河北省藁城市尚西中学七年级数学(人教版)下册第五章相交线与平行线练习题(1)(无答案)
人教版数学七年级下册第五章相交线与平行线练习(含答案)
第五章相交线与平行线一、单选题1.图中,∠1和∠2是对顶角的是()A.B.C.D.2.如图,AD⊥AC交BC的延长线于点D,AE⊥BC 交BC的延长线于点E,CF⊥AB 于点F,则图中能表示点A到直线BC的距离的是()A.AD 的长度B.AE 的长度C.AC 的长度D.CF 的长度3.如图,四个图形中的∠1和∠2,不是同位角的是( )A.B.C.D.4.下列说法正确的是()A.有公共顶点且相等的两个角是对顶角B.已知线段AB=BC,则点B是线段AC的中点C.经过一点有且只有一条直线与已知直线平行D.在同一平面内,经过一点有且只有一条直线与已知直线垂直5.如图,点E 在AD 的延长线上,下列条件中不能判断AB∥CD 的是()A .∠1=∠ 2B .∠3=∠4C .∠A =∠CDED .∠C +∠ABC =180° 6.根据下图,下列推理判断错误的是( )A .因为12∠=∠,所以c d ∥B .因为23∠∠=,所以a b ∥C .因为13∠=∠,所以c d ∥D .因为14∠=∠,所以 a b ∥7.如图,直线AB ,CD 被两条直线所截,若164∠=︒,264∠=︒,3110∠=︒,则4∠的读数为( )A .110︒B .70︒C .64︒D .46︒8.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是( )A .64°B .65 °C .66°D .67°9.下列命题: ①如果0a b +=,那么0a b ==;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有( )A .1B .2C .3D .410.如图,将边长为5cm 的等边ABC V 沿边BC 向右平移4cm 得到A B C '''V ,则四边形ABC A ''的周长为( )A .28cmB .25cmC .23cmD .21cm二、填空题 11.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为点O ,若∠AOD=132°,则∠EOC=_____°.12.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)13.已知12l l P ,一个含有30°角的三角尺按照如图所示位置摆放,则12∠+∠的度数为_________.14.如图,将△ABC 沿BC 方向平移2cm 得到△DEF .如果四边形ABFD 的周长是20cm ,则△ABC 周长是______cm .三、解答题15.如图,点O是直线AB、CD的交点,∠AOE=∠COF=90︒,①如果∠EOF=32︒,求∠AOD的度数;②如果∠EOF=x︒,求∠AOD的度数.16.如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?AB与CD平行吗?17.如图,AB⊥BD,CD⊥BD,∠A与∠AEF互补,以下是证明CD∥EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=()∴∠ABD+∠CDB=180°∴AB∥()又∠A与∠AEF互补()∠A+∠AEF=∴AB∥()∴CD∥EF ()18.如图,已知AB∥CD,FG∥HD,∠D=42°,EF为∠CEB的平分线,求∠B的度数.19.阅读第(1)题解答过程填理由,并解答第(2)题(1)已知:如图1,AB∥CD,P为AB,CD之间一点,求∠B+∠C+∠BPC的大小.解:过点P作PM∥AB∵AB∥CD(已知)∴PM∥CD,∴∠B+∠1=180°,.∴∠C+∠2=180°∵∠BPC=∠1+∠2∴∠B+∠C+∠BPC=360°(2)我们生活中经常接触小刀,如图2小刀刀柄外形是一个直角梯形挖去一个小半圈,其中AF∥EG,∠AEG=90°,刀片上、下是平行的(AB∥CD),转动刀片时会形成∠1和∠2,那么∠1+∠2的大小是否会随刀片的转动面改变,如不改变,求出其大小;如改变,请说明理由.答案1.C2.B3.D4.D5.B6.C7.B8.C9.B10.C11.42°12.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE13.∠1+∠2=90°14.16.15.(1)148°;(2)180°-x°.16.解:(1)180°;(2)无法确定AB与CD的关系.17.90°;垂直的定义;CD;同旁内角互补,两直线平行;已知;180°;EF;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.18.96°19.(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;(2)不会变,∠1+∠2=90°。
人教版数学七年级下册 第五章《相交线与平行线》测试试题(含答案)
第五章《相交线与平行线》测试题一、单选题(每小题只有一个正确答案)1.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .2.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A .30°B .40︒C .60︒D .120︒3.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=4.下列图案中,可以利用平移来设计的图案是( )A .B .C .D .5.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是( )A .①②③④B .①②③④C .①②③④⑤D .①②④⑤6.如图,点E 在AD 的延长线上,下列条件中能判断BC∥AD 的是( )A .∠3=∠4B .∠A +∠ADC =180° C .∠1=∠2D .∠A =∠57.如图,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .两点之间,直线最短8.如图,已知AB CD ∥,BE 平分ABC ∠,150CDE ∠=︒,则C ∠=( )A .105︒B .120︒C .130︒D .150︒9.命题:①对顶角相等;②垂直于同一条直线的两条直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A .1个B .2个C .3个D .4个10.如图,若∠1=∠2,则下列选项中可以判定AB ∥CD 的是( )A .B .C .D .11.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°12.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠1二、填空题13.如图,直线,AB CD 相交于点O ,OA 平分EOC ∠,:2:3EOC EOD ∠∠=,则BOD ∠=________°.14.如图,直线AB 、CD 相交于点O ,OE AB ⊥于点O ,且50COE ∠=︒,则BOD ∠=________.15.小泽在课桌上摆放了一副三角板,如图所示,得到________∥________,依据是________.16.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 的度数为130°,第二次拐角∠B 的度数为______.三、解答题17.如图,1∠和2∠互为补角,A D ∠=∠,求证://AB CD .请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵1∠和2∠互为补角(已知),∴12180∠+∠=︒(补角定义).又1CGD ∠=∠( ),∴2180CGD ∠+∠=︒(等量代换).∴//AE ( ).又∵A D ∠=∠(已知),∴D ∠=∠ .( )∴//AB CD .( ).18.如图,OA ⊥OB ,OC ⊥OD ,∠BOC =28°,求∠AOD 的度数.19.已知:如图,在△ABC 中,CD ⊥AB 于点D ,E 是AC 上一点且∠1+∠2=90°.求证:DE ∥BC .20.如图,∠ADC=∠ABC,BE 、DF 分别平分∠ABC、∠ADC、且∠1=∠2.(1)求证:AB∥CD.(2)求证:∠A=∠C.21.如图,已知,A ADE C E ∠=∠∠=∠.(1)若3,EDC C ∠=∠求C ∠的度数;(2)求证://BE CD .22.如图所示,已知//,80,140AB DE ABC CDE ︒︒∠=∠=,求BCD ∠的度数.23.如图,已知∠A = ∠C,∠E=∠F,试说明AB∥CD.参考答案1.B2.A3.D4.D5.D6.C7.A8.B9.C10.D11.D12.D13.36 14.40︒ 15.AC ∥DF 内错角相等 两直线平行 16.130°17. 证明:∵1∠和2∠互为补角(已知),∴12180∠+∠=︒(补角定义).又1CGD ∠=∠( 对顶角相等 ),∴2180CGD ∠+∠=︒(等量代换).∴//AE FD ( 同旁内角互补,两直线平行 ).又∵A D ∠=∠(已知),∴D ∠=∠ BFD .( 两直线平行,同位角相等 )∴//AB CD .( 内错角相等,量直线平行 ).18. 解:∵OC ⊥OD ,∠BOC =28°,∴∠BOD =90BOC ︒-∠=62°,∵OA ⊥OB ,∴∠AOB =90°,∴∠AOD =∠BOD +∠AOB =62°+90°=152°.19. 解:证明:∵CD ⊥AB (已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE ∥BC (内错角相等,两直线平行).20. 证明:(1)∵BE、DF 平分∠ABC、∠ADC ∴112322ABC ADC ,∠=∠∠=∠ ∵∠ABC=∠ADC,∴∠2=∠3∵∠1=∠2,∴∠1=∠3,∴AB∥CD;(2)由(1)得AB∥CD∴∠A+∠ADC=180°,∠C+∠ABC=180°∵∠ADC=∠ABC,∴∠A=∠C.21.解:(1)A ADE∠=∠Q,∴,//ED AC∴∠+∠=︒.180EDC CQ,∠=∠EDC C3∴∠+∠=︒,3180C C∴∠=︒;45C(2)A ADE∠=∠Q,∴,//ED AC∴∠=∠.ABE E∠=∠Q,C E∴∠=∠,ABE C∴.//BE CD22.解:延长ED交BC于M.因为AB∥DE,∠ABC=80°,所以∠BMD=∠ABC=80°,因为∠CDE =140°,所以∠MDC=180°-140°=40°.在△CDM中,∠BMD=∠C+∠MDC,所以∠BCD =∠BMD-∠MDC=80°-40°=40°.23.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ABF,∵∠A=∠C,∴∠ABF=∠C,∴AB∥CD.。
河北省石家庄市藁城区尚西中学人教版七年级下册数学第五章相交线与平行线测试卷(无答案).docx
初中数学试卷桑水出品相交线与平行线测试卷 初一数学 2017.2.19一、填空题:(每小题3分,共33分)1、空间内两条直线的位置关系可能是 或 、 。
2、“两直线平行,同位角相等”的题设是 ,结论是 。
3、∠A 和∠B 是邻补角,且∠A 比∠B 大200,则∠A = 度,∠B = 度。
4、如图1,O 是直线AB 上的点,OD 是∠COB 的平分线,若∠AOC =400,则∠BOD =。
5、如图2,如果AB ∥CD ,那么∠B +∠F +∠E +∠D = 0。
6、如图3,图中ABCD-D C B A ''''是一个正方体,则图中与BC 所在的直线平行的直线有 条,与B A ''所在的直线成异面直线的直线有 条。
图1O DCB AFE 图2DC BAA 'B 'C 'D '图3D CB Aba12C图4BA7、如图4,直线a ∥b ,且∠1=280,∠2=500,则∠ACB = 0。
8、如图5,若A 是直线DE 上一点,且BC ∥DE ,则∠2+∠4+∠5= 0。
9、在同一平面内,如果直线1l ∥2l ,2l ∥3l ,则1l 与3l 的位置关系是 。
10、如图6,∠ABC =1200,∠BCD =850,AB ∥ED ,则∠CDE 0。
11.一艘货船沿南偏东60°方向航行,后因避礁先向右拐30°,走一段后又向左拐30°,这时货船沿______方向航行二、选择题:(每小题3分,共30分)11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是( ) A 、700B 、600C 、500D 、40012、已知:如图8,下列条件中,不能判断直线1l ∥2l 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180054321A BCDE图5A B CDE图62l 1l 4321图72l 1l 54321图813、如图9,已知AB ∥CD ,HI ∥FG ,EF ⊥CD 于F ,∠1=400,那么∠EHI =( ) A 、400B 、450C 、500D 、55014、一个角的两边分别平行于另一个角的两边,则这两个角( )A 、相等B 、相等或互补C 、互补D 、不能确定15、点P 为直线m 外一点,点A,B,C 为m 上点,PA=4cm,PB=6cm,PC=8cm,则点P 到 直线m 的距离为( ) A. 4cm B. 6cm; C. 小于4cm D. 不大于4cm16、两条直线被第三条直线所截,则( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、以上结论都不对 17、如图10,AB ∥CD ,则( )A 、∠BAD +∠BCD =1800B 、∠ABC +∠BAD =180C 、∠ABC +∠BCD =1800 D 、∠ABC +∠ADC =18001IHGE DCBA 图9A BC D图10CBAD图1154321图1218、如图11,∠ABC =900,BD ⊥AC ,下列关系式中不一定成立的是( ) A 、AB >AD B 、AC >BC C 、BD +CD >BC D 、CD >BD 19、下列语句中,是假命题的个数是( )①过点P 作直线BC 的垂线;②延长线段MN ;③直线没有延长线;④射线有延长线。
人教版七年级下册数学第五章相交线与平行线-测试题含答案
图中对顶角有:∠AOC 与∠BOD、∠AOD 与∠BOC,共 2 对.
