2019年高考数学(北师大版理科): 9 对数与对数函数

合集下载

2019高考数学复习:对数与对数函数

2019高考数学复习:对数与对数函数

第6节对数与对数函数最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.知识梳理1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log a m M n=nm log a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. [常用结论与微点提醒] 1.换底公式的两个重要结论 (1)log a b =1log ba ;(2)log a mb n =nm log a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R .2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)log 2x 2=2log 2x .( )(2)函数y =log 2(x +1)是对数函数.( )(3)函数y =ln 1+x1-x 与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)当x >1时,若log a x >log b x ,则a <b .( ) 解析 (1)log 2x 2=2log 2|x |,故(1)错.(2)形如y =log a x (a >0,且a ≠1)为对数函数,故(2)错. (4)当x >1时,log a x >log b x ,但a 与b 的大小不确定,故(4)错. 答案 (1)× (2)× (3)√ (4)×2.(必修1P73T3改编)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1. ∴c >a >b . 答案 D3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D4.(2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增 B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]= ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C5.计算:log 222=________;2log 23+log 43=________.解析 log 222=log 22-log 22=12-1=-12; 2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log 23=3 3.答案 -12 3 3考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(2)(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z解析 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)令t =2x =3y =5z , ∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5. ∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,∴2x <5z ,∴3y <2x <5z . 答案 (1)-20 (2)D规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)(2016·浙江卷)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________.(2)(2018·日照调研)已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 (1)设log b a =t ,则t >1,因为t +1t =52, 所以t =2,则a =b 2. 又a b=b a,所以b 2b=b b2, 即2b =b 2,解得b =2,a =4.(2)因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 (1)4 2 (2)A考点二 对数函数的图象及应用【例2】 (1)(2018·郑州一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)(2018·衡水调研)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 解析 (1)由于y =a |x |的值域为{y |y ≥1}, ∴a >1,则y =log a x 在(0,+∞)上是增函数, 又函数y =log a |x |的图象关于y 轴对称. 因此y =log a |x |的图象应大致为选项B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.答案(1)B(2)(1,+∞)规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】(1)(2018·湛江模拟)已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1(2)函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为()A.3B.2C.1D.0解析(1)由函数图象可知,f(x)在R上单调递增,又y=2x+b-1在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,即log a a-1<log a b<log a1,所以,a-1<b<1.综上有0<a-1<b<1.(2)在同一直角坐标系下画出函数f(x)=2ln x与函数g(x)=x2-4x+5=(x-2)2+1的图象,如图所示.∵f(2)=2ln 2>g(2)=1,∴f(x)与g(x)的图象的交点个数为2.答案(1)A(2)B考点三对数函数的性质及应用(多维探究)命题角度1比较对数值的大小【例3-1】(2016·全国Ⅰ卷)若a>b>0,0<c<1,则()A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b解析 由y =x c 与y =c x 的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a <log c b ,B 正确; log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定. 答案 B命题角度2 解对数不等式【例3-2】 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)解析 由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.答案 C命题角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎨⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >aD.c >a >b(2)(2018·长春模拟)若函数f (x )=log a (x 2-26x +a )有最小值12,则实数a 的值等于________.解析 (1)a =log 32<log 33=1,b =log 52<log 55=1, 又c =log 23>log 22=1, 所以c 最大.由1<log 23<log 25,得1log 23>1log 25,即a >b ,所以c >a >b .(2)令g (x )=x 2-26x +a ,则f (x )=log a [g (x )]. ①若a >1,由于函数f (x )有最小值12, 则g (x )应有最小值a ,而g (x )=x 2-26x +a =(x -6)2+a -6, 当x =6时,取最小值a -6, 因此有⎩⎨⎧a >1,a =a -6,解得a =9.②若0<a <1,由于函数f (x )有最小值12, 则g (x )应有最大值a ,而g (x )不存在最大值,不符合题意,综上,实数a =9. 答案 (1)D (2)9基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·濮阳检测)“log 2(2x -3)<1”是“4x >8”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 log 2(2x -3)<1⇔32<x <52. 又4x >8⇔x >32, 所以⎝ ⎛⎭⎪⎫32,52⎝ ⎛⎭⎪⎫32,+∞, 故“log 2(2x -3)<1”是“4x >8”的充分不必要条件. 答案 A2.设2a =5b =m ,且1a +1b =2,则m 等于( )A.10B.10C.20D.100解析 由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.答案 A3.(2018·成都诊断)函数f(x)=x a满足f(2)=4,那么函数g(x)=|log a(x+1)|的图象大致为()解析由f(2)=2a=4,得a=2.所以g(x)=|log2(x+1)|,则g(x)的图象由y=|log2x|的图象向左平移一个单位得到,C满足.答案 C4.(2018·广东省际名校联考)已知f(x)满足对∀x∈R,f(-x)+f(x)=0,且当x≤0时,f(x)=1e x+k(k为常数),则f(ln 5)的值为()A.4B.-4C.6D.-6解析易知函数f(x)是奇函数,故f(0)=e0+k=1+k=0,即k=-1,所以f(ln 5)=-f(-ln 5)=-(e ln 5-1)=-4.答案 B5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a-1)(b-1)<0B.(a-1)(a-b)>0C.(b-1)(b-a)<0D.(b-1)(b-a)>0解析∵a>0,b>0且a≠1,b≠1.由log a b>1得log a b a>0.∴a>1,且ba>1或0<a<1且0<ba<1,则b>a>1或0<b<a<1.故(b-a)(b-1)>0.答案 D二、填空题6.lg 52+2lg 2-⎝⎛⎭⎪⎫12-1=________.解析lg 52+2lg 2-⎝⎛⎭⎪⎫12-1=lg52+lg 22-2=lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1. 答案 -17.(2018·山西康杰中学联考)设函数f (x )=lg(x 2-x )-lg(x -1),且f (x 0)=2,则x 0=________.解析 易知x >1,且f (x )=lg(x 2-x )-lg(x -1)=lg x ,∴f (x 0)=lg x 0=2,则x 0=100. 答案 1008.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析 令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞. 又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).答案 (0,+∞)三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎨⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ), 所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2018·合肥调研)已知函数f (x )=ln(a x +b )(a >0且a ≠1)是R 上的奇函数,则不等式f (x )>a ln a 的解集是( )A.(a ,+∞)B.(-∞,a )C.当a >1时,解集是(a ,+∞),当0<a <1时,解集是(-∞,a )D.当a >1时,解集是(-∞,a ),当0<a <1时,解集是(a ,+∞)解析 依题意,f (0)=ln(1+b )=0,解得b =0,于是f (x )=ln a x =x ln a .∴f (x )>a ln a ⇔x ln a >a ln a .当a >1时,x >a ;当0<a <1时,x <a .答案 C12.(2018·九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.解析 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a 2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).答案 [-4,4)13.已知函数f (x )=ln x +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性;(2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立,求实数m 的取值范围.解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln -x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1 =-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln m (x -1)(7-x )恒成立, ∴x +1x -1>m (x -1)(7-x )>0,∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,∴0<m<7.故实数m的取值范围为(0,7).。

