解析几何第四版吕林根课后习题答案第二章

合集下载

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根 许子道_第四版_课后习题解答第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量OA 、OB 、 OC 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、EF 和FA 中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与AC 方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、CD ; (2) AE 、CG ; (3) AC 、EG ;(4) AD 、GF ; (5) BE、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?E(1=+ (2+=+ (3-=+ (4+=- (5=[解]:(1)b a ,-=+(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.3空间曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.3空间曲线的方程
x0 , y0 .
却表示两个坐标面 yoz 与 xoz 的交线 ,即 z 轴 .
二、空间曲线的参数方程(表示空间曲线的常用方法)
与平面曲线类似地 ,有空间曲线的向量式参 数方程
(2.3-2) r r ( t ). 或 r ( t ) x ( t ) e y ( t ) e z ( t ) e . (2.3-3) 1 2 3

设 t , 则 ( 2 . 3 5 ), ( 2 . 3 6 ) 分别写成

) (2 .35
x a cos ya sin ( ).
z b
) ( 2 .3 6
式中 为参数 , 曲线的形状象弹簧 ( 图 2 ).
从上式消去 得曲线方程的一般形式
2.3 空间曲线的方程
一、空间曲线的一般方程
空间曲线可看成两曲面 的交线 .
设两曲面为
Si:F , y, z) 0 i (x (i 1 ,2)
z
S1
L
S2
它们的交线为 L.
则L上的任何点的坐 标满足:
o
x
图1
y
F 1 ( x, y, z) 0, F2 ( x, y, z) 0.
p在 xy 面上射影为 Q ,则

z
t为参数.
(2.3-5)
质点运动轨迹的向量式参数方程 坐标式参数方程为 图2
or p
xA
Q

t
y
x a cos t t ). y a sin t( t为参数. z b t
(2.3-6)
r i a cos j a si k b n ( ).

解析几何_苏大第四版 课后答案(吕林根_许子道)

解析几何_苏大第四版 课后答案(吕林根_许子道)

1 ∵ AL = ( AB + AC ) 2 1 BM = ( BA + BC ) 2 1 CN = (CA + CB) 2 1 ∴ AL + BM + CN = ( AB + AC + BA + BC + CA + CB ) = 0 2 从而三中线矢量 AL, BM , CN 构成一个三角形。
OA + OB + OC = OL + OM + ON .
PA + PB + PC = 0 . [证明]: “ ⇒ ” 若 P 为△ABC 的重心,则
CP =2 PE = PA + PB ,
从而 即
PA + PB - CP = 0 , PA + PB + PC = 0 .
图 1-9
“ ⇐ ” 若 PA + PB + PC = 0 , 则 PA + PB =- PC = CP , 取 E,F,G 分别为 AB,BC,CA 之中点,则有
1 m , μ= 1+ m 1+ m 1 m + =1. 从而 λ+μ= 1+ m 1+ m
λ=
“ ⇐ ” 设 λ+μ=1. 则有 OC =λ OA +μ OB =λ OA +(1-λ) OB = OB +λ( OA - OB ),
OC - OB =λ( OA - OB ),
所以
BC =λ BA ,
F
OF 、 AB 、 BC 、 CD 、
DE 、 EF
和 FA 中,哪些矢量是相等的? [解]:如图 1-1,在正六边形 ABCDEF 中, 相等的矢量对是:

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

故动点轨迹为
y 0,
z
0,
x
c.
这是x轴上的线段.
② 当a c时,令b2 a2 c2,则动点轨迹为
x2 a2
y2 b2
z2 b2
1,
(旋转椭球面 ).
例 3 建立球心在点 M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
OM r(u,v), 的终点M (x(u, v), y(u, v), z(u, v))所画出的轨迹一般
为一张曲面.(图1) 定义2.2.2 对u, v (a u b, c v d ),若由(2.2 5)
表示的向径r(u, v)的终点M总在曲面上,同时,曲面
上的任意点M总对应着以它为终点的向径, 而这向径
面,如
x2 y2 z2 1 0,
又 三元方程F(x, y, z) 0有时代表一条曲线(包
括直线),如
x2 y2 0,
代表直线 x y 0,即z 轴.
有时代表一个点,如
x2 y2 z2 0, 即坐标原点 (0,0,0). 曲面与方程研究中的两个基本问题: 1) 给定作为点的几何轨迹 的曲面,建立其方程.
(讨论旋转曲面)
2) 给定坐标x, y, z间的方程, 研究这方程的曲面的
形状. (讨论柱面、二次曲面)
以下讨论问题 1)的实例.
例1 求两坐标面 xoz, yoz所成二面角的平分面方 程.
解 因所求平分面是与xoz, yoz面有等距离的点的
轨迹, 所以
点M(x, y, z)在平分面上 y x.
§2.2曲面的方程
1.曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

