C正确.若.考点:1.直线与平面的位置关系.2.平面与平面的位置关系.3.空间想象力.5.5项的二项式系数最大,是()A.-56 B.-35 C.35 D.56【答案】A【解析】5项的二项式系数最大,即只有第5项的二项式系数最大即.所以二项式的展开式的通项为..所以项的系数是故选A考点:1.二项式定理.2.归纳推理的数学思想.3.组合数的计算.6.命函是增函数,命函数)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】D【解析】试题分析:.故选D.考点:1.指数函数的单调性.2.幂型函数的单调性.7方程为()A【答案】A 【解析】试题分析:所以渐近线方程为故选A.考点:1.椭圆的性质.2.双曲线的性质.3.双曲线的标准方程.8.如图是某个四面体的三视图,若在该四面体的外接球内任取一点,则点落在四面体内的概率为()A【答案】C【解析】体积为12.球的直三棱锥的三个两两垂直的棱为长方体的体对角线,即所以点落在四面体内的故选C.考点:1.三视图的知识.2.球的内接几何体.3.概率问题.4.空间想象力.9( )A .1B .2C .3D .4 【答案】B 【解析】所即等.如图所示.所以共有两个交点.故选B.考点:1.分段函数的性质.2.函数的零点问题.3.等价转换的数学能力.4.分类讨论的数学思想.10.)A .递增数列B .递减数列C .常数列D .摆动数列 【答案】C 【解析】 试题分析:,可得1.又由1的等差数列.同样当1的等差数列.1的等差数故选C.考点:1.数列的递推思想.2.等差数列的性质.3.不等式的夹击为等式的含义.11轴所围成的图形的面积是.【解析】考点:1.定积分表示曲变形面积.2.导数的逆运算.12,则输出的结果是__ __.【答案】62【解析】试题分析:由时得;时得;时得;时得;时得.所以输出的是62.考点:1.程序框图.2.递推归纳的数学思想.2n13值是 .【答案】5 【解析】A (2,1考点:1.线性规划问题.2.列举对比数学思想.14.已知矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,则旋转形成的圆柱的侧面积的最大值为 . 【答案】81 【解析】试题分析:,以x长的变为轴旋转成的圆柱的侧面积为.所以当时,考点:1.旋转体的知识.2.函数的最值问题.154个条件:.:其中可以构成“对称集”的有.(把所有正确的序号都填上)【答案】①③【解析】试题分析:运算为普通加法,(ⅰ)显然符合,所以(ⅱ)符合,由此(ⅲ)、(ⅳ)符合.减法不存在,使得对,都有a.所以②不正确;所以(ⅱ)符合,显然(ⅲ)、(ⅳ)符合条件.综上①③符合题意.考点:1.新定义的问题.2.数集的运算.3.列举递推的思想.16.某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),.若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(1)在上述抽取的40件产品中任取2件,期(2)若从流水线上任取3件产品,求恰有2件合格产品的概率.【答案】(1)参考解析;(2【解析】 试题分析:(1)由于重量超过495克但不超过510克的产品为合格产品,且视频率为概率,所以根据样本的频率分布直方图可计算出合格产品的数量和不合格产品的数量.合格产品的数量,即可得求得相应的概率,从而根据数学期望的公式,求得结论.(2)由于任意抽取一件为合格品的概率为0.8.所以从流水线上任取3件产品,恰有2件合(1)由样本的频率分布直方图得,合格产品的频率为2 分所以抽取的403 分 0,1,2, 4分7分9分 (2)因为从流水线上任取1 10分所以从流水线上任取3件产品,恰有2件合格产品的概率为13分考点:1.统计的知识.2.概率的知识.3.阅读能力.17平面平面,若,,(1(2【答案】(1)参考解析;(2【解析】试题分析:(1)在三角形PAO所以又平平面PAD.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为 1分3分4分5分6分(27分分9分量. 11分一个法向量. 所以AB ⋅n n n8(81⋅=, 12分6=n . 13分 考点:1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.18.且焦点(I(2请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.【答案】(1;(2)参考解析 【解析】试题分析:(1)由点F从而得到抛物线方程.(2)根据题意共有三种情况:i)由直线AB表示出点D,B .ii)D,B 的坐标即可得到点A,O,D 三点共线,即可得到结论.iii)A,B 的坐标关系即可得到点A,F,B 三点共线,即得到结论.(I分分 (2.5分6分8分9分12分5分6分8分9分10分12分分分6分8分10分由于244(1)()(1)kk---⋅-=12分13分考点:1.抛物线的性质.2.直线与抛物线位置关系.3.韦达定理的应用.4.三点共线的判定.19.(1;(2来的2倍(纵坐标不变)(3量”;若不存在,请说明理由.【答案】(1)(1,1);(2;(3)不存在“相伴向量”【解析】试题分析:(1).再将.(2上所有点的横坐标伸长到原来的2倍(纵坐标不变),通过解三角方程即可得到所求的结论.(3.通过反证法的思想,可证明不.(11分2分1,1). 3分(2 4分2倍(纵坐标不变),5分6分8分∴. 10分(3,11分. 13分(1分)考点:1.三角函数的性质.2.三角恒等变换.3.三角函数的图象.4.新定义问题.5.反正的思想.20.在点(1(2(3.【答案】(1;(2;(3)2个【解析】试题分析:(1)由函在的切线方程为所以对函数求导,根据斜率为1以及过点(1,0)两个条件即可求出结论.(2..(3形时.通过求导求出两函数的切线的斜率,即可得到这两斜率不可能是相等,所以依题意可得到两切线倾斜角有两倍的关系,再通过解方程和函数的单调性的判断即可得到结论.(13分5分有一个极值点. 6分若,,当时;当时若,即时,当时;当时8分(39分11分递数有2个. 14分考点:1.导数的几何意义.2.函数的极值.3.函数导数的应用.4.分析问题解决问题的能力.5.等价变换的数学思想.21(1(2)的方程.【答案】(1;(2【解析】试题分析:(1的矩阵A 对应的行列式,即可求出矩阵A 的逆矩阵,所以矩阵MA(2)求出该点在矩阵的作用下的对应的点,根据坐标关系求出对应点的方程.(12分3分 (2y ⎝⎭,x y ''=-'分7分考点:1.逆矩阵.2.矩阵变换.22(1(2【答案】(1)参考解析;(2【解析】试题分析:(1)半径为1,根据直线的参数再根据极坐标与普通方程相互转化即可得结论.(2式,再根据三角函数的性质得到的结论.(11分分3分(25分7分考点:1.极坐标与参数方程.2.点到直线的距离.3.三角函数的最值问题.23(1(2)【答案】(1(2【解析】试题分析:(1所以将x分为三.(2)存在实使立,即等价于函数.(12分3分(2 4分5分=”,7分考点:1.绝对值不等式.2.柯西不等式.第21 页共21 页。
2024届福建省三明市普通高中高三毕业班5月质量检测数学参考答案
