Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution

合集下载

cv研究方向及综述

cv研究方向及综述

cv研究方向及综述
计算机视觉(CV)是一个涉及多个子领域的学科,包括图像分类、目标检测、图像分割、目标跟踪、图像去噪、图像增强、风格化、三维重建、图像检索等。

1.图像分类:多类别图像分类、细粒度图像分类、多标签图像分类、实
例级图像分类、无监督图像分类等。

2.目标检测:吴恩达机器学习object location目标定位,关键在于将全
连接层改为卷积层。

3.图像分割:使用深度学习进行图像分割,包括全卷积像素标记网络,
编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型以及对抗中的生成模型等。

4.目标跟踪:基于滤波理论、运动模型、特征匹配等多种方法的混合跟
踪算法研究,以及基于深度学习的目标跟踪算法研究。

5.图像去噪:比较研究不同深度学习技术对去噪效果的影响,包括加白
噪声图像的CNN、用于真实噪声图像的CNN、用于盲噪声去噪的CNN和用于混合噪声图像的CNN等。

6.图像增强:通过对图像进行变换、滤波、增强等操作,改善图像的视
觉效果或者提取更多的信息,例如超分辨率技术。

7.风格化:通过将一种艺术风格应用到图像上,改变其视觉效果。

8.三维重建:从二维图像中恢复三维场景的过程。

9.图像检索:基于内容的图像检索(CBIR),通过提取图像的特征,
进行相似度匹配,实现图像的检索。

总的来说,CV是一个充满活力的领域,涉及的研究方向非常广泛。

随着深度学习技术的发展,CV领域的研究和应用也取得了很大的进展。

基于自注意力机制和多尺度输入输出的医学图像分割算法

基于自注意力机制和多尺度输入输出的医学图像分割算法

基于自注意力机制和多尺度输入输出的医学图像分割算法医学图像分割是医学图像处理中一项重要的任务,其目标是将医学图像中的不同组织或结构进行准确的边界提取。

传统的医学图像分割方法面临着许多挑战,例如复杂的图像背景、不同器官之间的相似性、噪声干扰等。

为了解决这些问题,近年来出现了基于自注意力机制和多尺度输入输出的医学图像分割算法。

自注意力机制是一种新兴的机器学习技术,它能够自动地从输入数据中学习到图像的重要信息和关联性,并将这些信息应用于分割任务中。

自注意力机制通过对图像的自注意力矩阵进行建模,能够捕捉到不同图像区域之间的依赖关系和相关性,提高了医学图像分割的准确性。

多尺度输入输出是通过在不同尺度上对输入数据进行处理和分析,以获取更多的图像信息。

医学图像通常具有不同的层次结构和尺度特征,因此使用多尺度输入可以更好地捕捉到图像中的细节和边界信息。

同时,通过将多尺度的特征进行融合和整合,可以得到更准确的分割结果,提高分割算法的性能。

基于自注意力机制和多尺度输入输出的医学图像分割算法主要包括以下几个步骤:1. 数据预处理:对医学图像进行预处理,包括去噪、归一化和增强等操作。

这些操作可以提高图像的质量和清晰度,减少噪声干扰。

2. 特征提取:使用卷积神经网络(CNN)等方法对医学图像进行特征提取,得到图像在不同尺度上的特征表示。

这些特征包括颜色、纹理、形状等信息,能够帮助算法更好地理解和分析图像。

3. 自注意力机制:通过自注意力机制对提取的特征进行建模和整合。

自注意力机制能够自动学习到图像中的重要信息和关联性,并将这些信息应用于分割任务中。

通过自注意力机制,算法可以更准确地捕捉到图像中不同区域之间的依赖关系和相关性。

4. 多尺度输入输出:通过在不同尺度上对输入数据进行处理和分析,获取更多的图像信息。

可以使用图像金字塔、多尺度卷积等方法对输入图像进行多尺度处理,在不同尺度上提取特征。

同时,通过将多尺度的特征进行融合和整合,得到更准确的分割结果。

自动驾驶中的图像语义分割与特征提取方法研究

自动驾驶中的图像语义分割与特征提取方法研究

自动驾驶中的图像语义分割与特征提取方法研究自动驾驶是当今科技领域的热门研究方向之一,其中图像语义分割与特征提取方法是其关键技术之一。

本文将介绍图像语义分割与特征提取在自动驾驶中的研究现状和方法。

图像语义分割是将图像中的每个像素进行分类的任务,目的是为了将图像中的不同物体进行标记。

在自动驾驶中,图像语义分割可以将道路、车辆、行人等不同的物体进行区分,从而更好地理解和感知车辆周围的环境。

图像语义分割的方法主要包括传统的基于机器学习的方法和基于深度学习的方法。

传统的基于机器学习的方法主要是使用一些特征提取算法,如SIFT、HOG等,来提取图像中的特征,然后通过机器学习算法进行分类。

这种方法需要依赖人工设计的特征和复杂的分类器,容易受到图像质量、光照和角度等因素的影响,对于复杂场景的适应性较差。

而基于深度学习的方法则通过使用卷积神经网络(CNN)对图像进行端到端的训练和学习,能够自动学习图像中的特征。

这种方法不需要手工设计特征,具有更好的适应性和鲁棒性。

在自动驾驶中,研究者们通过构建深度神经网络,如FCN、SegNet等,来实现图像语义分割任务。

这些网络采用编码-解码结构,将图像进行特征提取和重建,使得网络能够更好地理解图像中的语义信息,并进行像素级别的分类。

除了图像语义分割,特征提取也是自动驾驶中的重要任务。

特征提取是指从图像或者传感器数据中提取出有用的特征信息,用于自动驾驶系统的决策和控制。

常用的特征有纹理特征、颜色特征等,通过提取这些特征,可以对图像进行分析和理解。

传统的特征提取方法多采用手工设计的特征提取器,如HOG、SIFT等。

这些特征提取方法需要人工设计特征提取器,难以适应复杂场景。

而基于深度学习的特征提取方法则能够通过数据驱动的方式自动地学习图像中的特征。

研究者们通过设计卷积神经网络,如VGG、ResNet等,来提取图像中的特征向量。

这些网络通过多层网络的堆叠和卷积操作,能够自动地提取出图像中的抽象特征,使得特征具有更好的可区分性和表达能力。

一种基于三维数据栅格化的可计算空域建模方法

一种基于三维数据栅格化的可计算空域建模方法

一种基于三维数据栅格化的可计算空域建模方法Three-dimensional data is essential for many fields, such as geographic information systems, medical imaging, and computer graphics. However, analyzing and modeling three-dimensional data can be challenging due to its complex nature. One approach to simplifying this process is rasterization, which involves converting three-dimensional data into a two-dimensional grid of pixels. This method allows for easier analysis and visualization of the data, making it a valuable tool for researchers and practitioners in various fields. 三维数据对许多领域至关重要,例如地理信息系统、医学图像和计算机图形。

然而,由于其复杂性,分析和建模三维数据可能很具有挑战性。

简化这一过程的一种方法是栅格化,它涉及将三维数据转换为像素的二维网格。

这种方法可以更轻松地分析和可视化数据,使其成为各个领域的研究人员和从业者的宝贵工具。

One of the main advantages of using the rasterization method for three-dimensional data modeling is its ability to simplify complex shapes and structures. By converting three-dimensional data into a rasterized grid, researchers can more easily analyze and manipulate the data to extract meaningful information. This simplificationprocess can help researchers identify patterns, trends, and relationships within the data that may not be immediately apparent from the raw three-dimensional data. 使用栅格化方法进行三维数据建模的主要优势之一是它能够简化复杂的形状和结构。

