2017年04月21日+七年级下全等三角形数学组卷

合集下载

北师大版数学七年级下册《全等三角形》单元测试含答案(精)

北师大版数学七年级下册《全等三角形》单元测试含答案(精)

全等三角形单元测试一、认认真真选,沉着应战!1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2. 下列各条件中,不能作出惟一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 4.下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A ∠B ∠C =3510,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于( )A .12B .13C .23D .146.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( )A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上 7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个 B .2个 C .3个 D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图,可以得到EDC ABC ≅,所以ED=AB ,因此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( ) A .SAS B .ASA C .SSS D .HL10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度ACB DFEA数为( )A .80°B .100°C .60°D .45°.二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°, 则∠CED =_____.12.已知△DE F≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.D E15. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平 分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =, M 为BC 的中点,请问三个小石凳是否在一条直线上? 说出你推断的理由.E AB C D'A 'B 'D 'C B22.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.已知:求证:证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上.四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形 ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?A BDCEOM NA BF BD (图1)参考答案一、1—5:DCDCD 6—10:BCBBA 二、 11.100°12.4cm 或9.5cm 13.1.5cm 14.4 15.略16.15AD << 17. 互补或相等 18. 180 19.15 20.350三、 21.在一条直线上.连结EM 并延长交CD 于'F 证'CF CF =.22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中 AD BC AC BD ==∵, AB BA =∴△ABD ≌△BAC∴CAB DBA ∠=∠ AE BE =∴ ∴AC AE BD BE -=-即CE ED =情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中 D C ∠=∠,DAB CBA ∠=∠ AB AB =∵∴△ABD ≌△BAC ∴AD BC =23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND , 又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS ) ∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上.四、24. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N , 则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN ∠+∠=∴∠=∠ACM AGN ∴△≌△ 1122ABC AEG CM GNS AB CM S AE GN∴===△△, ABC AEG S S ∴=△△(2)解:由(1)∴这条小路的面积为(2)a b +平方米.BD。

七下数学全等三角形压轴题组卷(word文档良心出品)

七下数学全等三角形压轴题组卷(word文档良心出品)

全等三角形压轴题组卷一.选择题(共5小题)1.如图所示,是瑞安部分街道示意图,AB=BC=AC,CD=CE=DE,A,B,C,D,E,F,G,H为“公交汽车”停靠点,甲公共汽车从A站出发,按照A,H,G,D,E,C,F的顺序到达F站,乙公共汽车从B 站出发,按照B,F,H,E,D,C,G的顺序到达G站,如果甲、乙两车分别从A、B两站同时出发,各站耽误的时间相同,两辆车速度也一样,则( )A.甲车先到达指定站B.乙车先到达指定站C.同时到达指定站D.无法确定2.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )A.56°B.60°C.68°D.94°3.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSSB.SASC.ASAD.AAS4.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是( )A.n B.2n-1 C.D.3(n+1)5.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题(共3小题)6.如图,AC=BC ,∠ACB=90°,AE 平分∠BAC ,BF ⊥AE ,交AC 延长线于F ,且垂足为E ,则下列结论:①AD=BF ; ②BF=AF ; ③AC+CD=AB ,④AB=BF ;⑤AD=2BE .其中正确的结论有 .第6题第7题第8题7.如图,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD .②BF=BG .③HB ⊥FG .④∠AHC=60°.⑤△BFG 是等边三角形,其中正确的有 . 8.如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是 . 三.解答题(共22小题)9.已知:如图,△ABC 中,∠ABC=45°,DH 垂直平分BC 交AB 于点D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,试说明一下论断正确的理由: (1).∠BDC=90°; (2).BF=AC ; (3).CE=12BF .10.已知,D是△ABC中AB上一点,并且∠BDC=90°,DH垂直平分BC交BC于点H.(1).试说明:BD=DC;(2).如图2,若BE⊥AC于E,与CD相交于点F,试说明:△BDF≌△ACD;(3).在(1)、(2)条件下,若BE平分∠ABC,试说明:BF=2CE.11.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n-1C的度数?问题探究:我们从较为简单的情形入手.探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?解:由题意可得∠O1BC=12∠ABC,∠O1CB=12∠ACB∴∠O1BC+∠O1CB=12(∠ABC+∠ACB)=12(180°-α)∴∠BO1C=180°-12(180°-α)=90°+12α.探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.解:由题意可得∠O2BC=23∠ABC,∠O2CB=23∠ACB22∴∠BO2C=180°-23(180°-α)=60°+23α.探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C的度数.(仿照上述方法,写出探究过程)问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,求∠BO n﹣1C的度数.问题拓广:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.得到∠BO1C=90°+12α.探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C= .探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六条等分线构成三个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C= .探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、O n-1,(2n-2))等分线构成(n-1)个角∠BO n-1C…∠BO3C,∠BO2C,∠BO1C,则∠BO n-1C+…∠BO3C+∠BO2C+∠BO1C= .12.如图,在Rt△ABC中,AB=AC=4cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,在运动过程中始终保持AN=BM.(1).在运动过程中,OM与ON相等吗?请说明理由.(2).在运动过程中,OM与ON垂直吗?请说明理由.(3).在运动过程中,四边形AMON的面积是否发生变化?若变化,请说明理由;若不变化,求出四边形AMON的面积.13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1).当∠BDA=115°时,∠EDC= °,∠DEC= °;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2).当DC等于多少时,△ABD≌△DCE,请说明理由;(3).在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.14.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.(1).△ADB与△BEC全等吗?为什么?(2).图1中,AD、DE、CE有怎样的等量关系?说明理由.(3).将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.15.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1).BE=AD吗?请说明理由;(2).若∠ACB=40°,求∠DBE的度数.16.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD=12S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=12BD×AH;S△ACD=12CD×AH∴S△ABD=S△ACD=12S△ABC∴三角形中线等分三角形的面积基本应用:(1).如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD与S△ABC的数量关系为:;(2).如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△CDE与S△ABC的数量关系为:(请说明理由);(3).在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD与S△ABC的数量关系为:;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC 的面积为18cm2,则△BEF的面积为cm2.17.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.18.问题发现:如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.拓展探究:如图②,△ABC与△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,且点B,D,E在同一直线上,AF⊥BE 于F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.19.如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.20.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1).求证:△ACD≌△BCE;(2).若AB=3cm,则BE= cm.(3).BE与AD有何位置关系?请说明理由.21.如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1).求证:AB=AD+BC;(2).若BE=3,AE=4,求四边形ABCD的面积.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1).如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?23.如图,△ABC是等边三角形,点E、F分别在边AB和AC上,且AE=BF.(1).求证:△ABE≌△BCF;(2).若∠ABE=20°,求∠ACF的度数;(3).猜测∠BOC的度数并证明你的猜想.24.在△ABC中,AB=AC,点D是直线BC上一点(不与点B、点C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1).如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= ;(2).如图2,当点D在线段BC上时,如果∠BAC=50°,请你求出∠BCE的度数.(写出求解过程);(3).探索发现,设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时,则α,β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.25.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1).试判断BD、CE的数量关系,并说明理由;(2).延长BD交CE于点F试求∠BFC的度数;(3).把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合),以AD为边做正方形ADEF,连接CF.(1).如图1,当点D在线段BC上时,求证CF+CD=BC.(2).如图2,当点D在线段BC得延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系.(3).如图3,当点D在线段BC得反向延长线上时,且点A,F分别在直线BC的两侧,若BC=17,CF=7,求DF的长.27.如图,四边形ABCD中,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,∠BDC=90°,BD=CD;CE与BD交于F,连AF,M为BC中点,连接DM交CE于N.请说明:(1).△ABD≌△NCD;(2).CF=AB+AF.28.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1).说明BD=CE;(2).延长BD,交CE于点F,求∠BFC的度数;(3).若如图2放置,上面的结论还成立吗?请简单说明理由.29.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1).如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2).若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)30.如图1,已知长方形ABCD,AB=CD=4,BC=AD=6,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P 为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1).求当x=5时,对应y的值;(2).如图2、3、4,求出当点P分别在边AB、BC和CE上时,y与x之间的关系式;(3).如备用图,当P在线段BC上运动时,是否存在点P使得△APE的周长最小?若存在,求出此时∠PAD 的度数;若不存在,请说明理由.。

