实例分析正、余弦定理判断三角形形状
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
正、余弦定理及应用举例
02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。
正、余弦定理与三角形形状判断附答案
正、余弦定理与三角形形状判断附答案一、使用正弦定理判断三角形性质的基本思路是将条件转化为边或角之间的关系,然后进一步判断。
二、使用余弦定理判断三角形性质的基本思路是关注特殊角的余弦值,将其转化为边与边之间的关系。
三、使用正弦和余弦定理综合判断三角形性质的基本思路是尽量统一边或角之间的关系,使得未知量的个数减少,从而可以得出结论。
常用的公式包括sinA=sin(π-A)=sin(B+C),以及正弦值的比可以直接化为边的比值。
1、已知在△ABC中,b=c•cosA,可以通过正弦定理得到a²+b²=c²,因此可以判断△ABC为直角三角形。
2、已知在△ABC中,角A、B均为锐角,且cosA>sinB,可以通过余弦定理得到cosA>cos(π/2-B),进一步得到A<π/2-B,因此可以判断△ABC为钝角三角形。
3、已知在△ABC中,b=a•sinC,c=a•cosB,可以通过正弦和余弦定理得到a²+b²=c²和b=c,因此可以判断△ABC为等腰直角三角形。
4、已知在△ABC中,2sinA•cosB=sinC,可以通过正弦和余弦定理得到2a•cosB=c和a=b,因此可以判断△ABC为等腰三角形。
5、已知在△ABC中,sinA=2sinB•cosC,sinA=sinB+sinC,可以通过正弦定理得到a=b+c/2,进一步得到a=2bc/(b²+c²),因此可以判断△ABC为等腰直角三角形。
6、已知在△ABC中,(a+b+c)(b+c-a)=3bc,sinA=2sinB•cosC,可以通过正弦和余弦定理得到a=b+c和a=b,因此可以判断△ABC为等边三角形。
已知在三角形ABC中,角B=60度,且b=ac。
根据余弦定理,cosB=b^2/(2ac),化简得到ac=a^2+c^2-b^2=a^2+c^2-ac,进一步化简得到(a-c)^2=0,因此a=c。
利用正余弦定理三角形形状的判断
又A,B,C∈(0,π),所以A=B=C, 从而三角形ABC为正三角形.
法二?
变1.在ABC中,a, b, c为边长,A,B,C为a,
b, c所对的角,若 a b c , sin B sin C sin A
试判断ABC的形状.
例3、在△ABC中,已知sinA=2sinBcosC, 试判断该三角形的形状.
4
2
1 (b c)2 1 bc(1 sin A) 0
4
2
1 (b c)2 0, 1 bc(1 sin A) 0
4
2
b c 1 sin
A
0
A
2
且b
c
作业点评: 在ABC中, 若b2 ac, 则B的取值范围?
A B C为等腰直角三角形.
旧知回顾: 正余弦定理,及其推论
三角形形状的判断
在ABC中, 有a cos A b cos B, 试判断此三角形的形状 。
利用正余弦定理推论进行边角互化! 划归思想!!!
类例:1.在ABC中,已知a2 tan B b2 tan A, 试判断ABC的形状.
变1''.已知方程x2 (b cos A)x a cos B 0的两根 之积等于两根之和,且a, b为ABC的边, A,B为a, b的对角, 试判断ABC的形状.
方法小结:三角形形状的判断主要是利 用正弦余弦定理边角互化,化成纯粹的 角或纯粹的边,实现“纯粹化”
这一“纯粹化”的方法,不光可用在形 状的判断上,也可在解三角形中也可应 用。
思考提升:
例4.已知ABC的面积S 1 (b2 c2 ),试确定ABC的形状.
4
解:S 1 (b2 c2 ) 1 bc sin A
解:由正弦定理及余弦定理,得
用正、余弦定理解三角形
灵活应用正、余弦定理解三角形利用正余弦定理解三角形在近几年的高考中出现的频率比较频繁,因此,掌握好正、余弦定理在各种题型中的应用就显得尤其重要。
下面就正、余弦定理的几种应用作一个归纳,希望能帮助同学们更好地掌握。
一、直接利用定理求边和角。
例1:在△ABC 中,0060,30,366==+=+B A b a ,求边c 的长。
解:∵ )(1800B A c +-==090 由正弦定理:Cc B b A a sin sin sin ==及等比定理得 0060sin 30sin 366sin sin sin ++=++=B A b a C c ∴12)31(21)31(62321366=++=++=c 二、配凑公式求边和角。
例2:若a ,b ,c 分别表示△ABC 的顶点A 、B 、C 所对的边长,且(a +b+c )(a +b -c )=3a b ,求cos (A+B )。
解: 由(a +b+c )(a +b -c )=3a b ,得ab c b a 3)(22=-+整理得:ab c b a =-+222, 故cos (A+B )=-cosC =-2122222-=-=-+ab ab ab c b a 三、利用定理求边和角的求值范围。