2023目标分割综述

2023目标分割综述

2023目标分割综述目标分割是计算机视觉领域的重要任务之一,旨在将图像中的每个像素分类为特定目标或背景。

目标分割技术在图像识别、自动驾驶、医学图像处理等领域具有广泛应用。

本文将对目前主流的目标分割方法进行综述,介绍它们的原理和应用。

一、传统方法的目标分割传统的目标分割方法 usually 基于图像的低级特征,如颜色、纹理和边缘等。

这些方法使用手动定义的规则和特定算法对图像进行处理。

其中,GrabCut 和 Mean-Shift 算法是常用的基于颜色和纹理的目标分割方法。

然而,这些方法对于复杂场景和目标的鲁棒性较差,无法解决遮挡、光照变化等问题。

二、深度学习方法的目标分割近年来,随着深度学习的发展,基于神经网络的目标分割方法取得了巨大的进展。

这些方法通过训练深度卷积神经网络(DCNN)来学习图像特征,并通过像素级的分类实现目标分割。

其中最具代表性的方法是全卷积网络(FCN)和深度拉伸网络(DSN)。

1.全卷积网络(FCN)全卷积网络是一种将传统的卷积神经网络应用于像素级分类的改进方法。

它通过去掉网络的全连接层,将卷积层和上采样层结合,实现了端到端的像素级分类。

FCN 通过多层次和多尺度的特征融合,有效地提高了目标分割的精度。

2.深度拉伸网络(DSN)深度拉伸网络是一种基于全卷积网络的改进模型,它在 FCN 的基础上引入了拉伸操作。

拉伸操作是通过多个特定比例的上采样层实现的,可以更好地保留细节信息。

DSN 通过反向传播算法训练网络,并使用像素级别的损失函数进行目标分割。

三、目标分割的应用领域目标分割技术在许多领域都有广泛的应用。

以下是目标分割在图像识别、自动驾驶和医学图像处理等领域的应用案例。

1.图像识别目标分割在图像识别中起到了关键作用。

通过将图像中的目标与背景分割开来,可以提取出目标的关键特征,从而实现对目标的准确识别。

在目标检测、人脸识别等领域,目标分割技术被广泛应用。

2.自动驾驶自动驾驶技术需要准确地识别和分割出道路、车辆、行人等目标。

多尺度图像分割与目标识别算法研究

多尺度图像分割与目标识别算法研究

多尺度图像分割与目标识别算法研究摘要:图像分割和目标识别是计算机视觉领域的热门领域之一。

本文将介绍多尺度图像分割与目标识别算法的研究进展。

首先,我们将讨论图像分割的定义和意义,说明多尺度图像分割的重要性。

然后,我们将介绍常用的多尺度图像分割算法,包括基于颜色、纹理和边缘的算法。

接下来,我们将探讨目标识别的定义和意义,并介绍多尺度目标识别算法的研究进展。

最后,我们将总结目前的研究成果,并对未来的研究方向进行展望。

1. 引言图像分割是计算机视觉领域的重要任务之一,其目标是将图像分解成不同的区域,使得每个区域内的像素具有相似的属性。

图像分割在许多应用领域具有重要的应用,如医学图像分析、车辆识别、物体跟踪等。

然而,传统的单尺度图像分割算法往往无法适应不同尺度的图像中的目标,这就需要多尺度图像分割算法的研究。

2. 多尺度图像分割算法2.1 基于颜色的多尺度图像分割算法基于颜色的图像分割算法是图像分割中最经典的方法之一。

通过分析图像中不同区域的颜色信息,可以有效地将图像分割成具有相似颜色的区域。

多尺度图像分割算法采用不同尺度的颜色特征进行分析,从而实现对不同尺度目标的定位和分割。

2.2 基于纹理的多尺度图像分割算法纹理是图像中的一种重要特征,通过对图像纹理的分析可以实现图像的分割。

多尺度图像分割算法结合不同尺度的纹理特征,可以更好地适应不同尺度目标的分割需求。

2.3 基于边缘的多尺度图像分割算法边缘是图像中物体与背景之间的明显边界,通过对图像边缘的提取和分析可以实现图像的分割和目标的识别。

多尺度图像分割算法采用不同尺度的边缘特征进行分析,能够更好地适应不同尺度的目标。

3. 多尺度目标识别算法目标识别是计算机视觉领域的关键任务之一,其目标是通过图像分析和特征提取,实现对目标的识别和分类。

多尺度目标识别算法考虑不同尺度和尺寸的目标进行识别,能够提高目标识别的准确性和鲁棒性。

4. 研究进展与展望当前,多尺度图像分割与目标识别算法取得了令人瞩目的进展。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

多模态图像分割与标注的自动化技术

多模态图像分割与标注的自动化技术

多模态图像分割与标注的自动化技术随着计算机视觉和人工智能的快速发展,多模态图像分割与标注的自动化技术在图像处理和计算机视觉领域中扮演着重要的角色。

多模态图像分割和标注是指通过使用多种不同的传感器或不同的视觉特征,将输入图像中各个区域进行分类和标记。

这种技术在医学影像分析、自动驾驶、智能监控等领域具有广泛应用。

本文将探讨多模态图像分割与标注的自动化技术在医学影像处理中的应用以及未来发展方向。

首先,我们来讨论多模态图像分割与标注在医学影像处理中的应用。

医学影像是指通过不同类型的传感器获取到人体内部组织和器官结构信息,并将其转化为可视化信息。

这些信息对于疾病诊断、治疗方案制定以及手术规划等方面具有重要意义。

然而,由于医学影像数据复杂且庞大,传统手工进行图像分割和标注非常耗时且容易出错。

而多模态图像分割与标注的自动化技术可以通过结合多种不同的图像特征和算法,实现对医学影像中不同组织和器官的自动分割和标注。

多模态图像分割与标注的自动化技术在医学影像处理中有着广泛的应用。

例如,在肿瘤检测和诊断中,通过结合不同模态的医学影像数据,可以实现对肿瘤区域的准确分割和定位。

同时,结合深度学习算法可以对肿瘤进行进一步特征提取和分类,为医生提供更准确的诊断结果。

在器官移植手术规划中,多模态图像分割与标注技术可以将患者的影像数据进行自动处理,实现对器官位置、大小以及相对位置关系等信息进行准确提取,并为手术规划提供可靠依据。