七年级下《全等三角形》单元测试及含答案

七年级下《全等三角形》单元测试及含答案

《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。

2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。

3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。

4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。

(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。

6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。

(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个 12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADEAD ECB图4ABDE 图1 图2 图3图5图613、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,80分)17、如图13,点A 、B 、C 、D 在同一条直线上,AB=DC ,AE 2cm习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB=AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ 、CP ,则BQ=CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP ”仍然成立,请你就图②给出证明. ACD B图12BA C DEAEB C F ECB D FAAB ED C B A 图7图8图13 图14图16图15图17 图18 图19图20 图21FEDCBA26.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.27.如图,已知等边△ABC,P在AC延长线上一点,以PA为边作等边△APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.28. 如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.29.已知AC求证:AB=AC+BD.A BCDEF参考答案:一、⑴DF EF DE ⑵70° 15cm ⑶∠ABC ⑷∠A=∠F⑸4 ⑹150° (7)3 (8)80° (9)大于 (10)2<AD<10二、⑾C ⑿D (13)D (14)C (15)B (16)C三、(17) 略(18)①△ABD≌△ACD ∵AB=AC ∠BAC=∠CAD AD=AD②无论D在AE上或AE的反向延长线上,结论都成立,证明过程如①(19)在两条路所夹角的平分线上,由比例尺算出到B点的距离为。

七年级数学下册三角形的全等判定综合练习题

七年级数学下册三角形的全等判定综合练习题

七年级数学下册三角形的全等判定综合练习题题目一:已知△ABC和△DEF中,AB=DE,BC=EF,∠ABC=∠DEF。

判断以下命题是否正确,如果正确,请用“√”标注,如果错误,请用“×”标注:1. △ABC≌△DEF2. ∠ACB≌∠DFE3. BC=DF4. △ABC≌△DFE解答:1. √ 由已知条件可知∠ABC=∠DEF,两边对应的边AB和DE相等,BC和EF相等,根据全等三角形的判定条件,△ABC≌△DEF。

2. √ 由全等三角形的性质可知,对应角相等,∠ABC和∠DEF对应,所以∠ACB≌∠DFE。

3. √ 已知BC=EF,根据全等三角形的性质,两个三角形的对应边相等,BC和EF相等。

4. √ 由已知条件可知AB=DE,BC=EF,∠ABC=∠DEF,根据全等三角形的判定条件,△ABC≌△DEF。

题目二:已知△XYZ中,∠XYZ=90°,YZ=5cm。

在XZ上取一点M,连接MY,使得MY ⊥ XZ,且MY=3cm。

请判断以下命题是否正确,如果正确,请用“√”标注,如果错误,请用“×”标注:1. △XYZ≌△MYX2. ∠ZYX=∠MXY3. YZ=MY4. △XYZ是等腰三角形解答:1. √ 由已知条件可知,∠XYZ=∠MYX,∠ZYX=∠MXY,而YZ=MY,根据全等三角形的判定条件,△XYZ≌△MYX。

2. ×∠ZYX 是直角,∠MXY 是锐角,它们不可能相等。

3. × YZ = 5cm,MY = 3cm,它们的长度不相等。

4. ×△XYZ 是直角三角形,而等腰三角形的条件是两条边相等,此命题错误。

题目三:在△PQR中,已知∠Q=60°,QR=3cm。

在QR上取一点S,使得QS=PR。

判断以下命题是否正确,如果正确,请用“√”标注,如果错误,请用“×”标注:1. ∠PQR=120°2. △PQR是等边三角形3. △QSR≌△PQR4. ∠QSR=60°解答:1. √ ∠Q 是一个有60°的角,所以∠PQR 的度数等于180° - 60° = 120°。