例3:①在锐角△ABC 中,a =1,b=2则c 的取值范围是多少?②设a ,a +1, a +2为钝角三角形的三边,则a 的取值范围是__________.解:①由余弦定理得: =2c C C ab b a cos 45cos 222-=-+由0<cosC<1 得512<<c 即 51<<c②由余弦定理得: 0)1(2)2()1(cos 222<++-++=a a a a a C 30310322<<⇔<<-⇔<--⇔a a a a四、利用定理判断三角形的形状。
例4:在△ABC ,已知)sin()()sin()(2222B A b a B A b a +-=-+,判断△ABC 的形状。
正余弦定理三角形形状判断知识分享
正余弦定理三角形形状判断正余弦定理与三角形形状的判断、掌握基本原理常用的定理或公式主要有以下几个:(1)在厶ABC 中,A + B + C = nsin A B sin C,cos A B cosC,A B Csin (A+B/2)=cos (C/2),tan A B cot C.2 2(2)正余弦定理及其变式:女口a = 2R si nA,b2 + c2—a2 =2b c cosA,这里,R为三角形外接圆的半径.(限于篇幅,定理原文及其它相关变式请读者自己回忆并写出).(3)射影定理:a = b cosC + c cosB.(用余弦定理很容易证得,请读者作为练习自行证之)、弄清题目类型1.目标明确型例1 在厶ABC 中,a2+b2=c2+ab,且sinAsinB=3,求证:△ ABC为等边 4 三角形•分析:由a2+b2=c2+ab,知,用余弦定理可求出C角,证明:由余弦定理,得c2=a2+b2—2abcosC.a2+b2二c2+ab,二ab—2abcosC=0.1 --cosC=—,…C=60 23 1 ■/sinAsinB=— , cos (A+B ) =cos (180°-C ) =cos120°= —4 2cos (A+B ) =cosAcosB — sinAsinB , ••• cosAcosB= 1.4• cos (A — B ) =cosAcosB+sinAsinB=1.•••—nV A — B < n,二 A — B=0.• A=B=60°• △ ABC 是等边三角形•评注:这类题目往往由于目标明确,在利用正弦定理或余弦定理得出一些 初步结论之后能够很快确定后续思路•尤其本题中首先得出了一个特殊角,加 3之sinAsinB=3,则更容易联想到三角形内角和定理了.42•模糊探索型例2判定满足下列条件的△ ABC 的形状: (1兀祖¥ =三[(訴匕为角儿角B 的对边打2 a + bc(2)smS * sin A = uoJ —旦 tanA. + tanB +-7'3 = V^tanA • tanB. 解:(1)由已知及正弦定理得A +B A -B 2cos -------- sin ―-—2 2'.A + B _2 sitL ------- cos ---------2 2A-BsitiA - sinEdnA 十 &nBA+E所以tan 矗即ZA = ZB 或厶+ ZB 三;,因此△ ABC 是以/ C 为顶角的等腰三角形或以/ C 为直角的直角三角形.(2)由 ^-[cos(A - B) -CQS (A 十B)]=右(1 +cosC5 , l^cosfA -B) = L 所以氏XtanA + takB = j3(tanA * tacB -1)=>ZA = ZB = p因此△ ABC 为正三角形.评注:这类题目,只要求判断三角形形状,并没有清晰的线索,往往需要 我们根据已知条件去分析和探索,但一般说来,主要应用本文开头提到的相关 知识就能够解决•值得一提的是,本题就解题思想而言与例 1颇有异曲同工之处.三、搞清一般规律tan A a 2例3在厶ABC 中,若空虫 笃,试判断厶ABC 的形状.tan B b2解法一:由正弦定理,得 sinAcosB 呼即: cosB sinAsin2A sin2B sin BcosA sin A cosA sinBtanA + tanB1 - tauAtariB=J ,所以tanC =羽化简:b 2(a 2 + c 2 b 2) = a 2(b 2 + c 2 a 2)••• (a 2 b 2)(a 2 + b 2 c 2)=0 ••• a = b 或 a 2 + b 2 = c 2• △ ABC 为等腰或直角三角形.评注:与三角形形状相关的综合题往往所给条件中富含三角形的边角关 系,本题的两种解法,实际上提供了两种技巧:解法一是把“边角关系”转化成 了三角形三内角之间的关系,解法二则是把“边角关系”转化成了三角形三边之 间的关系,充分体现了转化思想,四、莫忘相关技巧sin AcosB a 2 2 cos As in B b 2sin AcosB sin A 即.BcosA sin 2 A cosA sinBsin 2A 即:cosB sinAB••• 2A = 2B 或 2A = 180 2B即 A= B 或 A + B = 90•••△ ABC 为等腰或直角三角形.解法二:由题设,有sin AcosB cos As in Bb 22 2 .2a a c b22R 2ac a.2 2 2 2b c a b b2bc 2R••• 2sinB sinC = 1 + cos [ 180°—(B + C )]将 cos (B + C )= cosBcosC — sinBsinC 代入上式得cosBcosC + si nBs inC = 1,cos (B — C )= 1又 0v B , C < n 「•— nV B — C < nB 一C = 0・°. B = C故此三角形是等腰三角形•评注:学习正、余弦定理,不要忘记前面学过的相关知识,如本题中,利 用“降幕扩角公式”把半角化成“单角”的过程起到了关键作用. 