此外,在神经科学研究中,通过结合多种不同类型的神经影像数据以及脑电图等信息进行脑区域分割和功能定位也是一项重要应用。

尽管多模态图像分割与标注技术在医学影像处理中取得了显著进展,但仍然存在一些挑战和问题。

首先,不同模态的医学影像数据之间存在差异,如分辨率、噪声等。

如何有效地融合不同模态的数据,并准确地进行分割和标注仍然是一个挑战。

其次,由于医学影像数据的复杂性和多样性,如何设计有效的特征提取算法和分类器也是一个重要问题。

语义分割结合深度估计

语义分割结合深度估计

语义分割结合深度估计近年来,随着人工智能技术的飞速发展,语义分割和深度估计成为计算机视觉领域的热门研究方向。

语义分割是指将图像中的每个像素分配到特定的语义类别,而深度估计则是通过分析图像获得场景中每个像素点的深度信息。

这两种技术的结合,可以为图像理解和应用提供更加精确和全面的信息。

语义分割是计算机视觉中的一项重要任务,它可以将图像中的每个像素点标记为不同的语义类别,如人、车、树等。

传统的语义分割方法主要基于图像的纹理、颜色和形状等特征进行像素分类,但这种方法存在着较大的局限性,无法准确地识别复杂的场景。

而深度学习的兴起,为语义分割带来了新的突破。

深度学习通过构建深层神经网络,可以自动学习图像中的特征表示,并通过大量的训练数据进行参数优化,从而实现高效准确的语义分割。

深度学习模型在语义分割任务中取得了巨大的成功,如FCN、U-Net和DeepLab等。

这些模型通过卷积神经网络提取图像的特征,并将其与上下文信息相结合,实现对图像的像素级别分类。

然而,仅进行语义分割无法提供图像中物体的立体信息,这就需要借助深度估计技术。

深度估计的目标是通过分析图像中的纹理、投影关系和颜色等信息,推断出每个像素点的深度值。

深度估计可以用于三维重建、虚拟现实、自动驾驶等领域,提供更加精准的场景理解和感知。

语义分割和深度估计的结合可以相互促进,提高图像理解的准确性和效率。

首先,语义分割可以为深度估计提供上下文信息,改善深度图的质量。

语义分割可以帮助深度估计网络更好地区分不同物体的边界,避免深度估计中的模糊和误差。

其次,深度估计可以为语义分割提供空间信息,改善语义分割的精度。

深度估计可以帮助语义分割网络更好地理解物体的空间位置和大小,提高语义分割的准确性和鲁棒性。

为了实现语义分割和深度估计的结合,研究者们提出了一系列的方法和模型。

其中,一种常用的方法是将深度估计任务作为语义分割的辅助任务进行训练。

通过联合训练深度估计和语义分割网络,可以共享和融合两个任务中的特征表示,提高整体模型的性能。

分形几何在3D模型重建中的评价指标

分形几何在3D模型重建中的评价指标

分形几何在3D模型重建中的评价指标在3D模型重建中,分形几何被广泛应用于评价重建结果的质量和准确性。

分形几何理论提供了一种有效的方法来描述自然界和人工对象的复杂结构,并且可以作为一种评价指标来衡量重建模型的细节和精确度。

本文将探讨分形几何在3D模型重建中的评价指标,并对其应用进行深入分析。

1. 分形维数分形维数是衡量3D模型复杂性的一个重要指标。

它可以描述模型中细节的层次和复杂度。

对于一个具有分形结构的3D模型来说,其分形维数通常会大于其几何维数。

分形维数可以通过计算空间中不同尺度下的几何表面穿越点的数量来估算。

在重建3D模型时,通过比对原始场景与重建结果的分形维数,可以评估重建的准确性和细节还原程度。

2. 分形厚度分形厚度是描述3D模型形态复杂性的另一指标。

它衡量了模型表面上不同区域的粗糙程度和纹理信息分布的复杂性。

在3D模型重建过程中,分形厚度可以帮助评估重建结果的质量和真实性。

如果重建结果的分形厚度与原始场景的分形厚度相近,说明重建模型能够准确还原位于原始场景中的细节和纹理。

3. 分形谱分形谱是描述3D模型细节分布的一个重要指标。

它可以反映模型表面的几何特征和纹理信息的多样性。

通过分析模型的分形谱,可以评估重建结果中细节的丰富程度。

分形谱可以通过计算模型表面上不同区域的分形维数来得到,该指标能够直观地反映模型的复杂程度和细节还原情况。

4. 分形交互法分形交互法是通过计算重建模型与原始场景之间的分形差异来评估重建结果的准确性。

该方法可以定量地衡量模型的细节还原程度和误差情况。

通过比对模型与场景的分形差异,可以得出重建模型的可靠性和准确度。

分形交互法在3D模型重建领域得到了广泛应用,并且在评价指标中起着重要的作用。

综上所述,分形几何在3D模型重建中具有重要的评价指标。

通过分形维数、分形厚度、分形谱和分形交互法等指标,我们可以全面而准确地评估重建模型的质量和准确性。

这些指标能够帮助研究人员分析重建结果的细节还原程度、复杂度和真实性,从而提高3D模型重建的技术水平和应用效果。

超像素分割算法研究综述

超像素分割算法研究综述

超像素分割算法研究综述超像素分割是计算机视觉领域的一个重要研究方向,它的目标是将图像分割成一组紧密连接的区域,每个区域都具有相似的颜色和纹理特征。

超像素分割可以在许多计算机视觉任务中发挥重要作用,如图像分割、目标检测和图像语义分割等。

本综述将介绍一些常见的超像素分割算法及其应用。

1. SLIC (Simple Linear Iterative Clustering):SLIC是一种基于k-means聚类的超像素分割算法。

它首先在图像中均匀采样一组初始超像素中心,并通过迭代的方式将每个像素分配给最近的超像素中心。

SLIC算法结合了颜色和空间信息,具有简单高效的特点,适用于实时应用。

2.QuickShift:QuickShift是一种基于密度峰值的超像素分割算法。

它通过利用图片的颜色相似性和空间相似性来计算每个像素的相似度,并通过移动像素之间的边界来形成超像素。

QuickShift算法不依赖于预定义的超像素数量,适用于不同大小和形状的图像。

3. CPMC (Constrained Parametric Min-Cuts):CPMC是一种基于图割的超像素分割算法。

该算法通过求解最小割问题来获得具有边界连通性的超像素分割结果。

CPMC算法能够生成形状规则的超像素,适用于对形状准确性要求较高的应用。

4. LSC (Linear Spectral Clustering):LSC是一种基于线性谱聚类的超像素分割算法。

它通过构建图像的颜色和空间邻接图,并对其进行谱分解来获取超像素分割结果。

LSC算法具有良好的分割结果和计算效率,适用于大规模图像数据的处理。

5. SEEDS (Superpixels Extracted via Energy-Driven Sampling):SEEDS是一种基于随机采样的超像素分割算法。

它通过迭代的方式将像素相似度转化为能量函数,并通过最小化能量函数来生成超像素。

SEEDS算法能够快速生成具有边界连通性的超像素,并适用于实时应用。

System for the automatic observation and quantific

System for the automatic observation and quantific

专利名称:System for the automatic observation and quantification of phenomena capable ofbeing detected by fluorescence发明人:Henri G. de France申请号:US06/528007申请日:19830831公开号:US04573195A公开日:19860225专利内容由知识产权出版社提供摘要:A system for the automatic observation and quantification of phenomena capable of being detected by fluorescence and appearing in a localized zone (8), the system comprising a source of radiation (2), optionally associated with an excitation filter (5) to send on the localized zone (8) an excitation radiation capable of producing the fluorescence, optical observation means (7) of the localized zone (8) and at least one filter (12) intended to block the excitation radiation and arranged in the path of the luminous radiation of fluorescence emanating from the localized zone (8). In accordance with the invention, the localized zone (8) is observed by a picture-taking tube (17) and through colored filters or windows on a disc (18) intercepting beam 11. The sucessive colored images are memorized and then read simultaneously.申请人:DE FRANCE; HENRI G.代理机构:Sughrue, Mion, Zinn Macpeak & Seas更多信息请下载全文后查看。

CVPR2020:三维实例分割与目标检测

CVPR2020:三维实例分割与目标检测

CVPR2020:三维实例分割与⽬标检测CVPR2020:三维实例分割与⽬标检测Joint 3D Instance Segmentation and Object Detection for Autonomous Driving论⽂地址:摘要⽬前,在⾃主驾驶(AD)中,⼤多数三维⽬标检测框架(基于锚定或⽆锚)都将检测视为⼀个边界盒(BBox)回归问题。