七下数学全等三角形压轴题组卷

七下数学全等三角形压轴题组卷

全等三角形压轴题组卷一. 选择题(共5小题)1. 如下图, 是瑞安局部街道示意图, AB=BC=AC, CD=CE=DE, A, B,C, D, E, F, G, H为“公交汽车〞停靠点, 甲公共汽车从A站出发, 按照A, H, G, D, E, C, F的顺序到达F站, 乙公共汽车从B站出发, 按照B, F, H, E, D, C, G的顺序到达G站, 如果甲、乙两车分别从A.B两站同时出发, 各站耽误的时间一样, 两辆车速度也一样, 那么( )A. 甲车先到达指定站B. 乙车先到达指定站C. 同时到达指定站D. 无法确定D.无法确定2. 如图, 在△ABC中, ∠A=52°, ∠ABC与∠ACB的角平分线交于D1, ∠ABD1与∠ACD1的角平分线交于点D2, 依此类推, ∠ABD4与∠ACD4的角平分线交于点D5,那么∠BD5C的度数是( )A. 56°B. 60°C. 68°D. 94°D.94°3. 如图在△ABD和△ACE都是等边三角形, 那么△ADC≌△ABE的根据是( )A. SSSB. SASC. ASAD. AASD.AAS4. 如图1, AB=AC, D为∠BAC的角平分线上面一点, 连接BD, CD;如图2, AB=AC, D.E为∠BAC的角平分线上面两点, 连接BD, CD, BE, CE;如图3, AB=AC, D.E、F为∠BAC的角平分线上面三点, 连接BD, CD, BE, CE, BF, CF;…, 依次规律, 第n个图形中有全等三角形的对数是( )A. nB. 2n-1C.D. 3(n+1)5.如图, D为∠BAC的外角平分线上一点并且满足BD=CD, ∠DBC=∠DCB, 过D作DE⊥AC于E, DF⊥AB交BA的延长线于F, 那么以下结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个D.4个二. 填空题(共3小题)6.如图, AC=BC, ∠ACB=90°, AE平分∠BAC, BF⊥AE, 交AC延长线于F, 且垂足为E, 那么以下结论:①AD=BF;②BF=AF;③AC+CD=AB, ④AB=BF;⑤AD=2BE.其中正确的结论有.第6题第7题第8题7. 如图, △ABC和△BDE都是等边三角形. 那么以下结论: ①AE=CD. ②BF=BG. ③HB⊥FG. ④∠AHC=60°. ⑤△BFG是等边三角形, 其中正确的有.8.如图, ∠AOB内一点P, P1.P2分别是点P关于OA.OB的对称点, P1P2交OA于M, 交OB于N, 假设P1P2=5cm, 那么△PMN的周长是.三. 解答题(共22小题)9. : 如图, △ABC中, ∠ABC=45°, DH垂直平分BC交AB于点D, BE平分∠ABC, 且BE⊥AC于E, 与CD相交于点F, 试说明一下论断正确的理由:(1).∠BDC=90°;(2).BF=AC;(3).CE= BF.10. , D是△ABC中AB上一点, 并且∠BDC=90°, DH垂直平分BC交BC于点H.(1).试说明: BD=DC;(2).如图2, 假设BE⊥AC于E, 与CD相交于点F,试说明: △BDF≌△ACD;(3).在(1)、(2)条件下, 假设BE平分∠ABC, 试说明:BF=2CE.11. 数学问题: 如图1, 在△ABC中, ∠A=α, ∠ABC.∠ACB的n等分线分别交于点O1.O2.…、On-1, 求∠BOn-1C的度数?问题探究: 我们从较为简单的情形入手.探究一: 如图2, 在△ABC中, ∠A=α, ∠ABC.∠ACB的角平分线分别交于点O1, 求∠BO1C的度数?解:由题意可得∠O1BC= ∠ABC, ∠O1CB= ∠ACB∴∠O1BC+∠O1CB=12(∠ABC+∠ACB)=12(180°-α)∴∠BO1C=180°- (180°-α)=90°+ α.探究二: 如图3, ∠A=α, ∠ABC.∠ACB三等分线分别交于点O1.O2, 求∠BO2C的度数. 解:由题意可得∠O2BC= ∠ABC, ∠O2CB= ∠ACB∴∠O2BC+∠O2CB=23(∠ABC+∠ACB)=23(180°﹣α)∴∠BO2C=180°- (180°-α)=60°+ α.探究三: 如图4, ∠A=α, ∠ABC.∠ACB四等分线分别交于点O1.O2.O3, 求∠BO3C的度数.(仿照上述方法, 写出探究过程)问题解决:如图1, 在△ABC中, ∠A=α, ∠ABC.∠ACB的n等分线分别交于点O1.O2.…、On-1, 求∠BOn ﹣1C的度数.问题拓广:如图2, 在△ABC中, ∠A=α, ∠ABC.∠ACB的角平分线交于点O1, 两条角平分线构成一角∠BO1C.得到∠BO1C=90°+ α.探究四: 如图3, ∠A=α, ∠ABC.∠ACB三等分线分别交于点O1.O2, 四条等分线构成两个角∠BO1C, ∠BO2C, 那么∠BO2C+∠BO1C= .探究五:如图4, ∠A=α, ∠ABC.∠ACB四等分线分别交于点O1.O2.O3, 六条等分线构成三个角∠BO3C, ∠BO2C, ∠BO1C, 那么∠BO3C+∠BO2C+∠BO1C= .探究六: 如图1, 在△ABC中, ∠A=α, ∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1, (2n-2))等分线构成(n-1)个角∠BOn-1C…∠BO3C, ∠BO2C, ∠BO1C, 那么∠BOn-1C+…∠BO3C+∠BO2C+∠BO1C= .12. 如图, 在Rt△ABC中, AB=AC=4cm, ∠BAC=90°, O为边BC上一点, OA=OB=OC, 点M、N分别在边AB.AC上运动, 在运动过程中始终保持AN=BM.(1).在运动过程中, OM与ON相等吗?请说明理由.(2).在运动过程中, OM与ON垂直吗?请说明理由.(3).在运动过程中, 四边形AMON的面积是否发生变化?假设变化, 请说明理由;假设不变化, 求出四边形AMON的面积.假设变化,请说明理由;假设不变化,求出四边形AMON的面积.假设变化,请说明理由;假设不变化,求出四边形AMON的面积.13. 如图, 在△ABC中, AB=AC=2, ∠B=∠C=40°, 点D在线段BC上运动(D不与B.C重合), 连接AD, 作∠ADE=40°, DE交线段AC于E.(1).当∠BDA=115°时, ∠EDC= °, ∠DEC= °;点D从B向C运动时, ∠BDA逐渐变(填“大〞或“小〞);(2).当DC等于多少时, △ABD≌△DCE, 请说明理由;(3).在点D的运动过程中, △ADE的形状可以是等腰三角形吗?假设可以, 请直接写出∠BDA的度数.假设不可以, 请说明理由.假设可以,请直接写出∠BDA的度数. 假设不可以,请说明理由.假设可以,请直接写出∠BDA的度数.假设不可以,请说明理由.14. 如图, 等腰直角三角形ABC, AB=BC, 直角顶点B在直线PQ上, 且AD⊥PQ于D, CE⊥PQ于E.(1).△ADB与△BEC全等吗?为什么?(2).图1中, AD、DE、CE有怎样的等量关系?说明理由.(3).将直线PQ绕点B旋转到如图2所示的位置, 其他条件不变, 那么AD、DE、CE有怎样的等量关系?说明理由.不变,那么AD、DE、CE有怎样的等量关系?说明理由.不变,那么AD、DE、CE有怎样的等量关系?说明理由.不变,那么AD.DE、CE有怎样的等量关系?说明理由.不变,那么AD、DE、CE有怎样的等量关系?说明理由.15. 如图, 在等腰△ABC中, CB=CA, 延长AB至点D, 使DB=CB, 连接CD, 以CD为边作等腰△CDE,使CE=CD, ∠ECD=∠BCA, 连接BE交CD于点M.(1).BE=AD吗?请说明理由;(2).假设∠ACB=40°, 求∠DBE的度数.16. 阅读理解根本性质: 三角形中线等分三角形的面积.如图, AD是△ABC边BC上的中线, 那么S△ABD=S△ACD= S△ABC 理由: ∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=12BD×AH;S△ACD=12CD×AH∴S△ABD=S△ACD=12S△ABC∴三角形中线等分三角形的面积根本应用:(1).如图1, 延长△ABC的边BC到点D, 使CD=BC, 连接DA. 那么S△ACD与S△ABC的数量关系为: ;(2).如图2, 延长△ABC的边BC到点D, 使CD=BC, 延长△ABC的边CA到点E, 使AE=AC, 连接DE. 那么S△CDE与S△ABC的数量关系为: (请说明理由);(3).在图2的根底上延长AB到点F, 使FB=AB, 连接FD, FE, 得到△DEF(如图3). 那么S△EFD与S△ABC 的数量关系为:;拓展应用:如图4, 点D是△ABC的边BC上任意一点, 点E, F分别是线段AD, CE的中点, 且△ABC的面积为18cm2, 那么△BEF的面积为cm2.17. 如图, 在△ABC中, DE, FG分别是AB, AC的垂直平分线, 连接AE, AF, ∠BAC=80°, 请运用所学知识, 确定∠EAF的度数.18. 问题发现:如图①, △ABC与△ADE是等边三角形, 且点B, D, E在同一直线上, 连接CE, 求∠BEC的度数, 并确定线段BD与CE的数量关系.拓展探究:如图②, △ABC与△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°, 且点B, D, E在同一直线上, AF⊥BE于F, 连接CE, 求∠BEC的度数, 并确定线段AF, BF, CE之间的数量关系.19. 如图, △ABC中, AB=AC, ∠A=90°, D为BC中点, E、F分别为AB.AC上的点, 且满足AE=CF.求证:DE=DF.20. 如图, 在△ABC中, ∠ACB=90°, AC=BC, 延长AB至点D, 使DB=AB, 连接CD, 以CD为直角边作等腰三角形CDE, 其中∠DCE=90°, 连接BE.(1).求证: △ACD≌△BCE;(2).假设AB=3cm, 那么BE= cm.(3).BE与AD有何位置关系?请说明理由.21. 如图, AP∥BC, ∠PAB的平分线与∠CBA的平分线相交于E, CE的延长线交AP于D.(1).求证: AB=AD+BC;(2).假设BE=3, AE=4, 求四边形ABCD的面积.22. 如图, △ABC中, AB=AC=10cm, BC=8cm, 点D为AB的中点.(1).如果点P在线段BC上以3cm/s的速度由B点向C点运动, 同时,点Q在线段CA上由C点向A点运动.①假设点Q的运动速度与点P的运动速度相等, 经过1s后, △BPD与△CQP是否全等, 请说明理由;②假设点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为多少时, 能够使△BPD与△CQP全等?为多少时,能够使△BPD与△CQP全等?为多少时,能够使△BPD与△CQP全等?(2).假设点Q以②中的运动速度从点C出发, 点P以原来的运动速度从点B同时出发, 都逆时针沿△ABC 三边运动, 求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?23. 如图, △ABC是等边三角形, 点E、F分别在边AB和AC上, 且AE=BF.(1).求证: △ABE≌△BCF;(2).假设∠ABE=20°, 求∠ACF的度数;(3).猜测∠BOC的度数并证明你的猜测.24. 在△ABC中, AB=AC, 点D是直线BC上一点(不与点B.点C重合), 以AD为一边在AD的右侧作△ADE, 使AD=AE, ∠DAE=∠BAC, 连接CE.(1).如图1, 当点D在线段BC上时, 如果∠BAC=90°, 那么∠BCE= ;(2).如图2, 当点D在线段BC上时, 如果∠BAC=50°, 请你求出∠BCE的度数. (写出求解过程);(3).探索发现, 设∠BAC=α, ∠BCE=β.①如图2, 当点D在线段BC上移动, 那么α, β之间有怎样的数量关系?请直接写出你的结论:.②当点D在线段BC的延长线上时, 那么α, β之间有怎样的数量关系?请在图3中画出完整图形并请直接写出你的结论:.25. 以点A为顶点作等腰Rt△ABC, 等腰Rt△ADE, 其中∠BAC=∠DAE=90°, 如图1所示放置, 使得一直角边重合, 连接BD.CE.(1).试判断BD、CE的数量关系, 并说明理由;(2).延长BD交CE于点F试求∠BFC的度数;(3).把两个等腰直角三角形按如图2放置, (1)、(2)中的结论是否仍成立?请说明理由.中的结论是否仍成立?请说明理由.中的结论是否仍成立?请说明理由.26. , 在△ABC中, ∠BAC=90°, ∠ABC=45°, 点D为直线BC上一动点(点D不与点B, C重合), 以AD 为边做正方形ADEF, 连接CF.(1).如图1, 当点D在线段BC上时, 求证CF+CD=BC.(2).如图2, 当点D在线段BC得延长线上时, 其他条件不变, 请直接写出CF, BC, CD三条线段之间的关系.(3).如图3, 当点D在线段BC得反向延长线上时, 且点A, F分别在直线BC的两侧, 假设BC=17, CF=7, 求DF的长.27. 如图, 四边形ABCD中, AD∥BC, CE⊥AB, △BDC为等腰直角三角形, ∠BDC=90°, BD=CD;CE与BD交于F, 连AF, M为BC中点, 连接DM交CE于N. 请说明:(1).△ABD≌△NCD;(2).CF=AB+AF.28. 以点A为顶点作两个等腰直角三角形(△ABC, △ADE), 如图1所示放置, 使得一直角边重合, 连接BD, CE.(1).说明BD=CE;(2).延长BD, 交CE于点F, 求∠BFC的度数;(3).假设如图2放置, 上面的结论还成立吗?请简单说明理由.单说明理由.29. 如图, △ABC中, AB=AC=6cm, ∠B=∠C, BC=4cm, 点D为AB的中点.(1).如果点P在线段BC上以1cm/s的速度由点B向点C运动, 同时, 点Q在线段CA上由点C向点A运动.①假设点Q的运动速度与点P的运动速度相等, 经过1秒后, △BPD与△CQP是否全等, 请说明理由;②假设点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为多少时, 能够使△BPD与△CQP全等?(2).假设点Q以②中的运动速度从点C出发, 点P以原来的运动速度从点B同(2).假设点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发, 都逆时针沿△ABC三边运动, 那么经过后, 点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案, 不必书写解题过程)30. 如图1, 长方形ABCD, AB=CD=4, BC=AD=6, ∠A=∠B=∠C=∠D=90°, E为CD边的中点, P为长方形ABCD边上的动点, 动点P从A出发, 沿着A→B→C→E运动到E点停顿, 设点P经过的路程为x, △APE 的面积为y.(1).求当x=5时, 对应y的值;(2).如图2.3.4, 求出当点P分别在边AB.BC和CE上时, y与x之间的关系式;(3).如备用图, 当P在线段BC上运动时, 是否存在点P使得△APE的周长最小?假设存在, 求出此时∠PAD 的度数;假设不存在, 请说明理由.。

