2013年全国高考数学试题分类汇编空间几何体的表面积和体积

合集下载

2013年高考真题解析分类汇编(文科数学)7:立体几何 )

2013年高考真题解析分类汇编(文科数学)7:立体几何 )

2013年高考解析分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文8))某几何体的三视图如题(8)所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D【解析】本题考查三视图以及空间几何体的表面积公式。

由三视图可知该几何体是个四棱柱。

棱柱的底面为等腰梯形,高为10.等腰梯形的上底为2,下底为8,高为4,腰长为5。

所以梯形的面积为284202+⨯=,梯形的周长为282520++⨯=。

所以四棱柱的表面积为2022010240⨯+⨯=,选D.2 .(2013年高考课标Ⅱ卷(文9))一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()(A) (B) (C) (D)【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC-的直观图,以zOx平面为投影面,则得到正视图(坐标系中红色部分),所以选A.3 .(2013年高考课标Ⅰ卷(文11))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+ 【答案】A【解析】由三视图可知,该几何体的下部分是平放的半个圆柱,圆柱的底面半径为2,圆柱的高为4。

上部分是个长方体,长方体的棱长分别为2,2,4.所以半圆柱的体积为212482ππ⨯⨯⨯=,正方体的体积为22416⨯⨯=,所以该几何体的体积为168π+,选A.4 .(2013年高考大纲卷(文11))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23B.3C.3D .13【答案】A【解析】如图,因为BD ⊥平面ACC 1A 1,所以平面ACC 1A 1⊥平面BDC 1,在Rt △CC 1O 中,过C 作CH ⊥C 1O 于H ,连结DH ,则∠CDH 即为所求,令a AB =,显然2223a CH a ⨯===,所以223sin 3a CDH a ∠==,故选A.5 .(2013年高考四川卷(文2))一个几何体的三视图如图所示,则该几何体可以是 ( )A .棱柱B .棱台C .圆柱D .圆台【答案】D【解析】由三视图可知,该几何体为圆台. 6 .(2013年高考浙江卷(文5))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B【解析】此图的直观图是一个底面边长为6和3,高为6的长方体截去一个角,对应三棱锥的的三条侧棱上分别为3,4,4.如图。

空间几何体的表面积和体积球、柱、锥、台的表面积和体积的计算公式及其应用

空间几何体的表面积和体积球、柱、锥、台的表面积和体积的计算公式及其应用

空间几何体的表面积和体积球、柱、锥、台的表面积和体积的计算公式及其应用二. 课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式。

三. 命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。

即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会用体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。

由于本讲公式多反映在考题上,预测2008年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;[教学过程](一)基本知识要点回顾1. 多面体的面积和体积公式S·h底ch′h (S 上底+S 下底) (c+c ′)表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表示高,h ′表示斜高,l 表示侧棱长。

2. 旋转体的面积和体积公式πr 2h πh (r 21+r 1r 2+r 22)πR 3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台上、下底面半径,R 表示半径。

【典型例题】例1. 一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm )。

点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考查。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

42空间几何体的表面积和体积

42空间几何体的表面积和体积

∴四边形 ABEG 为平行四边形. ABEG 为平行四边形. ∴四边形ABEG 为平行四边形. ∴四边形 ABEG 为平行四边形. ∴四边形 ∴四边形 ABEG 为平行四边形. ∴BE∥AG. ∴BE∥AG. ∴BE∥AG. ∴BE∥AG. ∴BE∥AG. ∴BE∥AG. ∴BE∥AG. 又∵BE⊄平面ADF,AG⊂平面ADF, 又∵BE⊄平面 ADF,AG⊂平面 ADF, 又∵BE⊄平面 ADF,AG⊂平面 ADF, 又∵BE⊄平面 ADF,AG⊂平面 ADF, 又∵BE⊄平面 ADF,AG⊂平面 ADF, 又∵BE⊄平面 ADF,AG⊂平面 又∵BE⊄平面 ADF,AG⊂平面 ADF, ADF, ∴BE∥平面 ADF. ∴BE∥平面ADF. ∴BE∥平面ADF. ∴BE∥平面 ADF. ∴BE∥平面 ADF. ∴BE∥平面 ∴BE∥平面 ADF. ADF.
1 π 2 1×2- ×π×1 =2- , 2 2 π 四棱柱中不重合的表面积为 四棱柱中不重合的表面积为 2- +1×2×2+2×2+2=12 2 π π 2- +1×2×2+2×2+2=12- , 1 5 1 2 2 半圆柱中不重合的表面积为 ×2π×2+ π= π, 2 2 2 半圆柱中不重合的表面积为 1 1×4π=2π,所以该几何体的表面积为 4π+ 1 5 半球的表面积为 ×2π×2+ π= π, 2 2 2 2
忆一忆知识要点
2.几何体的表面积
圆柱 圆台
S 2πr (r l )
r r
S π(r 2 r 2 r l rl )
r 0
圆锥
S πr (r l )
各面面积之和
展开图 各面面积之和 (1)棱柱、棱锥、棱台的表面积就是______________.