故选 B.
【点睛】
本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的
两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的
反向延长线形成的夹角即可
8.C
【解析】
【详解】
然后由 AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.
【详解】
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠BAC=120°,
∴∠ACD=180°-120°=60°,
∵AC∥DF,
∴∠ACD=∠CDF,
∴∠CDF=60°.
故选 A.
【点睛】
本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
A.120°
B.125°
C.135°
10.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(
)
D.145°
)
第 2 页
A.60°
B.65°
C.50°
D.45°
二、填空题
11.如图, AB、CD 相交于点 O , OE 平分 AOD ,若 BOC 60 ,则 COE 的度数是
∴∠1=∠EBC=16°,
故选:C.
【点睛】
考查了平行线的性质,解题时注意:两直线平行,内错角相等.
4.D
【解析】
【分析】
直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三
条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.
【详解】
人教版七年级数学下册 第5章 相交线和平行线 综合练习(含答案)
人教版 七年级数学 第5章 相交线与平行线综合练习(含答案)一、单选题(共有11道小题)1.下面各图中∠1与∠2是对顶角是( ).2.如图,直线123,,l l l 交于一点,直线14l l P ,若∠=124°,∠2=88°,则∠3的度数为()A.26°B.36° C.46° D.56°3.下列图形中,与是对顶角的是( )4.如图,直线l ∥m ∥n ,等边△ABC 的顶点B 、C 分别在直线n 和m 上,边BC 与直线n 所夹锐角为25°,则∠ 的度数为( )A .25°B .45°C .35°D .30°5.下列命题中的真命题是( )A .三个角相等的四边形是矩形B .对角线互相垂直且相等的四边形是正方形C .顺次连接矩形四边中点得到的四边形是菱形D .正五边形既是轴对称图形又是中心对称图形CBl 4DCBA6.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110° 7.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列四个图中,α∠与β∠成邻补角的是( )A BC D9.下列命题是真命题的有( ) ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A .1个 B .2个 C .3个 D.4个10.如图,若AB CD ∥,70BEF ∠=︒,则B F C ∠+∠+∠的度数为( )A.215︒B.250︒C.320︒D.360︒11.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6B .8C .10D .12DBβαβαβαβαDC FEBA12.如图,直线a //b ,n 直线l 与a 相交于点P ,与直线b 相交于点Q ,PM ⊥l 于点P ,若∠1=50 °,则∠2= °.命题“相等的角是对顶角”是 命题. (填“真”或“假”) 14.根据图在( )内填注理由:①∵B CEF ∠=∠(已知)∵AB CD ∥( ) ②∵B BED ∠=∠(已知)∴AB CD ∥( ) ③∵180B CEB ∠+∠=°(已知)∴AB CD ∥( )15.若平面上有4条直线两两相交且无三线共点,则共有同旁内角 对.16.如图AB CD EF CG ∥∥,平分140110ACE A E ∠∠=︒∠=︒,,.则______DCG ∠=.三、计算题(共有1道小题)17.已知如图所示,AB DE ∥,116D ∠=︒,93DCB ∠=︒,求B ∠的度数.图2FC EB DA GF EDCB AD C EBADCFEBA18.找出下图中用数字表示的各角中,哪些是同位角,内错角?哪些是同旁内角?19.如图,一条公路修在湖边时,需拐弯绕湖而过,如果第一次拐的角A ∠是120o ,第二次拐的角B ∠是150︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,求C ∠的大小.20.已知,如图360B BED D ∠+∠+∠=︒.求证:AB CD ∥.21.⑴ 两条平行直线被第三条直线所截,有几对同位角,几对内错角,几对同旁内角.⑵ 三条平行直线呢?四条、五条呢? ⑶ 你发现了什么规律.22.证明:三角形三个内角的和等于180︒.23.平面上有()2n n ≥条直线两两相交,试证明:所得的角中至少有一个角不大于180n︒.1234图1CEB DA NEDCBA24.已知AB CD ∥,点M N ,分别在AB CD ,上.(1)AB CD ,间有一点E ,点E 在直线MN 左侧,如图1,求证AME CNE MEN ∠+∠=∠.(2)当AB CD ,间的点E 在直线MN 右侧时,如图2,AME CNE MEN ∠∠∠,,直线有什么关系?(3)如图3,当点E 在AB CD ,外侧时,探索AME CNE MEN ∠∠∠,,之间有何关系?图1NME DCBA图2NME D CBA图3NMEDCB A答案一、单选题(共有11道小题)1.下面各图中∠1与∠2是对顶角是( ).参考答案:B2.如图,直线123,,l l l 交于一点,直线14l l P ,若∠=124°,∠2=88°,则∠3的度数为( )A.26°B.36°C.46°D.56°参考答案:B3.下列图形中,与是对顶角的是( )参考答案:C4.如图,直线l ∥m ∥n ,等边△ABC 的顶点B 、C 分别在直线n 和m上,边BC 与直线n 所夹锐角为25°,则∠ 的度数为( )CBl 4DCBAA .25°B .45°C .35°D .30°参考答案:C5.下列命题中的真命题是( )A .三个角相等的四边形是矩形B .对角线互相垂直且相等的四边形是正方形C .顺次连接矩形四边中点得到的四边形是菱形D .正五边形既是轴对称图形又是中心对称图形参考答案:C6.如图,AB ∥CD,EF 交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G. 若∠1=40°,则∠EGF=( )A .20°B .40°C .70°D .110°参考答案:C7.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直参考答案:D8.下列四个图中,α∠与β∠成邻补角的是( )A BC D参考答案:C9.下列命题是真命题的有( ) ①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
最新人教版七年级下册第五章《相交线与平行线》测试题(含答案)
人教版七年级数学第五章订交线与平行线单元复习题人教版七年级数学第五章订交线与平行线单元复习题一、选择题1. 以下图形中,能将此中一个三角形平移获得另一个三角形的是(A)A. B.C. D.2.邻补角是(D)A. 和为 180°的两个角B.有公共极点且互补的两个角C.有一条公共边且互补的两个角D.有一条公共边, 另一边互为反向延伸线的两个角3. 关于图中标志的各角,以下条件能推理获得a∥b 的是( D )A.∠ 1=∠ 2 B .∠ 2=∠ 4 C .∠ 3=∠ 4 D .∠ 1+∠4=1804.以下命题是真命题的是 ( C )A.过直线外一点能够画无数条直线与已知直线平行B.假如甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C. 3 条直线交于一点,对顶角最多有 6 对D.与同一条直线订交的两条直线订交5.以下图形中,∠ 1 和∠ 2 是同旁内角的是 ( A )6.如图,已知∠ 1=∠2,∠ 3=30°,则∠B的度数是 ( B )A. B. C. D.(D)7. 如图5-3-17,直线a, b 被直线 c 所截,以下说法正确的选项是图 5-3-17A.当∠ 1=∠ 2 时,必定有a∥bB.当a∥b时,必定有∠1=∠ 2C.当a∥b时,必定有∠1+∠ 2= 90°D.当∠ 1+∠ 2= 180°时,必定有a∥b8. 已知点 P 是直线l外一点 ,A ,B, C 是直线l上三点, PA=4cm, PB=5cm,PC=2cm,则点 P 到直线l的距离(C )A. 小于 2 cmB. 等于2 cmC.不大于 2 cmD. 等于4 cm9. 在同一平面内,不重合的两条直线的地点关系是(C)A.平行B.订交C.平行或订交D.平行、订交或垂直10. 如图,线段AB是线段 CD经过平移获得的,那么线段AC与 BD的关系是( A)A. 平行且相等B.平行C.订交D. 相等二、填空题11. 如图,直径为 2 cm的圆O1平移 3 cm到圆 O2,则图中暗影部分的面积为2 ______ cm.【答案】 612.图所示,一个损坏的扇形部件,利用图中的量角器能够量出这个扇形部件的圆心角的度数,丈量的依据是 _________.【答案】对顶角相等13.如图,∠ ACD=∠ A,∠ BCF=∠ B,则∠ A+∠ B+∠ ACB等于______.【答案】 180°14. 如图,平行线AB, CD被直线AE所截,∠1= 50°,则∠A=.【答案】 50°15.如图,剪刀在使用的过程中,跟着两个把手之间的夹角 ( ∠DOC)渐渐变大,剪刀刀刃之间的夹角 ( ∠ AOB)也相应原因是 .【答案】变大对顶角相等16. 如图是一个平行四边形,请用符号表示图中的平行线:__________________ .【答案】AB∥ CD, AD∥ BC三、解答题17.填空并达成以下证明:如图 5-3-18 ,∠ 1=∠ACB,∠ 2=∠ 3,FH⊥AB于H,求证:AB⊥AB.图 5-3-18证明:∵ FH⊥ AB(已知),∴∠ BHF=________.∵∠ 1=∠ACB(已知 ) ,∴DE∥BC,(___________________)∴∠ 2= ____________ . (_____________________________)∵∠2=∠ 3(已知),∴∠ 3= __________, (______________)∴AB∥FH(________________)∴∠ BDC=∠ BHF=______________°,(_____________________________)∴AB⊥AB.答案: 90°同位角相等,两直线平行∠ BAB两直线平行,内错角相等∠BAB等量代换同位角相等,两直线平行90两直线平行,同位角相等18.如图,三条直线 AB, CD,EF交于一点,若∠1=30°,∠2=70°,求∠3的度数.解:如图,∵∠ 4=∠2=70°(对顶角相等),∴∠ 3=180° - ∠ 1- ∠4=180°-30 ° -70 ° =80°.19.如图, D, E, F 是线段 AB的四均分点 .(1)过点 D画 DH∥ BC交于点 H,过点 E 画 EG∥ BC交 AC于点 G,过点 F 画人教版七年级数学下册第五章订交线与平行线单元综合能力测试卷一、选择题 (每题 3 分,共 30 分 )1、如图, AD ∥ BC ,∠ B=30°, DB 均分∠ ADE ,则∠ DEC 的度数为()A . 