北师大版七年级下数学《全等三角形》单元测试(含答案)

北师大版七年级下数学《全等三角形》单元测试(含答案)

第1页 共5页全等三角形章节测试一、细心选一选(每小题3分,共36分)1.下列说法正确的是……………………………………( )A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等 2.下列各组线段能组成三角形的是……………………( )A.3cm ,3cm ,6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm 3.下列图形中,与已知图形全等的是……………………( )4.如图,已知△ABC ≌△CDE,其中AB=CD,那么下列结论中, 不正确的是………………………( ) A.AC=CE B.∠BAC=∠CDEC.∠ACB=∠ECDD.∠B=∠D5.下列条件中,不能判定三角形全等的是……………………………………( ) A.三条边对应相等 B.两边和一角对应相等 C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等6. 如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形…………………( )A.1对B.2对C.3对D.4对7.在△ABC 和△A ′B ′C ′中,已知AB= A ′B ′,∠B=∠B ′要保证△ABC ≌△A ′B ′C ′,可补充的条件是………………………………………………………………………………………………( )A.∠B+∠A=900B.AC= A ′C ′C.BC=B ′C ′D. ∠A+∠A ′=9008.已知在△ABC 和△A ′B ′C ′中,AB= A ′B ′,∠B=∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是……………………………………………………………………………………( )(A) (B) (C)(D)第3题图DE第4题ABDCE第2页 共5页A. BC=B ′C ′B. AC= A ′C ′C. ∠C=∠C ′D. ∠A=∠A ′9.如图,已知AE=CF,BE=DF.要证△ABE ≌△CDF,还需添加的一个条件是………( ) A.∠BAC=∠ACD B.∠ABE=∠CDF C.∠DAC=∠BCA D.∠AEB=∠CFD10.如图AD 是△ABC 的角平分线,DE 是△ABD 的高,EF 是△ACD 的高,则…( ) A.∠B=∠C B.∠EDB=∠FDC C.∠ADE=∠ADF D. ∠ADB=∠ADC 11.如图AC 与BD 相交于点O ,已知AB=CD,AD=BC,则图中全等三角形有………( ) A.1对 B.2对 C.3对 D.4对 12.如图,D 、E 分别是AB,AC 上一点,若∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 是………………………………( ) A.AD=AE B.AB=ACC.BE=CDD.∠AEB=∠ADC二、专心填一填:(每小题3分,共24分)13.如图,△ABC ≌△DEF,点B 和点E, 点A 和点D 是对应顶点, 则AB= ,CB= , ∠C= ,∠CAB= . 14.若已知两个三角形有两条边对应,则要视这两个三角形全等, 还需增加的条件可以是 或 .15.如图已知AC 与BD 相交于点O ,AO=CO,BO=DO,则AB=CD 请说明理由. 解:在△AOB 和△COD 中(BO DO(AO CO ==⎧⎪⎨⎪⎩已知)(对顶角相等已知) ∴△AOB ≌△COD ( ) ∴AB=DC ( ) 16.如图,已知AO=OB,OC=OD,AD 和BC 相交于点E , 则图中全等三角形有 对.A B C DF E第9题AA AAA 第10题A BCDO第11题ABC E第12题D第13题ABCDEFA B DC O第15题OABD第16题CE第3页 共5页17.在△ABC 和△DEF 中,AB=4, ∠A=350, ∠B=700,DE=4, ∠D= , ∠E=700,根据 判定△ABC ≌△DEF.18.如图,在△ABC 和△DEF 中AB=DC(BC=DA(=⎧⎪⎨⎪⎩已知)已知)()∴△ABC ≌△DEF( )19.如图∠B=∠DEF,AB=DE,要证明△ABC ≌△DEF ,(1)若以“ASA ”为依据,需添加的条件是 ; (2)若以“SAS ”为依据,需添加的条件是 .20.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D, 交AC 于E,若△EBC 的周长为21cm,则BC= cm.三、耐心答一答:(本题有6小题,共40分)21.(本题4分)已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠A=∠α,∠B=∠β,BC=a.22.(本题6分)已知AD 平分∠CAB,且DC ⊥AC, DB ⊥AB ,那么AB 和AC 相等吗?请说明理由.第19题B CAECD第18题ADAB CE D第20题DCA B第4页 共5页23.(本题6分)如图,已知BD=CD ,∠1=∠2. 说出△ABD ≌△ACD 的理由.24.(本题8分)如图,已知AB=DC ,AD=BC,说出下列判断成立的理由: (1) △ABC ≌△CDA (2) ∠B=∠D25.(本题8分) 如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着须先画出四种不同的分法,把4×4的正方形分割成两个全等图形26.(本题8分)如图,△ABC 中,AD 垂直平分BC,H 是AD 上一点,连接BH,CH.(1)AD 平分∠BAC 吗?为什么?(2)你能找出几堆相等的角?请把他么写出来(不需写理由)ABC12DD图①画法1画法2画法3画法4ACBHD第5页 共5页一、细心选一选:(每小题3分,共36分)二、专心填一填(每小题3分,共24分)13.DE,FE,∠F, ∠FED. 14.3第三边相等,这两边的夹角相等15. ∠AOB=∠COD,SAS,全等三角形的对应边相等 16.4 17.350, 记分S 18.AC,CA,公共边,SSS 19.∠A=∠D 20.8三、耐心答一答(本题有六小题,共40分) 21.图略 22.AB=AC 23.略 24.略 25.26.(1)由△ADB ≌△ADC(SAS)得∠BAD=∠CAD (4)4对,∠BHD=∠CHD, ∠ABD=∠ACD, ∠HBD=∠HCD, ∠BDA=∠CDA画法1画法2画法3画法4。

