低压三相短路电流计算
低压系统短路电流的计算
低压系统短路电流的计算概述:一、基本概念1.短路电流:电力系统中在电气设备两个相或相与地之间产生的短路电流。
2.非感性负荷:电阻负荷和感性负荷的总和。
3.短路阻抗:电力系统在短路点的阻抗。
4.X/R比:电力系统短路时,电感阻抗与电阻的比值。
二、计算方法1.对称短路电流计算对称短路电流计算是指短路时三相之间电气参数相等,无损耗和非感性负荷的情况下的短路电流计算。
1.1系统等效短路电流计算方法该方法适用于系统短路电流的初步估算,一般采用简化的计算模型。
1.1.1电抗率法通过系统的等效电抗率和额定电流来计算短路电流。
电抗率与系统电抗的比为系统等效电抗率。
短路电流的计算公式为:Isc = K × In其中,Isc为短路电流,K为系统等效电抗率,In为额定电流。
采用一个合适的变比将电源侧的短路电流转换到负荷侧。
定比法适用于主变电站、变电站等。
1.2单相短路电流计算方法单相短路电流计算是指只考虑一相短路时的电流值。
1.2.1滑块法通过测量一相的电压、电流和功率因数,并利用滑块器计算短路电流。
该方法适用于事故现场的短路电流测量。
1.2.2暂态法通过测量电流波形的快速变化以及额定电流计算短路电流。
该方法适用于有标称线路电压的暂态短路。
2.不对称短路电流计算不对称短路电流计算是指考虑非感性负荷、非对称运行和非对称故障时的短路电流计算。
不对称短路电流计算需要引入负荷的电抗率和相角、电源的电抗率和相角等因素。
2.1非对称短路电流计算方法非对称短路电流的计算一般采用叠加法或K方法。
2.1.1叠加法将正序短路电流、负序短路电流和零序短路电流分别计算后,再进行叠加得到总的不对称短路电流。
K方法是一种通过电抗率和相角来计算不对称短路电流的方法。
具体计算步骤较为复杂,需要手动计算。
三、简化计算方法除了上述详细的计算方法外,还存在一些简化的计算方法。
例如,利用已知的短路电阻和短路电压、安培-欧姆定律、Thévenin定理等。
继电保护整定计算所需短路电流
最小运行方式下,电动机接线 端两相短路时,流过保护安装 两相短路电流 处的超瞬态电流。
A
低压侧两相短路电流=0.866×低压 侧三相短路电流
末端三相短路电流
A
线路
I1k2min
最小运行方式下,线路始端两 相短路超瞬态电流。
始端两相短路电流
A
6—10KV 线路
线路 设备 6—10KV 线路
6—10KV 母线分段断
路器
6—10KV 电力
电容器组
3—10KV 电动机
符号 I3k3max Ik2min I3k2min Ik2min Ik2min
A
处)的稳态电流。
nT—变压器变比
最小运行方式下变压器低压侧
母线或母干线末端单相接地稳 低压侧单相短路
A
态短路电流。
I2k2min
最小运行方式下,线路末端两 相短路稳态电流。
末端两相短路电流
A
低压侧两相短路电流=0.866×低源自 侧三相短路电流6—10KV
I2k3max
最大运行方式下,线路末端三 相短路超瞬态电流。
最小运行方式下,母线两相短 路时,流过保护安装处的超瞬 两相短路电流 态电流。
最小运行方式下,电容器组端 部两相短路时,流过保护安装 两相短路电流 处的超瞬态电流。
A
A
A
在远端短路(无限大系统)中,稳 态电流=超瞬态电流
A
同步电动机接线端三相短路 时,输出的超瞬态电流。
三相短路电流
A
在远端短路(无限大系统)中,稳 态电流=超瞬态电流
设备 电力变压器
符号 I2k2min I2k3max I1k2min I2k1min
I22k1min
第三章 电力系统三项短路电流的使用计算
近似计算2:
假设条件:
所有发电机的电势为1,相角为 0,即 E 10 不计电阻、电纳、变压器非标准变比。 不计负荷(空载状态)或负荷用等值电抗表示。 短路电路连接到内阻抗为零的恒定电势源上
起始次暂态电流和冲击电流的 实用计算
没有给出系统信息
X S*
IB IS
有阻尼绕组 jxd
jxd 无阻尼绕组
E
E
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
•起始次暂态电流:短路电流周期分量(基频分量) 的初值。
•静止元件的次暂态参数与稳态参数相同。
•发电机:用次暂态电势 E 和次暂态电抗 X d
表示。
E G 0 U G 0 jX dIG 0
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(3)短路电流使用计算步骤
较精确计算步骤
绘制电力系统等值电路图 进行潮流计算 计算发电机电势 给定短路点,对短路点进行网络简化 计算短路点电流 由短路点电流推算非短路点电流、电压。
例题
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
电力系统三相短路的实用计算
三、起始次暂态电流和冲击电流的实用计算 1. 起始次暂态电流的计算
(1)同步发电机的模型
ia
Eq xd
cos(t
0 )
Ed xq
sin(t
0 )
I cos(t 0-)
ia
Eq|0| xd
当cos(xtd
0
)xq(时Exqd|0|
Exqd|0I| )cos(x1td0E)qe|0|Ttd E(qE|0x|qd|0| ExE|dx0q|d|0|
低压短路电流计算方法
一、短路原因及危害短路是电力系统中常见的故障之一,它是指供配电系统中相导体之间或者相导体与大地之间不通过负载阻抗而直接电气连接所产生的。
产生短路电流的主要原因有绝缘老化或者机械损伤;雷击或高电位浸入;误操作;动、植物造成的短路等。
发生短路时会产生很大的短路电流,短路电流会产生很大的电动力和很高的温度,也就是短路的电动效应和热效应,可能会造成电路及电气装置的损坏;短路将系统电压骤减,越靠近短路点电压越低,严重影响设备正常运行;还有发生短路后保护装置动作,从而造成停电事故,越靠近电源造成停电范围越大;对于电子信息设备可能会造成电磁干扰。
短路电流可以分为:三相短路,两相短路,单相短路。
两相短路分为相间短路和两相接地短路。
单相短路可以分为相对地短路和相对中性线短路。
一般三相短路电流值最大,单相短路电流值最小。
二、计算短路电流的意义1 选择电器。
《低压配电设计规范》GB 50054—2011第3.1.1的5和6条关于选择低压电器需要考虑短路电流的有关规定如下:电器应满足短路条件下的动稳定与热稳定的要求;用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。
2 选择导体。