三明市2024年普通高中高三毕业班质量检测数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分.1.C 2.C 3.D 4.A 5.A 6.B 7.B 8.C二、选择题:本大题考查基础知识和基本运算.每小题6分,满分18分.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 10.ACD 11.BCD三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分.12.613.1,3e ⎡⎤⎢⎥⎣⎦14.{}6,7,8,9,21(第一空2分,第二空3分)四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解法一:(1)证明:取BD 的中点M ,连接PM MC 、,·······················1分∵BPD △和BCD △均为等边三角形,∴BD PM ⊥,BD CM ⊥.··································································2分又PM CM M = ,∴BD ⊥平面CPM ,·········································································3分CP ⊂ 又平面CPM ,∴BD CP ⊥.····················································································4分(2)以M 为原点,,MB MC所在直线为,x y 轴,过M 作平面BCD 的垂线所在直线为z 轴,如图所示建立空间直角坐标系,···········································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD .∵PBD △和CBD △均为等边三角形,∴3PM MC PC ===,60PMC ∠=︒,∴330,,22P ⎛⎫ ⎪ ⎪⎝⎭,()3,0C ,()1,0,0B ,··············································6分∴331,,22BP ⎛⎫=- ⎪ ⎪⎝⎭ ,()3,0BC =- .330,22MP ⎛⎫= ⎪ ⎪⎝⎭设平面PBC 的法向量为(,,)x y z =m ∴0,0BP BC ⎧⋅=⎪⎨⋅=⎪⎩m m 即330,2230x y z x ⎧-++=⎪⎨⎪-+=⎩取1z =,则()3,1=m ,···································································8分平面ABD 的法向量330,22MP ⎛⎫= ⎪ ⎪⎝⎭,·················································10分设平面ABD 与平面PBC 的夹角为θ,∴cos cos ,MP MP MP θ⋅==nn n33913313==⋅··································12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分解法二:(1)同解法一······································································4分(2)如图,取MC 的中点E 为原点,连接PE ,过点E 作//EF MB ,交BC 于点F ,由(1)知CM BD ⊥,EF MC ⊥,又由(1)知BD ⊥平面CPM ,PE ⊂ 又平面CPM ,∴BD PE ⊥,∵PBD △和CBD △均为等边三角形且棱长为2,∴3PM MC PC ===,PE MC ∴⊥,BD MC M ∴= PE CBD∴⊥平面∴以E 为原点,,,EF EC EP所在直线为,,x y z 轴,建立空间直角坐标系,如图所示··························································5分∵平面ABD ⊥平面PBD ,平面ABD 平面PBD BD =,PM ⊂平面PBD ,PM BD ⊥∴PM ⊥平面ABD ,∴平面ABD的法向量30,,22MP ⎛⎫= ⎪ ⎪⎝⎭···················································7分∴30,0,2P ⎛⎫ ⎪⎝⎭,0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,,02B ⎛⎫- ⎪ ⎪⎝⎭·············································8分∴()1,CB = ,330,,22CP ⎛⎫=- ⎪ ⎪⎝⎭,设平面PBC 的法向量为(),,x y z =m ,∴00CP CB ⎧⋅⎪⎨⋅⎩==⎪m m,即033022x y z ⎧-=⎪⎨-+=⎪⎩,取1z =,则()=m ,·················10分设平面ABD 与平面PBC 的夹角为θ,∴39cos cos ,13MP MP MP θ⋅===mm m,······························12分∴平面ABD 与平面PBC 夹角的余弦值为3913.····································13分16.解法一:(1)由题意13()sin cos()sin cos sin(6223f x x x x x x ππωωωωω=++=+=+·····································································································2分因为()f x 图象的两条相邻对称轴间的距离为π2,所以周期2ππ22T ω==⨯,故2ω=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,·····················4分当()0,x m ∈时,πππ2,2333x m ⎛⎫+∈+ ⎪⎝⎭,·················································5分因为()f x 在区间()0,m 上有最大值无最小值,所以ππ3π2232m <+≤,·········6分解得π7π1212m <≤,所以m 的取值范围为π7π,1212⎛⎤⎥⎝⎦.···································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,因为(2,)x ππ∈-,所以当4(2,)3x ππ∈--时,()0h x '>,()h x 单调递增,····························11分当42(,)33x ππ∈--时,()0h x '<,()h x 单调递减,································12分当22(,33x ππ∈-时,()0h x '>,()h x 单调递增,··································13分当2(,)3x ππ∈时,()0h x '<,()h x 单调递减.·········································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法二:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-,当222233k x k ππππ-+<<+时,()0h x '>,()h x 单调递增,因为(2,)x ππ∈-所以1k =-时,423x ππ-<<-,()h x 单调递增,··································11分1k =时,2233x ππ-<<()h x 单调递增·················································12分当242233k x k ππππ+<<+时,()0h x '<,()h x 单调递减,因为(2,)x ππ∈-0k =时,23x ππ<<,()h x 单调递减,··············································13分1k =-时,4233x ππ-<<-,()h x 单调递减,······································14分所以函数()h x 的极大值点为43π-和23π.