线直一同示表都后t 去消在
与 .t � 2 � y � � ,t � 1 � x �
如,程方数参的式形同 不种多有以可线曲条一同① 意注应还,时此
参去消于在键关 , 时 程方通普为程方数参化)1(
.t 数
程方数参的圆椭则 , � � � � � � 且数参为� 取以所
�� nis b� � y �� soc a � x �� nis b � � y
迹轨的点一的上周圆
圆求�动滚地动滑
程方通普得可即) 能可若( t 去消中)5 � 1. 2 ( 从
.0 � ) y , x ( F
无上是线直一在圆个一 1例
)6-1.2( , j ) � soc � 1( a � i ) � nis � �( a � r � � � , j a � CA , i � a � AO 以所 � �
齿为用采被常上业工在 , 线曲种这 , 线展切或
)31 -1. 2(
为程方数

式标坐的迹轨该得可则 ,) y , x ( 为标坐的点 P 设
当适择选要仅不 ,时 .3 � y � x
.程方通普成化能都程方数参有所是不并②
. t3 � 2 � y , t3 � 1 � x
程方数参为程方通普化 ) 2 (
三意任上线曲双轴等是 R , Q , P 设 7 例
上线曲双轴等一同在必 H 心垂的 RQP �
参的线曲双轴等知已设 , 图如 证
,
2 1
tc � 0 x
tc � 0 x

c � 2 t0y c � 1t 0 y
得, ② ÷ ①

,) 2 tc � 0x ( 3 t 2 t1t � c � 2 t 0 y

解析几何第四版习题答案

解析几何第四版习题答案

解析几何第四版习题答案解析几何是一门研究几何图形的数学分支,它使用代数方法来描述几何对象。

解析几何第四版习题答案通常包含了各种几何问题的解答,这些解答帮助学生理解如何使用代数工具来解决几何问题。

以下是一些习题的解答示例:1. 直线的方程:- 给定两点 \( P_1(x_1, y_1) \) 和 \( P_2(x_2, y_2) \),直线的斜率 \( m \) 为 \( m = \frac{y_2 - y_1}{x_2 - x_1} \)。

直线的点斜式方程为 \( y - y_1 = m(x - x_1) \)。

如果直线通过原点,则其方程为 \( y = mx \)。

2. 圆的方程:- 圆的标准方程为 \( (x - h)^2 + (y - k)^2 = r^2 \),其中\( (h, k) \) 是圆心的坐标,\( r \) 是半径。

3. 椭圆的方程:- 椭圆的标准方程为 \( \frac{(x - h)^2}{a^2} + \frac{(y -k)^2}{b^2} = 1 \),其中 \( a \) 是椭圆的长半轴,\( b \) 是短半轴,\( (h, k) \) 是椭圆的中心。

4. 双曲线的方程:- 双曲线的标准方程为 \( \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \),其中 \( a \) 是实轴的半长,\( b \) 是虚轴的半长,\( (h, k) \) 是双曲线的中心。

5. 抛物线的方程:- 抛物线的标准方程为 \( y^2 = 4ax \) 或 \( x^2 = 4ay \),其中 \( a \) 是抛物线的焦距。

6. 圆锥曲线的交点问题:- 当两个圆锥曲线相交时,可以通过联立它们的方程来求解交点。

例如,如果有两个圆 \( (x - h_1)^2 + (y - k_1)^2 = r_1^2 \) 和\( (x - h_2)^2 + (y - k_2)^2 = r_2^2 \),它们的交点可以通过解这个方程组来找到。