《低压配电设计规范》GB 50054—2011第3.2.2的3条关于选择电缆需要考虑短路电流的有关规定如下:导体应满足动稳定与热稳定的要求;3 断路器灵敏度校验。
《低压配电设计规范》GB 50054—2011第6.2.4条关于低压断路器灵敏度校验有关规定如下:当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍。
4 根据 IEC60364-434.2 和IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。
5 预期最大短路电流用在:断路器的分断能力;电器的接通能力;电气线路和开关装置的热稳定性和动稳定性。
6 预期最小短路电流主要用在:断路器脱扣器和熔断器灵敏度校验。
变压器的短路电流计算方法
变380V低压侧短路电流计算:=6%时Ik=25*Se=4%时Ik=37*Se上式中Uk:变压器的阻抗电压,记得好像是Ucc。
Ik:总出线处短路电流ASe:变压器容量KVA3。
峰值短路电流=Ik*2.554.两相短路电流=Ik*0.8665.多台变压器并列运行Ik=(S1+S2+。
Sn)*1.44/Uk变压器短路容量-短路电流计算公式-短路冲击电流的计算一.概述供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。
为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。
只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件。
因为单相短路或二相短路时的短路电流都小于三相短路电流。
能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。
一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
在介绍简化计算法之前必须先了解一些基本概念。
1.主要参数Sd三相短路容量(MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(W)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量Sjz =100 MVA基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144(2)标么值计算容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1 2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3这时:冲击电流有效值IC =1.09*Id(KA)冲击电流峰值: ic =1.84 Id(KA)掌握了以上知识,就能进行短路电流计算了。
三相短路电流计算
短路电流次暂态值 I ′′ = Id = 9.16 = 2.92kA X*KΣ 3.14
短路电流冲击值 ish = 2K sh I ′′ = 2.55 × 2.92 = 7.45kA
次暂态短路功率 S ′′ = 3U av I ′′ = 3 × 6.3 × 2.92 = 31.86MVA
4.4.2 有限容量电源系统的三相短路电流计算
1.有效值的计算---运算曲线法 有限容量电源系统发生三相短路后,其母线电压不再保持恒定,短路电流周期分量也随 之发生变化。如果已知短路后某一时刻发电机的电势,则短路电流周期分量相应时刻的有效 值可按下式求取
I pt =
Et 3X KΣ
(4.4.9)
式中: Et ——短路后 t 时刻的发电机的电势;
(4.4.4)
式中: I d ——计算点所在电压级的基准电流, I d =
Sd 3U d
X *KΣ ——短路回路总电抗的标幺值, X *KΣ = X KΣ
3I d Ud
于是可得:
2.短路电流冲击值
I ′′ =I ∞=
Ip
=
Id X *KΣ
(4.4.5)
由式(4.2.9)和(4.2.10)可求得短路电流冲击值和短路冲击电流有效值
X KΣ ——短路回路总电抗。
但是同步发电机突然短路时,电势随时间变化的规律是很复杂的,用上式计算比较困难。 电力部门根据国产同步发电机参数和容量配置情况,用概率统计的方法分别制定了汽轮发电 机和水轮发电机的短路电流运算曲线。利用运算曲线可以方便地查出三相短路电流周期分量
的有效值 I*pt ,因此在实际工程计算中,通常采用“运算曲线”来求解三相短路电流周期分
Id1 =
Sd = 3U av
变压器的短路电流计算方法
变压器的短路电流计算方法-CAL-FENGHAI.-(YICAI)-Company One1变380V低压侧短路电流计算:=6%时 Ik=25*Se=4%时 Ik=37*Se上式中Uk:变压器的阻抗电压,记得好像是Ucc。
Ik:总出线处短路电流 ASe:变压器容量 KVA3。
峰值短路电流=Ik*4.两相短路电流=Ik*5.多台变压器并列运行Ik=(S1+S2+。
Sn)*Uk变压器短路容量-短路电流计算公式-短路冲击电流的计算一.概述供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。
为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。
只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件。
因为单相短路或二相短路时的短路电流都小于三相短路电流。
能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。
一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
在介绍简化计算法之前必须先了解一些基本概念。
1.主要参数Sd三相短路容量 (MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(W)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量 Sjz =100 MVA基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3因为S=*U*I 所以 IJZ (KA)44(2)标么值计算容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA 时,其标么值容量S* = 200/100=2.电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1 2 (KC-1)2 (KA)其中KC冲击系数,取所以IC =冲击电流峰值: ic =* Id*KC= Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取这时:冲击电流有效值IC =*Id(KA)冲击电流峰值: ic = Id(KA)掌握了以上知识,就能进行短路电流计算了。