五、不要轻易下结论a b例4在厶ABC 中,若有—A ―B cos — cos — 2 2 解:设 a=ksinA,,b=ksinB,c=ksinC k si nA k sin BA Bcos cos2 2.A . B . C sin sin sin2 2 2©一229M■ DI T>BB22 22c c , cos2试判断△ ABC 的形状? k sin C c cos 2 22 2,从而,△ ABC 是正三角形.评注:见比设k ,是常用技巧•其实,正弦定理中的 2R 非常类似于这里例5心 ABC 中,已知sinBsinC=cos 2A试判断此三角形的类型解:sinBs心co時sinB si nC =cosA2例6 在二壬匚中,已知■ ■ ..-I : - I -I •—: 1 - . - -r 试判断△ ABC 的形状.证明:二,:.-I,- | ' 一丨■' .■- ■- I - ' - - :. I.一二二I : _i . !- 二一二,即.I ■...一二一「直角三角形且又丄一J :- ■■■\ ■■' IIC = 45\.二B=F_§_A=90•一综上,△ ABC为等腰直角三角形.评注:许多结论中有时不见得只有一层答案,所以在得出初步结论来之后,一定要进一步思考一番,看已知条件是否全部用到了,看结论是否想全了 .如本题中常常有许多同学在得出直角三角形且上=1厂”之后便不再往下写,从而造成失误.除此而外,还要注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别。
正弦余弦定理判断三角形形状专题
例1:已知△ABC 中,bsinB=csinC,且C B A 222sin sin sin +=,试判断三角形的形状. 例2:在△ABC 中,若B=60,2b=a+c,试判断△ABC 的形状.例3:在△ABC 中,已知22tan tan ba B A =,试判断△ABC 的形状. 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA=CB CB cos cos sin sin ++,试判断三角形的形状.例5:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状. (2)若b=asinC,c=acosB,判断△ABC 的形状. 例6:已知△ABC 中,54cos =A ,且3:2:1)2(::)2(=+-c b a ,判断三角形的形状. 例7、△ABC 的内角A 、B 、C 的对边abc,若abc 成等比数列,且c=2a ,则△ABC 的形状为( )∴△ABC 为钝角三角形。
例8 △ABC 中,sinA=2sinBcosC,sin 2A=sin 2B+sin 2C,则△ABC 的形状为( )例9△ABC 中A 、B 、C 的对边abc ,且满足(a 2+b 2)sin(A-B)=(a 2-b 2)sinC,试判断△ABC 的形状。
∴△ABC 为等腰三角形或直角三角形。
1、 在三角形ABC 中,三边a 、b 、c 满足::2:6:(31)a b c =+,试判断三角形的形状。
所以三角形为锐角三角形。
3、在△ABC 中,已知sin sin B C =cos 22A 试判断此三角形的类型.故此三角形是等腰三角形.4、(06陕西卷) 已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( )A 、三边均不相等的三角形B 、直角三角形C 、等腰非等边三角形D 、等边三角形 5、在ABC ∆中,设,,,BC a CA b AB c ===若,a b b c c a ⋅=⋅=⋅判断ABC ∆的形状。
正余弦定理判断三角形形状
பைடு நூலகம் 练习
在△ABC中,角A、B、C所对的边 为a、b、c,已知 cos2 A bc ,试
2 2c
判断三角形的形状
资料整理
• 仅供参考,用药方面谨遵医嘱
正余弦定理判断三角形形状
1.判断三角形的形状特征 必须从研究三角形的边与边的关系,或角的关系 入手,充分利用正弦定理与余弦定理进行转化,即化 边为角或化角为边,边角统一. 三角形形状的判断依据: (1)等腰三角形:a=b 或 A=B; (2)直角三角形:b2+c2=a2 或 A=90°; (3)钝角三角形:a2>b2+c2,A>90°; (4)锐角三角形:若 a 为最大边,且满足 a2<b2+ c2 或 A 为最大角,且 A<90°.
所以(a2-b2)(a2+b2-c2)=0, 所以 a=b 或 a2+b2=c2, 所以△ABC 是等腰三角形或直角三角形.
【点评】 依据已知条件中的边角关系判断三角形形 状时,主要有如下两条途径:
(1)利用正、余弦定理把已知条件转化为边边关系, 通过因式分解、配方等得出边的相应关系,从而判断三 角形的形状;
例1
在△ABC中,角A、B、C所对 的边为a、b、c,已知 acosB=bcosA,试判断三角形 的形状
例2
在△ABC 中,已知 a,b,c 分别是角 A,B,C 的对边, 若ba=ccoossBA,试确定△ABC 的形状.