然⽽,这种紧凑的表⽰不⾜以探索对象的所有信息。

为了解决这个问题,我们提出了⼀个简单实⽤的检测框架来联合预测3D BBox和实例分割。

例如分割,我们提出⼀种空间嵌⼊策略,将所有前景点集合到它们对应的对象中⼼。

基于聚类结果,可以采⽤简单的聚类策略⽣成⽬标⽅案。

对于每个集群,只⽣成⼀个建议。

因此,这⾥不再需要⾮最⼤抑制(NMS)过程。

最后,通过我们提出的基于实例的ROI池化,BBox被第⼆阶段⽹络改进。

在公共KITTI数据集上的实验结果表明,与其他基于特征嵌⼊的⽅法相⽐,本⽂提出的SEs⽅法能显著提⾼实例分割的效果。

同时,它也优于KITTI数据集测试基准上的⼤多数三维物体探测器。

1. 介绍⽬标检测作为AD和机器⼈领域的⼀项基础性⼯作,近年来得到了⼴泛的研究。

基于⼤量的标记数据集[8]、[38]、[39]和⼀些超强的基线,如基于建议的[9]、[35]和基于锚的⽅法[26]、[34],⽬标检测的性能得到了显著的提⾼。

为了便于泛化,对象通常表⽰为⼀个2D-BBox或3D-cubody,这些参数包括BBox的中⼼、维度和⽅向等。

许多⽅法已经证明,这种简单的表⽰⽅法适⽤于深度学习框架,但也有⼀些局限性。

例如,对象的形状信息被完全丢弃。

此外,对于某个BBox,来⾃背景或其他对象的⼀些像素不可避免地被包含在其中。

在闭塞的情况下,这种情况变得更加严重。

此外,BBox表⽰不够精确,⽆法描述对象的确切位置。

为了很好地克服这个限制,每个BBox都使⽤了⼀个额外的实例掩码来消除其他对象或背景的影响。

自动驾驶中的多模态分割技术

自动驾驶中的多模态分割技术

自动驾驶中的多模态分割技术多模态分割技术在自动驾驶中的应用简介:自动驾驶是交通领域中一项具有潜力的新兴技术。

为了实现安全、高效的自动驾驶,多模态分割技术被广泛应用。

本文将介绍多模态分割技术在自动驾驶中的应用情况。

一、多模态分割技术的定义和原理多模态分割技术是指利用多种传感器获取的数据(如图像、点云、激光雷达等)进行分割和识别,从而对道路、障碍物等进行建模和理解的技术。

其原理是通过对不同模态数据进行融合和分析,提取特征并进行分类,从而实现对场景的理解和感知。

二、多模态分割技术在自动驾驶中的应用1. 道路分割多模态分割技术可以对道路进行分割,识别出车道线、交通标志等。

通过分割技术可以实现对道路自动驾驶的精确定位和路径规划,提高自动驾驶的安全性和效率。

2. 障碍物检测多模态分割技术可以识别和分割出道路上的障碍物,如其他车辆、行人、自行车等。

通过对障碍物的分割可以实现对其位置、形状和运动状态的理解,从而为自动驾驶决策提供重要的信息。

3. 环境感知多模态分割技术可以对道路周围的环境进行感知,识别并分割出道路上的各种物体和结构,如建筑物、道路标示、树木等。

通过对环境的感知可以提高自动驾驶的智能化水平,为自动驾驶提供更加精确的场景理解。

4. 导航辅助多模态分割技术可以对交通信号、交通标志等进行分割和识别,为自动驾驶提供导航辅助。

通过识别交通信号可以帮助自动驾驶车辆按时、合理地行驶,提高驾驶的效率和安全性。

三、多模态分割技术的优势和挑战1. 优势多模态分割技术具有较高的准确性和鲁棒性,能够对复杂的场景进行分割和识别。

同时,多模态分割技术可以充分利用不同传感器的优点,提高感知的全面性和精确度。

2. 挑战多模态分割技术在实际应用中仍面临一些挑战。

首先,不同传感器的数据融合需要解决数据不一致性和时空同步的问题。

其次,多模态分割技术需要处理复杂的场景和光照条件,对算法的鲁棒性提出了较高要求。

结论:多模态分割技术在自动驾驶中具有重要的应用前景。

亚像素边缘提取 空间句法

亚像素边缘提取 空间句法

亚像素边缘提取空间句法
亚像素边缘提取是一种图像处理技术,它通过对像素级别的边缘进行更精细的分析和提取,从而获得比常规像素级边缘提取更精确的结果。

这种技术可以在图像处理和计算机视觉领域中发挥重要作用。

在进行亚像素边缘提取时,通常会利用插值算法对像素之间的微小变化进行建模和分析,以获得亚像素级别的边缘位置。

这种方法可以提高边缘检测的准确性,特别是在需要对图像进行精细分析和处理的应用中。

空间句法则是描述语言中词与词之间关系的一种语法理论。

在自然语言处理领域,空间句法被用来分析句子中词语的排列和组合方式,以揭示它们之间的语法关系。

空间句法可以帮助计算机理解和处理自然语言,例如在机器翻译、信息检索和文本分析等任务中发挥重要作用。

将亚像素边缘提取和空间句法结合起来,可以应用于诸如图像识别和语义分析等复杂任务中。

例如,在图像识别中,可以利用亚像素边缘提取技术获取更精确的边缘信息,然后结合空间句法分析
来理解图像中不同物体之间的空间关系,从而实现更准确的目标识别和定位。

总之,亚像素边缘提取和空间句法都是在不同领域中发挥重要作用的技术,它们的结合可以为图像处理和自然语言处理等领域带来更加精确和有效的解决方案。

通过深入研究和应用这些技术,可以进一步推动人工智能和计算机视觉等领域的发展。

基于多任务学习的计算机视觉任务自动分割

基于多任务学习的计算机视觉任务自动分割

基于多任务学习的计算机视觉任务自动分割在计算机视觉领域,自动分割是一项重要的任务,用于在图像或视频中确定不同目标之间的边界,从而实现对目标的精确识别和定位。

然而,传统的自动分割方法通常需要人工标注大量的训练数据,且对于不同的任务需要独立构建不同的模型,导致训练和使用过程复杂且耗时。

为了解决这些问题,基于多任务学习的自动分割方法被提出,并在计算机视觉中取得了显著的成果。

在传统的机器学习方法中,每个任务都独立训练一个模型,这样造成了大量重复的工作和数据冗余。

而多任务学习的思想是将多个相关任务联合训练,通过共享底层特征来提升整体的性能。

在计算机视觉任务中,多任务学习的目标是通过一个共享的网络模型来生成对多个任务都有意义的特征表示,从而实现对多个任务的自动分割。

多任务学习的基本框架通常由一个共享的卷积神经网络和多个特定任务的分支网络组成。

共享网络负责提取原始图像的低级和中级特征,而每个分支网络则根据不同任务的需求进行进一步的特征提取和处理。

通过多任务学习的方式,模型可以通过共享网络学习到更具泛化能力的特征表示,从而在不同任务上取得更好的性能。

在计算机视觉任务中,自动分割是一个典型的多任务学习应用场景。

例如,在图像分类和目标检测任务中,自动分割可以被用来生成更加准确的目标边界框或者图像中不同目标的掩码。

另外,在图像分割和实例分割任务中,多任务学习可以通过共享网络来学习到更具有区分能力的特征表示,从而提高分割的准确性和鲁棒性。

多任务学习的优势不仅仅体现在对单个任务性能的提升上,还可以在数据和计算资源上实现更好的利用。

通过联合训练多个相关任务,可以减少标注数据的数量,并且可以充分利用数据之间的相互信息。

此外,由于多任务学习共享了底层网络,模型的训练和推理过程也可以得到一定程度的加速。

在实际应用中,多任务学习的成功取决于任务之间的相关性。

如果多个任务之间存在较强的相关性,那么通过多任务学习可以取得显著的性能提升。

基于目标空间语义对齐的视频描述方法[发明专利]