变压器额定电流和低压短路电流的估算
变压器额定电流和低压短路电流的估算仪征化纤股份有限公司设备动力部 孙金伯在进行开关等设备选型时,常常需要知道变压器的额定电流和短路电流,下面给出一种工程上常用的一种估算公式:一.变压器额定电流的估算变压器额定电流的计算公式:式中:S N 为变压器额定容量 U N 为变压器的额定电压1. 高压侧电流的估算对于高压侧为10KV 的变压器:将U N =10KV 代入上式得I N = 0.06S N对于高压侧为6KV 的变压器::将U N =6KV 代入上式得I N = 0.1S N2. 低压侧电流的估算将U N =400V 代入上式I N = 1.44 S N 。
为 了便于口算,实际工程计算中取1.5S N在实际工作中,当需要估算变压器高低侧的额定电流时,只要将变压器的额定容量乘上0.06即为10KV 侧的额定电流,将变压器的额定容量乘上0.1即为6KV 侧的额定电流,将变压器的额定容量乘上1.5即为400V 侧的额定电流。
以上计算都是近似估算,误差在实际工程中是允许的。
二. 变压器低压短路电流的估算在对变压器低压侧出线开关选型时,经常要估算变压器低压母线短路时的三相短路电流,以便确定变压器低压出口总开关的遮断容量。
设基准容量:S j =100MV A ,基准电压:U j =0.4kV ,变压器一次系统的短路阻抗为∝,则400V 侧的短路电流为:U d %----变压器的短路阻抗,%S-------变压器的额定容量,KVAU S I NNN 3=I U IdN d d S 23*4.0100000*1000%1==I2N……..变压器低压侧的额定电流根据上式,当已知变压器低压侧的额定电流和变压器的短路阻抗百分数时即可估算出变压器低压侧的短路电流。
现将常用的10/0.4KV变压器的出口三相短路电流计算附后:表一:10/0.4KV变压器出口三相短路电流。
短路电流的计算方法
X
k
arctg R
XL
Tfi R R
R2 X 2
C ——积分常数,由初始条件决定,即短路电流非周
期分量的初始值
。i fi 0
LOGO
由于电路中存在电感,而电感中的电流不能突变,
则短路前瞬间(用下标0-表示)的电流i0-应该等于短 路发生后瞬间(用下标0+表示)的电流i0+,将t=0分
RL
XL
式中:
I M—— 短路前电流的幅值
a)
I M
Um
/
( R R )2 ( X X )2
—0 — 短路前回路的阻抗角 0 arctg( X X ) /( R R )
—— 电源电压的初始相角,亦称合闸角;
R∑
2、短路时
短路后电路中的电流应满足: u G
别代入短路前后的电流表达式,可得
C
I M
sin(
0
)
I PM
sin(
k
)
因此,短路的全电流为
t
ik iz ifi IPM sin(t k ) IM sin( 0) IPM sin( k )e
t
ik iz ifi IPM sin(t k ) IM sin( 0 ) IPM sin(LOGOk ) e
无穷大容量系统三相短路暂态过程1正常运行rlxldtdi短路的全电流可以用下式表示短路电流周期分量的幅值短路后回路的阻抗角短路回路时间常数积分常数由初始条件决定即短路电流非周期分量的初始值fipmlogo由于电路中存在电感而电感中的电流不能突变则短路前瞬间用下标0表示的电流i应该等于短路发生后瞬间用下标0表示的电流i别代入短路前后的电流表达式可得因此短路的全电流为fipm正常运行状态001s暂态稳态izifi3
变压器的短路电流计算方法
变压器的短路电流计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]变380V低压侧短路电流计算:=6%时 Ik=25*Se=4%时 Ik=37*Se上式中Uk:变压器的阻抗电压,记得好像是Ucc。
Ik:总出线处短路电流 ASe:变压器容量 KVA3。
峰值短路电流=Ik*4.两相短路电流=Ik*5.多台变压器并列运行Ik=(S1+S2+。
Sn)*Uk变压器短路容量-短路电流计算公式-短路冲击电流的计算一.概述供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。
为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。
只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件。
因为单相短路或二相短路时的短路电流都小于三相短路电流。
能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。
一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
在介绍简化计算法之前必须先了解一些基本概念。
1.主要参数Sd三相短路容量 (MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(W)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量 Sjz =100 MVA基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3因为S=*U*I 所以 IJZ (KA)44(2)标么值计算容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1 2 (KC-1)2 (KA)其中KC冲击系数,取所以IC =冲击电流峰值: ic =* Id*KC= Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取这时:冲击电流有效值IC =*Id(KA)冲击电流峰值: ic = Id(KA)掌握了以上知识,就能进行短路电流计算了。
低压短路电流计算和校验
低压短路电流计算和校验摘要:针对低压负荷供电距离多样,负荷性质复杂的特点,介绍了在低压配电中短路电流计算的假定条件,分析了短路电流计算时的影响因素,最后分析了在断路器保护定值选取时的注意事项,可用于低压设计过程中的计算参考。