解析几何 第四版 课后答案

解析几何 第四版 课后答案
本文档为解析几何第四版课后答案的汇总,主矢量终点构成的图形,如单位球面、单位圆等。对于正六边形中的矢量相等问题,给出了详细的解答。在四边形中点连线矢量的证明题中,证明了平面和空间四边形中点的连线矢量关系。此外,还涉及了平行六面体中的矢量相等与相反关系的判断。在数量乘矢量部分,解答了使各式成立的矢量条件,如矢量垂直、同向、反向等。同时,提供了三角形中线矢量构成三角形的证明,以及平行四边形对角线互相平分的矢量法证明。最后,解答了关于平行四边形中心和任意一点矢量关系的问题。这些答案详细、准确,可供学习者对照检查自己的解题过程和结果,有助于加深对解析几何知识的理解。

《解析几何》第二章(吕林根-许子道第四版)

《解析几何》第二章(吕林根-许子道第四版)
解析几何课件(第四版)
吕林根 许子道等编
第一章 向量与坐标
第二章 轨迹与方程 第三章 平面与空间直线
第四章 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
第二章 轨迹与方程
§2.1 平面曲线的方程 §2.2 曲面的方程 §2.3 母线平行与坐标轴的柱面方程 §2.4 空间曲线的方程
§2.2 曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨 迹.
曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系:
(1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程;
那么,方程F(x, y, z) 0就叫做曲面 S 的方程,
特殊地:球心在原点时方程为 x2 y2 z2 R2
上一页 下一页
返回
由 x x0 2 y y0 2 z z0 2 R2
得上、下半球面的方程分别是:
z z0 R2 (x x0)2 ( y y0)2
z z0 R2 (x x0)2 ( y y0)2
由上述方程可得球面的一般式方程为:
化简得所求方程 2x 6 y 2z 7 0.
上一页 下一页
返回
例 2 求与原点O 及M 0 (2,3,4)的距离之比为1 : 2
的点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
z vt
y 螺旋线的参数方程
返回
螺旋线的参数方程还可以写为
x a cos

解析几何第四版吕林根 期末复习 课后习题(重点)详解

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

解析几何(第四版吕林)-根课后答案

解析几何(第四版吕林)-根课后答案

第一章 矢量与坐标§ 矢量的概念1.下列情形中矢量终点各构成什么图形(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面; (2)单位圆(3)直线;(4)相距为 2 的两点AF2. 设点 O 是正六边形 ABCDEF 的中心,在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD 、 DE 、 EF 和 FA 中,哪些矢量是相等的BEOC[解]:如图 1-1,在正六边形 ABCDEF 中,相等的矢量对是:图 1-1OA和EF;OB和FA;OC和AB;OE和CD;OF和DE. 3. 设在平面上给了一个四边形 ABCD,点 K、L、M、N 分别是边AB、BC、CD、DA的中点,求证: KL = NM . 当 ABCD 是空间四边形时,这等式是否也成立[证明]:如图 1-2,连结 AC, 则在 BAC 中,DAC 中,NM 1 AC. NM 与 AC 方向相同, 2从而 KL=NM 且 KL 与 NM 方向相同,所以 KL = NM .KL 1 AC. KL 与 AC 方向相同;在 24. 如图 1-3,设 ABCD-EFGH 是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相 反矢量的矢量:(1) AB 、 CD ; (2) AE 、 CG ; (3) AC 、 EG ;(4) AD 、 GF ;(5) BE 、 CH .[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§ 矢量的加法1.要使下列各式成立,矢量 a, b 应满足什么条件 (1) a b a b; (2) a b a b ; (3) a b a b ; (4) a b a b ; (5) a b a b. [解]:(1) a, b 所在的直线垂直时有 a b a b ;(2) a,b 同向时有 a b a b ; (3) a b , 且 a,b 反向时有 a b a b ; (4) a,b 反向时有 a b a b ; (5) a,b 同向,且 a b 时有 a b a b.图 1—3§ 数量乘矢量1 试解下列各题.⑴ 化简 (x y) (a b) (x y) (a b) . ⑵ 已知 a e1 2 e2 e3 , b 3e1 2 e2 2 e3 ,求 a b , a b 和 3 a 2 b .⑶从矢量方程组3 x4ya,解出矢量x,y.2 x 3 y b解⑴ (x y) (a b) (x y) (a b) x a x b y a y b x a x b y a y b 2x b 2y a⑵ a b e1 2 e2 e3 3e1 2 e2 2 e3 4 e1 e3 , a b e1 2 e2 e3 (3e1 2 e2 2 e3 ) 2 e1 4 e2 3e3 ,3 a 2 b 3(e1 2 e2 e3 ) 2(3e1 2 e2 2 e3 ) 3e1 10 e2 7 e3 . 2 已知四边形 ABCD中, AB a 2 c , CD 5 a 6 b 8 c ,对角线 AC 、 BD 的中点分别为 E 、 F ,求 EF .解EF1CD1AB1(5 a6 b 8 c)1(a2 c)3a3b5c.2222 3 设 AB a 5 b , BC 2 a 8 b , CD 3(a b) ,证明: A 、 B 、 D 三点共线. 证明 ∵ BD BC CD 2 a 8 b 3(a b) a 5 b AB∴ AB 与 BD共线,又∵ B 为公共点,从而 A 、 B 、 D 三点共线. 4 在四边形 ABCD中,AB a 2 b ,BC 4 a b ,CD 5 a 3b ,证明 ABCD为梯形.证明∵ AD AB BC CD (a 2 b) (4 a b) (5 a 3 b) 2(4 a b) 2 BC∴ AD ∥ BC ,∴ ABCD为梯形.6. 设 L、M、N 分别是ΔABC 的三边 BC、CA、AB 的中点,证明:三中线矢量 AL , BM , CN可 以构成一个三角形.[证明]: AL 1 (AB AC) 2BM 1 (BA BC) 2CN 1 (CA CB) 2 AL BM CN 1 (AB AC BA BC CA CB) 0 2从而三中线矢量 AL, BM ,CN 构成一个三角形。