基于目标空间语义对齐的视频描述方法[发明专利]

专利名称:基于目标空间语义对齐的视频描述方法专利类型:发明专利
发明人:李平,王涛,李佳晖,徐向华
申请号:CN202111404350.0
申请日:20211124
公开号:CN114154016A
公开日:
20220308
专利内容由知识产权出版社提供
摘要:本发明公开了基于目标空间语义对齐的视频描述方法。

本发明方法首先对含文本描述的采样视频帧提取外观特征和动作特征,将其拼接后输入到时序高斯混合空洞卷积编码器获得时序高斯特征;然后利用两层长短时记忆神经网络构建解码器,得到生成语句概率分布和隐藏向量;再建立语义重构网络并计算语义重构损失;利用随机梯度下降算法优化模型,对新视频依次通过上述步骤获得生成语句概率分布,用贪心搜索算法获得视频描述语句。

本发明方法利用时序高斯混合空洞卷积对视频长期时序关系进行建模,并通过语义重构网络获得语句级的概率分布差异,能够缩小生成语句和视频内容的语义鸿沟,从而生成更准确描述视频内容的自然语句。

申请人:杭州电子科技大学
地址:310018 浙江省杭州市下沙高教园区2号大街
国籍:CN
代理机构:杭州君度专利代理事务所(特殊普通合伙)
代理人:陈炜
更多信息请下载全文后查看。