关键词:低压;短路计算;断路器引言低压配电的主要任务是通过合理计算,在变压器低压侧至终端用电设备这一电气路径中选取相应的保护设备(断路器、熔断器)和低压电缆,保证供电及用电设备的正常运行。
用电设备功率、配电距离、敷设方式对于断路器主要参数的整定和电缆截面的选取都存在着不同的影响。
特别是在小负荷配电设计时,利用短路电流计算结果进行配电设备的合理性选择是十分重要的。
本文以采用了TN-S 系统的实际地铁项目为例,讨论了单相和三相短路电流的计算及校验,针对供电距离的不同时,分析了小负荷低压远端短路(短路交流分量不衰减)对断路器选取的影响。
1低压负荷三相短路电流计算以某地铁项目为例,35/0.4kV变电所中设置一台1000kVA的SCB-11干式变压器,D,yn11接线,Uk%=6,其中所供电的负荷功率为5kW(功率因数0.8)。
1.1负荷额定电流采用需要系数法计算,工作电流详见公式1-1(1-1)如果仅根据计算电流,可选取截面积为2.5mm2的电缆。
1.2短路电流计算与短路分段能力低压短路可近似为远端短路[1],按短路电流的周期分量不衰减进行考虑,故低压三相短路可按如下方法计算。
(1)系统高压侧折算到低压侧的短路阻抗在实际工程中,系统高压侧的短路容量需要由当地的电业部门提供,如果没有数据,可以进行合理推算。
假定配电变压器的短路容量S″=100MVA,变压器低压侧的高压系统阻抗为:(1-2)(1-3)(1-4)(2)变压器的阻抗根据相关厂商变压器参数样本可知,容量为1000kVA的SCB-11干式变压器的电阻=1.22m,电抗=9.52m。
(3)低压母线的短路电流根据选型项目参数,变压器容量1000kVA,低压侧允许最大计算电流为1519A,因此选择TMY(100mm×8mm)作为低压母排型号,其长度为8m,根据样本单位长度阻抗R'p=0.04m/m,X'p=0.182 m/m,则总阻抗为R p=0.32m,X p=1.448m。
低压开关整定及短路电流计算方法
高、低压开关整定计算方法:1、 1140V 供电分开关整定值=功率×0.67, 馈电总开关整定值为分开关整定值累加之和。
2、 660V 供电分开关整定值=功率×1.15,、馈电总开关整定值为分开关整定值累加之和。
3、 380V 供电分开关整定值=功率×2.00,、馈电总开关整定值为分开关整定值累加之和。
低压开关整定及短路电流计算公式1、馈电开关保护计算(1)、过载值计算:I Z =I e =1.15×∑P(2)、短路值整定计算:I d ≥I Qe +K X ∑I e(3)、效验:K=d d I I )2(≥1.5 式中:I Z ----过载电流整定值∑P---所有电动机额定功率之和I d ---短路保护的电流整定值I Qe ---容量最大的电动机额定启动电流(取额定电流的6倍)K X ---需用系数,取1.15∑I e ---其余电动机的额定电流之和P max ---------容量最大的电动机I (2)d ---被保护电缆干线或支线距变压器最远点的两相短路电流值例一、馈电开关整定:(1)型号:KBZ16-400,Ie=400A,Ue=660V,电源开关;负荷统计P max=55KW,启动电流I Qe=55×1.15×6=379.5A, ∑I e =74KW。
∑P=129KW(2)过载整定:根据公式:I Z=I e=1.15×∑P =129×1.15=148.35A取148A。
(3)短路整定:根据公式 I d≥I Qe+K X∑I e=379.5+1.15x74=464.6A取464A。
例二、开关整定:(1)、型号:QBZ-200,Ie=200A,Ue=660V,所带负荷:P=55KW。
(2)、过载整定:根据公式:I Z=I e=1.15×P=1.15×55=63.25A 取65A。
井下高压开关整定:式中:K Jx -------结线系数,取1K K -------可靠系数,通常取(1.15-1.25)取1.2K i-------电流互感器变比K f-------返回系数,取0.8Igdz-------所有负荷电流Idz---------负荷整定电流cos¢-----计算系数0.8----1P-----------所有负荷容量U----------电网电压√3--------1.732例1;高压开关屏整定:电流互感器为50/5=10、过流继电器为GL-12,Ie=5A.按变压器容量进行整定,变压器为KBSG-315/6.Igdz=P/√3*U*cos¢=315/1.732×6×0.92=32.9AIdz= Igdz×K Jx×K K /K i×K f=32.9×1×1.2/10×0.8=4.94A例2;(为BGP9L-6G高爆开关)整定:高压开关电流互感器为50/5按变压器容量为200KVA,额定电流为19.2A根据该配电装置微机高压综合保护器说明书要求:过载电流整定为20A,短路整定为180A(一般整定为额定电流的8-10倍)。
低压配电系统短路电流计算
低压配电系统短路电流计算说明中冶京诚工程技术有限公司电气工程技术所2004年7月低压配电系统短路电流计算在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。
目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。
现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。
假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。
但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。
本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。
相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。
应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。
关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N 是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。
一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。