(完整版)北师大七年级下全等三角形测试题(50分钟)

(完整版)北师大七年级下全等三角形测试题(50分钟)

DACFD D EC FDE 图 9H一.选择题: 全等三角形测试题13. 已知,如图 13-6,D 是△ABC 的边 ABA上一点, DF 交 AC 于点 E, DE=FE, FC ∥AB,F 1.在△ABC 和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保 证△ABC ≌△A’B’C’, 则补充的这个条件是( ) A .BC=B’C’ B .∠A=∠A’ C .AC=A’C’ D .∠C=∠C’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或 135°D .都不对 3.现有两根木棒,它们的长分别是 40cm 和 50cm ,若要钉成一个三角形木 求证:AD=CF .BC图 13-6 架,则在下列四根木棒中应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒二、填空题: 4. 三角形 ABC 中,∠A 是∠B 的 2 倍,∠C 比∠A +∠B 还大 12 度,则这个三角形是__三角形.5. 以三条线段 3、4、x -5 为这组成三角形,则 x 的取值为____.6. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.7. △ABC 中,∠A +∠B =∠C ,∠A 的平分线交 BC 于点 D ,若CD =8cm ,则点 D 到 AB 的距离为____cm .8..AD 是△ABC 的边 BC 上的中线,AB =12,AC =8,则边 BC 的取值范围是____;中线 AD 的取值范围是____. 三、解答题:11. 已知:如图 13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 14. 如图 5-7,△ABC 的边 BC 的中垂线 DF 交△BAC 的外角平分线 AD 于 D, F 为垂足, DE ⊥AB 于 E ,且 AB>AC , 求证:BE -AC=AE .BF C16.如图 9 所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E ,交 AD 于点 F ,求证: ∠ADC =∠BDE .求证:△EAD ≌△CAB . EB图 13-4AEB图 9AB CD⎪⎩六、参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为 180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒 x 的取值范围是:10cm <x <90cm .= ∠ECB , 又 ∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△ AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC,∠BAE=∠CAE. C16.如图 11 所示,过 B 点作 BH ⊥BC 交 CE 的延长线于 H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°,FD∴∠CAD =∠BCH .在△ACD 与△CBH 中,AEB4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项 可 画 出 无 数 个 三 角 形 .) 5.B .(提示:∠CDE =∠B +∠-∠=∠-∠B ,故得到 2(∠B -∠)+∠=0.又∵∠-∠B =∠-∠C =∠CDE ,所以可得到∠CDE = ,故当∠为定值时,∠CDE 为定值.)∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°,∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH , ∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°⎧BD = BH ,图 11H 26.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数) 7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3. 8.三角形的稳定性.9.8.(提示:点 D 到 AB 的距离与 CD 的长相等.) 10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.) 11. 提示:先证∠EAD=∠CAB ,再由 SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等, 理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等. 13. 提示:由 ASA 或 AAS ,证明△ADE ≌△CFE .14. 过 D 作 DN ⊥AC, 垂足为 N, 连结 DB 、DC 则 DN=DE ,DB=DC ,又 ∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又 ∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE . 15. 上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中, ∵BE=CE , ∴∠EBC=∴在△BED 和 BEH 中, ⎨∠EBD =∠EBH, ,∴△BED ≌△BEH .⎪BE =BE, ∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .。