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
”;此后十年间,航空事业获得较快发展。
曲线的参数方程与普通方程的互化
曲线的参数方程 ,是解析几何联系实际的 一个重 要工具.
(1)化参数方程为普通方程 时,关键在于消去参 数t.
此时,还应注意 ①同一条曲线可以有多种不 同形式的参数方程,如
x 1t,

y

2

t.

x 1 3t, y 2 3t.
在消去t后都表示同一直线 x y 3.
ct, c, t
(t 0)
则其上任意三点P, Q,
R的坐标可以分别取
y
Q

H R
P
o
x

c
c
c
P(ct1, t1 ), Q(ct2 , t2 ) R(ct3, t3 ),
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。

第四版微分几何第二章.课后答案解析

第四版微分几何第二章.课后答案解析
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版
范文 范例 学习 指导 word 整理版

解析几何第四版吕林根课后习题答案第二章

解析几何第四版吕林根课后习题答案第二章

(2)由面 x2 4 y 2 16 z2 64 与 xoy 面 (z 0) , yoz面 (x 0) , zox 面 ( y 0) 的交线
分别为:
x 2 4y2 16z2 64 x 2 4 y 2 16z2 64 x2 4 y2 16z2 64
,
,
z0
x0
y0
x2 4 y 2 64 y 2 4 z2 16 x 2 16z2 64
a c 令b2 a2 c2
从而( 1)为 b 2 x 2 a 2 y 2 a 2 z 2 a2 b2
即: b 2 x 2 a 2 y 2 a 2 z 2 a 2 b 2
由于上述过程为同解变形,所以( 3)即为所求的轨迹方程。
(3)建立如( 2)的坐标系,设动点 M ( x, y, z) ,所求的轨迹为 C ,
y2 c(2 c) xc
从而:(Ⅰ)当 0 c 2 时,公共点的轨迹为:
y c(2 c)

xc
即为两条平行轴的直线;
(Ⅱ)当 c 0 时,公共点的轨迹为:
y
c(2 c)
xc
y0 x0
即为 z 轴;
(Ⅲ)当 c 2 时,公共点的轨迹为:
y0 x2
即过 (2,0,0) 且平行于 z 轴的直线;
(Ⅳ)当 c 2 或 c 0 时,两图形无公共点。
( 4)曲面 x 2 9 y 2 16 z 与 xoy 面 (z 0) , yoz 面 ( x 0) , zox 面 ( y 0) 的交线分别
为:
x 2 9 y2 16z x 2 9 y2 16z x2 9 y 2 16z
,
,
z0
x0
y0
x2 9 y 2 0 9 y 2 16z x 2 16z