计算中遵循下列规定:1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。
2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。
低压短路电流计算书
低压短路电流计算书工程名:计算者:刘瑞科计算时间:2011-2-13计算如图短路点短路电流短路电流:【相关系数:】c = 1.05 //电压系数,计算三相短路电流时取1.05 Un = 0.38 //系统低压侧电压,单位:kV 【输入参数:】Ss:200 //变压器高压侧系统短路容量,MVA【计算公式:】 归算到400V 侧Z s =[(C*U n )^2/S s ]*1000 mΩ=[(1.05*0.38)^2/200]*1000=0.796 mΩ=0.8 mΩ Rs=0.1Xs Xs=0.995 Zs mΩ Zs = 0.796000=0.8 mΩ Xs = 0.792020=0.8 mΩ Rs = 0.079202=0.08 mΩR php.s =[R (1).s +R (2).s +R (0).s ] ÷3= 2*0.08÷3=0.05mΩ {低压TN接地系统相保阻抗} X php.s =[X (1).s +X (2).s +X (0).s ] ÷3=2*0.08÷3=0.53 mΩD,yn11变压器零序电流不能在高压侧流通,短路点远离发电机,可认为正负序阻抗相等。
2.变压器阻抗值 【相关系数:】c = 1.05 //电压系数,计算三相短路电流时取1.05 Un = 0.38 //系统低压侧电压,单位:kV 【输入参数:】Uk:4.50 //变压器电抗电压百分数 Sr:1000 //变压器的额定容量,kVA △P:10.30 //变压器短路损耗,kW n:1 //变压器台数 【计算公式:】 Zt=(U k /100)*(U r ^2/S r )*1000=(4.5/100)*({1.05*0.38)}^2/1000)*1000= 7.16*10-3Ω Rt=△P*U r ^2/(S r ^2) mΩ=(10.3*({1.05*0.38)}^2/1000^2)*1000= 1.65*10-3Ω= 1.65 mΩ Xt=√Z t ^2- Rt^2 mΩ Zt = 7.16 mΩRt = 1.650000 mΩ= R php.TXt = 6.970000=7.00 mΩ= X php.T【输入参数:】可查表,按D=350mmR lm:0.028000 //选定母线单位长度的相电阻,毫欧/米,=0.028*5=0.14 mΩR phplm:0.07800 //选定母线单位长度的相保电抗,毫欧/米 =0.078*5=0.39 mΩ X lm:0.170000 //选定母线单位长度的相电抗,毫欧/米 =0.17*5=0.85 mΩX phplm:0.3690 //选定母线单位长度的相保电抗,毫欧/米 =0.369*5=1.85 mΩ L:5 //母线长度,m【计算公式:】R m=R lm*L mΩX m=X lm*L mΩ5.求线路阻抗【输入参数:】L1\L2规格一样L1:2.500000 //线路长度,单位mR L1:0.05 //选定线路L1单位长度的相电阻,毫欧/米,0.05*2.5=0.0625R phpLl:0.169 //选定线路L1单位长度的相保电阻,毫欧/米0.169*2.5=0.4225X L1:0.17 //选定线路L1单位长度的相电抗,毫欧/米,0.17*2.5=0.425X phpLl:0.394//选定线路L1单位长度的相保电抗,毫欧/米 ,0.394*2.5=0.985 L2:57.500000 //线路长度,单位mR L2:0.05 //选定线路L2单位长度的相电阻,毫欧/米,0.05*57.5=2.875R phpL2:0.169 //选定线路L2单位长度的相保电阻,毫欧/米0.169*57.5=9.7175X L2:0.17 //选定线路L2单位长度的相电抗,毫欧/米,0.17*57.5=9.775X phpL2:0.394//选定线路L2单位长度的相保电抗,毫欧/米 ,0.394*57.5=22.655L3 BLV-3x50+1x25L3:20M //线路长度,单位mR L3:0.575 //选定线路L1单位长度的相电阻,毫欧/米,0.575*20=11.5R phpL3:2.589 //选定线路L1单位长度的相保电阻,毫欧/米,2.589*20=51.78X L3:0.09 //选定线路L1单位长度的相电抗,毫欧/米, 0.09*20=1.8X phpL3:0.22//选定线路L1单位长度的相保电抗,毫欧/米 , 0.22*20=4.4L4 VLV-3x120+1x70L4:20M //线路长度,单位mR L4:0.24 //选定线路L1单位长度的相电阻,毫欧/米,0.24*20=4.8R phpL4:0.977 //选定线路L1单位长度的相保电阻,毫欧/米,0.977*20=19.54X L4:0.076 //选定线路L1单位长度的相电抗,毫欧/米, 0.076*20=1.52X phpL4:0.161//选定线路L1单位长度的相保电抗,毫欧/米 , 0.161*20=3.22低压三相和单相接地故障电流计算表序号短路点 电路元件元件R 元件X 相保R php 相保X php 短路点阻抗Z k 相保短路点阻抗Z phpk 三相短路电流KA I d 3单相接地故障电流 I d1X K / R K短路电流冲击系数K ch短路冲击电流 KA短路全电流最大有效值 1系统 0.08 0.8 0.05 0.53 2变压器 1.65 71.65 73 母线 0.14 0.85 0.39 1.854 K1 1.87 8.65 2.09 9.38 8.85 9.61 25.9922.89 4.63 1.4954.8431.75 L1 0.13 0.43 0.42 0.996 K2 2.00 9.08 2.51 10.379.3 10.6724.7320.627 L2 2.88 9.78 9.72 22.66 8 K3 4.88 18.86 12.2333.0319.4835.2211.81 6.25 3.86 1.4524.2114.059 L3 11.5 1.8 51.78 4.40 10 K4 16.38 20.66 64.0137.4326.3774.158.72 2.97 11 L4 4.8 1.52 19.4 3.22 12K56.67 10.17 21.4912.6 12.1624.9118.918.83【相关系数:】c = 1.05 //电压系数,计算三相短路电流时取1.05 Un = 0.38 //系统低压侧电压,单位:kV本例可以证明电动机不影响短路电流,I rm =(P m /√3U e *0.8)/1000 Icm=0.9*√2*Kcm*Kq m*Irm【计算公式:】1、三相短路电流KAI d 3=[C*Un/(√3* Z∑)]*1000+Icm kA=[1.05*380/(√3* 8.85)]*1000 =25.99KA【相关系数:】Un = 0.38 //系统低压侧电压,单位:kV 【输入参数:】 【计算公式:】 2、单相接地故障电流I d1I d 1=[ Un/(√3* Zp)]*1000 Ka=[ 380/(√3* 9.61)]*1000 =22.89 KA3、短路电流冲击系数K P 可查表4、短路冲击电流=1.49*1.414* I d 3=2.11*25.99=54.84KA三相短路发生后的半个周期(t=0.01s),短路电流的瞬时值达到最大,称为冲击电流。