··············································15分解法三:(1)同解法一.·····································································7分(2)将函数()f x 图象向右平移6π个单位长度,得到sin 2()sin 263y x x ππ⎡⎤=-+=⎢⎥⎣⎦的图象,············································8分再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()sin g x x =的图象,···································································9分所以函数1()sin 2h x x x =+,所以1()cos 2h x x '=+,································10分令()0h x '=得1cos 2x =-因为(2,)x ππ∈-,所以,(),()x h x h x '的变化情况如下:x4(2,)3ππ--43π-42(,)33ππ--23π-22(,)33ππ-23π2(,)3ππ()h x '+0-0+0-()h x 单调递增极大值单调递减极小值单调递增极大值单调递减···································································································14分所以函数()h x 的极大值点为43π-和23π.··············································15分17.解:(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件(1,2,3)i A i =,记随机任选1题,甲答对为事件B ,··············································1分则31122331()()(|)()(|)()(|)()(|)i i i P B P A P B A P A P B A P A P B A P A P B A ===++∑······························································································2分12121434545255=⨯+⨯+⨯=,·······························································4分所以随机任选1题,甲答对的概率为35;···········································5分(2)乙答对记为事件C ,则1122331111111()()(|)()(|)()(|)4242222P C P A P C A P A P C A P A P C A =++=⨯+⨯+⨯=·····································································································7分设每一轮比赛中甲得分为X ,则331(1)()()()15210P X P BC P B P C ⎛⎫====⨯-= ⎪⎝⎭,·································8分331511(0)()()()225112P X P BC BC P BC P BC ⎛⎫⎛⎫===+=⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭ ,········9分35511(1)()12P X P BC ⎛⎫=-==-⨯= ⎪⎝⎭.····················································10分三轮比赛后,设甲总得分为Y ,则33(3)10100207P Y ⎛⎫=== ⎪⎝⎭,······························································11分22331(2)C 10200272P Y ⎛⎫==⨯= ⎪⎝⎭,··························································12分22123311279(1)C C 331051000102P Y ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭,···································13分所以甲最终获得奖品的概率为27272794411(3)0002001000100(2)(1)0P P Y P Y P Y =++====++=.····················15分18.(1)因为2121nnn n a a a a +-⋅⋅= ①所以当2(1)11212,n n n n n a a a a -+--≥⋅⋅= ②,·············································1分由②①得2nn a =··················································································2分因为1n =时12a =也符合上式,····························································3分所以数列{}n a 是以2为首项,2为公比的等比数列,所以*,2n n N a n =∈.·············································································4分(2)由(1)知,()12122212n n n S +-==--,···············································5分因为不等式2(1)14n n n tS S -⋅-≤对任意的n *∈N 恒成立,又0n S >且n S 单调递增,·····································································································6分所以14(1)nn nt S S -⋅≤+对任意的n *∈N 恒成立,···········································7分因为1234=26=14=30S S S S =,,,,··························································8分所以当n 为偶数时,原式化简为14n n t S S ≤+对任意的n *∈N 恒成立,即min 14n n t S S ⎛⎫≤+ ⎪⎝⎭因为26S =>2n =时,253t ≤,············································10分当n 为奇数时,原式化简为14n n t S S -≤+对任意的n *∈N 恒成立,即min 14n n t S S ⎛⎫-≤+ ⎪⎝⎭因为13214S S =<<=,所以当1n =时,9t -≤,所以9t ≥-,··················12分综上可知,2593t -≤≤.