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

新苏教版七年级数学下册《全等三角形》单元测试题及答案解析(精品试卷).docx

(新课标)苏教版2017-2018学年七年级下册《全等三角形》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.如图,△ABC≌△CDA,AB=4,BC=5,AC=6,则△ADC的周长为…………………………………………( )A.4 ;B.5;C.15;D.不能确定;2.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是………………………………………………………………………………………()A.ASA;B.SSS; C.SAS; D.AAS;3.(2014秋•黔东南州期末)如图,在下列条件中,不能证明△ABD≌△ACD的条件是………………()A.∠B=∠C,BD=DC;B.∠ADB=∠ADC,BD=DC;C.∠B=∠C,∠BAD=∠CAD;D.BD=DC,AB=AC;4. 如图,在△ABC中,AD是BC边上的高,点E、F是AD上的两点,AB=AC,BC=4,AD=3,则图中阴影部分的面积是…………………………………………………………………………………………………( ) A.12 ;B.6;C.3 ;D.4;5.(2014春•兴化市期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带……()A.第1块;B.第2块;C.第3块;D.第4块;6.(2014秋•铜陵期末)能使两个直角三角形全等的条件是………………………………………………()A.斜边相等; B.一锐角对应相等;C.两锐角对应相等;D.两直角边对应相等;7.如图,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,已知AC=3㎝,那么AE+DE等于…………()A.2㎝;B.3㎝;C.4㎝;D.5㎝;8.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE相交于点F.则∠BFD的度数为……………………………………………………………………………………………………()A.45°B.90°C.60°D.30°9.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为……………………………………………………………………………………………………()A. 2 B. 3 C. 4 D. 5DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有………………()A.1个;B. 2个;C.3个;D.4个;二、填空题:(本题共8小题,每小题3分,共24分)11. 如图,若AB=DE,_________,BE=CF,则根据“SSS”可得△ABC≌△DEF.12.(2013秋•兴化市校级月考)如图,AB∥FC,DE=EF,AB=15,CF=8,则BD= .13.如图,已知:∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件;(3)若以“SAS”为依据,还缺条件;14.(2012•无锡)如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB= °.15.如图所示,在Rt△ABC中,E为斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=1:7,则∠BAC的度数为_______.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A 的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE= ㎝.17.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)18.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P 不与点A,C重合,那么当点P运动到的位置时,才能使△ABC与△APQ 全等?三、解答题:(本题共9大题,满分共76分)19. (6分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.20. (本题满分6分)如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.22. (本题满分8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.23. (本题满分8分)(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(2)若∠ABE=55°,求∠EGC的大小.24.(本题满分8分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.25. (本题满分8分)如图,已知△ABC中,AB>AC,BE、CF都是△ABC 的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.26. (本题满分9分)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.27.(本题满分8分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.28. (本题满分9分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q 第一次在△ABC的哪条边上相遇?《全等三角形》单元测试题参考答案一、选择题:1.C;2.B;3.A;4.C;5.B;6.D;7.B;8.C;9.B;10.D;二、填空题:11.AC=DF;12.7;13. ∠A=∠D;∠ACB=∠F;BC=EF;14.90;15.48°;16.7;17.①②③;18.AC中点;三、解答题:19.20. ∠DFE=90°,EC=3㎝;21.证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴B DEFBC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ) 22.证明:(1)∵DE ⊥AC ,BF ⊥AC ,在△ABF 和△CDE 中,AB CD DE BF=⎧⎨=⎩,∴△ABF ≌△CDE (HL ). ∴AF=CE .(2)由(1)知∠ACD=∠CAB ,∴AB ∥CD .23.(1)证明:∵四边形ABCD 是正方形,∴∠ABC=90°,AB=BC ,∵BE ⊥BF ,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF ,在△AEB 和△CFB 中,AB =BC ∠ABE =∠CBF BE =BF ,∴△AEB ≌△CFB (SAS ),∴AE=CF .(2)解:∵BE ⊥BF ,∴∠FBE=90°,又∵BE=BF ,∴∠BEF=∠EFB=45°,∵四边形ABCD 是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°-55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.24.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE ,又∵AB=AC ,AD=AE ,∴△BAD ≌△CAE (SAS ).(2)BD 、CE 特殊位置关系为BD ⊥CE .证明如下:由(1)知△BAD ≌△CAE ,∴∠ADB=∠E .∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD 、CE 特殊位置关系为BD ⊥CE .26.(1)证明:在△AOB 和△COD 中∵B CAOB DOC AB DC ∠=∠⎧⎪∠=⎨⎪=⎩,∴△AOB ≌△COD (AAS ) (2)∵△AOB ≌△COD (已证),∴AO=DO,∵E 是AD 的中点, ∴AE=DE ; 在△AOE 和△DOE 中∵AO ODAE DE OE OE =⎧⎪=⎨⎪=⎩,∴△AOE ≌△DOE (SSS ), ∴90AEO DEO ∠=∠=︒; 25. 证明:(1)∵BE 、CF 都是△ABC 的高,∴∠AFC=∠AFQ=∠AEB=90°. ∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF . 在△ABP 和△QCA 中AB QC ABE ACFBP CA =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QCA (ASA ),∴AP=QA ;(2)∵△ABP ≌△QCA ,∴∠BAP=∠CQA .∵∠CQA+∠FAQ=90°, ∴∠BAP+∠FAQ=90°,即∠APQ=90°,∴AQ ⊥AQ .26.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD ;∵∠BEC=90°,∴∠CBE+∠C=90° 又∵∠DAC+∠C=90°,∴∠CBE=∠DAC ;∵∠FDB=∠CDA=90°,∴△FDB ≌△CDA (ASA )②∵△FDB ≌△CDA ,∴DF=DC ;∵GF ∥BC ,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD ,∴FA=FG ;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.27.解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE ,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中AB=AC ∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,AD=AE ∠DAB=∠EAC AB=AC ,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB ,∠ACE=∠BCE+∠ACB ,∴∠BAC=∠BCE ,即α=β.28.解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米, 点D 为AB 的中点,∴BD=5厘米.又∵PC=BC-BP ,BC=8厘米, ∴PC=8-3=5厘米,∴PC=BD .又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP .(SAS ) ②∵P v ≠Q v ,∴BP ≠CQ ,又∵△BPD ≌△CPQ ,∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t =433BP =秒,∴Q v =515443CQ t==厘米/秒; (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯解得803x =.∴点P 共运动了803×3=80厘米.∵80=56+24=2×28+24,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.。

七年级下册数学三角形全等练习题

七年级下册数学三角形全等练习题

七年级下册数学三角形全等练习题一、选择题1.下列三角形不一定全等的是 A.有两个角和一条边对应相等的三角形 B.有两条边和一个角对应相等的三角形C.斜边和一个锐角对应相等的两个直角三角形 D.三条边对应相等的两个三角形.下列说法:①所有的等边三角形都全等②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等④有两个锐角相等的直角三角形全等其中正确的个数是A.1个 B.2个 C.3个 D.4个3.如图,AB平分∠CAD,E为AB上一点,若AC=AD,则下列结论错误的是A.BC=BDB.CE=DEC.BA平分∠CBDD.图中有两对全等三角形4.AD是△ABC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是 A.DE=DFB.AE=AF 角对应的角是.A.∠A B.∠B C.∠C D.∠B或∠C6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=.A.25° B.27° C.30° D.45°.如右图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,且AB=10 cm,则△BED 的周长为 A.cm B.10 cm; C.1cm D.20 cmCOE;③点O在∠BAC的角平分线上,其中正确的结论有A.3个 B.2个 C.1个 D.0个C.BD=CDD.∠ADE=∠ADF5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是130°,那么△ABC中与这个A8.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,则①△ABE≌△ACFABE二、填空题9.如图,在△ABC中,AD平分∠BAC,过B作BE过E作EF∥AC交AB于F,则A、AF=2BF;B、AF=BF;C、AF>BF;D、AF 1.如果△ABC≌△A’B’C’,若AB=A’B’,∠B=50°,∠C=70°,则∠A’=°2.如图,若BD⊥AE于B,DC⊥AF于C,且DC=DC,∠BAC=40°,∠ADG=130°,则∠DGF=________。