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

学习资料分享[公司地址]2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法Nx a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln .3.对数与指数的关系当0>a ,且1≠a 时,N x N a a x log =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且;(3))1,0(1log ≠>=a a a a 且.【知识点2对数的运算性质】1.运算性质条件0>a ,且1≠a ,0,0>>N M 性质NM MN a a a log log )(log +=N M NM a a a log log log -=M n M a n a log log =(n ∈R)2.换底公式ab bc c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅ac b c b a ;③b b a n a n log log =;④b n m b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是()A .(﹣∞,5)B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.3有意义,则实数t的取值范围是()【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【分析】根据对数式log(t﹣2)3有意义,【答案】解:要使对数式log(t﹣2)须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.(x+1)中,要使式子有意义,x的取值范围为()【变式1-2】在M=log(x﹣3)A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.a+log(c﹣b)a=2log 【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a•log(c﹣b)a.(c+b)a=,log(c﹣b)a=证明左端=右【分析】依题意,利用对数换底公式log(c+b)端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+===a•log(c﹣b)a.=2log(c+b)∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

对数函数y=logax的图象和性质 高一上学期数学北师大版(2019)必修第一册

对数函数y=logax的图象和性质 高一上学期数学北师大版(2019)必修第一册
函数 = log 的图象位于y轴的右边;从靠近y轴最上端的
位置逐渐下降,过点( 1,0),继续下降,函数值越来越小,直
至无穷.
当0 < < 1时,函数 = log 的性质:
在定义域 0, + ∞ 上是减函数,且值域为R .
当0<x<1时, y>0,当x>1时, y<0;
当x趋近于正无穷大时, y趋近于负无穷大;当x趋近于0时, y趋近于正无穷大.
2
方法1 描点法
y
列表:


1
4
1
2
1
2
4
8

= log 1

2
1
0
-1
-2
-3

2
描点画出函数图象:
x
方法2 由指数函数的图象得到对数函数的图象
1

=

2

1
O
= log 1

2

O
(2)
(1)
= log 1
= log 1

2
2
1
1


O

(3)
O
1

(4)
➢ 对数函数 = log 和指数函数 = 所表示的和这两个变量之间的关系是一样的,在同一
比较下列各题中两个数的大小:(1)log 2 5.3,log 2 4.7;(2)log 0.2 7,log 0.2 9;
(3)log 3 π,log π 3;(4)log 3.1,log 5.2 > 0,且 ≠ 1 .
底数相同,真数不同的,可利用函数的单调性比较大小;底数不同的,可以利用特殊值比

对数与对数函数-高考数学复习课件

对数与对数函数-高考数学复习课件
> 1,
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,

2
所以 a +2 b = a + .

2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)

值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0

a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0

性质
在(0,+∞)上是 增


当 x >1时, y <0 ;
当0< x <1时, y >0




在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作

高中数学北师大版(2019)必修 第一册:对数函数的图像和性质(含解析)

高中数学北师大版(2019)必修 第一册:对数函数的图像和性质(含解析)