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程小结

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程小结

y y
5x 2x
1 在平面解析几何中表示______; 3
在空间解析几何中表示_______________.
3、
x2 方程组 4
y2 9
1在平面解析几何中表示______
y 3
______,在空间解析几何中表示_______________.
二、画出下列曲线在第一卦限的图形:
1、z 4 x 2 y 2 x y 0
第二章 轨迹与方程小结
1.平面曲线的方程
F (x, y) 0, (隐方程)
y f (x). (显方程)
r (t) x(t)e1 y(t)e2 (a t b).
都是曲线的 一般方程
(向量式参数方程 )
x
y
x(t), y(t),
(a t b). (坐标式参数方程 )
几种常见平面曲线的参数方程
一般方程
r (u, v) x(u, v)e1 y(u, v)e2 z(u, v)e3
(向量式参数方程 )
x x(u, v),
y
y(u, v),
z z(u, v).
(坐标式参数方程 )
几种常见曲面的参数方程
球面的坐标式参数方程
x r cos cos,
y
r
c os
sin
,
z r sin .
,为参数,且 ,
圆柱面的坐标式参数方程
.
2
2
x R cos,
y
R
sin
,
z u.
, u为参数,且 , u ,
空间点的直角坐标 (x, y, z)与球坐标(,, ) 的关系
x cos cos,
y
c
os
sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轨迹与方程 §2.1平面曲线的方程1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?解:动点M 在轨迹上的充要条件是MB MA 21=。

设M 的坐标),(y x 有2222)6(21)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x此轨迹为椭圆2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,是求此线段中点的轨迹。

A ,B 为两端点,M 为此线段的中点。

解:如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB V 中有 222()(2)x y a +=.把M 点的坐标代入此式得:222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a +=.3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹.解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ⋅=.设(,)M x y 在Rt BNM V 中222()a x y AM ++=. (1) 在Rt BNM V 中 222()a x y BM -+=. (2) 由(1)(2)两式得:22222244()2()x y a x y m a +--=-.4.设,,P Q R 是等轴双曲线上任意三点,求证PQR V 的重心H 必在同一等轴双曲线上.证明:设等轴双曲线的参数方程为x ct c y t =⎧⎪⎨=⎪⎩11(,)P x y ,22(,)Q x y ,33(,)R x y .重心H123123(,)33x x x y y y ++++5.任何一圆交等轴双曲线2xy c =于四点11(,)c P ct t ,22(,)c Q ct t ,33(,)c R ct t 及44(,)cS ct t .那么一定有12341t t t t =.证明:设圆的方程22220x y Dx Ey F ++++=.圆与等轴双曲线交点(,)cct t,则代入得2222220.c Ec c t Dct F t t++++=整理得: 24322220.c t Dct Ft Ect c ++++=可知(1,2,3,4)i =是它的四个根,则有韦达定理1234t t t t ⋅⋅⋅=242(1)1c c-=.8. 把下面的平面曲线的普通方程化为参数方程.⑴32x y =; ⑵ ()0,212121>=+a a yx ; ⑶()0,0333>=-+a axy y x .解:⑴⎪⎩⎪⎨⎧==ty t x 32令θ4cos a x =,代入方程212121a yx =+得θθθ42212212121sin ,sin cos a y a a a y==-=∴参数方程为⎪⎩⎪⎨⎧==θθ44sin cos a y a x .⑶令,tx y =代入方程0333=-+axy y x得()031233=-+atx x t()[]03132=-+⇒at x t x当0=x 时,;0=y 当313t atx +=时,3213t at y +=3130t at x x +==⇒或故参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x .§2.2 曲面的方程1、 一动点移动时,与)0,0,4(A 及xoy 平面等距离,求该动点的轨迹方程。

解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则z Cz y x M =⇔∈),,(亦即z z y x =++-222)4(0)4(22=+-∴y x由于上述变形为同解变形,从而所求的轨迹方程为0)4(22=+-y x2、在空间,选取适当的坐标系,求下列点的轨迹方程:(1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹;(4)到一定点和一定平面距离之比等于常数的点的轨迹。

解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则222222)()(),,(z y a x m z y a x C z y x M +++=++-⇔∈亦即])[()(2222222z y a x m z y a x +++=++-经同解变形得:0)1()1(2))(1(2222222=-++-++-a m x m a z y x m 上式即为所要求的动点的轨迹方程。