基于深度学习方法的三维医学图像中脑瘤自动分割算法

基于深度学习方法的三维医学图像中脑瘤自动分割算法
基于深度学习方法的三维医学图像中脑瘤自动分割算法
AUTOMATIC SEGMENTATION ALGORITHM OF BRAIN TUMOR IN 3D MEDICAL IMAGE BASED ON DEEP LEARNING METHOD
日期:2019.10.13
目录
CONTENTS
1
研究背景分析
优势
卷积神经网络长期以来是图像识别领域的核心算法之一,并在学习数据充足时有稳定的表现 。 对于一般的大规模图像分类问题,卷积神经网络可用于构建阶层分类器(hierarchical classifier), 也可以在精细分类识别(fine-grained recognition)中用于提取图像的判别特征以供其它分类器进 行学习 。对于后者,特征提取可以人为地将图像的不同部分分别输入卷积神经网络 ,也可以由 卷积神经网络通过非监督学习自行提取 。
医学图像分类
医学图像
X射线成像
X射线成像是通过向患者检查 部位发射X射线,因为身体 内不同组织吸收X射线的量 不同,未被吸收的X射线穿 过身体并记录在X射线探测 器上从而形成图像
计算机断层扫描影像
与X光图片一样都是利用X射线 形成的,不同的是CT扫描仪拥 有多个X线探头。CT扫描仪捕 获的模拟数据通过算法数字化进 一步转换成重建图像,这些图像 就代表了患者该层的横切片
自动提取相关特征
是一种让计算机自动学习出模式特征的方法,并将特 征学习融入到了建立模型的过程中,从而减少了人为 设计特征造成的不完备性。以深度学习为核心的肿瘤 边缘检测,已经达到了超越现有图像算法的识别或分
类性能。
SUBTITLE
02
医学图像及图像分析方法简介
医学图像分类 经典图像分割方法 神经网络分割方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Automatic3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution7Tesla MRA ImagesWei Liao,Karl Rohr,Chang-Ki Kang,Zang-Hee Cho,Life Fellow,IEEE,and Stefan WörzAbstract—We propose a novel hybrid approach for automatic3D segmentation and quantification of high-resolution 7Tesla magnetic resonance angiography(MRA)images of the human cerebral vasculature.Our approach consists of two main steps.First,a3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels.Second, remaining vessel gaps of thefirst step in low-contrast and noisy regions are completed using a3D minimal path approach,which exploits directional information.We present two novel minimal path approaches.Thefirst is an explicit approach based on energy minimization using probabilistic sampling,and the second is an implicit approach based on fast marching with anisotropic directional prior.We conducted an extensive evaluation with over 23003D synthetic images and40real3D7Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach.Furthermore,our approach was successfully used in two clinical studies on stroke and vascular dementia.Index Terms—3D vessel segmentation,parametric intensity model,minimal path,fast marching,directional speed function, 7T MRA data,cerebral vasculature.I.I NTRODUCTIONA NALYSIS of the human cerebral vasculature is impor-tant for the diagnosis of different serious diseases.For example,symptomatic and silent stroke or vascular dementia can be caused by abnormalities of small cerebral vessels[1]. To determine pathological changes,the vessel trees need to be segmented and quantified.Among the available imaging modalities,magnetic resonance angiography(MRA)is widely Manuscript received March11,2015;revised July27,2015and September25,2015;accepted October28,2015.Date of publication November9,2015;date of current version December9,2015.This work was supported by the Deutsche Forschungsgemeinschaft within the QuantVessel Project under Grant RO2471/6.The associate editor coordinating the review of this manuscript and approving it for publication was Dr.Alin M.Achim. W.Liao,K.Rohr,and S.Wörz are with the Center for Quantita-tive Analysis of Molecular and Cellular Biosystems(BioQuant),Biomed-ical Computer Vision Group,Department of Bioinformatics and Func-tional Genomics,Institute of Pharmacy and Molecular Biotechnology,Uni-versity of Heidelberg,Heidelberg D-69120,Germany,and also with the German Cancer Research Center,Heidelberg D-69120,Germany(e-mail: wei.liao@bioquant.uni-heidelberg.de;k.rohr@dkfz.de;s.woerz@dkfz.de). C.-K.Kang is with the Neuroscience Research Institute and Department of Radiological Science,Gachon University,Incheon405-760,Korea(e-mail: changkik@).Z.-H.Cho is with the Advanced Institutes of Convergence Tech-nology,Seoul National University,Suwon443-270,Korea(e-mail: zcho@gachon.ac.kr).Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/parison of3D3T MRA and3D7T MRA images of the region around the LSAs.The images are acquired from the same subject.(a)and(b)show2D MIPs of the LSA region in3T and7T images, respectively,and(c)and(d)show zoomed views of the sections marked in(a)and(b),respectively.The contrast has been enhanced to improve the visibility of thin vessels.used to acquire3D images of the cerebrovascular system. With the recently introduced7Tesla(7T)MRA,high-resolution3D images can be acquired non-invasively.These images contain considerably more thin vessels compared to 1.5T or3T MRA images[2].In this work,we are con-cerned with the analysis of lenticulostriate arteries(LSAs), which form a complex vascular system.The LSAs origi-nate from the middle cerebral arteries,and are the major microvessels supplying blood to the basal ganglia and internal capsule.For example,Fig.1shows2D maximum intensity projections(MIPs)of cerebral vessels of the LSA region in 3D images of the same subject using3T MRA(Fig.1a,1c)and 7T MRA(Fig.1b,1d).The basal ganglia and internal capsule1057-7149©2015IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See /publications_standards/publications/rights/index.html for more information.Fig.2.Typical challenges for vessel segmentation in3D7T MRA images of the cerebral vasculature.The contrast in these images is enhanced to improve the visibility.(a)High noise level.(b)Highly curved vessel.(c)Low image contrast.(d)Tubular artifacts.are susceptible to diseases like ischemic and hemorrhagic cerebral stroke[3].Although it is well known that LSAs are involved in such types of stroke,it remains unclear how the morphology of LSAs changes due to stroke[1].In this paper,we consider the automatic segmentation and quantification of LSAs in3D7T MRA images.This is a challenging task since many LSAs are relatively thin and long,comprise parts with high curvature,and are often located close to each other(Fig.1d).Furthermore,although 7T MRA contains more vessels,the signal-to-noise ratio is only slightly higher than that of3T MRA[4].Typical chal-lenges of7T MRA data include high noise level,highly curved vessels,low image contrast,and tubular artifacts(Fig.2). Commonly used vessel segmentation approaches can be classified into four main classes.Thefirst three classes are based on differential measures(e.g.,[5]–[9]), deformable models(e.g.,[7],[10]–[14]),or minimal paths (e.g.,[15]–[25]),whereas the fourth class combines different methods(e.g.,[26]–[29]).For more comprehensive reviews of vessel segmentation techniques,we refer to[30]and[31]. Approaches based on differential measures exploit partial derivatives of the images.For example,in[7]and[9]the flux of the image gradient is used.Other approaches employ second-order partial derivatives and use a vesselness measure based on the eigenvalues and eigenvectors of the Hessian matrix(e.g.,[5],[6],[8]).Often,these methods are applied within a multiscale scheme(e.g.,[5],[6],[9]).However,in low-contrast and noisy regions,reliable estimation of partial image derivatives is difficult,and therefore these approaches are not well suited for coping with the challenging7T MRA images in our application,in particular,with thin vessels. Approaches based on deformable models use mod-els of anatomical structures which arefitted to image regions.The models comprise,for example,active contours (e.g.,[7],[11]),probabilistic intensity distributions which are learned from training data(e.g.,[12]),or parametric intensity models(e.g.,[13]).However,typically3D active contour approaches penalize the surface area of segmented objects,resulting in the“shrinking bias”[32],i.e.,they tend to yield results where the surface area is small compared to the enclosed volume.Consequently,they are not well suited for the segmentation of long,thin vessels.In low-contrast and noisy regions,models learned from training data[12]or parametric intensity models[13]cannot befitted well to the image either. In approaches based on minimal paths,an energy function is used to measure the quality of the path between given start and end points,and the path with minimum energy is the optimal solution(e.g.,[15]–[25]).In low-contrast and noisy regions,often manually inserted key points are needed to guide the path(e.g.,[18]).However,such interaction is tedious and time-consuming for3D images,and the segmentation accuracy depends on the observer.In low-contrast and noisy regions, directional information can help improving the segmentation. There exist methods to incorporate directional information into minimal path approaches,for example,by using fast marching with anisotropic speed(e.g.,[17],[20],[25]), or by introducing orientation as an additional dimension (e.g.,[21]).However,with these methods it is difficult to incorporate directional information.To remedy this,hard con-straints are introduced in[23],i.e.,vessel candidates deviating too much from given directions are discarded,so that sharp turns in vessels are avoided.However,since in our application vessels in the LSA region typically contain parts with high curvature,such constraints would discard correctly segmented vessels.There also exist approaches which combine different meth-ods(e.g.,[26]–[29]).For example,in[26],a minimal path approach is combined with graph cuts.In[28],the result of a deformable model is refined using graph cuts.However, approaches based on graph cuts are not well suited for thin vessels because,similar to active contours,graph cuts also suffer from the“shrinking bias”[32],[33].Furthermore, these approaches would very likely achieve short cuts in low-contrast and noisy regions since they do not incorporate reliable directional information.Concerning the segmentation of cerebral vessels from 3D7T MRA images,only few approaches exist.In[34], segmentation is performed manually,which is very time-consuming and not suitable for a large number of images.A semi-automatic approach is proposed in[35],but there the vessels still need to be segmented interactively slice by slice.Existing automatic segmentation approaches are based on vesselness measures(e.g.,[36],[37])or region growing initialized using high-intensity voxels(e.g.