30°B .60°C. 90° D .120 °2、以下图,点E在AC的延伸线上,以下条件中能判断AB//CD ()...B D132A4CEA.34B.12C.DDCED.DACD1803、如图,直线AB 和 CD 交于点 O,若∠ AOD = 134 °,则∠ AOC 的度数为()A.134 °B.144 °C.46 °D.32 °4、如图,将直线l1沿着AB方向平移获得直线l2,若∠1=50°,则∠2的度数是()A.40 °B.50 °C.90 °D.130 °5、以下选项中能由左图平移获得的是()A. B. C. D.6、以下四个说法中,正确的选项是()A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变直线的方向C.两条直线被第三条直线所截,内错角相等D.两直线订交形成的四个角相等,则这两条直线相互垂直7、如图,三角形ABC 中,∠ C= 90°,AC = 3,点 P 是 BC 边上一动点,则AP 的长不行能是()A.3 D.48、如图,∠ 1= 70°,∠ 2= 70°,∠ 3= 60°,则∠ 4 的度数为()A.80 °B.70 °C.60 °D.50 °9、如图,一条公路修到湖畔时,需拐弯绕道而过,假如第一次拐的∠A=120°,第二次拐的∠B=150°,第三次拐的∠ C,这时的道路恰巧和第一次拐弯以前的道路平行,则∠ C是()A.120 °B.130 °C.140 °D.150 °10、如图,四边形纸片ABCD ,以下丈量方法,能判断AD ∥ BC 的是()A.∠ B=∠ C= 90°B.∠ B=∠ D= 90°C.AC = BDD.点 A, D 到 BC 的距离相等11、如图, DH ∥EG∥ BC , DC ∥EF,那么与∠ DCB 相等的角的个数为()A.2B.3C.4D.512、一汽在广上行,两次弯后要想行的方向与本来的方向同样,两次拐弯的角度可能是()A. 第一次向右拐 50°,第二次向左拐 130 °B.第一次向左拐 30°,第二次向右拐 30°C.第一次向右拐 50°,第二次向右拐 130 °D.第一次向左拐 50°,第二次向左拐 130 °二、填空(每小 3 分,共 15 分)13、把命“等角的余角相等”改写成“假如⋯,那么⋯”的形式是.14、如,已知直AB ,CD ,EF 订交于点O,∠ 1= 95°,∠ 2= 32°,∠ BOE = _______.15、如,直 AB ,CD 订交于点 O,OE⊥ AB ,点 O 垂足,若∠ EOD = 58°,∠ AOC 的度数是__________.16、形在平移,以下特色中不生改的有___________.(把你正确的序号都填上)① 形的形状;② 形的地点;③ 段的度;④角的大小;⑤垂直关系;⑥平行关系.17.如,∠ AOB 的两, OA ,OB 均平面反光,∠AOB =35°,在 OB 上有一点E,从E 点射出一束光芒经OA 上的点 D 反射后,反射光芒DC 恰巧与 OB 平行,则∠ DEB 的度数是 ______.三、解答题(本大题共 7 小题,共69 分)18、( 8 分)将图中的三角形向左平移 4 格,再向下平移 2 格 .19、( 9 分)在图中画一条从张家村到公路近来的路线.20、( 10 分)如图, AD ∥ BC ,E 为 AB 上一点,过 E 点作 EF∥ AD 交 DC 于 F,问 EF 与 BC 的地点关系,并说明原因 .21、( 10 分)某旅馆从头装饰后,准备在大厅的主楼梯上铺设一种红地毯,已知这类地毯每平方米售价 40 元,主楼梯道宽 2m,其侧面以下图,求买地毯起码需要多少元?22、( 10 分)如图,已知BC⊥ AB ,DE ⊥ AB ,且 BF ∥ DG.求证:∠ 1=∠ 2.23、( 10 分)如图,已知∠1=∠ 2,∠ 3=∠ 4,∠ 5=∠ 6.求证: ED ∥ FB .24、( 12 分)如图,直线AB , CD 订交于点 O,OM ⊥ AB 于点 O.(1)若∠ 1=∠ 2,求∠ NOD ;(2)若∠ BOC = 4∠ 1,求∠ AOC 与∠ MOD.参照答案1、B;2、 B.3、 C.4、 B5、 C.6、 D7、 B8、 C9、 D.10、 D11、 D12、 B13、假如两个角是等角的余角,那么它们相等14、 53°15、 32°16、①③④⑤⑥17、 70°18、19、从张家村到公路近来的路线为过张家村作公路的一条垂线段,如图.20、 EF∥ BC. 原因:∵ AD ∥ BC , EF∥ AD ,∴ EF∥ BC.21、利用平移线段,把楼梯的横竖向上向左平移,组成一个长方形,长宽分别为6m, 4m,∴地毯的长度为6+ 4= 10( m),地毯的面积为10×2= 20( m2),∴买地毯起码需要20×40= 800(元) .22、∵ BC⊥ AB ,DE ⊥ AB ,∴∠ ADE =∠ ABC.又∵ BF∥ DG,∴∠ ADG =∠ ABF,∴∠ ADE -∠ ADG =∠ ABC -∠ ABF,∴∠ 1=∠ 2.23、∵∠ 3=∠ 4,∴ CF∥ BD ,∴∠ 6+∠ 2+∠ 3= 180°.∵∠ 6=∠ 5,∠ 2=∠ 1,∴∠ 5+∠ 1+∠ 3= 180°,∴ED ∥ FB.24、( 1)∵ OM ⊥AB ,∴∠ 1+∠ AOC = 90°.∵∠ 1=∠ 2,∴∠ 2+∠ AOC = 90°.∴∠ NOD = 180°- (∠ 2+∠ AOC)=18090 90 .(2)已知∠ BOC =4∠ 1,即 90°+∠ 1=4∠ 1,可得∠ 1= 30°,∴∠ AOC = 90°- 30°=60°,∴∠ BOD = 60°,∴∠ MOD = 90°+∠ BOD = 150°.人教版 - 七年级下册 - 第五章- 订交线与平行线 - 专题练习(含答案)一、单项选择题1.两条直线订交所成的四个角都相等时,这两条直线的地点关系是()A. 平行2.在同一平面内,已知直线离是 6cm,那么直线 a 与B. 订交a、 b、 c 相互平行,直线c 的距离是()C. 垂直a 与b 的距离是D. 不可以确立4cm ,直线 b 与 c 的距A. 2cmB. 5cmC. 2cm 或5cmD. 2cm或10cm3.以下结论正确的选项是()A.不订交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同向来线的两条直线相互平行D.平行于同向来线的两条直线相互平行4.下边的每组图形中,左面的平移后能够获得右边的是()A. B. C. D.5.以下命题中,是真命题的是()A. 一个角的余角大于这个角C. 相等的角是对顶角6.如图,直线AB 与直线 CD 订交于点B. 邻补角必定互补D. 有且只有一条直线与已知直线垂直O,E 是∠ COB内一点,且OE⊥ AB,∠ AOC=35°,则∠EOD的度数是()A. 155 °7.如图,在正方形将正方形ABCDB. 145 °C. 135 °D. 125 °ABCD 中, A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),向右平移 3 个单位,则平移后点 D 的坐标是()A. (﹣ 6, 2)B(.0, 2)C(. 2, 0) D.( 2, 2)8.如图,由已知条件推出的结论,正确的选项是()A. 由∠ 1=∠ 5,能够推出C. 由∠ 2=∠ 6,能够推出AD∥ CBAD∥ BCB由.∠ 4=∠ 8,能够推出D由.∠ 3=∠ 7,能够推出AD∥BCAB∥ DC9.如图,直线AB 与 CD 订交于点O,若∠ 1+∠ 2=80 °,则∠ 3 等于()A. 100 °B. 120 °C. 140 °D. 16010.如图,在四边形ABCD中,连结 AC、BD,若要使 AB∥ CD,则需要增添的条件是(°)A. ∠1=∠ 2B. ∠2=∠ 3C. ∠3=∠ 4D. ∠ 4=∠5二、填空题11.已知,如图, DG⊥ BC, AC⊥ BC,EF⊥ AB,∠ 1=∠ 2.试判断 CD与 AB 的地点关系,并说明原因.请达成以下解答:解: CD与 AB 的地点关系为:________,原因以下:∵DG⊥ BC, AC⊥ BC(已知),∴________( ________),∴∠ ACD=∠ 2( ________),∵∠ 1=∠ 2(已知),∴∠ ACD=∠ 1,∴FE∥ CD( ________),∵EF⊥ AB(已知),∴________.12.如图,直线AB、CD、 EF订交于点O,∠ AOE的对顶角是 ________.13.已知以下命题:①若 a> 0,b >0,则 a+b> 0;② 若 a2≠ b2,则 a≠b;③对角线相互垂直的平行四边形是菱形;④ 直角三角形斜边上的中线等于斜边的一半.此中原命题与抗命题均为真命题的序号是________.14.如图,已知 AB∥CD,∠ A=49°,∠ C=27°,则∠ E 的度数为 ________.15.(2017?威海)如图,直线 l 1//l 2,∠ 1=20 °,则∠ 2+∠ 3=________.16.如图,已知直线AB 、 CD 、 EF 订交于点O , AB ⊥ CD ,∠ DOE=127°,则∠ COE=________°,∠AOF=°.三、综合题17.如图,在方格纸中,直线 AC 与 CD 订交于点 C .( 1)过点 E 画直线 EF ,使 EF ⊥ AC ;( 2)分别写出( 1)中三条直线之间的地点关系;( 3)依据你察看到的 EF 与 CD 之间的地点关系,用一句话来表达你的结论. 18.绘图:(1)先将方格纸中的图形(图1)向左平移 5 格,而后再向下平移3 格.(2)如图 2,已知四边形 ABCD ,试将其沿箭头方向平移, 其平移的距离为线段BC 的长度.19.如图,∠(1)求证:1=75 °,∠ A=60°,∠ B=45°,∠ 2=∠ 3, FH ⊥ AB 于 DE ∥ BC ;H .(2) CD 与 AB 有什么地点关系?证明你的猜想.20.△ABC 与 △A ′B ′C ′在平面直角坐标系中的地点如图.(1)分别写出以下各点的坐标:A′;B′;C′(2)说明△A′B′C′由△ABC经过如何的平移获得?________.(3)若点 P( a, b)是△ABC内部一点,则平移后△A′B′C′内的对应点(4)求△ABC的面积.;P′的坐标为________ ;答案一、单项选择题1.【答案】C【分析】【解答】解:两条直线订交所成的四个角都相等时,则每一个角都为90°,因此这两条直线垂直.应选 C.【剖析】两条直线订交所成的四个角都相等时,依据这四个角的和为360°,得出这四个角都是 90°,由垂直的定义即可得出这两条直线相互垂直.2.【答案】D【分析】【解答】解:当直线 c 在 a、 b 之间时,∵a、 b、 c 是三条平行直线,而 a 与 b 的距离为4cm, b 与 c 的距离为6cm,∴a 与 c 的距离 =6cm﹣ 4cm=2cm ;当直线 c 不在 a、 b 之间时,∵a、 b、 c 是三条平行直线,而 a 与 b 的距离为4cm, b 与 c 的距离为6cm,∴a 与 c 的距离 =6cm+4cm=10cm ,综上所述, a 与 c 的距离为2cm 或 10cm.应选 D.【剖析】分类议论:当直线 c 在 a、b 之间或直线 c 不在 a、b 之间,而后利用平行线间的距离的意义分别求解.3.【答案】 D【分析】【解答】解: A、在同一平面内,不订交的两条直线叫做平行线,故B、两直线平行,同位角相等,故 B 不切合题意;A 不切合题意;C、在同一平面内,垂直于同一条直线的两条直线相互平行,故D、平行于同向来线的两条直线相互平行,故 D 切合题意;应选: D.