2013年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2013年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

图 2俯视图侧视图正视图2013年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题:1.(2013安徽理)在下列命题中,不是公理..的是( ) (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。

所以选A2. (2013北京文)如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ). A .3个 B .4个 C .5个 D .6个答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63,P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.3.(2013广东理) 某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .143 C .163D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,故选B .4.(2013广东文) 某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .1 【解析】由三视图判断底面为等腰直角三角形, 三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.5.(2013广东文) 设l 为直线,,αβA .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则αC .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.6.(2013广东理) 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【解析】D ;ABC 是典型错误命题,选D .A1A 正视图侧视图7、(2013湖北理) 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积8. (2013湖南文) 已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于____ D ____ A .B.1【答案】 D【解析】 正方体的侧视图面积为.2..2212同,所以面积也为正视图和侧视图完全相为,所以侧视图的底边长⋅=9.(2013湖南理) 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1BCD 【答案】 C【解析】 由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。

2013年高考数学分类试题汇编:立体几何(理科(高考必看典藏版))

2013年高考数学分类试题汇编:立体几何(理科(高考必看典藏版))

12012年高考真题理科数学解析汇编:立体几何一、选择题 1 .(2012年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( )A.BCD2 .(2012年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .18 3 .(2012年高考(浙江理))已知矩形ABCD ,AB =1,BC将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直4 .(2012年高考(重庆理))设四面体的六条棱的长分别为a ,且长为a 的棱与长,则a 的取值范围是 ( )A .B .C .D .5 .(2012年高考(四川理))如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P 两点间的球面距离为 ( ) A .arccos4R B .4R πC .arccos3R D .3R π6 .(2012年高考(四川理))下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 7 .(2012年高考(上海春))已知空间三条直线.l m n 、、若l 与m 异面,且l 与n 异面,则2( ) A .m 与n 异面. B .m 与n 相交. C .m 与n 平行. D .m 与n 异面、相交、平行均有可能. 8 .(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( )A.BCD .359 .(2012年高考(江西理))如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为10.(2012年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是11.(2012年高考(湖北理))我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈. 人们还用过一些类似的近似公式. 根据π =3.14159 判断,下列近似公式中最精确的一个是( )A.d ≈ B.d C.d ≈D(一)必考题(11—14题) 12.(2012年高考(湖北理)何体的体积为 A 图1 B C D侧视图正视图 俯视图3A .8π3B .3πC .10π3D .6π13.(2012年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为 ( )A .12πB .45πC .57πD .81π14.(2012年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 ( ) A .球 B .三棱柱 C .正方形 D .圆柱 15.(2012年高考(大纲理))已知正四棱柱1111ABCD A BC D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为 ( )A .2 BC.D .116.(2012年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+ B.30+C.56+D.60+17.(2012年高考(安徽理))设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件 二、填空题 18.(2012年高考(天津理))―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .419.(2012年高考(浙江理))已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.20.(2012年高考(四川理))如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.21.(2012年高考(上海理))如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。