对数函数的图像和性质基础全面练 (15分钟 30分)1.函数y =log 2x -2 的定义域是( ) A .(3,+∞) B.[3,+∞) C .(4,+∞) D.[4,+∞)2.如图是三个对数函数的图像,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b3.(2020·全国卷Ⅲ)设a =log 32,b =log 53,c =23 ,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b4.函数y =log 13(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)5.已知y =log a (3a -1)恒为正值,求a 的取值范围.综合突破练 (30分钟 60分) 一、选择题(每小题5分,共25分)1.已知函数f (x )=|log 2x |,正数m ,n 满足m <n ,且f (m )=f (n ).若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别是( )A .12 ,2B .14 ,2 C .22,2 D .14,42.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫12 0,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <b D .c <b <a3.对任意实数a ,b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .[0,+∞)B .(-∞,0]C .⎝ ⎛⎭⎪⎫log 223,0D .⎝ ⎛⎭⎪⎫log 223,+∞4.当0<a <1时,在同一坐标系中,函数y =a x与y =log a x 的图像是( )5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B .⎝⎛⎭⎪⎫0,13C .⎣⎢⎡⎭⎪⎫17,13D .⎣⎢⎡⎭⎪⎫17,1二、填空题(每小题5分,共15分)6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增加的,且f ⎝ ⎛⎭⎪⎫12 =0,则不等式f (log 4x )<0的解集是________.7.已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________.8.已知函数f (x )=log a (2x -a ),x ∈⎣⎢⎡⎦⎥⎤23,34 .当a =12 时,函数的最小值为________;若恒有f (x )>0,则实数a 的取值范围是________.【变式训练】函数y =log 3(x 2-2x )的递减区间是______.三、解答题(每小题10分,共20分) 9.比较下列各组中两个数的大小: (1)log 31.9,log 32. (2)log 23,log 0.32. (3)log a π,log a 3.141.10.已知f (x )=log 4(4x-1). (1)求f (x )的定义域. (2)讨论f (x )的单调性.(3)求f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域.创新练已知实数x 满足4x-10·2x+16≤0,求函数y =(log 3x )2-log 3x +2的值域.【变式训练】已知函数f(x)=log a(ax2-x),是否存在实数a,使它在区间[2,4]上是增加的?如果存在,求出a的取值范围;如果不存在,说明理由.参考答案:基础全面练 (15分钟 30分)1.函数y =log 2x -2 的定义域是( ) A .(3,+∞) B.[3,+∞) C .(4,+∞) D.[4,+∞)【解析】选D.由log 2x -2≥0,得log 2x ≥log 24,所以x ≥4. 2.如图是三个对数函数的图像,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【解析】选D.令y =1,如图所示.则b <c <1<a .3.(2020·全国卷Ⅲ)设a =log 32,b =log 53,c =23 ,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】选A.因为a =13 log 323<13 log 39=23=c ,b =13 log 533>13 log 525=23=c ,所以a <c <b .4.函数y =log 13(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)【解析】选C.因为3x>0,所以-3x<0, 所以1-3x<1.令t =1-3x ,又y =log 13t 是关于t 的减函数,所以y =log 13t >log 131=0.5.已知y =log a (3a -1)恒为正值,求a 的取值范围.【解析】当⎩⎪⎨⎪⎧0<a <1,0<3a -1<1, 即13 <a <23 时,y =log a (3a -1)恒为正值;当⎩⎪⎨⎪⎧a >1,3a -1>1, 即a >1时,y =log a (3a -1)恒为正值. 综上,a 的取值范围为a >1或13 <a <23 .综合突破练 (30分钟 60分) 一、选择题(每小题5分,共25分)1.已知函数f (x )=|log 2x |,正数m ,n 满足m <n ,且f (m )=f (n ).若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别是( ) A .12 ,2B .14 ,2 C .22,2 D .14,4 【解析】选A.画出函数f (x )=|log 2x |的图象的大致示意图,如图所示 已知正数m ,n 满足m <n ,且f (m )=f (n ), 所以0<m <1<n .因为f (m )=f (n ),所以|log 2m |=|log 2n |,即-log 2m =log 2n , 所以log 2mn =0,解得mn =1.结合题图知,函数f (x )=|log 2x |在(0,1)为减函数,在(1,+∞)为增函数. 因为0<m <1,所以0<m 2<m <1.函数f (x )在区间[m 2,n ]上,当x =m 2时,f (x )取得最大值, 即f (m 2)=|log 2m 2|=-log 2m 2=2,解得m =12,n =2.2.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫12 0,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <b D .c <b <a【解析】选D.a =log 45>log 44=1,b =⎝ ⎛⎭⎪⎫12 0=1,c =log 30.4<log 31=0, 所以c <b <a .3.对任意实数a ,b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=log 12(3x -2)*log 2x 的值域为( )A .[0,+∞)B .(-∞,0]C .⎝ ⎛⎭⎪⎫log 223,0D .⎝ ⎛⎭⎪⎫log 223,+∞【解析】选B.在同一平面直角坐标系中分别画出y =log 12 (3x -2)和y =log 2x 这两个函数的图像,如示意图1所示.所以f (x )图像如示意图2.由图可得f (x )=212213321log x x log x x ⎧<<⎪⎨=⎪⎩,,,所以值域为(-∞,0].4.当0<a <1时,在同一坐标系中,函数y =a x与y =log a x 的图像是( )【解析】选D.因为函数y =a x与y =log a x 互为反函数, 所以它们的图像关于直线y =x 对称,且当0<a <1时,函数y =a x与y =log a x 都是减函数,观察图像知,D 正确.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1 是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1)B .⎝ ⎛⎭⎪⎫0,13C .⎣⎢⎡⎭⎪⎫17,13D .⎣⎢⎡⎭⎪⎫17,1 【解析】选C.因为f (x )=log a x (x ≥1)是递减的, 所以0<a <1且f (1)=0.因为f (x )=(3a -1)x +4a (x <1)为递减的, 所以3a -1<0,所以a <13.又因为f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数, 所以(3a -1)×1+4a ≥0,所以a ≥17.所以a ∈⎣⎢⎡⎭⎪⎫17,13 . 【误区】本题容易忽视函数在定义域上是递减的,而不仅是在两段上分别是递减的. 二、填空题(每小题5分,共15分)6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增加的,且f ⎝ ⎛⎭⎪⎫12 =0,则不等式f (log 4x )<0的解集是________.【解析】因为f (log 4x )<0,所以-12 <log 4x <12 ,所以log 4412-<log 4x <log 4412,所以12<x <2.答案:⎩⎨⎧⎭⎬⎫x |12<x <27.已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________. 【解题技巧】先化简f 2(x )=(2+log 3x )2,f (x 2)=2+log 3x 2,再求出g (x )进行解答.【解析】由题意可得:⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9. 可得x ∈[1,3], 故g (x )的定义域为[1,3].g (x )=f 2(x )+f (x 2)=(log 3x )2+6log 3x +6,令t =log 3x ,t ∈[0,1],得g (t )=t 2+6t +6, 故当t =1时,g (t )取最大值g (1)=13. 答案:138.已知函数f (x )=log a (2x -a ),x ∈⎣⎢⎡⎦⎥⎤23,34 .当a =12 时,函数的最小值为________;若恒有f (x )>0,则实数a 的取值范围是________.【解析】当a =12 时,函数f (x )=log 12⎝ ⎛⎭⎪⎫2x -12 在区间⎣⎢⎡⎦⎥⎤23,34 上为减函数,当x =34 时取最小值为log 12⎝ ⎛⎭⎪⎫2×34-12 =log 121=0.因为函数f (x )在区间⎣⎢⎡⎦⎥⎤23,34 上恒有f (x )>0,所以a >1,且 2×23 -a >1;或 0<a <1,且0<2×34 -a <1.解得 a ∈∅,或12 <a <1,所以12<a <1.答案:0 ⎝ ⎛⎭⎪⎫12,1【变式训练】函数y =log 3(x 2-2x )的递减区间是______.【解析】令u =x 2-2x (x >2或x <0),则y =log 3u ,且y =log 3u 是增函数,u =x 2-2x (x >2或x <0)的递减区间是(-∞,0),故y =log 3(x 2-2x )的递减区间是(-∞,0). 答案:(-∞,0)三、解答题(每小题10分,共20分) 9.比较下列各组中两个数的大小: (1)log 31.9,log 32. (2)log 23,log 0.32. (3)log a π,log a 3.141.【解析】(1)因为函数y =log 3x 在(0,+∞)上是增函数,1.9<2,故log 31.9<log 32. (2)因为log 23>log 22=1,log 0.32<log 0.31=0, 故log 23>log 0.32.(3)当a >1时,y =log a x 在(0,+∞)上是增函数,π>3.141,故log a π>log a 3.141; 当0<a <1时,y =log a x 在(0,+∞)上是减函数,π>3.141,故log a π<log a 3.141. 10.已知f (x )=log 4(4x-1). (1)求f (x )的定义域. (2)讨论f (x )的单调性.(3)求f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域. 【解析】(1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<41x -1<42x -1,因此log 4(41x -1)<log 4(42x -1),即f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)因为f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上是递增的,又f ⎝ ⎛⎭⎪⎫12 =0,f (2)=log 415,因此f (x )在区间⎣⎢⎡⎦⎥⎤12,2 上的值域为[0,log 415]. 创新练已知实数x 满足4x -10·2x +16≤0,求函数y =(log 3x )2-log 3x +2的值域. 【解析】不等式4x -10·2x +16≤0可化为(2x )2-10·2x +16≤0,即(2x -2)(2x-8)≤0. 从而有2≤2x≤8,即1≤x ≤3. 所以0≤log 3x ≤1.因为函数y =(log 3x )2-log 3x +2, 可化为y =(log 3x )2-12 log 3x +2=⎝⎛⎭⎪⎫log 3x -14 2+3116 , 当log 3x =14 时,y min =3116 ,当log 3x =1时,y max =52,所以所求函数的值域为⎣⎢⎡⎦⎥⎤3116,52 . 【变式训练】已知函数f(x)=log a (ax 2-x),是否存在实数a ,使它在区间[2,4]上是增加的?如果存在,求出a 的取值范围;如果不存在,说明理由. 【解析】存在实数a 满足题意. 设g(x)=ax 2-x.当a>1时,为使函数y =f(x)=log a (ax 2-x)在区间[2,4]上是增加的, 只需g(x)=ax 2-x 在区间[2,4]上是增加的, 故应满足⎩⎪⎨⎪⎧x =12a ≤2,g (2)=4a -2>0,解得a>12,所以a>1.当0<a<1时,为使函数y =f(x)=log a (ax 2-x)在区间[2,4]上是增加的,只需g(x)=ax 2-x 在区间[2,4]上是减少的. 故⎩⎪⎨⎪⎧x =12a ≥4,g (4)=16a -4>0, 无解,此时a 不存在.综上,当a>1时,函数f(x)=log a(ax2-x)在区间[2,4]上是增加的.。

北师大版(2019)高中数学《对数的运算》优质教学ppt1

北师大版(2019)高中数学《对数的运算》优质教学ppt1
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
前提:如果a>0且a≠1,M>0,N>0 ,则:
(1) log a (MN) log a M log a N;
积对数等于对数之和.
(2)
M loga N
log a M log a N;
商对数等于对数之差.
(3) log a Mn n log a M(n R).
n次幂的对数等于n倍的对数.
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
对数的运算性质证明
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
明确目标
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
合作探究
探究一: 学生分小组探究对数运算性质。
北师大版 (2019 )高中 数学《 对数的 运算》 优质教 学ppt1
动手实践 1.填出下表各组的值,并从数据中分析等
N lg N
3lgM N lg M • lg N; 4lg M lg N lg M .
lg N
2.对数的运算性质有什么特点?