【剖析】依据平行公义及推论,可得答案.C 不切合题意;4.【答案】D【分析】【解答】解: A、两图形不全等,故本选项错误;B、两图形不全等,故本选项错误;C、经过平移得不到右侧的图形,只好经过轴对称获得,故本选项错误;D、左面的图形平移后能够获得右边图形,故本选项正确.应选: D.【剖析】依据平移的性质,把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样,即可判断出答案.5.【答案】B【分析】【解答】 A.一个角的余角不必定大于这个角,如:50°,故 A 不切合题意;B.邻补角必定互补,故 B 不切合题意;C.相等的角不必定是对顶角,故 C 不切合题意;D.过一点有且只有一条直线与已知直线垂直,故 D 不切合题意故答案为: B.【剖析】依据一个角的余角不必定大于这个角,邻补角必定互补,故.B 不切合题意,相等的角不必定是对顶角,过一点有且只有一条直线与已知直线垂直,进行鉴别即可.6.【答案】 D【分析】【解答】解:∵∠ AOC=35°,∴∠ BOD=35°,∵EO⊥ AB,∴∠ EOB=90°,∴∠ EOD=∠ EOB+∠BOD=90°+35°=125°,应选 D.【剖析】由对顶角相等可求得∠BOD,依据垂直可求得∠EOB,再利用角的和差可求得答案.7.【答案】 B【分析】【解答】∵在正方形ABCD 中,A、B、C 三点的坐标分别是(-1,2),(-1,0),(-3,0),∴D( -3,2),∴将正方形ABCD向右平移 3 个单位,则平移后点 D 的坐标是( 0,2),故答案为: B.D 点的坐标,【剖析】依据正方形的性质,及平行于坐标轴的直线上的点的坐标特色得出再依据平移的性质即可得出平移后点 D 的坐标。
人教版七年级数学下册第五章 相交线与平行线练习 (含答案)
第五章 相交线与平行线一、单选题1.如图所示,直线AB 与CD 相交于O 点,12∠=∠,若138AOE ∠=︒,则AOC ∠的度数为( )A .45︒B .90︒C .84︒D .100︒2.下列说法正确的是( ).A .经过一点有且只有一条直线与已知直线垂直B .在同一平面内,经过一点有且只有一条直线与已知直线垂直C .连接两点间的线段叫作这两点间的距离D .过点A 作直线l 的垂线段,则这条垂线段叫作点A 到直线l 的距离3.如图,下列说法正确的是( )A .∠2和∠4是同位角B .∠2和∠4是内错角C .∠1和∠A 是内错角D .∠3和∠4是同旁内角4.下列语句:∠不相交的两条直线叫平行线;∠在同一平面内,两条直线的位置关系只有两种:相交和平行; ∠如果线段AB 和线段CD 不相交,那么直线AB 和直线CD 平行; ∠如果两条直线都和第三条直线平行,那么这两条直线平行; ∠过一点有且只有一条直线与已知直线平行.正确的个数是( )A .1B .2C .3D .45.如图,直线a 、b 被直线c 所截,下列条件中,不能判断直线a 、b 平行的是( )A .14∠=∠B .23∠=∠C .14180∠+∠=oD .13180∠+∠=o6.如下图,下列条件中:∠∠B+∠BCD=180°;∠∠1=∠2;∠∠3=∠4;∠∠B=∠5,能判定AB∠CD 的条件为( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠7.如图,直线l 1,l 2 被直线l 3所截,l 1∠l 2,与∠1相等的角是( )A.∠2B.∠3C.∠4D.∠58.下列四个命题是真命题的是()A.同位角相等B.互补的两个角一定是邻补角C.在同一平面内,垂直于同一条直线的两条直线互相平行D.相等的角是对顶角9.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )A.B.C.D.10.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24m,MG=8m,MC=6m,则阴影部分地的面积是()m2.A.168B.128C.98D.156二、填空题11..四条直线两两相交,且任意三条直线不相交于同点,则四条直线共可构成的同位角有________对.12.如图,当∠1=∠_____时,AB∠CD;当∠D+∠_____=180°时,AB∠CD;当∠B=∠_____时,AB∠CD.13.如图所示,OB∠CE,OA∠CF,则图中与∠C相等的角一共有_____个.14.如图,如果将面积为5的∠ABC沿BC方向平移至∠DEF的位置,平移的距离是边BC长的两倍,那么图中四边形ACED的面积为_____.三、解答题15.填写下列证明过程中的推理根据:已知:如图所示,AC,BD相交于O,DF平分∠CDO与AC相交于F,BE平分于∠ABO与AC相交于E,∠A =∠C.求证:∠1=∠2.证明:∠∠A =∠C(________),∠AB∠CD (__________________________________),∠∠ABO =∠CDO (__________________________________), 又∠∠1=12CDO ,∠2=12∠ABO (__________________________________), ∠∠1=∠2(____________________).16.如图,已知12∠=∠,3100∠=︒,求4∠的度数.17.如图,MN OP P ,点A 为直线MN 上一定点,B 为直线OP 上的动点,在直线MN 与OP 之间且在线段AB 的右方作点D ,使得AD BD ⊥.设(DAB αα∠=为锐角). (1)求NAD ∠与PBD ∠的和;(提示过点D 作)EF MN ∥ (2)当点B 在直线OP 上运动时,试说明90OBD NAD ∠-∠=︒;(3)当点B 在直线OP 上运动的过程中,若AD 平分NAB ∠,AB 也恰好平分OBD ∠,请求出此时α的值18.在四边形ABCD 中,AD ∠BC ,E 为AB 边上一点,∠BCE =16°,EF ∠BC 交DC 于点F .(1)依题意补全图形,并求∠FEC 的度数;(2)若∠A =141°,求∠AEC 的度数.答案1.C2.B3.D4.B5.C6.C7.C8.C9.D10.A11.4812.4 DAB 513.314.1515.证明:∠∠A=∠C(已知),∠AB∠CD (内错角相等,两直线平行),∠∠ABO=∠CDO (两直线平行,内错角相等),又∠∠1=12CDO,∠2=12∠ABO (角平分线定义),∠∠1=∠2(等量代换).故答案为:已知;内错角相等,两直线平行;两直线平行,内错角相等;角平分线定义;等量代换16.解:如图所示,∠12∠=∠,∠1=∠5∠∠5=∠2∠a∠b∠∠3+∠4=180°∠3100∠=︒∠∠4=180°-100°=80°17.解:(1)过点D作EF∠MN,如下图所示∠//MN OP∠EF∠OP∠∠NAD=∠ADE,∠PBD=∠BDE∠AD BD ⊥ ∠∠ADB=90°∠∠ADE +∠BDE=∠ADB=90° ∠∠NAD +∠PBD=90° (2)∠∠NAD +∠PBD=90° ∠∠PBD=90°-∠NAD ∠∠OBD +∠PBD=180°, ∠∠OBD +90°-∠NAD=180° ∠90OBD NAD ∠-∠=︒;(3)∠AD 平分NAB ∠,AB 也恰好平分OBD ∠,DAB α∠= ∠∠NAD=DAB α∠=,∠NAB=22DAB α∠=,∠OBD=2∠OBA∠//MN OP∠∠OBA=∠NAB=2α ∠∠OBD=4α由(2)知90OBD NAD ∠-∠=︒ 即490αα-=︒ 解得:30α=︒18.(1)补全的图形如图所示. ∠AD ∠BC ,EF ∠AD , ∠EF ∠BC ,∠∠FEC =∠BCE . ∠∠BCE =16°, ∠∠FEC =16°. (2)∠EF ∠AD , ∠∠AEF +∠A =180°. ∠∠A =141°, ∠∠AEF =39°, ∠∠AEC =39°+16°=55°.。
人教版数学七年级下册第五章 相交线和平行线单元练习(含答案)
第五章相交线与平行线一、选择题1.点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线l的距离()A.小于2 cmB.等于2 cmC.不大于2 cmD.等于4 cm2.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a、b、c两两相交符合以上条件的图形是()A.B.C.D.3.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°4.如图,下列条件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判断直线l1∥l2的有()A. 5个B. 4个C. 3个D. 2个5.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°6.如图,由△ABC平移可得到的三角形有几个()A. 3个B. 5个C. 6个D. 7个7.如图所示,下列判断正确的是()A.∵∠1=∠2,∴DE∥BFB.∵∠1=∠2,∴CE∥AFC.∵∠CEF+∠AFE=180°,∴DE∥BFD.∵∠CEF+∠AFE=180°,∴CE∥AF8.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于()A.αB. 90°-αC. 180°-αD. 90°+α二、填空题9.如图所示,直线AB,CD相交于O,若∠1=∠2,则∠2=______度.10.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为______°.11.把命题“垂直于同一直线的两条直线互相平行”改写成“如果…,那么…”的形式为____________________________________________.12.如图,CD平分∠ECB,且CD∥AB,若∠A=36°,则∠B=______.13.如图,把一张对面互相平行的纸条折成如图那样,EF是折痕,若∠EFB=34°,则下列结论正确有________个.(1)∠C′EF=34°;(2)∠AEC=112°;(3)∠EFD=112°;(4)∠BGE=68°.14.某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需______元.15.如图,直线AB、CD与直线EF相交于E、F,∠2=75°,当∠1=______°时,能使AB∥CD.16.如图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,测量的根据是____________.三、解答题17.如图,长方形ABCD表示一块草地,点E,F分别在边AB、CD上,BF∥DE,四边形EBFD是一条水泥小路,若AD=12米,AB=7米,且AE∶EB=5∶2,求草地的面积.18.如图,有三个论断①∠1=∠2;②∠B=∠D;③∠A=∠C,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.19.如图,是一座建筑纪念物的底座,小明想测量在地面上形成的∠AOB的度数,但一时没有办法,你能帮助他吗?动动你的脑筋.20.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.若∠EFG=55°,求∠1和∠2的度数.21.如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么GM与HN平行吗?为什么?22.如图,直线AB和CD相交于点O,OE把∠AOC分成两部分且∠AOE∶∠EOC=3∶5,OF平分∠BOE.