【解析】由ba=ccoossBA,得 acosA=bcosB, 所以 a·b2+2cb2c-a2=b·a2+2ca2c-b2, 所以 a2(b2+c2-a2)=b2(a2+c2-b2), 所以 c2(a2-b2)=(a2+b2)(a2-b2),
直角三角形的正弦定理和余弦定理
直角三角形的正弦定理和余弦定理直角三角形是指其中一个角为90度的三角形。
在直角三角形中,我们可以利用正弦定理和余弦定理来求解各边长和角度的关系。
本文将详细介绍直角三角形的正弦定理和余弦定理,并给出应用实例。
一、正弦定理在直角三角形中,正弦定理可以用来求解三角形的边长比例关系。
正弦定理的表达式为:sin(θ) = 对边/斜边,其中θ表示一个角的度数。
例如,假设直角三角形的两条直角边分别为a和b,斜边为c,我们可以使用正弦定理来求解边长比例。
正弦定理的表达式为:sin(θ) = a/c 或者sin(θ) = b/c。
应用实例:已知一直角三角形的直角边长a为3,斜边c为5,我们可以利用正弦定理求解另一个直角边长。
根据正弦定理可得:sin(θ) = a/c,代入已知的数值得:sin(θ) = 3/5,通过反正弦函数求解得角度θ的值。
二、余弦定理在直角三角形中,余弦定理可以用来求解三角形的边长平方和角度之间的关系。
余弦定理的表达式为:c² = a² + b² - 2abcos(θ),其中θ表示一个角的度数。
例如,假设直角三角形的两条直角边分别为a和b,斜边为c,我们可以使用余弦定理来求解边长和角度之间的关系。
余弦定理的表达式为:c² = a² + b² - 2abcos(θ)。
应用实例:已知一直角三角形的直角边长a为3,斜边c为5,我们可以利用余弦定理求解另一个直角边长。
根据余弦定理可得:c² = a² + b² -2abcos(θ),代入已知的数值得:5² = 3² + b² - 2(3)(b)cos(θ),将已知数值代入并整理得到一个二次方程。
解这个二次方程可以求解出另一个直角边长b的值。
总结:直角三角形的正弦定理和余弦定理为解决三角形问题提供了便利的工具。
通过应用正弦定理和余弦定理,我们可以求解直角三角形中的各边长和角度之间的关系。
如何正确判断三角形的形状
如何正确判断三角形的形状正(余)弦定理是三角函数知识的重要组成部分,它揭示了三角形的边、角关系,是高考的热点之一。
利用正、余弦定理判断三角形的形状,是正、余弦定理应用的重要方面。
1 利用正弦定理判断三角形的形状1.1 在△ABC中,若a2tanB=b2tanA,判断△ABC的形状。
分析:正确使用正弦定理,将已知条件中的边化角后判断△ABC的形状。
解:在△ABC中,有正弦定理:===2Ra=2RsinA,b=2RsinB,∵a2tanB=b2tanA∴(2RsinA)2· =(2RsinB)2· 2sinA2cosA=2sinBcosBsin2A=sin2B,因为A、B为三角形的内角,∴2A=2B或2A=π-2BA=B或A+B=,所以△ABC为等腰三角形或直角三角形。
点评:本题利用正弦定理将已知条件转化成角的关系,利用诱导公式对条件进行化简、整理判断三角形的形状,同时注意角的关系有两种情况。
1.2 已知△ABC中,设=,=,=,则·=·=·判断△ABC的形状。
分析:要判断△ABC的形状,只需确定△ABC的三边或三角即可,此题解题的关键是建立向量的数量积与△ABC的边角关系。
解:如图所示:·=·得∵| |·||·cos(π-C)=| |·| |·cos(π-A), ∴| |·cosC=| |·cosA由正弦定理:a:c=sinA:sinC得sinAcosC=sinCcosA∴sin(A-C)=0,又∵-π<A-C<π ∴A-C=0即A=C,同理由·=·可得B=C,∴A=B=C即△ABC为正三角形。
点评:由===2Ra:b:c=sinA:sinB:sinC可以看出在题目中出现边的齐次式之比时,可以利用正弦定理将相应的边化为角。
2 利用余弦定理判断三角形的形状2.1 在△ABC中,若cos2=,试判断△ABC的形状。
正余弦定理三角形形状判断
正余弦定理与三角形形状的判断一、掌握基本原理常用的定理或公式主要有以下几个: (1)在△ABC 中,A + B + C = π,222CB A -=+π, ()C B A sin sin =+,()C B A cos cos -=+,sin (A+B/2)=cos (C/2),2cot 2tanC B A =+ . (2)正余弦定理及其变式:如a = 2R sin A ,b 2 + c 2-a 2 =2b c cos A ,这里, R 为三角形外接圆的半径. (限于篇幅,定理原文及其它相关变式请读者自己回忆并写出). (3)射影定理:a = b cos C + c cos B .(用余弦定理很容易证得,请读者作为练习自行证之)二、弄清题目类型1.目标明确型例1 在△ABC 中,a 2+b 2=c 2+ab ,且sin A sin B =43,求证:△ABC 为等边三角形. 分析:由a 2+b 2=c 2+ab ,知,用余弦定理可求出C 角, 证明:由余弦定理,得c 2=a 2+b 2-2ab cos C . ∵a 2+b 2=c 2+ab , ∴ab -2ab cos C =0.∴cos C =21,∴C =60° ∵sin A sin B =43,cos (A +B )=cos (180°-C )=cos120°=-21,cos (A +B )=cos A cos B -sin A sin B , ∴cos A cos B =41. ∴cos (A -B )=cos A cos B +sin A sin B =1. ∵-π<A -B <π,∴A -B =0. ∴A =B =60°∴△ABC 是等边三角形.评注:这类题目往往由于目标明确,在利用正弦定理或余弦定理得出一些初步结论之后能够很快确定后续思路.尤其本题中首先得出了一个特殊角,加之sin A sin B =43,则更容易联想到三角形内角和定理了.2.模糊探索型例2 判定满足下列条件的△ABC的形状:解:(1)由已知及正弦定理得因此△ABC是以∠C为顶角的等腰三角形或以∠C为直角的直角三角形.因此△ABC为正三角形.评注:这类题目,只要求判断三角形形状,并没有清晰的线索,往往需要我们根据已知条件去分析和探索,但一般说来,主要应用本文开头提到的相关知识就能够解决.值得一提的是,本题就解题思想而言与例1颇有异曲同工之处.