环节四 课堂小结 课外拓展
Brief Summary & Expanding
谈谈 收获
1. 对数的运算性质 前提:如果a>0,a≠1,M>0,N>0 ,则:
(1) log a (MN) log a M log a N; loga M log a N log a (MN ).

对数函数的概念课件 高一上学期数学北师大版(2019)必修第一册

对数函数的概念课件 高一上学期数学北师大版(2019)必修第一册
①y=logax2(a>0,且a≠1);②y=log2x-1;③y=2log8x;④y=logxa(a为
常数,x>0,且x≠1);⑤y=log5x.
解:因为①中真数是x2,而不是x,所以不是对数函数;
因为②中y=log2x-1常数项为-1,而非0,故不是对数函数;因为
③中log8x前的系数是2,而不是1,所以不是对数函数;因为④中
学以致用
例2 求下列函数的定义域.
(1)y=loga(3-x)+loga(3+x)(a>0,且a≠1);
(2)y=lg(x-1)+log(x+1)(16-4x).
例2 求下列函数的定义域.
(1)y=loga(3-x)+loga(3+x)(a>0,且a≠1);
(2)y=lg(x-1)+log(x+1)(16-4x).
x=logay.习惯上,将自变量写成x,函数值写成y,因此,一般将对
数函数写成 y=logax(a>0,且a≠1),其中a称为底数.
新知探究
1.对数函数y=logax(a>0,且a≠1)的相关性质:
①定义域是(0,+∞);
②图象过定点(1,0).
2.两个特殊的对数函数:
①常用对数函数:以10为底的对数函数,记作 y=lg x ;
在对数函数x=logay(a>0,且a≠1)中, y是自变量, x是y的函数,其
定义域是(0,+∞).像这样的两个函数叫作互为反函数.
学以致用
例3 求下列函数的反函数.
(1)y=10x;(2)y=

;(3)y=lo x;(4)y=log7x.

北师大版(2019)高中数学《对数的运算》PPT标准课件2

北师大版(2019)高中数学《对数的运算》PPT标准课件2

北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
新知探究
问题2 总结对数的运算性质,谈谈对数的运算性质有什么 特点?
现代社会,由于有了计算器(机)等计算工具,对数的运算性质的这 种作用似乎有些微不足道,但在数学发展过程中,由于当时没有计算 工具,对于天文学中大数的乘、除等运算,仅靠纸笔运算是相当繁琐、 复杂的,而对数的发明“延长了天文学家的寿命”.因此,对数运算 性质在数学发展史上是伟大的成就.
设 M am ,因为 am n amn ,所以loga M n loga am n loga amn mn.
根据对数与指数间的关系可得 loga M m ,所以 n loga M nm . 于是:loga M n n loga M.
北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
7 log2 4 5log2 2 7 2 5 1 19.
北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
新知探究
例2 用lnx,lny,lnz表示ln x2 y . 3z
追问:类比例3中具体数值的计算,本题可以依据对数的哪些运算性质? 通过观察,本题需要综合运用对数的3条运算性质进行求解.
北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
北师大版(2019)高中数学《对数的 运算》P PT标准 课件2
新知探究
例2 用lnx,lny,lnz表示ln x2 y . 3z
解:ln x2 y ln x2 y ln 3 z 3z ln x2 ln y ln 3 z
对数的运算
新知探究
问题1 因为运算,数的威力无限;没有运算,数就只是一个 符号.在引入对数之后,自然应研究对数的运算性质.你认 为可以怎样研究?