(1)若∠BOD=80°,求∠BOE;(2)若∠BOF=∠AOC+14°,求∠EOF.23.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠3=∠4,求证:∠5=∠6.24.平面内有不重合的4条直线,请指出这4条直线交点个数的所有情况,并画出相应的草图.答案解析1.【答案】C【解析】∵根据点到直线的距离为点到直线的垂线段(垂线段最短),2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.2.【答案】D【解析】A.不符合直线a、b、c两两相交;B.不符合点P在直线a上;C.不符合点P不在直线c上;D.符合条件,故选D.3.【答案】D【解析】根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故选D. 4.【答案】B【解析】①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.5.【答案】A【解析】如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选A.6.【答案】B【解析】平移变换不改变图形的形状、大小和方向.因此由△ABC平移得到的三角形有5个.故选B.7.【答案】D【解析】A、B不是两条直线被第三条直线所截而形成的角,故这两项错误;C.不是结论中的两条直线被第三条直线所截而形成的角,故此选项错误;D.根据同旁内角互补,两条直线平行.故此选项正确.故选D.8.【答案】C【解析】由条件可知∠BAC=180°-α,∵AB∥CD,∴β=∠BAC,∴β=180°-α,故选C.9.【答案】140【解析】∵∠1+∠2=180°,∵∠1=∠2,∴∠2+∠2=180°,解得∠2=140°,故答案为140.10.【答案】114【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°-48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-66°=114°,故答案为114.11.【答案】如果两条直线都垂直于同一条直线,那么这两条直线互相平行【解析】“垂直于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为:“如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.12.【答案】36°【解析】∵CD∥AB,∴∠A=∠ECD,∠B=∠BCD,又∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠B=∠A=36°,故答案为36°.13.【答案】4【解析】∵∠EFB=34°,AC′∥BD′,∴∠EFB=∠FEC′=∠FEG=34°,故①正确,∴∠C′EG=68°,∴∠AEC=180°-∠C′EG=112°,故②正确,∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故③正确,∵∠BGE=∠C′EG=68°,故④正确,∴正确的有4个.故答案为4.14.【答案】512【解析】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5米,3米,∴地毯的长度为5+3=8(米),∴地毯的面积为8×2=16(平方米),∴买地毯至少需要16×32=512(元).故答案为512.15.【答案】105【解析】∵∠1=105°,∴∠AEF=105°,∵∠2=75°,∴∠AEF+∠2=180°,∴AB∥CD.故答案为105.16.【答案】对顶角相等【解析】由题意得,扇形零件的圆心角与其两边的反向延长线组成的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.17.【答案】首先可以计算矩形的面积是12×7=84(cm2),∵BF∥DE,AB∥CD,∴四边形EBFD是平行四边形,∴S四边形EBFD∶S矩形ABCD=BE∶AB=2∶7,∴S四边形EBFD=24 cm2.∴草地的面积为84-24=60(cm2),答:草地的面积为60 cm2.【解析】根据矩形的面积公式计算出ABCD的面积,再根据平行四边形的面积公式可得S四边形EBFD,然后用矩形面积减去S四边形EBFD求解即可.18.【答案】已知:∠B=∠D,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C,∴AB∥CD.∴∠B=∠BFC.∵∠B=∠D,∴∠BFC=∠D.∴DE∥BF.∴∠DMN=∠BNM.∵∠1=∠DMN,∠2=∠BNM,∴∠1=∠2.【解析】根据题意,请从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.19.【答案】如图,延长AO,先测量出∠BOC的度数,然后根据∠AOB与∠BOC是邻补角即可求解,∠AOB=180°-∠BOC.【解析】延长∠AOB的一边,然后根据邻补角的和等于180°即可求解.20.【答案】∵长方形对边AD∥BC,∴∠3=∠EFG=55°,由翻折的性质,得∠3=∠MEF,∴∠1=180°-55°×2=70°,∵AD∥BC,∴∠2=180°-∠1=180°-70°=110°.【解析】根据两直线平行,内错角相等可得∠3=∠EFG,再根据翻折的性质和平角的定义列式计算即可求出∠1,然后根据两直线平行,同旁内角互补列式计算即可求出∠2.21.【答案】GM与HN平行.∵AB∥CD,∴∠BGF=∠CHE,∵GM平分∠BGF,∴∠MGH=∠BGF,同理,∠NHG=∠CHE,∴∠CHE=∠BGF,∴∠NHG=∠MGH,∴HN∥GM.【解析】首先根据平行线的性质可得∠BGF=∠CHE,再根据角平分线的性质可证明∠NHG=∠MGH,然后根据内错角相等,两直线平行可得HN∥GM.22.【答案】(1)由对顶角相等,得∠AOC=∠BOD=80°,由OE把∠AOC分成两部分且∠AOE∶∠EOC=3∶5,得∠AOE=∠AOC×=30°,由邻补角,得∠BOE=180°-∠AOE=180°-30°=150°.(2)由OF平分∠BOE,得∠BOE=2∠BOF=2∠AOC+28°.由∠AOE∶∠EOC=3∶5,得∠AOE=∠AO C.由邻补角,得∠BOE+∠AOE=180°,即2∠AOC+28°+∠AOC=180°.解得∠AOC=64°,∠AOE=∠AOC=×64°=24°,由角的和差,得∠BOE=180°-∠AOE=180°-24°=156°,由OF平分∠BOE,得∠EOF=∠BOE=×156°=78°.【解析】(1)根据对顶角相等,可得∠AOC的度数,根据∠AOE∶∠EOC=3∶5,可得∠AOE,根据邻补角,可得答案;(2)根据角平分线的性质,可得∠BOE,根据∠AOE∶∠EOC=3∶5,可得∠AOE,根据邻补角的关系,可得关于∠AOC的方程,根据角的和差,可得∠BOE,根据角平分线的性质,可得答案.23.【答案】证明∵AB∥CD,∴∠1=∠3,又∵AE平分∠BAD,∴∠1=∠2,∴∠2=∠3,又∵∠3=∠4,∴∠2=∠4,∴AD∥BC,∴∠5=∠6.【解析】先根据平行线的性质,得出∠1=∠3,再根据AE平分∠BAD,可得∠1=∠2,进而得到∠2=∠3,最后根据∠3=∠4,可得∠2=∠4,再判定AD∥BC,即可得出∠5=∠6.24.【答案】(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有3个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有1个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,(8)当三条直线交于一点,第四条直线与其它三条直线有三个交点时,共有4个交点,故4条直线交点个数为0或1或3或4或5或6.【解析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.。
七年级数学下《第五章相交线与平行线》测试题(人教版含答案)
七年级数学下《第五章相交线与平行线》测试题(人教版含答案)第五《相交线与平行线》测试题一、选择题1 .下列语句错误的是()A. 连接两点的线段的长度叫做两点间的距离B. 两条直线平行,同旁内角互补.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等2.如图5-20,如果AB// D,那么图中相等的内错角是()A.Z 1 与/ 5,/ 2 与/ 6; B ./ 3 与/ 7,/ 4 与/ 8;./ 5 与/ 1,/ 4 与/ 8; D ./ 2 与/ 6,/ 7 与/ 33 .下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B .②、③是正确命题.①、③是正确命题D.以上结论皆错4 .下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内,一条直线不可能与两条相交直线都垂直,其中说法错误个数有()A.①、②是正确的命题B .②、③是正确命题.①、③是正确命题D.以上结论皆错5 .若a丄b,丄d则a与的关系是()A.平行B .垂直.相交D .以上都不对6. 如图5-12,/ ADE和/己。
是()A.同位角B .内错角.同旁内角D .互为补角7. 如图5-13 ,,贝U ()A. B . . D.&如图5-14,能与构成同旁内角的角有()A. 5个B. 4个.3个D. 2个二、填空题9. a、b、是直线,且a II b, b±,贝U a与的位置关系是10 .如图5-1 , N丄AB,垂足为点,N交D于N,过点作G丄D,垂足为G, EF过点N点,且EF I AB,交G于H点,其中线段G的长度是_________ 到________ 的距离,线段N的长度是_________ 到 ________ 的距离,又是_______ 的距离,点N到直线G的距离是—.11 .如图5-2 , AD// B, EF I B, BD平分/ AB,图中与/AD相等的角有 _______ 个,分别是_____________ .因为AB// D, EF// AB,根据_________________________________ ,所以12 .命题“等角的补角相等”的题设 __________ ,结论是.13 .如图5-3,给出下列论断:① AD// B:②AB// D;③ / A=Z.以上其中两个作为题设,另一个作为结论,用“如果 , 那么……”形式,写出一个你认为正确的命题是________________14 .如图5-4,直线AB D、EF相交于同一点,而且/B= / A,Z DF= / AD,那么/ F= ________ 度.15 .如图5-5,直线a、b被所截,a丄I于,b± I于N,/ 仁66°,则/ 2=_________ .16.如图5-9,直线AD B交于点,,贝U的度数为17 .如图5-10,直线AB与D交于点,,则= _________ .18.如图5-11,直线AB EF相交于点,于点,,则的度数分别为________ , _______ .三、解答题19 .如图5-21,过P点,画出A、B的垂线.20 .如图5-24 , AB丄BD D丄N,垂足分别是B、D点,/ FD=Z EBA(1) 判断D与AB的位置关系;(2) BE与DE平行吗?为什么?21.如图5-25,/ 1 + Z 2=180°,/ DAE玄BF, DA平分/ BDF.