三、搞清一般规律例3 在△ABC 中,若22tan tan ba B A =,试判断△ABC 的形状. 解法一:由正弦定理,得 BA BAA A AB B A 2sin 2sin sin sin cosA cosB sin sin cos sin cos sin 22=∴==即:即B A BAA A AB B A 2sin 2sin sin sin cosA cosB sin sin cos sin cos sin 22=∴==即: B A B A AA 2sin 2sin sin sin cosA cosB in in 22=∴=即:∴2A = 2B 或 2A = 180︒ - 2B即 A= B 或 A + B = 90︒∴△ABC 为等腰或直角三角形.解法二:由题设,有 22222222222222sin cos cos sin ba Rb bc a c b ac b c a R a b a B A B A =⋅-+-+⋅⇒= 22222222222222sin cos cos sin ba Rb bc a c b ac b c a R a b a B A B A =⋅-+-+⋅⇒= 化简:b 2(a 2 + c 2 - b 2) = a 2(b 2 + c 2 - a 2)∴(a 2 -b 2)(a 2 + b 2 - c 2)=0 ∴a = b 或 a 2 + b 2 = c 2∴△ABC 为等腰或直角三角形.评注:与三角形形状相关的综合题往往所给条件中富含三角形的边角关系,本题的两种解法,实际上提供了两种技巧:解法一是把“边角关系”转化成了三角形三内角之间的关系,解法二则是把“边角关系”转化成了三角形三边之间的关系,充分体现了转化思想,四、莫忘相关技巧例4 在△ABC 中,若有2cos2cos2cosc cB b A a==,试判断△ABC 的形状? 解:设a=k ⋅sinA,,b=ksinB,c=ksinC2cossin 2cos sin 2cos sin c Ck B B k A A k ⨯=⨯=⨯∴2sin2sin 2sin C B A ==∴ 而22220π<<B C A ,22220π<<B C A ,22220π<<B C A 222CB A ==∴,从而,△ABC 是正三角形.评注:见比设k ,是常用技巧.其实,正弦定理中的2R 非常类似于这里的k .例5 在△ABC 中,已知sin B ·sin C =cos 22A,试判断此三角形的类型解:∵ sin B ·sin C =cos 22A , ∴ sinB ·sinC =2cos 1A+∴ 2sin B ·sin C =1+cos [180°-(B +C )]将cos (B +C )=cos B cos C -sin B sin C 代入上式得 cos B cos C +sin B sin C =1, ∴ cos (B -C )=1又0<B ,C <π,∴-π<B -C <π ∴ B -C =0∴ B =C 故此三角形是等腰三角形评注:学习正、余弦定理,不要忘记前面学过的相关知识,如本题中,利用“降幂扩角公式”把半角化成“单角”的过程起到了关键作用.五、不要轻易下结论例 6 在 中,已知试判断△ABC 的形状.证明:,即直角三角形且又综上,△ABC为等腰直角三角形.评注:许多结论中有时不见得只有一层答案,所以在得出初步结论来之后,一定要进一步思考一番,看已知条件是否全部用到了,看结论是否想全了.如本题中常常有许多同学在得出“直角三角形且”之后便不再往下写,从而造成失误.除此而外,还要注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别。
利用正(余)弦定理判断三角形形状
利用正(余)弦定理判断三角形形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:A R a sin 2=,C ab c b a cos 2222=-+等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系.如:sin A =sin B ⇔A =B ;sin(A -B)=0⇔A =B ;sin 2A =sin 2B ⇔A =B 或A+B =2π等; 二是利用正弦定理、余弦定理化角为边,如bca cb A R a A 2cos ,2sin 222-+==等,通过代数恒等变换,求出三条边之间的关系进行判断.例:在△ABC 中,已知角A ,B ,C 所对的边分别是a,b,c ,若(a+b+c)(a+b-c)=3ab ,且2cos Asin B=sin C ,试判断△ABC 的形状.思路一:根据条件,判断三角形三边的关系,此时需要化角为边;思路二:可以把角和边巧妙地结合起来,同时考虑边之间的关系,角之间的关系. 方法一:由正弦定理得b c B C =sin sin ,∵2cos Asin B=sin C ,bc B C A 2sin 2sin cos ==∴, 由余弦定理的推论得bca cb A 2cos 222-+= ∴bc bc a c b 22222=-+, 化简得2222c a c b =-+,∴a=b ; 又∵(a+b+c)(a+b-c)=3ab ,∴ab c b a 3)(22=-+,化简得22234b c b =-,∴b=c ,∴a=b=c ,即△ABC 是等边三角形.方法二:∵A+B+C=π,∴sin C=sin(A+B),又2cos Asin B=sin C ,∴2cos Asin B=sin(A+B), ∴2cos Asin B=sin Acos B+cos Asin B ,∴sin Acos B-cos Asin B=0,∴sin(A-B)=0,∵A,B ∈(0,π),∴A-B ∈(-π,π), ∴A=B ,又∵(a+b+c)(a+b-c)=3ab ,∴ab c b a 3)(22=-+,即ab c b a =-+222,由余弦定理的推论得2122cos 222==-+=ab ab ab c b a C 又C ∈(0,π),3π=∴C ,又A=B ,∴△ABC 是等边三角形.规律总结:应用正弦定理进行判断或证明的方法:①判断三角形的形状实质是判断三角形的三边或三角具有怎样的关系;②利用正弦定理化边为角或化角为边,以实现边角的统一,便于寻找三边或三角具有的关系;③判断三角形的形状的常见结果有等腰三角形、等边三角形、直角三角形或等腰直角三 角形.