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

高考数学复习考点知识与题型专题讲解9---对数与对数函数

高考数学复习考点知识与题型专题讲解9---对数与对数函数

高考数学复习考点知识与题型专题讲解对数与对数函数考试要求1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y=a x与对数函数y=log a x(a>0,且a≠1)互为反函数.知识梳理1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.以10为底的对数叫做常用对数,记作lg N.以e为底的对数叫做自然对数,记作ln N.2.对数的性质与运算性质(1)对数的性质:log a1=0,log a a=1,log a Na=N(a>0,且a≠1,N>0).(2)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M (n∈R).(3)换底公式:log a b =log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1).3.对数函数的图象与性质y=log a x a>10<a<1图象定义域(0,+∞)值域R性质过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.常用结论1.log a b·log b a=1,log n m ba =nm log a b.2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0且a ≠1)的图象恒过点(1,0),(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.(×) (3)函数y =log a 1+x1-x与函数y =ln(1+x )-ln(1-x )是同一个函数.(×)(4)函数y =log 2x 与y =121log x的图象重合.(√) 教材改编题1.函数y =log a (x -2)+2(a >0且a ≠1)的图象恒过定点. 答案(3,2) 解析∵log a 1=0, 令x -2=1,∴x =3, ∴y =log a 1+2=2,∴原函数的图象恒过定点(3,2). 2.计算:(log 29)·(log 34)=. 答案4解析(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.3.若函数y=log a x(a>0,a≠1)在[2,4]上的最大值与最小值的差是1,则a=.答案12或2解析当a>1时,log a4-log a2=log a2=1,∴a=2;当0<a<1时,log a2-log a4=-log a2=1,∴a=12,综上有a=12或2.题型一对数式的运算例1(1)设2a=5b=m,且1a+1b=2,则m等于()A.10B.10C.20D.100 答案A解析2a=5b=m,∴log2m=a,log5m=b,∴1a+1b=1log2m+1log5m=log m2+log m5=log m10=2,∴m2=10,∴m=10(舍m=-10).(2)计算:log 535+212log 2-log 5150-log 514=.答案2解析原式=log 535-log 5150-log 514+12log (2)2=log 535150×14+12log 2=log 5125-1=log 553-1=3-1=2. 教师备选计算:(1-log 63)2+log 62·log 618log 64=.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1(1)已知a>b>1,若log a b+log b a=52,ab=b a,则a+b=.答案6解析设log b a=t,则t>1,因为t+1t=52,所以t=2,则a=b2.又a b=b a,所以b2b=2b b,即2b=b2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)计算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.题型二对数函数的图象及应用例2(1)已知函数f (x )=log a (2x +b -1)(a >0,且a ≠1)的图象如图所示,则a ,b 满足的关系是()A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1 答案A解析由函数图象可知,f (x )为增函数,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a <b <1. (2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为.答案⎝⎛⎦⎥⎤0,22解析若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22.教师备选已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,则1e x +ln x 2的值为()A.e2+ln2B.e+ln2C.2D.4答案C解析根据题意,已知x1,x2分别是函数f(x)=e x+x-2,g(x)=ln x+x-2的零点,函数f(x)=e x+x-2的零点为函数y=e x的图象与y=2-x的图象的交点的横坐标,则两个函数图象的交点为(x1,1e x),函数g(x)=ln x+x-2的零点为函数y=ln x的图象与y=2-x的图象的交点的横坐标,则两个函数图象的交点为(x2,ln x2),又由函数y=e x与函数y=ln x互为反函数,其图象关于直线y=x对称,而直线y=2-x也关于直线y=x对称,则点(x1,1e x)和(x2,ln x2)也关于直线y=x对称,则有x1=ln x2,则有1e x+ln x2=1e x+x1=2.思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 跟踪训练2(1)已知函数f (x )=log a x +b 的图象如图所示,那么函数g (x )=a x +b 的图象可能为()答案D解析结合已知函数的图象可知, f (1)=b <-1,a >1,则g (x )单调递增,且g (0)=b +1<0,故D 符合题意.(2)(2022·西安调研)设x 1,x 2,x 3均为实数,且1e x -=ln x 1,2e x -=ln(x 2+1),3e x -=lg x 3,则()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 3<x 1D .x 2<x 1<x 3答案D解析画出函数y =⎝ ⎛⎭⎪⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示.数形结合,知x 2<x 1<x 3.题型三 对数函数的性质及应用 命题点1比较指数式、对数式大小 例3(1)设a =log 3e ,b =e 1.5,c =131log 4,则() A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案D 解析c =131log 4=log 34>log 3e =a . 又c =log 34<log 39=2,b =e 1.5>2, ∴a <c <b .(2)(2022·昆明一中月考)设a =log 63,b =log 126,c =log 2412,则() A .b <c <a B .a <c <b C .a <b <c D .c <b <a 答案C解析因为a ,b ,c 都是正数,所以1a =log 36=1+log 32,1b =log 612=1+log 62,1c =log 1224=1+log 122,因为log 32=lg2lg3,log 62=lg2lg6,log 122=lg2lg12,且lg3<lg6<lg12,所以log 32>log 62>log 122,即1a >1b >1c ,所以a <b <c .命题点2解对数方程不等式例4若log a (a +1)<log a (2a )<0(a >0,a ≠1),则实数a 的取值范围是.答案⎝ ⎛⎭⎪⎫14,1 解析依题意log a (a +1)<log a (2a )<log a 1,∴⎩⎪⎨⎪⎧ a >1,a +1<2a <1或⎩⎪⎨⎪⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3对数性质的应用例5已知函数f (x )=ln2x +12x -1,下列说法正确的是________.(填序号) ①f (x )为奇函数;②f (x )为偶函数;③f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减; ④f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递增. 答案①③解析f (x )=ln 2x +12x -1,令2x +12x -1>0, 解得x >12或x <-12,∴f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞, 又f (-x )=ln -2x +1-2x -1=ln 2x -12x +1=ln ⎝ ⎛⎭⎪⎪⎫2x +12x -1-1 =-ln 2x +12x -1=-f (x ), ∴f (x )为奇函数,故①正确,②错误;又f (x )=ln 2x +12x -1=ln ⎝ ⎛⎭⎪⎫1+22x -1, 令t =1+22x -1,t >0且t ≠1,∴y =ln t , 又t =1+22x -1在⎝ ⎛⎭⎪⎫12,+∞上单调递减, 且y =ln t 为增函数,∴f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减,故③正确; 又f (x )为奇函数,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,故④不正确. 教师备选1.(2022·安徽十校联盟联考)已知a =log 23,b =2log 53,c =13log 2,则a ,b ,c 的大小关系为()A .a >c >bB .a >b >cC .b >a >cD .c >b >a答案B解析∵a =log 23>1,b =2log 53=log 59>1,c =13log 2<0,∴a b =log 23log 59=lg3lg2×lg5lg9=lg3lg2×lg52lg3=lg52lg2=lg5lg4=log 45>1,∴a >b ,∴a >b >c .2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是()A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0, 即log 2c <log 2b <log 2a <0,可得c <b <a <1.(2)若函数f (x )=⎩⎨⎧log a x ,x ≥2,-log ax -4,0<x <2存在最大值,则实数a 的取值范围是. 答案⎝⎛⎦⎥⎤0,22 解析当a >1时,函数f (x )=log a x 在[2,+∞)上单调递增,无最值,不满足题意, 故0<a <1.当x ≥2时,函数f (x )=log a x 在[2,+∞)上单调递减,f (x )≤f (2)=log a 2;当0<x <2时,f (x )=-log a x -4在(0,2)上单调递增,f (x )<f (2)=-log a 2-4,则log a 2≥-log a 2-4,即log a 2≥-2=log a a -2,即1a 2≥2,0<a ≤22, 故实数a 的取值范围是⎝ ⎛⎦⎥⎤0,22. 课时精练1.(2022·重庆巴蜀中学月考)设a =12,b =log 75,c =log 87,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b答案D解析a=12=log77>b=log75,c=log87>log88=12=a,所以c>a>b.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2x B.12x C.12log x D.2x-2答案A解析函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.3.函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①②B.①④C.②③D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y =0得log a (x +c )=0,x +c =1,x =1-c ,由图象知0<1-c <1,∴0<c <1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1=10lg I I 0(单位:分贝,L 1≥0,其中I 0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I 的取值范围是()A .(-∞,10-7)B .[10-12,10-5)C .[10-12,10-7)D .(-∞,10-5)答案C解析由题意可得,0≤10·lg I I 0<50, 即0≤lg I -lg(1×10-12)<5,所以-12≤lg I <-7,解得10-12≤I <10-7,所以声音强度I 的取值范围是[10-12,10-7).5.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log (-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是() A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案C解析由题意得⎩⎨⎧a >0,log 2a >12log a 或⎩⎨⎧a <0,12log (-a )>log 2(-a ), 解得a >1或-1<a <0.6.(2022·汉中模拟)已知log 23=a ,3b =7,则log 2156等于() A.ab +3a +ab B.3a +b a +ab C.ab +3a +b D.b +3a +ab答案A解析由3b =7,可得log 37=b ,所以log 2156=log 3(7×23)log 3(3×7)=log 37+log 323log 33+log 37=b +3×1a1+b =ab +3a +ab .7.(2022·海口模拟)log 327+lg25+lg4+7log 27+13(8)-的值等于. 答案72解析原式=log 3323+lg52+lg22+2+133(2)⨯-=32+2lg5+2lg2+2+(-2)=32+2(lg5+lg2)+2+(-2)=32+2+2+(-2)=72.8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是. 答案(4,-1)解析令x -3=1,则x =4,∴y =log a 1-1=-1,故点P 的坐标为(4,-1).9.设f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212.(1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值.解(1)因为f (x )=log 2(a x -b x ), 且f (1)=1,f (2)=log 212,所以⎩⎪⎨⎪⎧ log 2(a -b )=1,log 2(a 2-b 2)=log 212,即⎩⎪⎨⎪⎧ a -b =2,a 2-b 2=12,解得a =4,b =2. (2)由(1)得f (x )=log 2(4x -2x ), 令t =4x -2x ,则t =4x -2x =⎝ ⎛⎭⎪⎫2x -122-14, 因为1≤x ≤2,所以2≤2x ≤4,所以94≤⎝ ⎛⎭⎪⎫2x -122≤494,即2≤t ≤12, 因为y =log 2t 在[2,12]上单调递增, 所以y max =log 212=2+log 23, 即函数f (x )的最大值为2+log 23.10.(2022·枣庄模拟)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)判断f (x )的奇偶性并予以证明;(2)当a >1时,求使f (x )>0的x 的解集. 解(1)f (x )是奇函数,证明如下:因为f (x )=log a (x +1)-log a (1-x ),所以⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1,f (x )的定义域为(-1,1).f (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (-x +1)]=-f (x ),故f (x )是奇函数.(2)因为当a >1时,y =log a (x +1)是增函数,y =log a (1-x )是减函数,所以当a >1时,f (x )在定义域(-1,1)内是增函数,f (x )>0即log a (x +1)-log a (1-x )>0, log a x +11-x >0,x +11-x >1,2x 1-x>0, 2x (1-x )>0,解得0<x <1,故使f (x )>0的x 的解集为(0,1).11.设a =log 0.20.3,b =log 20.3,则()A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b =log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab <1,∴ab <a +b <0.12.若实数x ,y ,z 互不相等,且满足2x =3y =log 4z ,则()A .z >x >yB .z >y >xC .x >y ,x >zD .z >x ,z >y答案D解析设2x =3y =log 4z =k >0,则x =log 2k ,y =log 3k ,z =4k ,根据指数、对数函数图象易得4k >log 2k ,4k >log 3k ,即z >x ,z >y .13.函数f (x )=log 2x ·2log (2x )的最小值为.答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14, 当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14. 14.已知函数f (x )=|log 2x |,实数a ,b 满足0<a <b ,且f (a )=f (b ),则a +b 的取值范围是________.答案(2,+∞)解析∵f (x )=|log 2x |,∴f (x )的图象如图所示,又f (a )=f (b )且0<a <b ,∴0<a <1,b >1且ab =1,∴a +b ≥2ab =2,当且仅当a =b 时取等号.又0<a <b ,故a +b >2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3b=3a+log3a=f(a),∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,得log2(2x-4)>2,得2x-4>4,得2x>8,解得x >3.故不等式f (x )>2的解集是(3,+∞).(2)因为函数f (x )=log 2(2x +k )(k ∈R )的图象过点P (0,1), 所以f (0)=1,即log 2(1+k )=1,解得k =1.所以f (x )=log 2(2x +1).因为关于x 的方程f (x )=x -2m 有实根, 即log 2(2x +1)=x -2m 有实根. 所以方程-2m =log 2(2x +1)-x 有实根. 令g (x )=log 2(2x +1)-x ,则g (x )=log 2(2x +1)-x=log 2(2x +1)-log 22x=log 22x +12x =log 2⎝ ⎛⎭⎪⎫1+12x . 因为1+12x >1,log 2⎝ ⎛⎭⎪⎫1+12x >0, 所以g (x )的值域为(0,+∞).所以-2m>0,解得m<0.所以实数m的取值范围是(-∞,0).。