[38]).However, these approaches do not take into account the shape of vessels. For example,in noisy images,the segmentation may leak out of the area of interest.In addition,important properties of vessels such as the radius are not quantified.Also note that in high-contrast regions,directional information can be estimated reliably(e.g.,using a model-based approach),which can help to segment vessels in neighboring low-contrast and noisy regions.However,none of the previous approaches incorporated such reliable directional information.In this contribution,we introduce a novel hybrid approach for automatic3D segmentation of cerebral vessels from high-resolution7T MRA image data.Our approach exploitstubular shape information so that leaking can be avoided. Compared to two-step approaches wherefirst a binary seg-mentation is determined and then quantification is performed, in our approach segmentation and quantification are performed simultaneously in one step.Furthermore,our approach can cope well with thin vessels in3D7T MRA images.The presented work combines and extends our previous work in[39]and[40].In particular,we provide more details on the approaches and we have performed a more extensive evaluation.We included a new quantitative evaluation with synthetic images as well as used more real3D7T images and data from clinical studies.Our main contribution is twofold. First,we present two different approaches to incorporate prior directional information into minimal path methods: A sampling-based probabilistic approach and a fast marching approach with anisotropic directional prior.These approaches allow taking into account the important information about the initial direction of a vessel while previous minimal path approaches(e.g.,[15],[17],[20],[25])do not use such pared to[23],our approach imposes only soft constraints,which allows tolerating some deviation from the estimated initial direction.Second,we propose a novel hybrid approach for automatic 3D segmentation and quantification in high-resolution7T MRA images of the human cerebral vasculature.Our approach combines a minimal path approach with robust model-based vessel segmentation[13].The model-based approach is used to segment thick vessels and most parts of thin vessels. However,in low-contrast and noisy regions,usually there exist gaps between segmented vessels.To complete these gaps,we exploit the directional information obtained from the model-based approach and use it in the minimal path approaches.Our hybrid approach allows quantification of relevant properties of vessels such as the vessel length and local vessel radius, and is fully automatic.We conducted an extensive evaluation of our hybrid3D vessel segmentation approach using over 2300synthetic images and40clinical high-resolution3D7T MRA images.We quantitatively compared the results with ground truth and with a previous minimal path approach. Furthermore,our approach was applied to data from two clinical studies on stroke and vascular dementia,and the results have been evaluated by neuroscientists.This paper is organized as follows.In Sect.II we give an overview of our hybrid3D vessel segmentation approach. Then we describe the model-based approach(Sect.III)and the minimal path approaches(Sect.IV and V).Experimental results for3D synthetic images are provided in Sect.VI,and results for real3D7T MRA images are presented in Sect.VII. Finally,we give a conclusion in Sect.VIII.II.O VERVIEW OF THE H YBRID3D V ESSELS EGMENTATION A PPROACHOur hybrid approach for3D segmentation and quantification of vessels from7T MRA images consists of two main steps. In thefirst step,thick vessels and most thin vessels are segmented using a3D model-based approach:A parametric intensity model isfitted to the3D image and vesselfeatures Fig.3.MIP of a region of a3D7T MRA image of the brain.For one thick vessel(red)and four thin vessels(green),the segmentation results of the model-based approach(first step,solid contours)and a minimal path approach (second step,dashed contours)are shown.such as the radius and the direction of vessel segments are determined(see Sect.III).However,in low-contrast and highly noisy regions and at vessel branches,the parametric intensity model cannot always befitted well,leading to gaps in these regions.Therefore,in the second step,the gaps are automati-cally completed using two novel3D minimal path approaches. One minimal path approach is based on probabilistic sampling (described in Sect.IV below)and the other is based on fast marching with anisotropic directional prior(Sect.V).Both approaches can incorporate the initial direction determined by the model-based approach.A2D sketch of our hybrid approach using a real7T image is shown in Fig.3.Vessel1(red)is a thick vessel,with vessels2-5(green)as its branches.While vessels1and2 are segmented correctly,vessels3,4,and5are not cor-rectly connected to vessel1because of low image contrast. In our approach,we determine the centerlines for the gaps and assume that the radius of the vessels in the completed gaps is constant and equal to the radius of the last segment quantified by the model-based approach.Our goal is tofind a gap completing path(dashed contours),while avoiding wrong connections.For example,in Fig.3one end of vessel4 (marked with a white arrow)is not connected to any vessel, which is correct since there is no thick vessel close to it.III.3D M ODEL-B ASED S EGMENTATION ANDQ UANTIFICATION A PPROACHA.3D Parametric Intensity ModelFor segmentation of cerebral vessels,we use a3D para-metric intensity model that represents the shape as well as the image intensities of vessels within a3D region of interest(ROI),and which consists of an approximation g Cyl of an ideal sharp3D cylinder that is convolved with a3D Gaussian[13].The tubular model includes parameters for the width R of the tubular structure and the image blurσ, and is well-suited to model tubular structures of different radii. The complete3D model g M also incorporates intensity levels a0(surrounding tissue)and a1(vessel)as well as a3D rigid transform R with rotationα=(α,β,γ)T and translation x0=(x0,y0,z0)T,which yieldsg M(x,p)=a0+(a1−a0)g Cyl(R(x,α,x0),R,σ)(1) with parameters p=(R,a0,a1,σ,α,β,γ,x0,y0,z0)T.To segment a certain vessel segment,we use a modelfitting approach based on least-squaresfitting of the3D cylindrical model g M to the image intensities g(x)within a spherical 3D ROI:x∈ROI(g M(x,p)−g(x))2→min.(2) To segment a complete vessel,we apply an incremental estimation process based on a Kalmanfilter that starts at an initial position on the vessel and incrementally proceeds along a vessel(see[13]for details).The size and shape of the3D ROI used for modelfitting are automatically adapted to the shape of the vessel[41].Using this approach,the vessels are segmented and quantified simultaneously,i.e.,after seg-mentation no additional step for quantification is required,as opposed to approaches which result in a binary segmentation, e.g.,[36],[38],and therefore require extra steps for quantification.B.Automatic InitializationCompared to previous work where the model was initialized manually for each vessel(e.g.,[13]),we employ an automatic scheme.In this scheme,potential vessel structures are identi-fied based on a vesselness map,which is obtained by applying a vesselnessfilter to the image data(e.g.,[6],see Sect.V-B below).Initial vessel positions are chosen based on large vesselness values in this map,and the initial orientations are estimated based on the eigenvectors of the Hessian matrix at the chosen positions.After a vessel is segmented,it is masked out in the vesselness map to avoid a repeated segmentation. Since the image data comprises vessels of different radii,we apply this scheme twice for different values of the standard deviation of the vesselnessfilter,i.e.,first using a large value σ1for the segmentation of thick vessels,and then using a small valueσ2for the segmentation of thin vessels.We used values ofσ1=3andσ2=1in all experiments.C.Partly Missing ConnectionsUsing the model-based approach,thick vessels and most of the thin vessels are usually segmented successfully.However, it is often very difficult to segment the connecting parts between thick vessels and their branches,since these parts typically lie within regions with a low image contrast and a high noise level,and consequently the parametric intensity model cannot befitted well.Thus,gaps exist after model-based segmentation,which must be completed(see Fig.3). In our approach,gaps are detected automatically by identifying vessel endpoints that are close to another vessel but not yet connected to it.In Fig.4,the problem of using previous minimal path approaches for gap completion is ually,these approaches yield short cuts,and the resulting vessel has an abrupt change of direction in the gap.The reason is that these approaches do not incorporate initial directional information, such as the direction of the last segmented part of the vessel branch before the gap(which can be well determined using a model-based approach).In contrast,we introduce minimal path approaches which can effectively incorporate theinitial Fig.4.Previous minimal path approaches usually yield a short cut in image regions with high noise level and low image contrast,while with our approach the initial direction d s from the model-based approach can be incorporated and therefore the transition is smooth.direction d s and yield a smooth transition from the thin vessel (e.g.,the solid green vessel in Fig.4),which is segmented by the model-based approach,to the thick vessel(e.g.,see the desired dashed green vessel in Fig.4).Two different approaches are proposed,which allow preserving the smooth transition either explicitly or implicitly.The explicit approach (Sect.IV below)is based on probabilistic sampling,and the implicit approach(Sect.V)is based on fast marching with anisotropic directional prior.IV.E XPLICIT I NITIAL D IRECTION P RESERVATION:3D P ROBABILISTIC M INIMAL P ATHIn the3D probabilistic minimal path approach,we denote the vessel in a gap asγ.An energy function is used to measure γby explicitly imposing the smoothness of the vessel as a soft constraint.A.Energy FunctionFor eachγ,we denote V f as the sequence of voxels onγ. x s and x e are the start and end voxels in V f,respectively. N xidenotes the set of neighboring centerline voxels of x i. Furthermore,M is the set of voxels which are segmented as vessel by the model-based approach and M e⊂M is the set of the vessel end points from that step.Then,the energy function can be defined as:E(γ)=x i∈V fD(x i)+λ·x i∈V fS(x i),(3)such that x s∈M e,(4)and x e∈M.