2013高考数学(理)一轮复习:立体几何第2讲_空间几何体的表面积与体积

2013高考数学(理)一轮复习:立体几何第2讲_空间几何体的表面积与体积

二项分布与超几何分布辨析山东 韩文文二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........第2讲空间几何体的表面积与体积【2013年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积2.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.双基自测1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是().A.4πS B.2πSC.πS D.23 3πS解析设圆柱底面圆的半径为r,高为h,则r=S π,又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS.答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为().A.3πa2B.6πa2C.12πa2D.24πa2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2.答案 B3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积 中最大的是( ). A .8 B .6 2 C .10D .8 2解析 由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C.答案 C4.(2011·湖南)设右图是某几何体的三视图,则该几何体的体积为( ). A.92π+12 B.92π+18 C .9π+42 D .36π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+43π⎝ ⎛⎭⎪⎫323=92π+18.答案 B5.若一个球的体积为43π,则它的表面积为________. 解析 V =4π3R 3=43π,∴R =3,S =4πR 2=4π·3=12π. 答案 12π考向一 几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为( ). A .48 B .32+817 C .48+817D .80[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积.解析 换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817. 答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.答案 D考向二几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为().A.18 3 B.12 3 C.9 3 D.6 3[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解.解析该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V=3×3×3=9 3.答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】(2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于().A.283π B.163πC.43π+8 D.12 π解析由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+4 3π=28 3π.答案 A考向三几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423.(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练3】 已知在直三棱柱ABCA 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图 所示,则CP +P A 1的最小值为________. 解析 P A 1在平面A 1BC 1内,PC 在平面BCC 1内,将其铺平后=40,BC 1=2,又转化为平面上的问题解决.计算A 1B =AB 1A 1C 1=6,故△A 1BC 1是∠A 1C 1B =90°的直角三角形.铺平平面A 1BC 1、平面BCC 1,如图所示. CP +P A 1≥A 1C .在△AC 1C 中,由余弦定理得A 1C =62+(2)2-2·6·2·cos 135°=50=52,故(CP +P A 1)min =5 2.答案 5 2难点突破17——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】► (2010·安徽)一个几何体的三视图如图,该几何体的表面积为( ).A .280B .292C .360D .372【示例2】► (2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。

2013高考数学各省题目分类整理:立体几何基础

2013高考数学各省题目分类整理:立体几何基础

2013高考:立体几何基础【2013高考题组】(一)三视图问题1、(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为 。

第1题图 第2题图2、(2013全国课标I ,文11理8)某几何体的三视图如图所示,则该几何体的体积为( ) A 、168π+ B 、88π+ C 、1616π+ D 、816π+3、(2013全国课标II ,文9理7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画出该四面体三视图中的正视图,以zOx 平面为投影面,得到的正视图可以为( )(A) (B) (C)(D)俯视图正(主)视图侧视图俯视图4、(2013山东,文4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积和体积分别是( )A 、8B 、83C 、1),83D 、8,8第4题图 第5题图 第6题图 第7题图5、(2013浙江,文5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( ) A 、108cm 3 B 、100cm 3 C 、92cm 3 D 、84cm 36、(2013浙江,理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 cm 3。