指数函数、幂函数、对数函数增长的比较-课件 高一数学(北师大版2019必修第一册)

指数函数、幂函数、对数函数增长的比较-课件 高一数学(北师大版2019必修第一册)
这说明,按模型 y=log7x+1 进行奖励,奖金不超过利润的 25%.
综上所述,模型 y=log7x+1 符合公司要求.
导入课题 新知探究 典例剖析 课堂小结
一、幂函数y = x c x > 0, c > 1 与对数
函数y = log b x b > 1 的增长情况比较
二,指数函数y = ax a > 1 与幂函数
(2)若1 ∈ , + 1 ,2 ∈ , + 1 ,且, ∈
1,2,3,4,5,6,7,8,9,10,11,
12 ,指出, 的值,并说明理由.
导入课题 新知探究 典例剖析 课堂小结
思考探究:函数增长快慢比较
解:(1)根据指数函数与幂函数的增长速度知:
C1 对应函数 g(x)=x3,C2 对应函数 f(x)=2x;
1
2
1
解:(2)
,
4
ℎ = 2 当
1
4

1
2
1
4
>
1
4
1
2
,
1
2
1
4
,
1
1 2
,
可分别视为函数
2
4
1
= 时的函数值,在同一坐标系内
4
分别作出这三个函数的图象,
由图象易知
1
4
1
2
1
4
>
>
1 2
.
4
1
4
>ℎ
1
4

1 2
.
4
1
2
= , =
1
2

导入课题 新知探究 典例剖析 课堂小结

高中数学北师大版2019必修第一册对数函数y=log2 x的图像和性质

高中数学北师大版2019必修第一册对数函数y=log2 x的图像和性质

f(3)=log133=log1313-2=-1.]
合作探究 攻重难
函数y=log2x的图像与性质
[探究问题] 1.求函数 y=log2|x|的定义域,并画出它的图像.
提示:函数的定义域为{x|x≠0,x∈R}. 函数解析式可化为 y=lloogg22x,-x>x0,,x<0, 其图像如图所示. (ห้องสมุดไป่ตู้特征是关于 y 轴对称).
(1)由图像知 y=log2x 在(0,+∞)上是增函数. 因为 f(x-1)>f(1), 所以 x-1>1, 解得 x>2,所以 x 的取值范围是(2,+∞).
(2)∵34≤x≤52,∴12≤2x-1≤4, ∴log212≤log2(2x-1)≤log24, 所以-1≤log2(2x-1)≤2, 故函数 y=log2(2x-1)在 x∈34,25上的最小值为-1,最大值为 2.
对数函数的图象和性质
学习目标 会画具体函数的图象.(重点)
核心素养 通过对数函数 y=log2x 的图象研 究函数的性质,培养直观想象素
养.
自主预习 探新知
函数 y=log2x 的图象和性质 完成下列问题.
图象特征 过点 (1,0)
在 y 轴的右侧 向上、向下无限延伸
函数性质 当 x=1 时, y=0
定义域是 (0,+∞) 值域是 R
在直线 x=1 右侧,图像位于
若 x>1,则 y>0
x 轴上方;在直线 x=1 左侧, x<1,则
y<0
图像位于 x 轴下方
;若 0<
函数图像从左到右是上升的 在(0,+∞)上是_增__函数
思考:(1)指数函数 y=2x 与对数函数 x=log2y 的图像有什么关 系?

对数的运算性质高一数学精品课堂(北师大版2019)

对数的运算性质高一数学精品课堂(北师大版2019)

导入课题 新知探究 典例剖析 课堂小结
教材P102例题
解:
导入课题 新知探究 典例剖析 课堂小结
教材P102例题
解:
导入课题 新知探究 典例剖析 课堂小结
教材P103练习
导入课题 新知探究 典例剖析 课堂小结
教材P103练习
导入课题 新知探究 典例剖析 课堂小结
教材P103练习
导入课题 新知探究 典例剖析 课堂小结
导入课题 新知探究 典例剖析 课堂小结
思考探究:与对数有关的条件等式求值
解:∵18b=5,∴log185=b,又 log189=a. 令 log3645=x,则 36x=45,两边取以 18 为底的对数, 得 log1836x=log1845,变形,得 xlog1836=log18(5×9),
x=lloogg1188158++lloogg118892=1+al+ogb18198=1+1a-+lbog189=a2+ -ba.
北师大版(2019)高中数学必修第一册
第四章 对数运算与对数函数 第2节 对数的运算
对的运算性质
导入课题 新知讲授 典例剖析 课堂小结
对数的运算也有类似的运算性质,今天我们就来学习对数的运 算性质.
导入课题 新知探究 典例剖析 课堂小结
一、对数的运算性质
导入课题 新知探究 典例剖析 课堂小结
一、对数的运算性质
导入课题 新知探究 典例剖析 课堂小结
一、对数的运算性质
导入课题 新知探究 典例剖析 课堂小结
二、对数运算性质的注意事项
导入课题 新知探究 典例剖析 课堂小结
三、对数综合运算的化简思路
1,对于同底的对数的化简,常用方法是: (1)“收”,将同底的两对数的和(差)收成积(商)的对数, (2)“拆”,将积(商)的对数拆成对数的和(差); 2,对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变 形应用公式的习惯; 3,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化 到最简形式.