······································································13分(3)因为2211log 2n nb a n ==,······························································14分所以{}n b 是单调递减数列,<···············································································15分=<=2+<<= 原不等式得证.················································································17分19.解法一:(1)由题意可知双曲线1y x =的实轴为y x =,联立1y x y x ⎧=⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,即双曲线1y x =的两顶点为(1,1),(1,1)--,故实轴长2a ==a =2分函数1y x =的图象绕原点O 顺时针旋转4π后渐近线为y x =±,····················3分所以a b ==2c =,所以,双曲线1y x=的离心率e =.··················4分(2)由(1)知函数1y x =的图象绕原点O 顺时针旋转4π得到双曲线222x y -=的图象,所以,双曲线222x y -=的图象绕原点O 逆时针旋转4π得到函数1y x =的图象,·····································································································5分。
高考专题福建省三明市高三五月质量检查数学(文)试题(原卷版)
高中数学学习材料 (灿若寒星 精心整理制作)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式22121[()()()]n s x x x x x x n ---=-+-++- (13)V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于( )A .1i -+B .1i +C .1i --D .1i -2.已知集合{|02}A x x =<<,{|1}B x x =<,则AB 为( )A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是( )A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是( )A .0x ∀≤,都有20x x ->B .0x ∀>,都有02≤-x xC .0∃>x ,使得02<-x xD .0x ∃≤,使得20x x ->7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为( )A .22B .2C .2D .228.某几何体的三视图如右图所示,则该几何体的表面积是( ) A .12+B .211 1正视图俯视图侧视图C .222+ D .329.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为( ) A .81 B .41 C .21D .4310. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:(0),()(0);x x g x x x ⎧≥⎪=⎨--<⎪⎩()()ln 0,()ln()0;x x u x x x ⎧>⎪=⎨-<⎪⎩1()h x x x =+;()cos v x x =.其中是“Z 函数”的是( )A .()g xB .()h xC .()u xD .()v x第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置.13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的 最小值是 .16.定义(,)n F A B 表示所有满足{}12,,,n AB a a a =⋅⋅⋅的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)某校为了解高一期末数学考试的情况,从 高一的所有学生数学试卷中随机抽取n 份 试卷进行成绩分析,得到数学成绩频率分 布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数; (Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率. 18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一 个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成 公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T . 19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥(Ⅲ) 若32==AB PD ,, 60=∠ABC ,频率/组距0.0120.016 0.018分80 60 50 70 90 100 0.030 0.024 1a2a 3a 4a5a 6a 7a 8a 9a……PABECD求三棱锥ABC P -的体积.20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -. (Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积42MAB S D =?若存在,请求出直线AB 的方程;若不存在,请说明理由.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数). (Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.。
【三明市5月质检】福建省三明市2014届高三5月质量检查(数学文)
2014年三明市普通高中毕业班质量检查文 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s = 13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只 有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于A .1i -+B .1i +C .1i --D .1i - 2.已知集合{|02}A x x =<<,{|1}B x x =<,则AB 为A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是A .0x ∀≤,都有20x x ->B .0x ∀>,都有02≤-x xC .0∃>x ,使得02<-x xD .0x ∃≤,使得20x x -> 5.函数32()34f x x x =-+-的单调递增区间是 A .(,0)-? B .(2,0)- C .(0,2) D .(2,)+? 6. 某程序框图如图所示,若输入2x π=,则该程序运行后输出的b a ,值分别是 A .0,1 B. 1,1 C. 1,0 D. 0,7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为A.2BC .2 D.8.某几何体的三视图如右图所示,则该几何体的表面积是A.1B .2CD .329.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为 A .81 B .41 C .21D .4310. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:(0),()(0);x g x x ≥=<⎪⎩()()ln 0,()ln()0;x x u x x x ⎧>⎪=⎨-<⎪⎩1()h x x x =+;()cos v x x =.