(1)AE与F会平行吗?说明理由.(2)AD与B的位置关系如何?为什么?(3)B平分/ DBE吗?为什么.22 .如图5-27 ,已知:E、F分别是AB和D上的点,DE AF 分别交B于G H, A= D , 1= 2,求证:B=.23 .如图5-29,已知:AB//D,求证:B+ D+BED=(至少用三种方法)参考解析:一、选择题1-8 . B A DAD二、填空题9. 两;/ AD和/ B; / BD;同角的余角相等10. 10 °11 . AB// D;同位角相等,两直线平行;EF II GH;内错角相等,两直线平行12.// ; II) 三、解答题30 .如图5-1 31 . 如图5-232. 略.33. (1) D// AB因为 D 丄 N , AB丄 N, 所以 DN=/ AB=90° 所以 D// AB (2)平行 因为/ DN=Z ABN=90,/ FD=EBA 所以/ FDN=/ EBN所以FD// EB 34 . (1)平行因为/ 1 + / 2=180°,/ 2+/ DB=180 所以/ 1 = / DB13.(点拨: 14. (点拨: 15.;(点拨: »• ?,又,) ,,又)(邻所以AE// F (同位角相等两直线平行)(2)平行,因为AE/ F,所以/ =/ BE (两直线平行,内错角相等) 又/ A=Z 所以/ A=Z BE所以AF// B (两直线平行,内错角相等) (3)平分因为DA平分/ BDF所以/ FDA=Z ADB因为AE/ F, AD// B所以/ FDA=Z A=Z BE,/ ADB玄BD所以/ EB=/ BD35. 证明:又36. 证明:(1)连结BD如图5-3(2)延长DE交AB延长线于F,如图5-4(3)过点E作EF//AB,如图5-5.精品文档.。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
人教版七年级数学下册 第五章 相交线与平行线 练习(含答案)
第五章 相交线与平行线一、单选题1.在下图中,∠1和∠2是对顶角的是( )A .B .C .D .2.点P 为直线MN 外一点,点A 、B 、C 为直线MN 上三点,PA =4厘米,PB =5厘米,PC =2厘米,则P 到直线MN 的距离为( )A .4厘米B .2厘米C .小于2厘米D .不大于2厘米3.如图,直线AB 、CD 被直线EF 所截,则1∠的内错角是( )A .2∠B .3∠C .4∠D .5∠4.在同一平面内有三条直线,如果要使其中两条且只有两条直线平行,那么它们( ) A .没有交点 B .只有一个交点C .有两个交点D .有三个交点5.如图,下列说法中错误的是( )A .若a ∠b ,b ∠c ,则a ∠cB .若∠1=∠2,则a ∠cC .若∠3+∠5=180°,则a ∠cD .若∠2=∠4.则a ∠c6.如图,若AB∠DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°7.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A .50 oB .60 oC .75 oD .85 o8.下列说法正确的是( )A .相等的角是对顶角B .一个角的补角必是钝角C .同位角相等D .一个角的补角比它的余角大90° 9.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A.5050m2B.5000m2C.4900m2D.4998m210.如图,已知直线AB、CD被直线AC所截,AB∠CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题11.如图,直线AB,CD 相交于点O,EO∠AB,垂足为O,∠AOC:∠COE=3:2,则∠AOD=___.12.如图,如果希望直线c∠d,那么需要添加的条件是:____.(所有的可能)13.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =66°,则∠AED ′的度数为_________。
河北省藁城市尚西中学七年级数学下册《第五章相交线与平行线》练习题(无答案)
B EDA CF87654321DCBA初中数学试卷灿若寒星整理制作初一数学第五章 相交线与平行线练习题一、选择题(3×7=21分) 2016.5.6共120分1、 如图 点E 在AC 延长线上,下列条件中能判断AB ∥CD 的是 ( )A 、 ∠3=∠4B 、 ∠1=∠2C 、 ∠D=∠DCED 、 ∠D+∠ACD=18002、 如图a ∥b ,∠3=1080,则∠1的度数是 ( )A 、 720B 、 800C 、 820D 、 10803、 下列说法正确的是 ( )A 、 a 、b 、c 是直线,且a ∥b, b ∥c,则a ∥cB 、 a 、b 、c 是直线,且a ⊥b, b ⊥c ,则a ⊥cC 、 a 、b 、c 是直线,且a ∥b, b ⊥c 则a ∥cD 、 a 、b 、c 是直线,且a ∥b, b ∥c ,则a ⊥c4、如图由AB ∥CD ,可以得到 ( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠45、如图B ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF= ( ) A 、1800 B 、 2700 C 、 3600 D 、54006、下列命题中,错误的是 ( ) A 、邻补角是互补的角 B 、互补的角若相等,则此两角是直角 C 、两个锐角的和是锐角 D 、一个角的两个邻补角是对顶角7、图中,与∠1 成同位角的个数是 ( )A 、 2个B、3个C、 4个 D、 5个4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115 C .36D .65第(1)题4321ED C B A 第(2)题ba 31第(4)题4321D CBA 第(5)题FEDC B A L2L 1c 第(7)题b a1图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80° B.左转80° C.右转100° D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8 7、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A . 42138 、;B . 都是10 ;C . 42138 、或4210、;D . 以上都不对二、填空题(8、11、12、13、14每题3分共25分)8、如图一个弯形管道ABCD的拐角∠ABC=1200,∠BCD=600,这时说管道AB∥CD,是根据9、如图直线AB、CD、EF相交于点O,是∠AOC的邻补角是 ,∠DOA的对顶角是 ,若∠AOC=500,则 ∠BOD=0,∠COB= 010、如图所示的长方体,用符号表示下列棱的位置关系:A 1B 1 AB AA 1 AB 1,A 1D 1C 1D 1 AD BC 11、如图直线,a ∥b,∠1=540,则∠2= 0,∠3= 0,∠4= 0。
河北省藁城市尚西中学七年级数学下册 第五章 相交线与平行线练习题1(无答案)(新版)新人教版
相交线与平行线一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50° B.60°C.140°D.160°4.(3分)(2008•呼和浩特)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36° D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6 C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3= °.8.(3分)(2008•河北)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2= 度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= °.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2= 度.(易拉罐的上下底面互相平行)10题 11题 12题 13题11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3= 度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.25.(7分)如图,已知:EB∥DC,∠A=∠AD E,你认为∠C和∠E相等吗?为什么?26.(5分)如图,已知∠BED=∠B+∠D,试说明AB与CD的关系.。
七年级数学(下)(人教版)第5章 相交线与平行线(1) 检测题(含详解)
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个 B.2个 C.3个 D.4个2.点P是直线l外一点, ,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠ D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72° B.80° C.82° D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对 B.4对 C.5对 D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个第6题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.① B.①② C.①②③ D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个 B.3个 C.4个 D.5个第8题图9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合 B.互相平行C.互相垂直 D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2= .第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图第22题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图第24题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴ AB∥CD (内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴ AB∥CD (内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴ AC∥BD,故A错误.选A.4. A 解析:∵ a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵ DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵ BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵ AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵ AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵ DC∥EF,∴∠DCB=∠EFB.