(北师大版文)2019届高考数学复习课件:对数与对数函数

(北师大版文)2019届高考数学复习课件:对数与对数函数

减函数 (7)在(0,+∞)上是______
指数函数y=ax(a>0且a≠1)与对数函数 y=logax (a>0且a≠1)互为反函数,
它们的图像关于直线 y=x 对称.
【知识拓展】 1.换底公式的两个重要结论
1 (1)logab= ; logba n (2) logam b = logab. m
3.已知a= 2

1 3
1 1 ,b=log2 ,c= log 1 ,则a,b,c的大小关系为 c>a>b . 3 2 3
1 解析 ∵0<a<1,b<0,c= log 1 2 3 ∴c>a>b.
=log23>1.
1
2
3
4
5
6
7
解析
答案
4.函数y= log 2 (2 x 1)
3
1 , 1 2 的定义域是
1
2
3
4
5
6
7
题组二 教材改编
1 4 2 2 2.lg 7 -lg 8 +lg 7 5=____.
2 3
1 2 1 解析 原式=lg 4+ lg 2-lg 7- lg 8+lg 7+ lg 5 2 3 2
1 1 =2lg 2+ (lg 2+lg 5)-2lg 2= . 2 2
1
2
3
4
5
6
7
解析
答案
n
其中a>0且a≠1,b>0且b≠1,m,n∈R.
2.对数函数的图像与底数大小的比较 如图,作直线y=1,则该直线与四个函数图像交点的横坐标为相应 的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内 从左到右底数逐渐增大.

北师大版(2019)高中数学《对数的概念》教学课件1

北师大版(2019)高中数学《对数的概念》教学课件1

例题讲解
例 3、求值:(1) log 1 x 3 ,求 x
2
log
x
2
1 8
,求
x
log1 8 x ,求 x ;
2
(2) log x 4 ,求 x 2
logx 0.125 3 ,求 x
log27 9 x ,求 x ;
(3)
log64
x
2 3
,求
x
log49
1 7
x
,求
x

北师大版(2019)高中数学《对数的 概念》 教学课 件1
loga (MN ) loga M loga N, loga (M N ) loga M loga N
北师大版(2019)高中数学《对数的 概念》 教学课 件1
北师大版(2019)高中数学《对数的 概念》 教学课 件1
四、换底公式
loga
N
logm N logm a
(a 0, a 1, m 0, m 1, N 0),
一、引入
问题 1:假设 2006 年我国国民生产总值为 a 亿元, 如果平均每年增长 8%,那么经过 10 年我国国民 生产总值是 2006 年的多少倍? 问题 2:假设 2006 年我国国民生产总值为 a 亿元, 如果平均每年增长 8%,那么经过多少年我国国民 生产总值是 2006 年的 2 倍?
北师大版(2019)高中数学《对数的 概念》 教学课 件1
北师大版(2019)高中数学《对数的 概念》 教学课 件1
二、对数的概念
定义:一般地,如果 aa 0, a 1的 b 次幂等于 N,
就是 ab N ,那么数 b 叫做以 a 为底 N 的对数。 记作 log a N b

高考数学(理)复习训练:《对数与对数函数》(北师大版)

高考数学(理)复习训练:《对数与对数函数》(北师大版)

【A 级】 基础训练1.(2012·高考大纲全国卷)已知x =ln π,y =log 52,z =e -12,则( ) A .x <y <z B .z <x <y C .z <y <xD .y <z <x解析:由已知得x =ln π>1,y =log 52∈(0,1),z =e -12∈(0,1),又2<e<3,∴2<e<3,∴1e >13>12,得z =-e -12>12,而y =log 52<log 55=12,得y <z <x ,故选D. 答案:D2.已知0<x <y <1,m =log 2x +log 2y ,则有( ) A .m <0 B .0<m <1 C .1<m <2D .m >2解析:由0<x <y <1,得0<xy <1,故m =log 2x +log 2y =log 2xy <log 21=0,故选A. 答案:A3.已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x ≥32lg (3-x ),x <32,若方程f (x )=k 无实数根,则实数k 的取值范围是( ) A .(-∞,0) B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,lg 32 D.⎝ ⎛⎭⎪⎫lg 32,+∞ 解析:在同一坐标系内作出函数y =f (x )与y =k 的图像,如图所示,若两函数图像无交点,则k <lg 32.答案:C4.lg 427-lg823+lg75=________.解析:原式=lg4+12lg2-lg7-23lg8+lg7+12lg5=2lg2+12(lg2+lg5)-2lg2=12. 答案:125.若x log 32=1,则4x +4-x =________. 解析:由已知得:x =1log 32=log 23.∴4x +4-x =4log 23+4 -log 23=(2 log 23)2+ (2 log 23)-2=32+3-2=829. 答案:8296.已知函数f (x )=⎩⎨⎧3x +1,x ≤0,log 2x ,x >0,则使函数f (x )的图像位于直线y =1上方的x 的取值范围是________.解析:当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0; 当x >0时,log 2x >1⇒x >2,∴x >2. 综上所述,x 的取值范围为-1<x ≤0或x >2. 答案:{x |-1<x ≤0或x >2} 7.(1)计算:(2)计算:(log 32+log 92)·(log 43+log 83).(3)若数列{a n }为各项均为正项的等比数列,且a 12与a 2 001为一元二次方程x 2+mx +8=0的两根,求:log 2a 1+log 2a 2+…+log 2a 2 012的值.(2)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8 =⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.(3)由已知得a 12·a 2 001=8,且由等比数列的性质得,a 1a 2a 3…a 2 012=(a 1a 2 012)1 006=(a 12·a 2 001)1 006=81 006,∴原式=log 2(a 1a 2a 3…a 2 012)=log 281 006=1 006×3=3 018. 8.(2012·高考上海卷)已知函数f (x )=lg(x +1). (1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的反函数.解:(1)由⎩⎪⎨⎪⎧2-2x >0,x +1>0得-1<x <1.由0<lg(2-2x )-lg(x +1)=lg 2-2xx +1<1得1<2-2x x +1<10.因为x +1>0,所以x +1<2-2x <10x +10,-23<x <13.由⎩⎨⎧-1<x <1,-23<x <13得-23<x <13.(2)当x ∈[1,2]时,2-x ∈[0,1],因此y =g (x )=g (x -2)=g (2-x )=f (2-x )=lg(3-x ). 由单调性可得y ∈[0,lg 2].因为x =3-10y ,所以所求反函数是 y =3-10x ,x ∈[0,lg 2].【B 级】 能力提升1.(2014·洛阳市高三考试)已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( ) A.1e <x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e <x 1x 2<10解析:方法一:在同一坐标系下画出函数y =e -x 与y =|ln x |的图像,结合图像不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e-x 1=|ln x 1|=-ln x 1∈(e-1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1,选A.方法二:假设x 1x 2>1,∴ln x 1x 2>0,∴ln x 1+ln x 2>0. 若x 2∈(1,+∞),则x 1∈(0,1),x 2>x 1,即e -x 2=ln x 2,e-x 1=-ln x 1,∴e -x 2>e -x 1与e -x 2<e -x 1矛盾.同理,x 2∈(0,1),则x 1∈(1,+∞),x 1>x 2,∴e -x 1>e -x 2与e -x 1<e -x 2矛盾,∴只有x 1x 2<1,故选A. 答案:A2.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,1内恒有f (x )>0,则f (x )的单调递增区间是( ) A.⎝ ⎛⎭⎪⎫-∞,-14 B.⎝ ⎛⎭⎪⎫-14,+∞ C.⎝ ⎛⎭⎪⎫-∞,-12 D .(0,+∞)解析:因2x 2+x 在⎝ ⎛⎭⎪⎫12,1上恒大于1,∴a >1,因f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞),函数y =2x 2+x 的单调递增区间为⎣⎢⎡⎦⎥⎤-14,+∞,因此f (x )的单调递增区间为(0,+∞). 答案:D3.(2014·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|lg x | 0<x ≤10,-12x +6 x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12)D .(20,24)解析:作出f (x )的大致图像.不妨设a <b <c ,因为a 、b 、c 互不相等,且f (a )=f (b )=f (c ),由函数的图像可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12),故选C.答案:C4.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 013)=8,则f (x 21)+f (x 22)+…+f (x 22 013)=________. 解析:∵f (x )=log a x∴f (x 21)+f (x 22)+…+f (x 22 013)=log a (x 1x 2…x 2 013)2=2log a (x 1x 2…x 2 013)=2f (x 1x 2…x 2 013)=16. 答案:165.(2014·南京月考)若log 2a 1+a 21+a <0,则a 的取值范围是________.解析: 当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a ,∴a 2-a >0,∴a <0或a >1,此时不合题意. 综上所述,a ∈⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,16.(2014·湖北黄石模拟)设a >0且a ≠1,函数f (x )=a lg(x 2-2x +3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________.解析:∵函数y =lg(x 2-2x +3)有最小值,f (x )=a lg(x 2-2x +3)有最大值,∴0<a <1. ∴由log a (x 2-5x +7)>0,得0<x 2-5x +7<1,解得2<x <3.∴不等式log a (x 2-5x +7)>0的解集为(2,3). 答案:(2,3)7.(创新题)已知函数f (x )=log a (3-ax ).(1)当x ∈[0, 2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对一切x ∈[0,2]恒成立,设g (x )=3-ax ,∵a >0且a ≠1,∴g (x )=3-ax 在[0,2]上为减函数. 从而g (2)=3-2a >0,∴a <32. ∴a 的取值范围为(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)假设存在这样的实数a ,由题设知f (1)=1, 即log a (3-a )=1,∴a =32. 此时f (x )=log 32⎝⎛⎭⎪⎫3-32x ,当x =2时,f (x )没有意义,故这样的实数a 不存在.。