其中是“Z 函数”的是A .()g xB .()h xC .()u xD .()v x正视图俯视图侧视图11.在边长为2的等边ABC ∆中,D 是AB 的中点,E 为线段AC 上一动点,则⋅的取值范围是 A .23[,3]16 B .23[,2]16 C .3[,3]2D .[2,9] 12.设函数()f x 的导函数为()f x ',那么下列说法正确的是A.若()'0f x= ,则x 是函数()f x 的极值点B. 若x 是函数()f x 的极值点,则()'0f x =C. 若x 是函数()f x 的极值点,则()'f x 可能不存在D.若()'0f x =无实根 ,则函数()f x 必无极值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的最小值是 .16.定义(,)n F A B 表示所有满足{}12,,,n AB a a a =⋅⋅⋅的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某校为了解高一期末数学考试的情况,从 高一的所有学生数学试卷中随机抽取n 份0.010.03试卷进行成绩分析,得到数学成绩频率分 布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数; (Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率. 18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T .19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE // (Ⅱ);平面求证:平面ABC PDB ⊥ (Ⅲ) 若32==AB PD ,, 60=∠ABC ,求三棱锥ABC P -的体积.20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -.(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积1a2a 3a 4a5a 6a 7a 8a 9a……PABECDMAB S D =AB 的方程;若不存在,请说明理由.21.(本小题满分12分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积1212(,)(,)(,)a ab b ab a b ⊗=⊗=a b. 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q为)(x f y =的图象上的动点,且满足OQ OP =⊗+m n (其中O 为坐标原点). (Ⅰ)请用0x 表示OP ⊗m ;(Ⅱ)求)(x f y =的表达式并求它的周期;(Ⅲ)把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数)(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数). (Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.2014年三明市普通高中毕业班质量检查文科数学试题参考解答及评分标准一、选择题:1.B 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.A 11.A 12.B 二、填空题:13.21; 14.1; 15.2; 16.3n. 三、解答题:17.解:(Ⅰ)由频率分布直方图可知:样本的众数为75. ……………………………3分(Ⅱ)由频率分布直方图可得:第三组[50,60)的频率:0.012100.12⨯=, 所以6n =÷, ………………………………………………………………4分∴第四组[80,90)的频数:0.024105012⨯⨯=;第五组[90,100]的频数:0.01610508⨯⨯=; 用分层抽样的方法抽取5份得: 第四组[80,90]抽取:125320⨯=;第五组[90,100]抽取:85220⨯=. …………7分记抽到第四组[80,90)的三位同学为123,,A A A ,抽到第五组[90,100]的两位同学为12,B B则从5个同学中任取2人的基本事件有:1213111223(,),(,),(,),(,),(,),A A A A A B A B A A2122(,),(,)A B A B ,313212(,),(,),(,)A B A B B B ,共10种.其中分数在[90,100]恰有1人有:111221223132(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B ,共6种.∴所求概率:63105P == .………………………………………………………12分18.解:(Ⅰ)依题意得512a a d =+,312d ∴=+,所以1d =. ……………………………………………2分又321()a a q a d q ==+,2q =,所以qd ,的值分别为1,2. …………………………………6分(Ⅱ)记第n 行第1个数为A ,由(1)可知:1(1)A a n d n =+-=, ………………7分又根据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列, 所以第n行共有(2n -个数, ………………………………9分∴第n 行各数为以n 为首项,2q =为公比的等比数列, 因此其总数的和2121(12)212n n n T n n ---==--. …………………………12分19.解:(Ⅰ)2,//PE ADDE PA EC DC==∴,……2分 ,PAB DE 平面⊄ ,PAB PA 平面⊂;平面PAB DE //∴ ………………3分(Ⅱ)因为平面⊥PAC 平面ABC ,PE且平面PAC 平面ABC AC =,PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC , ……………6分 又⊂PD 平面PAC ,所以平面⊥PAC 平面ABC .…………7分 (Ⅲ)由(Ⅱ)可知PD ⊥平面ABC .法一:ABC ∆中,,3=AB ,60 =∠ABC 3=AC ,由正弦定理ABCAC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=, 因为AC AB >,所以ACB ABC ∠<∠,则6A CB π∠=,因此2CAB π∠=, …………8分 △ABC 的面积233332121=⋅⋅=⋅=∆AB AC S ABC . …………………………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. …………………………12分法二:ABC ∆中,3=AB , 60=∠ABC 3=AC ,由余弦定理得:60cos 2222⋅⋅-+=BC AB BC AB AC ,所以260AC -=,所以AC AC ==舍去). …………………………………8分△ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆ BC AB S ABC . ……………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. ……………………12分20.解法一:(Ⅰ)由已知得:12p -=-,从而抛物线方程为24y x =,焦点坐标为(1,0)F . ……………………4分(Ⅱ)由题意,设:AB 1x ty =+,并与24y x =联立,得到方程:2440y ty --=, …………………………………………………6分设11(,)A x y ,22(,)B x y ,则124y y t +=,124y y ⋅=-.