(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。

设动点),,(z y x M ,要求的轨迹为C , 则a z y c x z y c x Cz y x M 2)()(),,(222222=++++++-⇔∈亦即222222)(2)(z y c x a z y c x +++-=++-两边平方且整理后,得:)()(2222222222c a a z a y a x c a -=++- (1)222c a b c a -=∴>令Θ从而(1)为22222222b a z a y a x b =++ 即:22222222b a z a y a x b =++由于上述过程为同解变形,所以(3)即为所求的轨迹方程。

(3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x Cz y x M 2)()(),,(222222±=++++++-⇔∈类似于(2),上式经同解变形为:1222222=--cz b y a x其中 )(222a c ac b >-= (*)(*)即为所求的轨迹的方程。

(4)取定平面为xoy 面,并让定点在z 轴上,从而定点的坐标为),0,0(c ,再令距离之比为m 。

设动点),,(z y x M ,所求的轨迹为C ,则z m z y x C z y x M =++⇔∈222),,(将上述方程经同解化简为:02)1(22222=+--++c cz z m y x (*) (*)即为所要求的轨迹方程。

3. 求下列各球面的方程:(1)中心)3,1,2(-,半径为;6=R (2)中心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与 (4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)由本节例5 知,所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,球面半径73)2(6222=+-+=R所以类似上题,得球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a ,球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l (1) 解(1)有⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x§2.3 母线平行于坐标轴的柱面方程1、画出下列方程所表示的曲面的图形。

(1)369422=+y x 解:各题的图形如下: (1)369422=+y x§2.4 空间曲线的方程1、平面c x =与0222=-+x y x 的公共点组成怎样的轨迹。

解:上述二图形的公共点的坐标满足⎩⎨⎧=-=⇒⎩⎨⎧==-+cx c c y c x x y x )2(02222 从而:(Ⅰ)当20<<c 时,公共点的轨迹为:⎪⎩⎪⎨⎧=-=cx c c y )2( 及 ⎪⎩⎪⎨⎧=--=cx c c y )2( 即为两条平行轴的直线;(Ⅱ)当0=c 时,公共点的轨迹为:⎩⎨⎧==0x y 即为z 轴; (Ⅲ)当2=c 时,公共点的轨迹为:⎩⎨⎧==2x y 即过)0,0,2(且平行于z 轴的直线; (Ⅳ)当2>c 或0<c 时,两图形无公共点。

2、指出下列曲面与三个坐标面的交线分别是什么曲线?(1)6416222=++z y x ; (2)64164222=-+z y x ; (3)64164222=--z y x ; (4)z y x 10922=+ 解:(1)曲面与xoy 面的交线为:⎩⎨⎧==+⇒⎩⎨⎧==++0640641622222z y x z z y x 此曲线是圆心在原点,半径8=R 且处在xoy 面上的圆。

同理可求出曲面6416222=++z y x 与yoz 面)0(=x 及zox 面)0(=y 的交线分别为:⎩⎨⎧==+0641622x z y , ⎩⎨⎧==+0641622y z x它们分别是中心在原点,长轴在y 轴上,且处在yoz 面上的椭圆,以及中心在原点,长轴在x 轴上,且处在zox 面上的椭圆;(2)由面64164222=-+z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:⎩⎨⎧==-+064164222z z y x ,⎩⎨⎧==-+064164222x z y x ,⎩⎨⎧==-+064164222y z y x 亦即:⎩⎨⎧==+064422z y x ,⎩⎨⎧==-016422x z y ,⎩⎨⎧==-0641622y z x即为中心在原点,长轴在x 轴上,且处在xoy 面上的椭圆;中心在原点,实轴在y 轴,且处在yoz 面上的双曲线,以及中心在原点,实轴在x 轴,且处在zox 面上的双曲线。

(3)曲面64164222=--z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:⎩⎨⎧==--064164222z z y x ,⎩⎨⎧==--064164222x z y x ,⎩⎨⎧==--064164222y z y x 亦即⎩⎨⎧==-064422z y x ,⎩⎨⎧==--06416422x z y ,⎩⎨⎧==-0641622y z x即为中心在原点,实轴在x 轴,且处在xoy 面上的双曲线;无轨迹以及中心在原点,实轴在x 轴上,且处在zox 面上的双曲线。

相关文档
最新文档