三相交流系统短路电流计算(GBT 15544—1995 )
中华人民共和国国家标准三相交流系统短路电流计算GB/T15544—1995Short-circuit current calculation in three-phase a.c.systems 国家技术监督局1995-04-06批准1996-01-01实施本标准等效采用IEC909(1988)《三相交流系统短路电流计算》(以下简称《909标准》)。
第一篇概述1主题内容与适用范围1.1主题内容本标准规定了用等效电压源法计算三相交流系统短路电流,并提出了计算中采用的校正系数的求取方法及推荐值。
1.2适用范围本标准适用于标称电压380V~220kV,频率50Hz的三相交流系统的短路电流计算。
本标准不适用于受控条件(短路试验站)下人为短路和飞机、船舶用电气设备的短路计算。
本标准主要作为进出口设备及对外工程投标使用,在国内工程计算中逐步推广采用。
2引用标准GB156—93额定电压GB2900.1—92电工术语基本术语GB2900.25—94电工术语旋转电机3术语3.1短路short-circuit通过一个比较低的电阻或阻抗,偶然地或有意地对正常电路中不同电压下的两个或几个点之间的连接。
3.2短路电流short-circuit current在电路中,由于故障或不正确连接造成短路而产生的过电流。
注:需区别流过短路点和电网支路中的短路电流。
3.3预期(可达到的)短路电流prospective(available)short-circuit current电源不变,将短路点用阻抗可忽略的理想连接代替时,流过短路点的电流。
注:假设三相短路电流是由于三相同时短路而产生的。
由于三相不在同一瞬间短路,在短路电流中可能出现较大的非周期分量的研究不属于本标准范围。
3.4对称短路电流symmetrical short-circuit current不计非周期分量时的预期(可达到的)短路电流对称交流分量的有效值。
3.5对称短路电流初始值initial symmetrical short-circuit current系统非故障元件的阻抗保持为短路前瞬间值时的预期(可达到的)短路电流的对称交流分量有效值(见图1和图12)。
低压配电系统短路电流计算
低压配电系统短路电流计算
1、短路电流计算的理论依据
在三相短路状况下,有以下两种模型可以用于短路电流计算:
(1)支路有限模型:采用支路有限模型进行短路计算,即根据系统
拓扑结构将系统分割为几个电路支路,分别考虑各个支路的短路负荷、负
荷分布系数和各支路的等效抗导等,然后进行短路计算,从而计算出系统
的短路电流和短路电压。
(2)断路有限模型:断路有限模型采用子分支分支结构,采用断路、接地、断路接地三种不同的模型,结合各支路的电容和感性等参数,综合
计算不同支路的短路电流和短路电压。
因此,短路电流计算理论依据为上述两种模型,即支路有限模型和断
路有限模型。
2、短路电流计算方法
(1)支路有限模型法
采用支路有限模型法进行短路电流计算,首先要求对系统进行拓扑结
构分析,然后根据系统的拓扑结构将整个系统分解为几个电路支路,分别
考虑各支路的短路负荷、负荷分布系数和各支路的等效抗导,然后根据电
路原理。
220kV低压35kV短路电流计算
三.不对称短路计算(考虑两种情况)
1.三台主变运行,其中只有一台主变的220kV及110kV侧接地的运行情况
(1).当220kV母线发生不对称短路时 I.单相接地故障 此情况的零序阻抗标幺值为Z0 由于正序负序网络对称Z1=Z2 Id(*)=1/(Z0+Z1+Z2) Id=Id(*)*Sj/1.732/230 正序 短路点全电流Id=3*Id正序 冲击电流2.55XId 求解中性点电流 中性点电流为Id0=3*Id1正序 220kV中性点Id' 根据零序网络变换 110kV中性点电流Id'' II.两相短路故障 Id(*)=1/(Z1+Z2) (Z1=Z2) Id=Id(*)*Ij
2.110kV母线发生短路(d2) 110kV母线发生短路的电流标幺值为 短路电流周期分量有效值为kA 短路容量Sd=I(*)*Sj MVA 由于110kV侧不提供电源所以 Id=Iper kA 冲击值=2.55*Id kA 容量=短路容量MVA
3.35kV母线发生短路(d3) 35kV母线为单母三分段时35母线阻抗标幺值为 35kV母线发生短路的电流标幺值为 短路电流周期分量有效值为kA 短路容量Sd=I(*)*Sj MVA 由于110kV侧不提供电源所以 Id=Iper kA 冲击值=2.55*Id kA 容量=短路容量MVA
0.472222222 1.333827343 20.81312367 1333.827343 20.81312367 53.07346536 1333.827343
接地的运行情况
0.11650759 0.09 3.372594946 8.465950435 25.3978513 64.76452082 25.3978513 3.149411827 1.885211305 5.555555556 13.94565868
低压系统短路电流的计算
低压系统短路电流的计算一、低压系统短路电流的定义低压系统短路电流是指在电力系统中出现短路故障时,电路中的电流急剧增大,达到最大值的电流。
通常情况下,短路电流可以分为对称电流和不对称电流。
对称电流是指短路电流的三个相位之间的电流幅值相等,相位角相差120度,是对称的。
而不对称电流是指短路电流的三个相位之间的电流幅值和相位角不相等,是不对称的。
二、低压系统短路电流的计算方法1.全电气法全电气法是通过全部的电气参数来计算短路电流的方法,可以精确计算短路电流的大小和波形。