…………………7分121||(||||)2MAB MAF MBS S S S MF y y D D D =+=?∵120y y ⋅<,∴12||||y y +12||y y =-==, ……9分又||2MF =,∴122MAB S D =创……………………………………10分解得1t =?, ………………………………………………………………11分故直线AB 的方程为:1x y =±+.即10x y +-=或10x y --=.…………………12分解法二:(Ⅰ)(同解法一)(Ⅱ)当AB x ⊥轴时,||24AB p ==,11||||24422MAB S MF AB D =?创=, 不符合题意. ……………………………………………………………5分故设:AB (1)y k x =-(0k ¹),并与24y x =联立,得到方程:2222(24)0k x k x k -++=, ……………………………6分设11(,)A x y ,22(,)B x y ,则212224k x x k++=,121x x =. …………………7分12||=AB x x p ++224(1)=k k +,点M到直线AB的距离为d ==, ………………9分∴221141||22MAB k S AB dk D +=?创()== …………10分 解得1k =?, …………………………………………………………11分故直线AB 的方程为:(1y x =±-.即10x y +-=或10x y --=. ………12分21.解:(Ⅰ)000011(2,)(2,sin )22OP x y x x ⊗==m ,……………2分(Ⅱ)OQ OP =⊗+m n , 所以011(,)(2,sin )(,0)(2,sin )2332x y x x x x ππ=+=+,……………………4分 因此002,31sin ,2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即03,2sin 2,x x x y π⎧-⎪⎪=⎨⎪=⎪⎩ ………………………………6分所以11()sin()226y f x x π==-,它的周期为4π. ………………………………8分(Ⅲ))62sin(21)(π-=x x g 在⎥⎦⎤⎢⎣⎡3,0π上单调递增,在⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 又111(0),(),()43224g g g ππ=-==, ……………………………10分时,或当4141-21<≤=t t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内只有一个零点; 时,当2141<≤t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内有两个零点; 当14t <-或14t >时,函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内没有零点. …………………………12分22. 解:(Ⅰ)e()ln f x x x'=-, ……………………………………2分(1)e f '=-,又(1)e 1f =-, …………………………………………4分所以曲线()y f x =在1x =处的切线方程为(e 1)e(1)y x --=--,即e 2e 10x y +-+=. …………………………5分(Ⅱ)(ⅰ)对于e ()ln f x x x'=-,定义域为(0,)+?. 当0e x <<时,ln 1x <,e 1x -<-,∴e ()ln 0f x x x'=-<; 当e x =时,()110f x '=-=;当e x >时,ln 1x >,e 1x ->-,∴e ()l n 0f x x x '=->, ………………8分所以()f x 存在唯一的极值点e ,∴e m =,则点P 为(e,0). …………………9分(ⅱ)若1e x =,则122ln ln 1x x x =+,122ln ln 2ln 2x x x ⋅+=+,与条件1212ln ln ln 2x x x x ⋅=⋅+不符,从而得1e x ¹.同理可得2e x ¹. ………………………………………………10分若12x x =,由1212l nl n l n 2x x x x ⋅=⋅+211(ln )2ln 20x x ⇒-+=,此方程无实数解,从而得12x x ¹. ………………………………………………………11分由上可得点A ,B ,P 两两不重合.又1122(e,())(e,())PA PB x f x x f x ⋅=-⋅-121212(e)(e)(e)(e)(ln 1)(ln 1)x x x x x x =--+----121212(e)(e)(ln ln ln 2)x x x x x x =---+0=从而PA PB ⊥,点A ,B ,P 可构成直角三角形. ………………………14分。
2014年三明市5月份高中毕业班质量检查文综word含答案 (修复的)
20 1 4年三明市普通高中毕业班质量检查文科综合能力测试注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上。
2.考生作答时,请将答案答在答题卡上,在本试卷上答题无效。
按照题号在各题的答题区域内作答,超出答题区域书写的答案无效。
3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号。
非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
4.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
5.保持答题卡卡面清洁,不折叠,不破损。
考试结束后,将本试卷和答题卡一并交回。
第1卷(选择题) 。
本卷共36小题,每小题4分,共计144分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
太姥山(27°N,120°E)最高峰海拔91 7米,山体岩石为花岗岩,经长期地质作用形成各种形态的石景360多个,图1为太姥山花岗岩峰丛地貌景观图。
读图完成1-2题。
图11.“峰丛"地貌内外力作用发生先后顺序最可能的是A.沉积作用一固结成岩一上升、风化 B.岩浆活动一地壳运动一风化、侵蚀C.沉积作用一地壳运动一搬运、上升 D.岩浆活动一变质作用一侵蚀、搬运2.该地区自然土壤肥力低下的主要原因是①常绿林,枯枝落叶少②坡度、年降水量较大,冲刷强③生物循环缓慢④气温高,有机质分解较快A.①③ B.②③ C.②④ D.①④文科综合能力测试第1页(共14页)图2为某地葡萄酒产业链示意图。
读图完成3~4题。
3.甲代表的是A.葡萄 B.葡萄种植 C.葡萄酒 D.田园观光4.图中葡萄酒厂布局的主导区位因素是A.原料 B.水源 C.技术 D.市场随着第一代独生子女进入生育高峰期,2014年我国启动实施一方是独生子女的夫妇可生育两个孩子(单独两胎)的政策。
图3是我国甲、乙、丙、丁四省(区)不同时期人口年龄结构图。