∵ DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵ AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵ EA⊥BA,∴∠EAD=90°.∵ CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵ AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵ EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵ a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC=60°.∵ PQ ∥CD,∴ ∠DCB+∠PQC=180°.∵ ∠DCB=120°,∴ ∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21 ×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP+∠APD = 180°,∴ AB ∥CD.∴ ∠BAP =∠APC.又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF.∴ AEF ∥P.∴ ∠E =∠F.22.证明:∵ ∠3 =∠4,∴ AC ∥BD.∴ ∠6+∠2+∠3 = 180°.∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°.∴ ED ∥FB.23. 解:∵ DE ∥BC ,∠AED=80°,∴ ∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD= 21∠ACB=40°, ∴ ∠EDC=∠BCD=40°.24. 解:∵ AB ∥CD ,∴ ∠B+∠BCE=180°(两直线平行同旁内角互补). ∵ ∠B=65°,∴ ∠BCE=115°.∵ CM 平分∠BCE ,∴ ∠ECM=21 ∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,∴ ∠NCD=180°-∠ECM-∠MCN=180°-57.5°-90°=32.5°.。
人教版七年级数学下册第五章 相交线与平行线练习(含答案)
第五章 相交线与平行线一、单选题1.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°2.如图,直线AB 与CD 相交于点O ,12∠=∠,若140AOE ∠=o ,则AOC ∠的度数为( ).A .40oB .60oC .80oD .100o3.如图,∠1与∠2不能构成同位角的图形的是( )A .B .C .D . 4.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点5.如图,由下列条件不能得到直线a∠b 的是( )A .∠1=∠2B .∠1=∠3C .∠1+∠4=180°D .∠2+∠4=180° 6.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125°,则∠DBC 的度数为( )A .125°B .75°C .65°D .55°7.下列说法正确的有( )个∠同位角相等;∠一条直线有无数条平行线;∠在同一平面内,两条不相交的线段是平行线;∠如果//a b ,//b c ,则//a c ;∠过一点有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个8.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行9.下列图形属于平移位置变换的是( ) .A .B .C .D . 10.如图,将周长为8的∠ABC 沿BC 方向平移2个单位得到∠DEF,则四边形ABFD 的周长为( )A .8B .10C .12D .14二、填空题 11.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度12.如图,与∠B 互为内错角的角是______________13.如图所示,OB∠CE ,OA∠CF ,则图中与∠C 相等的角一共有_____个.14.如图,在∠ABC 中,D ,E ,F ,分别时AB ,BC ,AC ,的中点,若平移∠ADF 平移,则图中能与它重合的三角形是 .(写出一个即可)三、解答题15.如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点O ,如果66COD ∠=︒,求AOE ∠的度数.16.完成下面的证明:已知:如图,//AB DE ,求证:180D BCD B ∠+∠-∠=o ,证明:过点C 作//CF AB .//AB CF Q ( 已知 ),B ∴∠=_ ( )////AB DE CF AB Q ,( )//CF DE ∴,( ) 2∴∠+ 180=︒( )21,180BCD D BCD B ∠=∠-∠∴∠+∠-∠=︒Q ( )17.如图,O 是直线AB 上一点,OC 平分∠AOB ,在直线AB 另一侧,以O 为顶点作∠DOE =90°.(1)若∠AOE =48°,则∠BOD =______,∠AOE 与∠BOD 的关系是_______;(2)∠AOE 与∠COD 有什么关系?请写出你的结论,并说明理由.18.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.答案1.C2.C3.D4.B5.C6.D7.A8.B9.B10.C11.12512.∠BAE或∠BAD 13.314.∠DBE(或∠FEC).15.解:∠OD∠OE于O,∠∠DOE=90°,又∠因为∠COD =66°,∠∠COE =∠DOE -∠COD =90°-66°=24°,∠OE 平分∠BOC ,∠∠BOE =∠COE =24°,又∠点A ,O ,B 在同一条直线上,∠∠AOB =180°,∠∠AOE =∠AOB -∠BOE =180°-24°=156°.16.解://AB CF Q (已知),B ∴∠=1∠(两直线平行,内错角相等)////AB DE CF AB Q ,(已知)//CF DE ∴,(如果两直线都与第三条直线平行,那么这两条直线也互相平行) 2∴∠+D ∠180=︒(两直线平行,同旁内角互补)21,BCD ∠=∠-∠Q180D BCD B ∴∠+∠-∠=︒(等量代换)答:∠1,两直线平行,内错角相等;已知;如果两直线都与第三条直线平行,那么这两条直线也互相平行;∠D ,两直线平行,同旁内角互补;等量代换.17.(1) ∠∠AOE+∠DOE+∠BOD=180°,∠AOE=48°,∠DOE=90°,∠∠BOD=180°-48°-90°=42°,∠∠AOE+∠BOD=48°+42°=90°,即∠AOE 与∠BOD 互余,故答案为42°,互余;(2)∠AOE 与∠COD 互补,理由如下:∠OC 平分∠AOB ,∠∠COB =90°,∠∠DOE =90°,∠∠AOE +∠BOD =90°,∠∠AOE +∠COD =∠AOE +∠BOD +∠COB =90°+90°=180°, ∠∠AOE 与∠COD 互补.18.解:(1)平行,理由如下:∠//EF AB ,130EFB ∠=︒,∠18013050ABF ∠=︒-︒=︒,∠20CBF ∠=︒,∠70CBA ABF CBF ∠=∠+∠=︒,∠70DCB ∠=︒,∠∠CBA =∠DCB ,∠//CD AB ;(2)∠//EF AB ,68CEF ∠=︒,∠68A ∠=︒,由(1)知://CD AB ,∠180ACD A ∠+∠=︒,∠180********ACD A ∠=︒-∠=︒-︒=︒, 又∠70DCB ∠=︒,∠1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒。
人教版七年级数学下册 第五章 相交线与平行线习题(含答案)
第五章 相交线与平行线一、单选题1.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D . 2.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是()A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余 D .∠AOC 与∠COB 互补3.如图,a ∥b ,∠1=130°,则∠2=( )A .50°B .130°C .70°D .120°4.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .5.如图,点E 在BC 的延长线上,则下列条件中,能判定 的是( )A .B .C .D . 6.在同一个平面内,两条直线的位置关系是A .平行或垂直B .相交或垂直C .平行或相交D .不能确定7.如图,直线//a b ,等腰直角三角形的两个顶点分别落在直线a 、b 上,若130∠=,则2∠的度数是( )A .45B .30C .15D .108.下列说法中:①在同一平面内,不相交的两条直线必平行;②同旁内角互补;③相等的角是对顶角;④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;⑤经过一点,有且只有一条直线与已知直线垂直.其中说法正确的个数有( )A .1个B .2个C .3个D .4个9.在下列命题中,为真命题的是( )A .两个锐角的和是锐角B .相等的角是对顶角C .同旁内角互补D .同角的补角相等10.如图,将边长为4个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四边形ABFD的周长为()A.12 B.16 C.20 D.24二、填空题11.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;12.在同一平面内有直线a1,a2,a3,a4…a2 020,若a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,按此规律下去,则a1与a2 020的位置关系是_______.13.两个角的两边分别平行,其中一个角是30°,则另一个角是________.14.下面物体的运动情况可以看成平移的是________(只写序号).(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车的车身的运动;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).三、解答题15.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.16.已知如图,1ABC ADC ∠=∠=∠,35∠=∠,24∠∠=, 180ABC BCD ∠+∠=.将下列推理过程补充完整:(1)因为1ABC ∠=∠(已知),所以AD (____)(2)因为35∠=∠(已知),所以AB ∥______,(__________________________) (3)因为180ABC BCD ∠+∠=(已知),所以________________,(___________________)17.完成下面的证明.已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F .求证:∠1=∠2.证明:∵BE⊥AD,∴∠BED=().∵CF⊥AD,∴∠CFD=.∴∠BED=∠CFD.∴BE∥CF().∴∠1=∠2()答案1.C2.C3.B4.D5.C6.C7.C8.A9.D10.B11.6212.平行13.30︒或150︒14.(2)(6)15.解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°, ∴∠BOD=∠AOC=36°.16.解:(1)∵1ABC ∠=∠(已知), ∴AD BC ∥,(同位角相等,两直线平行) (2)∵35∠=∠(已知),∴AB CD ∥,(内错角相等,两直线平行) (3)∵180ABC BCD ∠+∠=(已知), ∴AB CD ∥.(同旁内角互补,两直线平行) 17.证明:∵BE AD ⊥,∴90BED ∠=︒ (垂直定义), ∵CF AD ⊥,∴90CFD ∠=︒,∴∠BED =∠CFD .∴BE CF ∥(内错角相等,两直线平行), ∴12∠=∠(两直线平行,内错角相等)。