7、(2013福建,理12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是 。

8、(2013辽宁,文理13)某几何体的三视图如图所示,则该几何体的体积是 。

第8题图 第9题图 第10题图9、(2013陕西,文12)某几何体的三视图如图所示,则其表面积为 。

10、(2013陕西,理12)某几何体的三视图如图所示,则其体积为 。

11、(2013湖南,文7)已知正方体棱长为1,其俯视图是一个面积为1的正方形,的矩形,则该正方体的正视图的面积为( )A B 、1 C D12、(2013湖南,理7)已知棱长为1的的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A 、1BC D13、(2013江西,文8)一几何体的三视图如图所示,则该几何体的体积是( ) A 、2009π+ B 、20018π+ C 、1409π+ D 、14018π+第13题图 第14题图 14、(2013湖北,理8)一个简单几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则由( )A 、1243V V V V <<<B 、1324V V V V <<<C 、2134V V V V <<<D 、2314V V V V <<< 15、(2013湖北,文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD,.(1)证明: // 平面;(2)求三棱柱的体积.【答案】(1)证明详见解析;(2)体积为1.【解析】本题主要考查线线平行、面面平行、线面垂直、柱体的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由图象可得到,,,所以得到四边形为平行四边形,所以,利用面面平行的判定得证;第二问,由面ABCD,所以得到是三棱柱的高,利用体积转化法,得到三棱柱的体积.试题解析:(1)设线段的中点为,∵BD和是的对应棱,∴,同理,∵AO和是棱柱的对应线段,∴,且,且四边形为平行四边形且,面面.(2)∵面ABCD,∴是三棱柱的高,在正方形ABCD中,,在中,,,所以,.【考点】线线平行、面面平行、线面垂直、柱体的体积.2.(正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.【答案】.【解析】正方体的体对角线,就是正方体的外接球的直径,所以球的直径为:所以球的半径为:,∴正方体的外接球的体积V=.【考点】1.球的体积;2.球内接多面体.3.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.【答案】(1)见解析;(2)见解析;(3)2【解析】(1)利用线线平行,推证线面平行;(2)利用一个面内一条直线与另一个平面垂直,则这两个平面垂直,证明面面垂直;(3)将不规则几何体转化为主题或椎体的体积求解.试题解析:(1)证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD且EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵面ACE,面ACE,∴BF∥平面ACE;(2)证明:∵ED⊥平面ABCD,平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又平面EAC,∴平面EAC⊥平面BDEF;(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴题型BDEF的面积为,由(1)知AC⊥平面BDEF,∴几何体的体积VABCDEF =2VA-BDEF=2×S BDEF·AO=.【考点】空间直线与平面位置关系,几何体的体积4.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.5.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.6.棱长为的正四面体的外接球半径为.【答案】【解析】记正四面体棱长为,外接球半径为,在正四面体中,利用棱,与棱共顶点的高及这条棱在对面上的射影构成的直角三角形可解得,因此中本题中.【考点】正四面体(正棱锥的性质).7.如图,已知平面,,,且是的中点,.(1)求证:平面;(2)求证:平面平面;(3)求此多面体的体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)取的中点,连结、,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.(1)取中点,连结、,为的中点,,且,又,且,且,为平行四边形,,又平面,平面,平面;(2),,所以为正三角形,,平面,,平面,又平面,,又,,平面,又,平面,又平面,平面平面;(3)此多面体是一个以为定点,以四边形为底边的四棱锥,,平面平面,等边三角形边上的高就是四棱锥的高,.【考点】1.直线与平面平行;2.平面与平面垂直;3.椎体体积的计算8.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以. (1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.9.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.10.已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.【答案】(1)见解析(2)M为线段PB的中点时(3)不平行【解析】(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊂面ABCD,故CD⊥面PAD. 又因为CD⊂面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点.证明如下:设三棱锥M-ACB的高为h1,四棱锥P-ABCD的高为h2,当M为线段PB的中点时,==,所以===,所以截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD⊂面PBD,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即=,而AB∥DC,故==,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.11.棱长为2的三棱锥的外接球的表面积为()A.6πB.4πC.2πD.π【答案】A【解析】由题意知,此三棱锥为正四面体,以此正四面体的各棱为正方形的对角线拓展出一个正方体,则三棱锥外接球的半径为正方体外接球的半径.因三棱锥棱长为2,所以正方体棱长为,其外接球的直径为所以三棱锥的外接球的表面积为6π.12.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