针对性练习:1.在△ABC 中,若a 2tan B=b 2tan A ,试判断△ABC 的形状.【解析】法一:由正弦定理及已知,得sin 2A ·sin B cos B=sin 2B ·sin A cos A , 即sin Acos A=sin Bcos B ,∴sin 2A=sin 2B. ∵0<2A,2B<2π,2A+2B<2π;∴2A=2B 或2A=π-2B.即A=B 或A+B=2π. 所以,三角形ABC 是等腰三角形或直角三角形.法二:在得到sin 2A=sin 2B 后,也可以化为sin 2A-sin 2B=0, ∴2cos(A+B)sin(A-B)=0,∴cos(A+B)=0或sin(A-B)=0.∵0<A+B<π,且-π<A-B<π,∴A+B=2π或A-B=0, 即A+B=2π或A=B.∴△ABC 是等腰三角形或直角三角形. 2.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.【解析】方法一:由正弦定理,得2sin B=sin A+sin C.∵B =60°,∴A+C =120°,即A =120°-C ,代入上式,得2sin 60°=sin(120°-C)+sin C 展开,整理得: ∴sin(C+30°)=1,∴C+30°=90°,∴C =60°,故A =60°,∴△ABC 为正三角形.方法二:由余弦定理,得B ac c a b cos 2222-+=,∵B=60°, 2c a b +=, 60cos 2)2(222ac c a c a -+=+, 整理,得0)(2=-c a ,∴a=c. 从而a =b =c ,∴△ABC 为正三角形.。
正弦余弦定理判断三角形形状专题
正弦余弦定理判断三角形形状专题三角形是平面几何中最基本的图形之一,根据三个角或边的关系,我们可以判断三角形的形状。
在三角形的形状判断中,正弦余弦定理是一种常用的工具。
本文将以正弦余弦定理为基础,探讨如何判断三角形的形状,包括等边三角形、等腰三角形和直角三角形。
一、正弦余弦定理的基本概念在介绍如何判断三角形的形状之前,我们首先了解一下正弦余弦定理的基本概念。
正弦定理表达了三角形的边与其对应的角之间的关系,而余弦定理则描述了三角形的两条边和夹角的关系。
1. 正弦定理正弦定理可以表示为:在任意三角形ABC中,三边a、b、c与其对应的角A、B、C之间有以下关系:\[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]2. 余弦定理余弦定理可以表示为:在任意三角形ABC中,三边a、b、c与其对应的角A、B、C之间有以下关系:\[ c^2 = a^2 + b^2 - 2ab\cos C \]二、判断等边三角形等边三角形是指三条边的长度相等的三角形。
根据正弦余弦定理,我们可以得出以下结论:如果在三角形ABC中,有a=b=c,则该三角形为等边三角形。
三、判断等腰三角形等腰三角形是指两条边的长度相等的三角形。
根据正弦余弦定理,我们可以得出以下结论:1. 如果在三角形ABC中,有a=b,则该三角形为等腰三角形。
2. 如果在三角形ABC中,有b=c,则该三角形为等腰三角形。
3. 如果在三角形ABC中,有a=c,则该三角形为等腰三角形。
四、判断直角三角形直角三角形是指其中一个角为90度的三角形。
根据正弦余弦定理,我们可以得出以下结论:1. 如果在三角形ABC中,有$\sin A = 0$ 或 $\sin B = 0$ 或 $\sin C = 0$,则该三角形为直角三角形。
2. 如果在三角形ABC中,有$\cos A = 0$ 或 $\cos B = 0$ 或 $\cos C= 0$,则该三角形为直角三角形。
余弦定理判断三角形形状
余弦定理判断三角形形状三角形是初中数学中经常会遇到的概念,许多与三角形相关的问题都需要根据三角形形状进行判断、计算或者推导。
在判断三角形的形状时,经常会用到余弦定理。
本文将围绕“余弦定理和三角形形状”展开讲述,希望能够为各位初学者提供一些帮助。
一、“余弦定理”的定义在讲解“余弦定理判断三角形形状”之前,首先需要了解什么是“余弦定理”。
余弦定理是三角形中的一种重要的公式,它可以用来求解三角形中的任意一个角的余弦值,也可以用来判断三角形的形状。
对于三角形ABC,如果它的三边长度分别为a、b、c,那么它的余弦定理可以表述为:c² = a² + b² - 2abcosC 或cosC = (a² + b² - c²) / 2ab在这个公式中,cosC表示三角形ABC的角C的余弦值。
二、“余弦定理判断三角形形状”的步骤了解了余弦定理的定义之后,就可以开始讲解如何用余弦定理来判断三角形的形状了。
下面是余弦定理判断三角形形状的具体步骤:1. 通过已知的数据求出三个角的余弦值。
在实际运用中,我们经常会知道三角形的三边长度,但是对于三角形的角度却不了解,因此需要先求出三个角的余弦值。
以三角形ABC为例,假设已知三条边分别为a、b、c,我们可以通过余弦定理来求出三个角的余弦值,公式如下:cosA = (b² + c² - a²) / 2bccosB = (a² + c² - b²) / 2accosC = (a² + b² - c²) / 2ab2. 根据余弦值的大小来判断三角形的形状。
通过上述公式得出三个角的余弦值之后,就可以开始判断三角形的形状了。
具体判断方法如下:- 如果三个角的余弦值都小于0,则这个三角形为锐角三角形。
- 如果三个角的余弦值都大于0,则这个三角形为钝角三角形。
余弦定理判断三角形形状
余弦定理判断三角形形状三角形是初中数学中最基础的概念之一。
在我们的日常生活中,三角形这个形状也随处可见。
但是,我们如何判断一个三角形的形状呢?这时候,我们就需要使用余弦定理了。
余弦定理,是指在任意一个三角形 ABC 中,将 C 视为直角顶点时,余弦定理可以表示为:c² = a² + b² - 2abcosC,其中 a、b、c 分别表示三角形 ABC 的边长,C 表示三角形 ABC 中 C 点对应的内角。
根据余弦定理,我们可以判断三角形的形状,主要表现在以下几个方面:一、锐角三角形在锐角三角形中,所有的内角都小于 90 度。
当三角形的三边的长度分别为 a、b、c 时,若 c² < a² + b²,那么我们就可以肯定这是一个锐角三角形。
二、钝角三角形在钝角三角形中,至少有一个内角大于 90 度。