人教版七年级数学下册第五章 相交线和平行线练习(含答案)
第五章 相交线与平行线一、单选题1.在数学课上,老师让同学们画对顶角1∠与2∠,其中正确的是( )A .B .C .D .2.AOB ∠的平分线上一点P 到OA 的距离为5,Q 是射线OB 上任意一点,则( ) A .5PQ > B .5PQ ≥ C .5PQ < D .5PQ ≤ 3.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角4.如图,下列条件:①13∠=∠,①24180∠+∠=︒,①45∠=∠,①23∠∠=,能判断直线12l l //的有( )A.4个B.3个C.2个D.1个5.下面说法:①平面内,过一点有且只有一条直线与已知直线垂直;①对顶角相等;①两条直线被第三条直线所截,同位角相等;①从直线外一点到这条直线的垂线段叫做点到直线的距离,其中正确的有( )A.1个B.2个C.3个D.4个6.如图,直线AB① CD,① B=50°,① C=40°,则①E等于()A.70°B.80°C.90°D.100°7.如图,AB①CD,直线MN与AB、CD分别交于点E、F,FG平分①EFD,EG①FG于点G,若①CFN=110°,则①BEG=()A.20°B.25°C.35°D.40°8.下列语句是命题的是()A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补D.垂线段最短吗?9.下列图案中,可以利用平移来设计的图案是()A.B.C.D.10.如图,已知直线AB、CD被直线AC所截,AB①CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设①BAE=α,①DCE=β.下列各式:①α+β,①α﹣β,①β﹣α,①360°﹣α﹣β,①AEC的度数可能是()A.①①①B.①①①C.①①①D.①①①①二、填空题11.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,在铁路线上选一点来建火车站,应建在_____点.12.如图,利用三角尺和直尺可以准确的画出直线AB①CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;①用直尺紧靠三角尺的另一条边;①作直线AB,并用三角尺的一条边贴住直线AB;①沿直尺下移三角尺;正确的操作顺序应是:_____.13.把“对顶角相等”改成“如果…,那么…”:_________________________________.14.在如图所示的草坪上,铺设一条宽为2的小路,则小路的面积___________.三、解答题15.已知:直线AB与直线CD交于点O,过点O作OE①AB.(1)如图1,①BOC=2①AOC,求①COE的度数;(2)如图2.在(1)的条件下,过点O作OF①CD,经过点O画直线MN,满足射线OM 平分①BOD,在不添加任何辅助线的情况下,请直接写出与2①EOF度数相等的角.16.已知:如图,在①ABC中,CD①AB于点D,E是AC上一点且①1+①2=90°.求证:DE①BC.17.如图,已知①A=①AGE,①D=①DGC.(1)求证:AB①CD;(2)若①2+①1=180°,且①BEC=2①B+30°,求①C的度数.18.(1)如图1,AB①CD,①A=35°,①C=40°,求①APC的度数.(提示:作PE①AB).(2)如图2,AB①DC,当点P在线段BD上运动时,①BAP=①α,①DCP=①β,求①CPA与①α,①β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在射线DM上运动,请你直接写出①CPA与①α,①β之间的数量关系______.答案1.C2.B3.C4.B5.B6.C7.C8.C9.D10.D11.A12.①①①①13.如果两个角是对顶角,那么它们相等14.1615.(1)如图1,①①AOC+①BOC=180︒,且①BOC=2①AOC,①①AOC=60︒,①OE①AB,①①AOE=90︒,①①COE=90︒﹣60︒=30︒;(2)如图2,由(1)知:①AOC=60︒,①射线OM平分①BOD,①①BOM=①DOM=①AON=①CON=30︒,①OE①AB,OC①OF,①①AOE=①COF=90︒,①①AOC=①EOF=60︒,①①AOD=①BOC=①FON=①EOM=180︒﹣60︒=120︒=2①EOF,①与2①EOF度数相等的角是:①AOD,①BOC,①FON,①EOM.16.解:证明:①CD①AB(已知),①①1+①3=90°(垂直定义).①①1+①2=90°(已知),①①3=①2(同角的余角相等).①DE①BC(内错角相等,两直线平行).17.(1)①①A =①AGE,①D =①DGC又①①AGE =①DGC①①A=①D①AB①CD(2) ①①1+①2 =180°又①①CGD +①2=180°①①CGD=①1①CE①FB①①C=①BFD,①CEB +①B=180° 又①①BEC =2①B+30°①2①B +30°+①B=180°①①B=50° 又①AB①CD①①B=①BFD①①C=①BFD=①B=50°.18.解:(1)如图1,过P作PE①AB,①AB①CD,①PE①AB①CD,①①A=①APE,①C=①CPE,①①A=35°,①C=40°,①①APE=35°,①CPE=40°,①①APC=①APE+①CPE=35°+40°=75°;(2)①APC=①α+①β,理由是:如图2,过P作PE①AB,交AC于E,①AB①CD,①AB①PE①CD,①①APE=①PAB=①α,①CPE=①PCD=①β,①①APC=①APE+①CPE=①α+①β;(3)如图3,过P作PE①AB,交AC于E,①AB①CD,①AB①PE①CD,①①PAB=①APE=①α,①PCD=①CPE=①β,①①APC=①APE-①CPE,①①APC=①α-①β。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
初一数学第5章相交线与平行线练习题 2016.3.15 共120分一、选择题(本大题共6小题,每小题3分,共18分)
1.(3分)如图所示,同位角共有()
A.1对B.2对C.3对D.4对
2.(3分)下图中,∠1和∠2是同位角的是()
A.B.C.D.
3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()
A.50° B.60° C.140°D.160°
4.(3分)(2008•呼和浩特)如图,AB∥DE,∠E=65°,则
∠B+∠C=()A.135°B.115°C.36° D.65°
5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()
A.第一次向左拐30°,第二次向右拐30°
B.第一次向右拐50°,第二次向左拐130°
C.第一次向左拐50°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130
6.(3分)如图,如果AB∥CD,那么下面说法错误的是()
A.∠3=∠7 B.∠2=∠6 C.∠3+∠4+∠5+∠6=180°D.∠4=∠8
二、填空题(本大题共8小题,每小题3分,共24分).
7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3= °.
8.(3分)(2008•河北)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2= 度.
9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= °.
10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2= 度.(易拉罐的上下底面互相平行)
10题 11题 12题 13题
11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3= 度.
12.(3分)如图所示,请写出能判定CE∥AB的一个条件.
13.(3分)如图,已知AB∥CD,∠α= .
14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在
D′、C′的位置.若∠EFB=65°,则∠AED′等于
三、(本大题共2小题,每小题5分,共10分)
15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.
16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则
∠1与∠2的关系是.
四、(本大题共2小题,每小题6分,共12分)
17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.
18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.
五、(本大题共2小题,每小题8分,共16分)
19.(8分)推理填空:如图:
①若∠1=∠2,
则∥(内错角相等,两直线平行);
若∠DAB+∠ABC=180°,
则∥(同旁内角互补,两直线平行);
②当∥时,
∠C+∠ABC=180°(两直线平行,同旁内角互补);
③当∥时,
∠3=∠C (两直线平行,同位角相等).
20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.
六、(本大题共2小题,每小题9分,共18分)
21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.
22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.
七、(本大题共2小题,第23题10分,第24题12分,共22分)
23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.
24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.
25.(7分)如图,已知:EB∥DC,∠A=∠ADE,你认为∠C和∠E相等吗?为什么?
26.(5分)如图,已知∠BED=∠B+∠D,试说明AB与CD的关系.。