高考复习 第8篇 第1讲 空间几何体及其表面积与体积知识点+例题+练习 含答案

第1讲空间几何体及其表面积与体积知识梳理1.多面体的结构特征(1)棱柱:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱;棱柱两个底面是全等多边形,且对应边互相平行,侧面都是平行四边形.(2)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥;棱锥底面是多边形,侧面是有一个公共顶点的三角形.(3)棱台:棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.2.旋转体的结构特征(1)将矩形、直角三角形、直角梯形分别绕它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台;这条直线叫做轴,垂直于轴的边旋转而成的圆面叫做底面.不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线.(2)球:半圆绕着它的直径所在的直线旋转一周所成的曲面叫做球面,球面围成的几何体叫做球体,简称球.3.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh续表4.(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.辨析感悟1.柱体、锥体、台体与球的面积(1)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.(×)(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.(×)2.柱体、锥体、台体的体积(3)(教材练习改编)若一个球的体积为43π,则它的表面积为12π.(√)(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.(×)3.柱体、锥体、台体的展开与折叠(5)将圆心角为2π3,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.(√)(6)(2014·青州模拟改编)将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为312a3.(×)[感悟·提升]两点注意一是求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.二是几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.考点一空间几何体的结构特征【例1】给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱②侧面都是等腰三角形的棱锥是正棱锥③侧面都是矩形的直四棱柱是长方体④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为________.解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④正确.答案①②③规律方法解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【训练1】设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析命题①符合平行六面体的定义,故命题①是正确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的.因为直四棱柱的底面不一定是平行四边形,故命题③是错误的.命题④由棱台的定义知是正确的. 答案 ①④考点二 几何体的表面积与体积【例2】 如图所示,四棱锥P -ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°, △ADP ∽△BAD . (1)求线段PD 的长;(2)若PC =11R ,求三棱锥P -ABC 的体积. 解 (1)∵BD 是圆的直径,∴∠BAD =90°, 又∵△ADP ∽△BAD ,∴AD BA =DP AD , ∠PDA =∠BAD =90°, DP =AD 2BA =(BD sin 60°)2BD sin 30°=4R 2×342R ×12=3R . ∴DP 的长为3R .(2)在Rt △BCD 中,BC =CD =BD cos 45°=2R , ∵PD 2+CD 2=9R 2+2R 2=11R 2=PC 2,∴PD ⊥CD , 又∠PDA =90°,AD ∩CD =D ,∴PD ⊥底面ABCD , 则S △ABC =12AB ·BC sin(60°+45°) =12R ·2R ⎝ ⎛⎭⎪⎫32×22+12×22=3+14R 2.所以三棱锥P -ABC 的体积为V P -ABC =13·S △ABC ·PD =13·3+14R 2·3R =3+14R 3.规律方法 求几何体的体积问题,可以多角度、全方位地考虑问题,常采用的方法有“换底法”、“分割法”、“补体法”等,尤其是“等积转化”的数学思想方法应高度重视.【训练2】 (2014·苏州模拟)一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积. 解(1)设O 1、O 分别为正三棱台ABC -A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32, 因O 1D 1=36×3=32,OD =36×6=3,则DE =OD -O 1D 1=3-32=32.在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3(cm). (2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732(cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2).故三棱台斜高为 3 cm ,侧面积为2732 cm 2,表面积为9934 cm 2.考点三 球与空间几何体的接、切问题【例3】 (1)(2013·新课标全国Ⅱ卷)已知正四棱锥O -ABCD 的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.(2)(2013·辽宁卷改编)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________.审题路线 (1)根据正四棱锥的体积求高⇒求底面正方形的对角线长⇒由勾股定理求OA ⇒由球的表面积公式求解.(2)BC 为过底面ABC 的截面圆的直径⇒取BC 中点D ,则球心在BC 的垂直平分线上,再由对称性求解. 解析 (1)设正四棱锥的高为h , 则13×(3)2×h =322,解得h =322. 又底面正方形的对角线长为2×3= 6. 所以OA =⎝ ⎛⎭⎪⎫3222+⎝ ⎛⎭⎪⎫622= 6. 故球的表面积为S 球=4π×(6)2=24π.(2)因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径,取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球的直径,所以2r =122+52=13,即r =132.答案 (1)24π (2)132规律方法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【训练3】(2012·辽宁卷)已知点P,A,B,C,D是球O表面上的点,P A⊥平面ABCD,四边形ABCD是边长为23的正方形.若P A=26,则△OAB的面积为________.解析根据球的内接四棱锥的性质求解.如图所示,线段PC就是球的直径,设球的半径为R,因为AB=BC=23,所以AC=2 6.又P A=26,所以PC2=P A2+AC2=24+24=48,所以PC=43,所以OA=OB=23,所以△AOB是正三角形,所以S=12×23×23×32=3 3.