根据余弦定理,我们可以得到 c² > a² + b²,这就是判断钝角三角形的方法。
三、直角三角形在直角三角形中,一个角度为 90 度。
根据勾股定理,我们可以得到 c² = a² + b²,但也可以使用余弦定理判断:当 C 等于 90度时,cosC 为 0,此时 c² = a² + b²,因此也可以判断出这是一个直角三角形。
通过余弦定理,我们可以轻松地判断一个三角形的形状。
但是,在实际运用中,我们还需要注意一些细节问题,例如要注意角度的单位,以及计算误差可能带来的影响等等。
总之,在学习中坚实的基础知识的同时,我们还要注重细节的处理,才能更好地理解和运用这个定理。
利用正弦、余弦定理判定三角形的形状
高中数学:利用正弦、余弦定理判定三角形的形状在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( D ) A .等腰三角形 B.直角三角形C .等腰直角三角形D.等腰或直角三角形 解析:因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形.【条件探究1】 将典例中的条件变为:若cos A cos B =b a =2,则该三角形的形状是( A )A .直角三角形B.等腰三角形 C .等边三角形 D.钝角三角形解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由b a =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.【条件探究2】 将典例中的条件改为“若2sin A cos B =sin C ”,那么△ABC 的形状为等腰三角形__.解析:方法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .所以△ABC 为等腰三角形.方法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .所以△ABC 为等腰三角形.【条件探究3】 将典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状.解:由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc ,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2).∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2. ∴△ABC 为直角三角形.1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.(1)在△ABC 中,内角A ,B ,C 所对边分别是a ,b ,c ,若sin 2B 2=c -a 2c ,则△ABC 的形状一定是直角三角形__.解析:由题意,得1-cos B 2=c -a 2c ,即cos B =a c ,又由余弦定理,得a c =a 2+c 2-b 22ac ,整理得a 2+b 2=c 2,所以△ABC 为直角三角形.(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .①求角A 的大小;②若sin B +sin C =3,试判断△ABC 的形状.解:①由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理, 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°.②∵A +B +C =180°,∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin120°cos B -cos120°sin B = 3.∴32sin B +32cos B =3,即sin(B +30°)=1.∵0°<B <120°,∴30°<B +30°<150°.∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.。
如何判断三角形的形状
利用正、余弦定理判断三角形的形状(1)在ABC △中,分别为角 的对边),则ABC △的形状为A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形(2)已知ABC △的三个内角满足sin sin sin 511:13A B C =:::,则ABC △是 A .等腰三角形 B .锐角三角形 C .直角三角形D .钝角三角形(3)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,若2222b c a bc +=+,且cos 0C =,则△ABC 是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【参考答案】(1)A ;(2)D ;(3)D . 【试题解析】(1)∵2cos,22B a c c +=∴1cos ,22B a c c ++=∴cos ,a B c= ∴由余弦定理,得2222a c b aac c+-=,∴22222a c b a +-=,∴222.a b c += ∴ABC △为直角三角形.故选A.(2)由正弦定理可得::5:11:13a b c =,令5,11,13a t b t c t ===,则c 为最长的边,故角C 最大,由余弦定理可得22223cos 02110a b c C ab +-==-<,所以角C 为钝角,故ABC △是钝角三角形.故选D .(3)由余弦定理,可得222cos 222b c a A bc bc +-===,[来源:学,科,网] 所以45A =︒,又cos 0C =,所以90C =︒,所以△ABC 是等腰直角三角形.[来源:学&科&网Z&X&X&K] 故选D .【解题必备】判断三角形的形状有以下几种思路: ①转化为三角形的边来判断;②转化为角的三角函数(值)来判断. 可简记为“化角为边”、“化边为角”.1.在ABC △中, , ,则ABC △一定是 A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形2.