其计算步骤如下:(1) 短路电流的基本公式为:Isc=U/Z,其中Isc为短路电流,U为电压,Z为总阻抗。
(2)计算电源电压:U=Un*1.05,其中Un为额定电压。
(3)计算负荷侧电压:Uf=Un*1.05*UF,其中Un为额定电压,UF为负荷变压器的变比。
(4)计算变压器阻抗:Zt=(Zp*左箭头Uf^2)/P,其中Zp为变压器的阻抗,左箭头表示反箭头。
(5)计算线路阻抗:Zl=Rl+左箭头Xl,其中Rl为线路的电阻,Xl为线路的电抗。
(6)计算电压降:∆U=左箭头Uf*Zt/(Zt+Zl),其中左箭头Uf为电压的发生器。
(7)计算短路电流:Isc=∆U/(Zt+Zl),其中∆U为电压降。
(8)计算短路电流的对称分量。
2.阻抗法阻抗法是通过系统的等值视为许多等效电阻串联来计算短路电流的方法,简化了计算过程。
其计算步骤如下:(1)确定总接线方式:单相式、三相四线式、三相三线式。
(2)计算设备的最小对称短路容量。
(3)计算电阻和电抗的等效值。
(4)确定短路发生位置,选择发生最大短路的点。
三、低压系统短路电流的影响因素1.电源容量:电源的容量越大,短路电流也越大。
2.发电机励磁特性:励磁特性的增加将使短路电流增大。
3.电源内阻:电源内阻越小,短路电流越大。
4.电源电压:电源电压的升高将使短路电流增大。
5.发电机的发电能力:发电机的发电能力和同步电机、逆功率保护的设备容量成正比,其短路电流也将增加。
8.1.2三相和两相短路电流的计算
——异步电动机的额定功率,kW;
——异步电动机的额定电流,kA,可由产品样本查得,如果有多台异步电动机,则应以各台电动机额定电流的总和 代之;
——由系统馈送的短路电流冲击系数;
上两式中 ——线路长度,m;
——导线截面,mm2;
——绞入系数,单股导线为1,多股导线为1.02;
——导线温度为20℃时的电阻率,铝线芯(包括铝电线、铝电缆、硬铝母线)为0.0282Ω·μm(或0.028×10−4Ω·cm),铜线芯(包括铜电线、铜电缆、硬铜母线)为0.0172Ω·μm(即0.0172×10−4Ω·cm);
1)线路零序阻抗的计算:各种形式的低压配电线路的零序阻抗Z(0)均可由式(8−1−27)变化为
(8−1−34)
式中 ——相线的零序阻抗 ;
——保护线的零序阻抗, ;
、 ——相线的零序电阻和电抗;
、 ——保护线的零序电阻和电抗。
相线、保护线的零序电阻和零序电抗的计算方法与正、负序电阻和电抗的计算方法相同,但在计算相线零序电抗 和保护线零序电抗 时,线路电抗计算公式中的几何均距 改用 代替,其计算公式如下
8.1.2.3单相短路(包括单相接地故障)电流的计算
(1)单相接地故障电流的计算:TN接地系统的低压网络单相接地故障电流 可用下述公式计算
kA(8−1−25)
(8−1−26)
以上式中 ——220/380V网路标称线电压,即380V, ,取220V;
——电压系数,计算单相接地故障电流时取1;
、 、 ——短路电路正序、负序、零序电阻,mΩ;
铜
1.995×10−6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、低压短路电流计算 (2)1、三相短路电流周期分量计算 (2)2、三相短路冲击电流计算 (2)3、三相短路电流第一周期(0.02S)全短路电流有效值计算 (3)4、电动机晶闸管装置对短路电流的影响 (3)二、配电变压器出口侧总断路器的短路校验 (14)1、额定短路分断能力(I cn)的校验 (14)2、额定短路接通能力(I cm)的校验 (15)3、额定短时耐受电流(Icw)的校验 (16)TaZ eI 01.0''*2-TaeKch 01.01-+=Tae01.0-εεR X Ta 314=一、 低压短路电流计算1、 三相短路电流周期分量计算三相短路电流周期分量按下式计算:式中I Z ’’ …………三相短路电流周期分量有效值,KA ; Up …………低压网络平均额定线电压,Up 取400V ;Z ε …………每相总阻抗,m Ω; R ε …………每相总电阻,m Ω; X ε …………每相总电抗,m Ω。
低压网络一般以三相短路电流为最大,与中性点是否接地无关。
2、 三相短路冲击电流计算电源供给的短路冲击电流值,按下式计算:式中 i chx …………………三相短路冲击电流,KA ;………………三相短路电流周期分量的峰值,KA ;…………三相短路电流非周期分量,KA ; …………三相短路电流冲击系数;………………三相短路电流非周期分量衰减系数;………………三相短路电流非周期分量衰减时间常数,S 。
)11(*322''------------------+=εεX R Up I Z )21(**2)1(2*2*2''01.0''01.0''''-----=+=+=--Z TaZ TaZ Z chx I Kch eI e I I i ''2ZI如果电路内只有电抗(R ε=0),则Ta=∝,Kch=2,即短路电流非周期分量不衰减。
如果电路内只有电阻(X ε=0),则Ta=0,Kch=1,即非周期分量根本不发生。
由此可见,Kch 在1~2之间。
3、 三相短路电流第一周期(0.02S )全短路电流有效值计算电源供给的全短路电流最大有效值: 当Kch >1.3时,按下式计算当Kch ≤1.3时,按下式计算比较精确以上两式 I chx …………全短路电流的有效值,KA ;I z ’’ …………三相短路电流周期分量的有效值,KA ; K ch …………三相短路电流的冲击系数;Ta …………三相短路电流非周期分量衰减的时间常数,(S )。
如果配电变压器高压侧电源容量为无穷大,而在变压器低压侧出口发生三相短路,这时短路回路阻抗,仅为变压器自身的阻抗。
SC (B )9、SC (B )10、S9、S10型变压器的电阻Rb 、电抗Xb 值见后表1-1~表1-6。
三相短路电流冲击系数Kch 见表1-7~表1-12。
三相短路电流的周期分量Iz ’’、冲击电流I chx 、全短路电流的有效值I chx见表1-13~表1-18。
4、 电动机晶闸管装置对短路电流的影响一般只考虑距短路点近处的电动机、晶闸管装置的影响,距短路点远处的电动机、晶闸管装置可忽略不计。
(1) 电动机对短路电流的影响)31()1(21*2''-----------------+=ch Z chx K I I )41(501*''--------------------+=Ta I I Z chx电动机反馈的冲击电流值,按下式计算:式中 i chd …………电动机反馈的三相短路冲击电流值,KA ; K chd …………电动机短路冲击系数,一般为0.8~1.28,简化计算可取1;I ed ……………电动机额定总电流,KA 。