(5) D(x i)is the data term which describes the probability that a voxel x i is located within a vessel.The more the intensity of a voxel deviates from the maximum intensity in its neigh-borhood,the lower is the probability that this voxel is located within a vessel and thus the higher is the corresponding energy. Accordingly,D(x i)is defined as:D(x i)=|g(x i)−maxx j∈N x ig(x j)|.(6) S(x i)encodes the smoothness of the vessel at x i,which is independent of the image data and weighted by the scalarλ. Higher curvatures of the centerline are assigned a higher energy.Letθ(d1,d2)denote the angle between two directions d1and d2:θ(d1,d2)=arccosd T1·d2d1 · d2.(7)Fig.5.2D sketch of 3D sampling within a cone (gray triangle).N cone xi={x 2,x 3,x 4}.x 1,x 5/∈N cone x i since these points are outside of the cone.Then S (x i )is defined as:S (x i )=θ(d x i ,d x i +1),(8)whered x i =x i −x i −1,(9)d x i +1=x i +1−x i .(10)The curvature at x i is measured by the angle between the two consecutive vessel segments at x i .D andS in (3)can be interpreted as the energy functions for the likelihood and the prior in Bayes’theorem,respectively.The sum of D and S corresponds to the energy of the posterior.The hard constraints (4)and (5)state that the start and end points x s and x e are voxels that have been segmented as vessel in the previous model-based segmentation step.B.Sampling SchemeThe start point x i =x s and tangent d i =d s are given by the end point and tangent of the last vessel segment from model-based segmentation.Then,a cone which opens in the direction of d i with an angle of 2δand the apex at x i is constructed,indicated as the gray triangle in Fig.5.The set of all neighboring voxels within the 3×3×3neighborhoodof x i inside this cone is denoted by N cone x i.Let g (x )denote the intensity value of voxel x ,then the next voxel x i +1ofthe candidate vessel is selected randomly from N cone x i,with a probability given by:P (x )=g (x )x j ∈N cone x ig (x j ).(11)The closer g (x )is to the maximum intensity within N cone x i,the higher is the probability that x is selected as the next voxel of the candidate vessel.Once the next voxel has been found,the tangent can be updated and used to find further voxels.This process is repeated until a voxel is reached which is in M ,or until a maximum length is reached.The vessel centerline candidate is a sample which is then evaluated by (3).Note that the hard constraints (4)and (5)are satisfied automatically,because for each successfully com-pleted gap,the sampling always starts at the last point of the vessel segmented by model-based approach,and ends at a voxel in a vessel.The sample with the lowest energy value is selected as the final result of the probabilistic optimization.If the optimal sample does not end in M ,we conclude thatthis vessel end should not be connected to a thick vessel (cf.one end of vessel 4in Fig.3indicated by a white arrow,which does not have a thick vessel close to it).V.I MPLICIT I NITIAL D IRECTION P RESERVATION :3D F AST M ARCHING W ITH A NISOTROPIC D IRECTIONAL P RIOR In contrast to the explicit approach described in the previous section,the information of the initial direction can also be incorporated implicitly using the fast marching framework.First,we briefly describe the standard fast marching approach (Sect.V-A).Then,we present an approach to incorporate an anisotropic directional prior into the fast marching approach (Sect.V-B).A.Standard Fast Marching ApproachGiven a start point x s and an end point x e ,fast marching aims at finding the path γminimizing the energy functionE (γ)=γ(P (s )+w)ds ,(12)where P is a potential function derived from an image,w is a constant regularization term which controls the smoothness of the path,and s is the arc length parameter.P can be interpreted as the inverse of the propagation speed F of a wavefront,which emanates from the start point x s :P (s )=1F (s ).(13)This wavefront keeps propagating outwards,until an end point x e is reached.Let A x 1,x 2denote the set of all paths γconnecting two given points x 1and x 2,then the arrival time of the wavefront at each voxel x can be represented by the minimal action map U x s :U x s (x ):=min γ∈A x s ,xE (γ).(14)Usually,(14)is computed by solving the Eikonal equation∇U x s (x )=P (s )+w (15)using efficient numerical schemes such as the upwind scheme(e.g.,[16]).Note that this equation employs the Euclideannorm of the gradient ∇U x s (x ) ,which is the same forall directions,i.e.,the speed function F must be isotropic .Once U x s is computed,the minimal path can be extracted:Starting from x e ,the predecessor of the current position is determined using gradient descent.This process is repeated until x s is reached.The final result of fast marching approaches has subvoxel accuracy,i.e.,metrication errors caused by the discrete grid structure,which are an inherent problem of discrete approaches such as Dijkstra’s algorithm,are avoided.There are several differences between this standard fast marching approach and the probabilistic minimal path approach in Sect.IV.First,the actual path is only computed after the wavefront reaches x e .During the propagation of the wavefront,there is no explicit representation of a path.Instead,the necessary information to compute the path is embedded implicitly in U x s .Second,in the probabilistic approach,the smoothness of the path is regularized by assigning a highFig.6.2D sketch of 3D anisotropic effect.(a)Anisotropic speed:The two large arrows at x s indicate higher speed in two specific directions .(b)Isotropic speed:The four large arrows at the voxel x i indicate higher speed in the specific area .energy to paths with high curvature,while here the smoothness regularization is achieved indirectly via length regularization.This is because the energy function can be decomposed as:E (γ)= γ(P (s )+w)ds =γP (s )ds +w γ1ds ,(16)whereγ1ds is the Euclidean length of γ.Therefore,the energy function (16)prefers shorter paths,and smoothness is thus a consequence of this preference,since usually it is assumed that shorter paths are also smoother.However,shorter paths are not always the better results (cf.Fig.4).To address this problem,below we introduce a fast marching approach with an anisotropic directional prior.B.Anisotropic Directional PriorAs mentioned above in Sect.III-C,the model-based approach provides an estimate of the direction d s of a vessel at each start point x s ,which can be used to seg-ment vessels in low-contrast and noisy regions.Obviously,d s involves anisotropic information,which may suggest using an anisotropic fast marching approach.However,current anisotropic fast marching approaches (e.g.,[20],[25])can only cope with speed functions defined by symmetric positive definite metric tensors,which means that the speed function at each pixel or voxel x has an elliptical profile centered at x .Furthermore,for high anisotropy,the numeric solution is either not accurate or very time-consuming [25].In comparison,our approach does not have these limitations.First,the direction d s of a vessel is incorporated in a principled manner.Second,we use isotropic speed functions to create an anisotropic behavior which is not limited to be elliptic but can be more general (irregular).Third,since we always use the numeric solution for isotropic fast marching,our approach is accurate and computationally efficient,even for high anisotropy.The main idea is to modify the potential function P ,or equivalently the propagation speed F ,so that it is possible to incorporate the prior directional information d s into the isotropic Eikonal equation.This is illustrated in Fig.6.There,each dot or square represents a voxel,and the start point x s and end point x e are highlighted as red dots and white squares,respectively.The initial direction d s is indicated as a red arrow.The black arrows show the speed at voxels indifferent directions.Suppose that we prefer paths such that the initial tangents of the paths point in directions similar to d s .Using an anisotropic speed (Fig.6,left),this would be achieved by increasing the speeds in specific directions at x s (large black arrows).However,such an anisotropic speed can-not be handled using the isotropic Eikonal equation.Moreover,since this speed function does not fit into an ellipse centered at x s ,it cannot be handled by anisotropic fast marching either (e.g.,[20],[25]).The idea in our approach is that a similar anisotropic effect can be achieved using an isotropic speed.Instead of increasing the speed in preferred directions ,we increase the isotropic speed at preferred image positions .For example,in Fig.6(right),all speeds in the different directions at the green voxel are increased to the same large value.On the scale of the whole image,an anisotropy is achieved,i.e.,the paths passing through the green voxel are preferred,but on the scale of individual voxels,this speed function is still isotropic,and consequently the isotropic Eikonal equation can be applied.To incorporate the anisotropy ,we propose the following energy function as an extension of (12):E (γ,x s ,d s )=γP comp (s ,x s ,d s )+wds .(17)Similar to (13),the composite potential function can beinterpreted as the inverse of the composite speed:P comp (s ,x s ,d s )=1F comp (s ,x s ,d s ),(18)where F comp is defined as:F comp (s ,x s ,d s )=F v (s )+w ·F dir x (s )−x s ,d s+F 0.(19)F comp includes a speed function F v based on a multiscale vesselness filter,a speed function F dir based on an anisotropic (irregular)directional prior,as well as a constant speed F 0(w is a scalar weight).Note that our approach can cope with more general anisotropic behavior compared to previous anisotropic fast marching approaches with elliptical speed functions (e.g.,[20],[25]).Our speed functions are detailed below:1)Vesselness-Based Speed Function F v :The speed func-tion F v is defined as:F v (s )=max σmin ≤σ≤σmaxV σ(x (s )).(20)In our approach,the filter from [6]is used,i.e.:V σ(x )=⎧⎪⎪⎪⎨⎪⎪⎪⎩|λ3| λ2λ3 γ23 1+λ1|λ2| γ12,if λ1≤0,λ2,λ3<0|λ3| λ2λ3 γ23 1−αλ1|λ2|γ12,if |λ2|α>λ1>0>λ2,λ30,otherwise .(21)where λ1,λ2,λ3are the eigenvalues of the Hessian matrix at x ,while γ12,γ23control the sensitivity of the filter.。

相关文档
最新文档