在ABC △中,cos cos a bB A=,则ABC △一定是 A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形3.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos aB c=,则此三角形的形状为 A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰或直角三角形4.已知在ABC △中, ,则ABC △的形状是 A .锐角三角形 B .钝角三角形 C .等腰三角形 D .直角三角形1.【答案】D【解析】由余弦定理可知 , 而 , ,所以 ,[来源:学#科#网Z#X#X#K] 而 ,所以ABC △一定是等边三角形. 故选D . 2.【答案】D【解析】由正弦定理可知:sin sin a bA B=,[来源:学*科*网] 而已知cos cos a b B A =,所以cos sin cos sin B AA B=,[来源:学_科_网] 即sin cos sin cos sin 2sin 2A A B B A B ⋅=⋅⇒=,而,(0,π),A B ∈即2,2(0,2π)A B ∈, 所以22A B =或22πA B +=, 即A B =或π2A B +=, 所以ABC △是等腰三角形或直角三角形.故选D 3.【答案】B【解析】因为2cos a B c=,所以由正弦定理可得sin 2cos sin AB C =,即2sin cos sin C B A =,所以2sin cos sin cos cos sin C B B C B C =+, 因此sin cos sin cos C B B C =,所以tan tan C B =,所以B C =,即ABC △为等腰三角形.故选B. 4.【答案】D【解析】根据正弦定理,原式可变形为: , 所以,整理得 ,,即ABC △是直角三角形.故选D .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例分析正、余弦定理判断三角形形状
作者:张志明
来源:《新课程·中学》2017年第06期
摘要:主要通过例题来探讨如何用正、余弦定理判断三角形形状。
基本思路是将过角化为“纯边”或化为“纯角”问题。
关键词:正弦定理;余弦定理;三角形形状
三角形的各种不同形态有锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形等,判断三角形形状特征,必须深入研究边与边的等式关系:三边是否满足勾股定理?两边还是三边是否相等?还要研究角与角的大小关系:两角还是三角是否相等?是否有直角或者钝角?判断三角形形状的基本思路是通过变形将边角关系化为“纯边”或化为“纯角”的等式。
然后利用边边关系,或角角关系,求出大小或者找出对应关系,从而作出正确
判断。
为了更方便地观察判断三角形的形状问题,从以下例题入手进行分析。
例1:在△ABC中,若■=■=■,则△ABC是什么三角形?
解析:等式中既有角又有边,化为“纯边”或化为“纯角”。
观察发现化为“纯角”,可以得出角的大小,可以确定△ABC的形状。
解:由a=2RsinA,b=2RsinB,c=2RsinC。
且■=■=■。
可以得到■=■=■,1=■=■=■
从而tanB=tanC=1,B=C=45°,A=180°-(B+C)=90°
所以△ABC为等腰直角三角形。
例2:在△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,试判断△ABC的形状。
解析:对于等式中既有角又有边,基本思路化为“纯边”或化为“纯角”。
观察
sin2A=sin2B+sin2C中有平方,从正弦定理入手化成“纯边”。
解:由正弦定理sin2A=sin2B+sin2C,可得a2=b2+c2,从而△ABC为直角三角形,
A=90°。
故B+C=90°,则B=90°-C,sinB=cosC。
又sinA=2sinBcosC可得1=2sin2B,sinB=■,B=45°。
故C=45°。
故△ABC为等腰直角三角形。
例3:在△ABC中,已知■=■,试判断△ABC的形状。
解析:题目中有正切,利用正切的定义转化为正弦、余弦,然后化为“纯边”或化为“纯角”。
解:法1:由题意得■=■,整理得sinAcosA=sinBcosB。
即sin2A=sin2B。
又A、B为△ABC的内角∴2A+2B=π或2A=2B
∴A=B或A+B=■,∴△ABC的形状为等腰三角形或直角三角形。
法2:■=■,由余弦定理得■=■。
整理得(a2-b2)(a2+b2-c2)=0∴a2=b2或a2+b2=c2∴a=b或a2+b2=c2
从而可以得出△ABC为等腰三角形或直角三角形
例4:在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试判断△ABC的形状。
解析:对于观察条件(a+b+c)(b+c-a)=3bc,会出现b2,c2,a2,bc,所以从余弦定理入手求出角A,对于条件sinA=2sinBcosC,既有正弦又有余弦,从三角函数入手也可以转化为“纯边”。
解:∵(a+b+c)(b+c-a)=3bc,∴{(b+c)+a}{(b+c)-a}=3bc,
(b+c)2-a2=3bc,b2+c2-a2=bc,cosA=■=■=■,A=■
方法一:sinA=2sinBcosC,
sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,
sinBcosC-cosBsinC=sin(B-C)=0,
又B,C为△ABC的内角。
故B=C,又A=■,A+B+C=π,所以B=C=■。
故△ABC为等边三角形。
方法二:sinA=2sinBcosC,由正弦、余弦定理将其化成“纯边”
a=b·■,化简得a2=a2+b2-c2,b2=c2,b=c。
故B=C。
又A=■,故A=B=C=■。
故△ABC为等边三角形。
高中常见基本思路是利用三角形正、余弦定理将等式化成“纯边”或“纯角”,从而求出具体边角关系来进行判断。
在解决问题时,常要结合三角公式进行化简,有时还要用到三角函数的有关性质。
参考文献:
[1]唐益才,孙令华.鼎尖教案数学必修五[M].吉林:延安教育出版社,2015.
[2]尧林华.新课程新练习数学必修五[M].江西:二十一世纪出版社集团,2009.
编辑张珍珍。