电动机反馈的全电流的有效值,按下式计算:式中K chd 、I ed …………见上所述。
(2) 晶闸管装置对短路电流的影响 晶闸管装置反馈的冲击电流值,按下式计算:式中 i chG …………晶闸管装置反馈的三相短路电流冲击值,KA ; P e ε …………晶闸管装置供电的直流电动机总功率,KW ; U p …………低压网络平均额定线电压,V ,一般为400V 。
晶闸管装置反馈的全电流的有效值,按下式计算式中 K chG 、I ed …………见上所述。
)51(5.6--------------------------=ed chd chd I K i )61(9.3------------------------=ed chd chd I K I )71(3----------------------------=pe chG U P i ε)81(3-------------------------=ed chd chG I K I1附表:变压器的电阻Rb、电抗Xb表1-1:SC(B)9 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11, Y.yn0 的阻抗注:根据顺特电气资料表1-2:SC(B)10 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11, Y.yn0 的阻抗注:根据顺特电气资料表1-3:S9 型变压器10(11,10.5,6.3,6)±5% / 0.4KV D,yn11 的阻抗注:根据福变电气资料表1-4:S9 型变压器10(11,10.5,6.3,6)±5% ∕0.4KV Y.yn0 的阻抗注:根据福变电气资料表1-5:S10 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11的阻抗表1-6:S10 型变压器10(11,10.5,6.3,6)2附表:三相短路电流冲击系数Kch表1-7:SC(B)9 型变压器 10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11, Yyn0 的冲击系数注:根据顺特电气资料表1-8:SC(B)10 型变压器 10(11,10.5,6.3,6)±5% 或 ±2×2.5% ∕0.4KV D,yn11,Y.yn0 的冲击系数注:根据顺德电气资料表1-9:S9 型变压器10(11,10.5,6.3,6)±5%∕0.4KV D,yn11 的冲击系数注:根据福变电气资料表1-10:S9 型变压器10(11,10.5,6.3,6)±5% ∕0.4KV D,yn11 的冲击系数注:根据福变电气资料表1-11:S10 型变压器 10(11,10.5,6.3,6) ±5% 或±2×2.5%∕0.4KV D,yn11 的冲击系数表1-12:S10 型变压器 10(11,10.5,6.3,6) ±5% 或 ±2×2.5% ∕0.4KV Y.yn0 的冲击系数3附:三相短路电流的周期分量IZ’’、冲击电流Ichx、全短路电流的有效值Ichx表1-13:SC(B)9 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11,Y.yn0 的短路电流注:根据顺特电气资料表1-14:SC(B)10型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11,Yyn0 的短路电流注:根据顺特电气资料表1-15:S9 型变压器10(11,10.5,6.3,6)±5% ∕0.4KV D,yn11 的短路电流注:根据福变电气资料表1-16:S9 型变压器10(11,10.5,6.3,6)±5% ∕0.4K Y,yn0 的短路电流注:根据福变电气资料表1-17:S10 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV D,yn11的短路电流表1-18:S10 型变压器10(11,10.5,6.3,6)±5% 或±2×2.5% ∕0.4KV Y.yn0 的短路电流二、配电变压器出口侧总断路器的短路校验根据国家标准《低压配电设计规范》(BG50054-95)第2.1.1条第五款“电器应满足短路条件下的动稳定与热稳定的要求。
用于断开短路电流的电器,应满足短路条件下的通断能力”,和第2.1.2条“验算电器在短路条件下的通断能力,应采用安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”的规定,在选择低压变压器出口侧总断路器时,应根据国家标准《低压开关设备和控制设备低压断路器》(GB14048.2-94)的有关规定,对低压断路器的额定短路分断能力、额定短路接通能力和额定短路时耐受电流进行校验。
1、额定短路分断能力(I cn)的校验断路器的额定短路分断能力(I cn)分为额定极限短路分断能力(I cu)和额定运行短路分断能力(I cs)。
(1)额定极限短路分断能力(I cu)额定极限短路分断能力(I cu)是断路器在规定的试验条件下极限短路分断电流之值。
按规定的试验程序(O-t-CO)动作之后,不考虑继续承载它的额定电流。
(2)额定运行短路分断能力(I cs)额定运行短路分断能力(I cs)是指断路器在规定试验条件下的一种比额定极限短路分断电流小的分断电流值,I cs是I cu的一个百分数(见表2-1)。
按规定的试验程序(O-t-CO-t-CO)动作后,考虑继续承载它的额定电流。
在上述两种短路分断能力(I cu、I cs)试验程序中,O------表示分断操作;CO----表示接通操作后,紧接分断操作;t-------表示两个相继操作之间的时间间隔,一般为3min,如果脱扣器还来不及再扣,则可延长至能再扣为止。
由上述可以看出,额定极限短路分断能力(Icu),指的是断路器在分断了该短路电流后,还可以再正常运行并分断这一短路电流一次,至于以后是否正常接通及分断,断路器不予保证。
而额定运行短路分断能力(Ics )则指的是断路器在该短路电流下可多次正常分断。
在实际工程中,不希望在断路器发生一次事故跳闸后,立即更换断路器,所以如果按照额定极限短路分断能力(Icu )来校验断路器的分断能力,必然会给用户带来不安全的隐患。
因国家标准《低压配电设计规范》(GB50054-95)没有明确用那种分断能力(Icu 或Ics )来校验,所以设计并不统一。