北师大版(2019)高中数学《对数函数》优质教学ppt1

北师大版(2019)高中数学《对数函数》优质教学ppt1
研究内容:定义域、值域、特殊点、单调 性、最大(小)值、奇偶性.
类比指数函数图象和性质的研究,研究对 数函数的性质并填写如下表格:
对数函数的图像与性质
a>1
0<a<1


定义域 : ( 0,+∞)

值域:
R
过定点 (1 ,0),
即当x =1时,y=0
在(0,+∞)上是 增函数
质 当x>1时, y>0
③、x是自变量,定义域( 0 , +∞) 。
北师大版(2019)高中数学《对数函 数》优 质教学p pt1
二.对数函数的图象: 1.描点画图 在同一平面直角坐标系中做出
ylo g2x 和 y = lo g1x 的 函 数 图 象
2
北师大版(2019)高中数学《对数函 数》优 质教学p pt1
北师大版(2019)高中数学《对数函 数》优 质教学p pt1
北师大版(2019)高中数学《对数函 数》优 质教学p pt1 北师大版(2019)高中数学《对数函 数》优 质教学p pt1
北师大版(2019)高中数学《对数函 数》优 质教学p pt1 北师大版(2019)高中数学《对数函 数》优 质教学p pt1
返回
再来一遍
问题:你能类比前面讨论指数函数性质的 思路,提出研究对数函数性质的内容和方 法吗?
一引导探究,形成概念
对数函数
一般地,函数y = loga x (a>0,且 a≠ 1)叫做对数函数.其中 x是自变量,
函数的定义域是( 0 , +∞)
北师大版(2019)高中数学《对数函 数》优 质教学p pt1
判断 (1 )y lo g x ×( 3x > 0 ,且 x 1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(九) 对数与对数函数A组基础达标
一、选择题
1.函数f(x)=ln(x+3)
1-2x
的定义域是( )
【79140051】
A.(-3,0) B.(-3,0]
C.(-∞,-3)∪(0,+∞) D.(-∞,-3)∪(-3,0)
A [因为f(x)=ln(x+3)
1-2x
,所以要使函数f(x)有意义,需使
⎩⎪

⎪⎧x+3>0,
1-2x>0,
即-3<x<0.]
2.(2017·石家庄模拟)已知a=log23+log23,b=log29-log23,c =log32,则a,b,c的大小关系是( )
A.a=b<c B.a=b>c
C.a<b<c D.a>b>c
B [因为a=log23+log23=log233=3
2
log23>1,b=log29-
log23=log233=a,c=log32<log33=1,所以a=b>c.] 3.若函数y=log a x(a>0,且a≠1)的图像如图2­6­3所示,则下列函数图像正确的是( )
B [由题图可知y =log a x 的图像过点(3,1),
所以log a 3=1,即a =3.
A 项,y =3-x =⎝ ⎛⎭
⎪⎪⎫13x 在R 上为减函数,错误; B 项,y =x 3符合;
C 项,y =(-x)3=-x 3在R 上为减函数,错误;
D 项,y =log 3(-x)在(-∞,0)上为减函数,错误.]
4.已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=3x +m(m 为常数),则f(-log 35)的值为( )
A .4
B .-4
C .6
D .-6
B [∵函数f(x)是定义在R 上的奇函数,∴f(0)=0,即30+m =0,解得m =-1,∴f(log 35)=3log 35-1=4,∴f(-log 35)=-f(log 35)=-4.]
5.已知y =log a (2-ax)在区间[0,1]上是减函数,则a 的取值范围是( )
A .(0,1)
B .(0,2)
C .(1,2)
D .[2,+∞)
C [因为y =log a (2-ax)在[0,1]上单调递减,u =2-ax(a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.]
6.计算:lg 0.001+ln
e +2-1+log 32=________. 【79140052】
-1 [原式=lg 10-3+ln e 12+2log 232=-3+12+32
=-1.] 7.(2018·陕西质检(一))已知函数y =4a x -9-1(a >0且a ≠1)恒过定点A(m ,n),则log m n =________.
12 [由于函数y =a x (a >0且a ≠1)恒过定点(0,1),故函数y =4a x -9-
1(a >0且a ≠1)恒过定点(9,3),所以m =9,n =3,所以log m n =log 93=12
.] 8.函数y =log 2|x +1|的单调递减区间为________,单调递增区间为________.
(-∞,-1) (-1,+∞) [作出函数y =log 2x 的图像,将其关于y 轴对称得到函数y =log 2|x|的图像,再将图像向左平移1个单位长度就得到函数y =log 2|x +1|的图像(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).]
三、解答题
9.设f(x)=log a (1+x)+log a (3-x)(a >0,a ≠1),且f(1)=2.
(1)求a 的值及f(x)的定义域;。

相关文档
最新文档