读图完成5-6题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年三明市普通高中毕业班质量检查文 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上,请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.保持答题卡卡面清洁,不折叠、不破损,考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s = 13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ 其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只 有一项是符合题目要求的.1.设i 是虚数单位,那么复数(1i)i -等于A .1i -+B .1i +C .1i --D .1i - 2.已知集合{|02}A x x =<<,{|1}B x x =<,则AB 为A .{|0}x x <B .{|01}x x <<C .{|12}x x <<D .{|2}x x >3.观察下列关于变量x 和y 的三个散点图,它们从左到右的对应关系依次是A .正相关、负相关、不相关B .负相关、不相关、正相关C .负相关、正相关、不相关D .正相关、不相关、负相关4.命题:“0>∀x ,都有02≥-x x ”的否定是A .0x ∀≤,都有20x x -> B .0x ∀>,都有02≤-x x C .0∃>x ,使得02<-x x D .0x ∃≤,使得20x x -> 5.函数32()34f x x x =-+-的单调递增区间是 A .(,0)-B .(2,0)-C .(0,2)D .(2,)+ 6. 某程序框图如图所示,若输入2x π=,则该程序运行后输出的b a ,值分别是 A .0,1 B. 1,1 C. 1,0 D. 0,7.直线0x y +=与圆22(2)4x y -+=相交所得线段的长度为A.2BC .2 D.8.某几何体的三视图如右图所示,则该几何体的表面积是A.1B .2C.22+ D .329.若y x ,均为区间)1,0(的随机数,则20x y ->的概率为 A .81B .41 C .21D .4310. 对于函数()f x 在定义域内的任意实数x 及(0)x m m +>,都有()()0f x f x -+=及()()f x m f x +>成立,则称函数()f x 为“Z 函数”.现给出下列四个函数:(0),()(0);x g x x ≥=<⎪⎩()()ln 0,()ln()0;x x u x x x ⎧>⎪=⎨-<⎪⎩1()h x x x =+;()cos v x x =. 其中是“Z 函数”的是正视图俯视图侧视图A .()g xB .()h xC .()u xD .()v x 11.在边长为2的等边ABC ∆中,D 是AB 的中点,E 为线段AC 上一动点,则⋅的取值范围是A .23[,3]16 B .23[,2]16 C .3[,3]2D .[2,9] 12.设函数()f x 的导函数为()f x ',那么下列说法正确的是A.若()'0f x= ,则x 是函数()f x 的极值点B. 若x 是函数()f x 的极值点,则()'0f x =C. 若x 是函数()f x 的极值点,则()'f x 可能不存在D.若()'0f x =无实根 ,则函数()f x 必无极值点第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.在等差数列{}n a 中,若34=a ,则=7S .14. 已知椭圆的焦点是双曲线的顶点,双曲线的焦点是椭圆的长轴顶点,若两曲线的离心率分别为,,21e e 则12e e ⋅=______.15.已知0,0,a b >>若直线01:21=++y a x l 与直线03)1:22=+-+by x a l (互相垂直,则ab 的最小值是 . 16.定义(,)n F A B 表示所有满足{}12,,,n AB a a a =⋅⋅⋅的集合,A B 组成的有序集合对(,)A B 的个数.试探究12(,),(,),F A B F A B ⋅⋅⋅,并归纳推得(,)n F A B =_________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n 份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数; (Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.18.(本小题满分12分)将数列{}n a 按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一个数125,,,a a a ⋯构成公差为d 的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为q 的等比数列.若11=a ,43=a ,53a =. (Ⅰ)求q d ,的值; (Ⅱ)求第n 行各数的和T .19.(本小题满分12分)如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(Ⅰ)求证:;平面PAB DE //(Ⅱ);平面求证:平面ABC PDB ⊥(Ⅲ) 若32==AB PD ,, 60=∠ABC ,求三棱锥ABC P -的体积.0.0120.016 0.0180.030 0.024 1a2a 3a 4a5a 6a 7a 8a 9a…… PABECD20.(本小题满分12分)已知抛物线22y px =(0p >)的准线与x 轴交于点(1,0)M -.(Ⅰ)求抛物线的方程,并写出焦点坐标;(Ⅱ)是否存在过焦点的直线AB (直线与抛物线交于点A ,B ),使得三角形MAB 的面积MAB S D =?若存在,请求出直线AB 的方程;若不存在,请说明理由. 21.(本小题满分12分)设向量12(,),a a =a 12(,)b b =b ,定义一种向量积12121122(,)(,)(,)a a b b a b a b ⊗=⊗=a b . 已知向量1(2,)2=m ,(,0)3π=n ,点),(00y x P 为x y sin =的图象上的动点,点),(y x Q 为)(x f y =的图象上的动点,且满足OQ OP =⊗+m n (其中O 为坐标原点). (Ⅰ)请用0x 表示OP ⊗m ;(Ⅱ)求)(x f y =的表达式并求它的周期;(Ⅲ)把函数)(x f y =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数)(x g y =的图象.设函数=)(x h t x g -)(()t ∈R ,试讨论函数)(x h 在区间[0,]2π内的零点个数.22.(本小题满分14分)已知函数()(e)(ln 1)f x x x =--(e 为自然对数的底数). (Ⅰ)求曲线()y f x =在1x =处的切线方程;(Ⅱ)若m 是()f x 的一个极值点,且点11(,())A x f x ,22(,())B x f x 满足条件:1212ln()ln ln 2x x x x ⋅=⋅+.(ⅰ)求m 的值;(ⅱ)求证:点A ,B ,(,())P m f m 是三个不同的点,且构成直角三角形.2014年三明市普通高中毕业班质量检查文科数学试题参考解答及评分标准一、选择题:1.B 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.A 11.A 12.B 二、填空题:13.21; 14.1; 15.2; 16.3n. 三、解答题:17.解:(Ⅰ)由频率分布直方图可知:样本的众数为75. ……………………………3分(Ⅱ)由频率分布直方图可得:第三组[50,60)的频率:0.012100.12⨯=, 所以6n =÷, ………………………………………………………………4分∴第四组[80,90)的频数:0.024105012⨯⨯=;第五组[90,100]的频数:0.01610508⨯⨯=; 用分层抽样的方法抽取5份得: 第四组[80,90]抽取:125320⨯=;第五组[90,100]抽取:85220⨯=. …………7分记抽到第四组[80,90)的三位同学为123,,A A A ,抽到第五组[90,100]的两位同学为12,B B则从5个同学中任取2人的基本事件有:1213111223(,),(,),(,),(,),(,),A A A A A B A B A A2122(,),(,)A B A B ,313212(,),(,),(,)A B A B B B ,共10种.其中分数在[90,100]恰有1人有:111221223132(,),(,),(,),(,),(,),(,)A B A B A B A B A B A B ,共6种.