北师大版数学七年级下册《全等三角形》练习题含答案

北师大版数学七年级下册《全等三角形》练习题含答案

北师⼤版数学七年级下册《全等三⾓形》练习题含答案全等三⾓形练习题含答案⼀、选择题(每⼩题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三⾓形有⼀个⾓是100°,那么在△ABC 中与这100°⾓对应相等的⾓是()A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求⼀点P ,使它到OA ,OB 的距离相等,则P 点是()A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所⽰,△ABD ≌△CDB ,下⾯四个结论中,不正确的是()A.△ABD 和△CDB 的⾯积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF =() A.150° B.40° C.80° D.90°5.所对的⾓的关系是()A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所⽰,BE ⊥AC 于点D ,且AD =CD ,BD A.25° B.27° C.30°A D A CB O DC B A8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则()A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所⽰,亮亮书上的三⾓形被墨迹污染了⼀部分,很快他就根据所学知识画出⼀个与书上完全⼀样的三⾓形,那么这两个三⾓形完全⼀样的依据是()A.SSSB.SASC.AASD.ASA10.将⼀张长⽅形纸⽚按如图4所⽰的⽅式折叠,BC BD ,为折痕,则CBD ∠的度数为() A .60° B .75° C .90° D .95°⼆、填空题(每⼩题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加⼀个条件:,使OC OD=(只添⼀个即可).12.如图,在△ABC 中,AB =AC ,BE13.如图,AB =CD ,AD =BC ,O 为F ,若∠ADB =60°,EO =10,则∠DBCDOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三⾓形的两条边和其中⼀条边上的⾼对应相等,那么这两个三⾓形的第三边所对的⾓的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三⾓形共有______对.17.在数学活动课上,⼩明提出这样⼀个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?⼤家⼀起热烈地讨论交流,⼩英第⼀个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐⾓三⾓形ABC 和锐⾓三⾓形A ′B ′C ′中BC ,B ′C ′边上的⾼,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写⼀个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂⾜分别为A 、B ,试说明AD+AB =BE.21.如图,⼯⼈师傅要检查⼈字梁的∠B 和∠C 是否相等,但他⼿边没有量⾓器,只有⼀个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′量出DE 的长a ⽶,FG 的长b ⽶.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,⼩梅设计了如下⽅案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所⽰,A ,E ,F ,C 在⼀条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC ⽅向移动,变为图时,其余条件不变,上述结论是否成⽴?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平⾏线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的⼤⼩关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正⽅形ABDE 和正⽅形ACFG ,连结EG ,试判断△ABC 与△AEG ⾯积之间的关系,并说明理由.(2)园林⼩路,曲径通幽,如图2所⽰,⼩路由⽩⾊的正⽅形理⽯和⿊⾊的三⾓形理⽯铺成.已知中间的所有正⽅形的⾯积之和是a 平⽅⽶,内圈的所有三⾓形的⾯积之和是b 平⽅⽶,这条⼩路⼀共占地多少平⽅⽶?A D E CB F G G D F AC B E GD FA CB E F E DC B AGFBD图1 图2参考答案:⼀、选择题1.A2.D3.C 提⽰:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和⾯积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E.∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提⽰:本题主要通过两次三⾓形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C⼆、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提⽰:⾓平分线上的⼀点到⾓的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟⼀三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直⾓三⾓形两锐⾓互余).所以∠ACD=∠E(同⾓的余⾓相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt△BEC 中,A EBC ACD E CD EC ∠=∠??∠=∠??=?,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三⾓形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠??∠=∠??=?公共⾓∴△OAD ≌△OBE (ASA ),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE .在△BCD 和△ACE 中,,,(),ODA OEB BCD ACE BD AE ∠=∠??∠=∠??=?对顶⾓∴△BCD ≌△ACE (AAS ),∴BC=AC .在Rt △BOC 和Rt △AOC 中,,,B C A C O B O A =??=?∴△BOC ≌△AOC (HL ),∴∠BOC=∠AOC .23.∵DE ⊥AC 于点E ,BF ⊥AC 于点F ,∴∠DEF =∠BFE =90°.∵AE =CF ,∴AE +EF =CF +FE ,即AF =CE .在Rt△ABF 与Rt △CDE 中,AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE ,∴BF=DE.在Rt△DEG≌Rt△BFG中,∠DGE=∠BGF,DE=BF,∴Rt△DEG≌Rt△BFG,∴EG=FG,即BD平分EF.若将△DEC的边EC沿AC⽅向移动到图2时,其余条件不变,上述结论仍旧成⽴,理由同上.提⽰:寻找AF与CE的关系是解决本题的关键.24.(1)∵AC∥BG,∴∠GBD=∠C,在△GBD与△FCD中,∠GBD=∠C,BD=CD,∠BDG=∠CDF,∴△GBD≌△FCD,∴BG=CF.(2)BE+CF>EF,⼜∵△GBD≌△FCD(已证) ,∴GD=FD,在△GDE与△FDE中,GD =FD,∠GDE=∠FDE=90°,DE=DE,∴△GDE≌△FDE(SAS) ,∴EG=EF,∵BE+BG>GE,∴BE+CF>EF.25.(1)解:△ABC与△AEG⾯积相等.理由:过点C作CM⊥AB于M,过点G作GN ⊥EA交EA延长线于N,则∠AMC=∠ANG =90°,∵四边形ABDE和四边形ACFG都是正⽅形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,∴△ACM≌△AGN,∴CM=GN.∵S△ABC=12AB×CM,S△AEG=12AE×GN,∴S△ABC=S△AEG.(2)解:由(1)知外圈的所有三⾓形的⾯积之和等于内圈的所有三⾓形的⾯积之和,∴这条⼩路的⾯积为(a+2b)平⽅⽶.BD。

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各50题)

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各50题)

最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。

2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。

3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。

4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。

5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。

6、如图,AD=AB,DC=BC,证明∠B=∠D。

7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。

9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。

10、如图,AB=AC,D是BC的中点,证明AD⊥BC。

11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。

12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。

13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。

14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。

15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。

16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。

17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。

18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。

19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。

20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。

22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。

23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。

24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。

七年级下学期期末复习全等三角形卷(经典)

七年级下学期期末复习全等三角形卷(经典)

1.如图,BE=CF ,AB=DE ,添加下列哪些条件可以 推证△ABC ≌△DFE ( )A 、 BC=EFB 、 ∠A=∠DC 、 AC ∥DFD 、 AC=DF 第6题图 2. 已知,如图,AC=BC ,AD=BD ,下列结论,不正确的是( ) (A )CO=DO (B )AO=BO (C )AB ⊥BD (D )△ACO ≌△BCO 第7题图3.在△ABC 内部取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的( )交点 (A )高 (B )角平分线 (C )中线 (D )垂直平分线 4.下列结论正确的是( )(A )有两个锐角相等的两个直角三角形全等;(B )一条斜边对应相等的两个直角三角形等; (C )顶角和底边对应相等的两个等腰三角形全等;(D )两个等边三角形全等. 5.已知,如图,△ABC 中,AB=AC ,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F , 则下列五个结论中:①AD 上任意一点到AB 、AC 两边的距离相等; ②AD 上任意一点到B 、C 两点的距离相等;③AD ⊥BC 且BD=CD ④∠BDE=∠CDF ,∠B=∠C ;⑤AE=AF 正确的有( )(A )5个 (B )2个 (C )3个 (D )4个6、如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10㎝,BD=6㎝,则点D 到AB 的距离为 .第6题图 第8题图 7、如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是 (填上你认为适当的一个条件即可). 8、如图,AC ⊥BD 于O ,BO=OD ,图中共有全等三角形 对.9、在ABC ∆和'''C B A ∆中,''B A AB =,'B B ∠=∠,补充条件后,仍不一定能保证ABC ∆≅'''C B A ∆,这个补充条件是( )A ''CB BC = B 'A A ∠=∠ C ''C A AC =D 'C C ∠=∠ 10、下列条件能判定△ABC ≌△DEF 的一组是 ( )(A )∠A=∠D , ∠C=∠F , AC=DF (B )AB=DE , BC=EF , ∠A=∠DA CEB21第7题图 D CB A(C)∠A=∠D,∠B=∠E,∠C=∠F (D)AB=DE,△ABC的周长等于△DEF的周长11、下列结论正确的是()A、有两个锐角相等的两个直角三角形全等;B、一条斜边对应相等的两个直角三角形全等;C、顶角和底边对应相等的两个等腰三角形全等;D、两个等边三角形全等.14、如图,沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm,∠DAM=300,则AN= cm,NM= cm,∠NAM= ;15、如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= ;16. 已知:如图 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 ,则AD=___________.17、如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED求证:AB=AC.18、如图,BD=CD,BF⊥AC,CE⊥AB.求证:点D在∠BAC的平分线上.19. 已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠420.已知:如图 , AB=DC , AD=BC , O是BD中点 , 过O的直线分别与DA、BC的延长线交于E、F.求证:OE=OF21、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。