∴所求概率:63105P == . ………………………………………………………12分18.解:(Ⅰ)依题意得512a a d =+,312d ∴=+,所以1d =. ……………………………………………2分又321()a a q a d q ==+,2q =,所以qd ,的值分别为1,2. …………………………………6分(Ⅱ)记第n 行第1个数为A ,由(1)可知:1(1)A a n d n =+-=, ………………7分又根据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列, 所以第n行共有(2n -个数, ………………………………9分∴第n 行各数为以n 为首项,2q =为公比的等比数列, 因此其总数的和2121(12)212n n n T n n ---==--. …………………………12分19.解:(Ⅰ)2,//PE ADDE PA EC DC==∴,……2分 ,PAB DE 平面⊄ ,PAB PA 平面⊂;平面PAB DE //∴ ………………3分(Ⅱ)因为平面⊥PAC 平面ABC , 且平面PAC 平面ABC AC =,PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC , ……………6分又⊂PD 平面PAC ,所以平面⊥PAC 平面ABC .…………7分 (Ⅲ)由(Ⅱ)可知PD ⊥平面ABC .法一:ABC ∆中,,3=AB ,60=∠ABC 3=AC , 由正弦定理ABC AC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=,因为AC AB >,所以ACB ABC ∠<∠,则6A C B π∠=,因此2CAB π∠=, …………8分△ABC 的面积PABECD233332121=⋅⋅=⋅=∆AB AC S ABC . …………………………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. …………………………12分法二:ABC ∆中,3=AB ,60=∠ABC 3=AC ,由余弦定理得:60cos 2222⋅⋅-+=BC AB BC AB AC ,所以260AC -=,所以AC AC ==舍去). …………………………………8分 △ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆ BC AB S ABC . ……………10分 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. ……………………12分20.解法一:(Ⅰ)由已知得:12p -=-,从而抛物线方程为24y x =,焦点坐标为(1,0)F . ……………………4分(Ⅱ)由题意,设:AB 1x ty =+,并与24y x =联立,得到方程:2440y ty --=, …………………………………………………6分设11(,)A x y ,22(,)B x y ,则124y y t +=,124y y ⋅=-.…………………7分121||(||||)2MAB MAF MBS S S S MF y y D D D =+=?∵120y y ⋅<,∴12||||y y +12||y y =-==, ……9分又||2MF =,∴122MAB S D =创=……………………………………10分解得1t = , ………………………………………………………………11分故直线AB 的方程为:1x y =±+.即10x y +-=或10x y --=.…………………12分解法二:(Ⅰ)(同解法一)(Ⅱ)当AB x ⊥轴时,||24AB p ==,11||||24422MAB S MF AB D =?创=, 不符合题意. ……………………………………………………………5分故设:AB (1)y k x =-(0k ¹),并与24y x =联立,得到方程:2222(24)0k x k x k -++=, ……………………………6分设11(,)A x y ,22(,)B x y ,则212224k x x k++=,121x x =. …………………7分12||=AB x x p ++224(1)=k k +, 点M到直线AB的距离为d ==, ………………9分∴221141||22MAB k S AB dk D +=?创()== …………10分 解得1k = , …………………………………………………………11分故直线AB的方程为:(1y x =±-.即10x y +-=或10x y --=. ………12分21.解:(Ⅰ)000011(2,)(2,sin )22OP x y x x ⊗==m ,……………2分(Ⅱ)OQ OP =⊗+m n , 所以011(,)(2,sin )(,0)(2,sin )2332x y x x x x ππ=+=+,……………………4分因此002,31sin ,2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩即03,2sin 2,x x x y π⎧-⎪⎪=⎨⎪=⎪⎩ ………………………………6分所以11()sin()226y f x x π==-,它的周期为4π. ………………………………8分(Ⅲ))62sin(21)(π-=x x g 在⎥⎦⎤⎢⎣⎡3,0π上单调递增,在⎥⎦⎤⎢⎣⎡23ππ,上单调递减, 又111(0),(),()43224g g g ππ=-==, ……………………………10分时,或当4141-21<≤=t t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内只有一个零点; 时,当2141<≤t 函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内有两个零点; 当14t <-或14t >时,函数)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π内没有零点. …………………………12分22. 解:(Ⅰ)e()ln f x x x'=-, ……………………………………2分(1)e f '=-,又(1)e 1f =-, …………………………………………4分所以曲线()y f x =在1x =处的切线方程为(e 1)e(1)y x --=--, 即e 2e 10x y +-+=. (5)分(Ⅱ)(ⅰ)对于e()ln f x x x'=-,定义域为(0,)+ .当0e x <<时,ln 1x <,e 1x -<-,∴e ()ln 0f x x x'=-<; 当e x =时,()110f x '=-=;当e x >时,ln 1x >,e 1x ->-,∴e ()l n 0f x x x '=->, ………………8分所以()f x 存在唯一的极值点e ,∴e m =,则点P 为(e,0). …………………9分(ⅱ)若1e x =,则122ln ln 1x x x =+,122ln ln 2ln 2x x x ⋅+=+,与条件1212ln ln ln 2x x x x ⋅=⋅+不符,从而得1e x ¹.同理可得2e x ¹. ………………………………………………10分若12x x =,由1212l n l n l n 2x x x x ⋅=⋅+211(ln )2ln 20x x ⇒-+=,此方程无实数解, 从而得12x x ¹. ………………………………………………………11分由上可得点A ,B ,P 两两不重合.又1122(e,())(e,())PA PB x f x x f x ⋅=-⋅-121212(e)(e)(e)(e)(ln 1)(ln 1)x x x x x x =--+----121212(e)(e)(ln ln ln 2)x x x x x x =---+0=从而PA PB ⊥,点A ,B ,P 可构成直角三角形. ………………………14分。