北师大版数学七年级下册《全等三角形》单元测试题3【精品】

北师大版数学七年级下册《全等三角形》单元测试题3【精品】

全等三角形单元测试一、选择题(每题3分共30分)1、如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB ≌△EDB≌△EDC,则∠C的度数为()A、15°B、20°C、25°D、30°3、如图所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形(第1题) (第2题) (第3题)7、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC 的长()A、13B、3C、4D、69、已知如图,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A、BD+ED=BCB、DE平分∠ADBC、AD平分∠EDCD、ED+AC>AD10、如图8,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A、带①去B、带②去C、带③去D、带①②③去(第9题)(第10题)二、填空(每题3分,共15分)12、△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定。

13、如图,在△ABC中,∠C=90°AD平分∠BAC,BC=12cm,BD=8cm 则点D到AB的距离为。

14、如图,∠1=∠2,要使△ABE≌△ACE还要添加一个条件是。

15、如图,已知相交直线AB和CD,及另一直线MN,如果要在MN上找出与AB、CD距离相等的点,则这样的点至少有个,最多有个三、解答题16、(7分)如图所示,太阳光线AC和A`C`是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由。

七年级下册-全等三角形证明经典题

七年级下册-全等三角形证明经典题

七年级数学下册《全等三角形》专题练习1、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2、已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,证21∠=∠4、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBC5、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C6、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7、已知:AB=6,AC=2,D 是BC 中线,求AD 的取值范围。

8. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

9、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CCDB BA CDF2 1 EADBCA10、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .13.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 14.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .AB C DDCBAFE PEDC15.如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B,求证:AB=AC+CD16.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.17.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDC B AFEDA DC B A19、如图:DF=CE ,AD=BC ,∠D=∠C 。

七年级下暑假 三角形全等证明 练习

七年级下暑假 三角形全等证明 练习

七年级下暑假 三角形全等证明1、 已知:如图,AD ∥BC ,CB AD =。

求证:CBA ADC ∆≅∆。

2、 已知:如图,AD ∥BC ,CB AD =,CF AE =。

求证:CEB AFD ∆≅∆。

3、 已知:如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AC AB =,C B ∠=∠。

求证:CE BD =。

4、 已知:如图,点A 、B 、C 、D 在同一条直线上,DB AC =,DF AE =,AD EA ⊥,AD FD ⊥,垂足分别是A 、D 。

求证:FDC EAB ∆≅∆。

5、 已知:如图,AC AB =,AE AD =,21∠=∠。

求证:ACE ABD ∆≅∆。

6、 已知:如图,21∠=∠,43∠=∠。

求证:AD AC =。

7、 已知:如图, 点E 、F 在BC 上,CF BE =,DC AB =,C B ∠=∠。

求证:DE AF =。

8、 已知:如图, ABC ∆是一个钢架,AC AB =,AD 是连结点A 与BC 中点的支架。

求证:BC AD ⊥。

9、 已知:如图, 点B 、E 、C 、F 在同一直线上,DE AB =,DF AC =,CF BE =。

求证:D A ∠=∠。

10、如图,在ABC ∆中,D 是AB 上一点,DF 交AC 于点E ,FE DE =,CE AE =,AB 与CF 有什么位置关系?说明你判断的理由。

11、已知:如图,DBA CAB ∠=∠,BD AC =。

AO 等于BO 吗?说明你判断的理由。

12、已知:如图,AC 和BD 相交于点O ,OC OA =,OD OB =。

求证:DC ∥AB 。

13、已知:如图,AC 和BD 相交于点O ,DC AB =,DB AC =。

求证:C B ∠=∠。

图2 图1A B C D O O D C B A14、如图所示,有一直角三角形△ABC ,∠C=900,AC=10cm ,BC=5cm ,一条线段PQ=AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动,问P 点运动到AC 上什么位置时,△ABC 才能和△APQ 全等。

七年级下册数学全等试卷

七年级下册数学全等试卷

一、选择题(每题3分,共15分)1. 下列哪组图形能够完全重合?A. 两个等腰三角形B. 两个矩形C. 两个等边三角形D. 两个等腰梯形2. 下列哪个命题是正确的?A. 全等图形的面积一定相等B. 全等图形的形状一定相同C. 全等图形的大小一定相同D. 全等图形的位置一定相同3. 如果两个三角形的三边分别对应相等,那么这两个三角形一定是:A. 相似三角形B. 全等三角形C. 相似或全等三角形D. 无法确定4. 下列哪个图形可以通过旋转、平移或翻转后与原图形重合?A. 正方形B. 等腰三角形C. 等边三角形D. 正五边形5. 在全等三角形中,对应角相等,对应边也相等,这个性质称为:A. 角角边(AAS)全等B. 边边边(SSS)全等C. 边角边(SAS)全等D. 角边角(ASA)全等二、填空题(每题5分,共20分)6. 若三角形ABC与三角形DEF全等,则AB=______,AC=______,BC=______。

7. 全等三角形的性质有:对应边相等、对应角相等、面积相等、周长相等。

8. 两个全等三角形的相似比是______,它们的面积比是______。

9. 如果一个三角形的两边长分别为5cm和7cm,第三边长为6cm,那么这个三角形是______三角形。

10. 在全等三角形中,如果两个角相等,那么这两个角是______角。

三、解答题(每题10分,共30分)11. (10分)已知三角形ABC与三角形DEF全等,且AB=6cm,BC=8cm,AC=10cm。

求三角形DEF的周长。

12. (10分)如图,已知三角形ABC与三角形DEF全等,其中∠ABC=70°,AB=8cm,BC=6cm。

求∠DEF的度数。

13. (10分)在三角形ABC中,AB=AC,AD是BC边上的高。

若AB=10cm,求三角形ABC的面积。

四、应用题(10分)14. (10分)小明在画图时,不小心将一个直角三角形的直角边AB画成了AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下全等三角形
一.解答题(共13小题)
1.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.
(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.
2.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.
3.在△ABC中,AB=AC,∠BAC=60°,点E为直线AC上一点,D为直线BC上的一点,且DA=DE.
当点D在线段BC上时,如图①,易证:BD+AB=AE;
当点D在线段CB的延长线上时,如图②、图③,猜想线段BD,AB和AE之间又有怎样的数量关系?写出你的猜想,并选择一种情况给予证明.
第1页(共5页)
4.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB 上.求证:△CDA≌△CEB.
5.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a的代数式表示)
6.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.
(1)求证:BD=BC;
(2)若BD=6cm,求AC的长.
7.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.
求证:①△DEM≌△DFN;
②∠PAE=∠PBF.
第2页(共5页)
8.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.
求证:DE=CF.
9.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,
(1)求:∠AOC的度数;
(2)求证:AC=AE+CD.
10.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.
11.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,
(1)求证:△ABP≌△QCA.
(2)AP和AQ的位置关系如何,请给予证明.
第3页(共5页)
12.如图,点D是△ABC三条角平分线的交点,∠ABC=68°
(1)求证:∠ADC=124°;
(2)若AB+BD=AC,求∠ACB的度数.
13.如图1,△ABC中,AC=BC,∠ACB=90°,P为AB中点,以P为顶点作直角∠DPE,分别交边BC、AC于点D、E.
(1)求证:PD=PE;
(2)如图2,过B作BM∥AC,再将直角∠DPE绕顶点P旋转,交CB的延长线于D,交BM于E,线段PD与PE仍然相等吗?如果相等,请证明;如果不相等,请说明理由.
第4页(共5页)
2017年04月21日七年级下全等三角形数学组卷
参考答案
一.解答题(共13小题)
1.;2.;3.;4.;5.a;6.;7.;
8.;9.;10.;11.;12.;13.;
第5页(共5页)。

相关文档
最新文档