答案3 3考点四几何体的展开与折叠问题【例4】(1)如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.(2)如图所示,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,沿棱柱表面使CP+P A1最小,则最小值为________.解析 (1)折叠后的四面体如图所示.OA ,OC ,OD 两两相互垂直,且OA =OC =OD =22,体积V =13 S △OCD ·OA =13×12×(22)3=823.(2)由题意知,A 1P 在几何体内部,把面BB 1C 1C 沿BB 1展开与面AA 1B 1B 在一个平面上,如图所示,连接A 1C 即可. 则A 1、P 、C 三点共线时,CP +P A 1最小, ∵∠ACB =90°,AC =4,BC =C 1C =3,∴A 1B 1=AB =42+32=5,∴A 1C 1=5+3=8,∴A 1C =82+32=73.故CP +P A 1的最小值为73.答案 (1)823 (2)73规律方法 (1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练4】如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q共线,点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要________个这样的几何体,可以拼成一个棱长为6的正方体.解析由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P-ABCD(如图所示),其中PD⊥平面ABCD,因此该四棱锥的体积V=13×6×6×6=72,而棱长为6=3个这样的几何体,才能拼成的正方体的体积V=6×6×6=216,故需要21672一个棱长为6的正方体.答案 31.对于基本概念和能用公式直接求出棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.方法优化5——特殊点在求解几何体的体积中的应用【典例】 (2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.[一般解法] 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以VF -DD 1E =13×12×1=16. [优美解法] E 点移到A 点,F 点移到C 点,则VD 1-EDF =VD 1-ADC =13×12×1×1×1=16. [答案] 16[反思感悟] (1)一般解法利用了转化思想,把三棱锥D 1-EDF 的体积转化为三棱锥F -DD 1E 的体积,但这种解法还是难度稍大,不如采用特殊点的解法易理解、也简单易求.(2)在求几何体体积时还经常用到等积法、割补法. 【自主体验】 如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为________.解析补形法将三棱柱补成四棱柱,如图所示.记A1到平面BCC1B1的距离为d,则d=2.则V三棱柱=12V四棱柱=12S四边形BCC1B1·d=12×4×2=4.答案 4基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案①③④⑤3.在三棱锥S-ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC的表面积是________.解析设侧棱长为a,则2a=2,a=2,侧面积为3×12×a2=3,底面积为34×22=3,表面积为3+ 3.答案3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________.解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎪⎨⎪⎧ πrl =2π,πr 2=π,∴⎩⎪⎨⎪⎧r =1,l =2.∴h =l 2-r 2=22-12= 3.∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________. 解析如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π 6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32.由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案 38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23. 答案 23 二、解答题 9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB , 因为AC =BC ,所以CD ⊥AB .因为PD ∩CD =D ,所以AB ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥AB . (2)解 设C 到平面APB 的距离为h ,则由题意,得AP =PB =AB =AC 2+BC 2=22, 所以PC =AP 2-AC 2=2.因为CD =12AB =2,PD =32PB =6, 所以PC 2+CD 2=PD 2,所以PC ⊥CD .由(1)得AB ⊥平面PCD ,于是由V C -APB =V A -PDC +V B -PDC , 得13·h ·S △APB =13AB ·S △PDC ,所以h =AB ·S △PDCS △APB=22×12×2×234×(22)2=233.故点C 到平面APB 的距离为233.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解 如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r ,水面半径BC 的长为3r ,则容器内水的体积为 V =V 圆锥-V 球=13π(3r )2·3r - 43πr 3=53πr 3,将球取出后,设容器中水的深度为h , 则水面圆的半径为33h ,从而容器内水的体积为 V ′=13π⎝ ⎛⎭⎪⎫33h 2h =19πh 3,由V =V ′,得h =315r .能力提升题组 (建议用时:25分钟)一、填空题1.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC 都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以SA =SB =23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,因此V S -ABC =13×34×(3)2×4= 3. 答案 32.(2014·南京模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.解析 如图,当AM +MC 1最小时,BM =1,所以AM 2=2,C 1M 2=8,AC 21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC 1=-12,所以sin ∠AMC 1=32,S △AMC 1=12×2×22×32= 3. 答案 33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2, 故AC ⊥BC ,又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2,∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

2013届高考数学考点回归总复习《第四十四讲 空间几何体的表面积与体积 》课件44

2013届高考数学考点回归总复习《第四十四讲 空间几何体的表面积与体积 》课件44

所得几何体的体积 : V V柱 V锥 S底 1 2 6 S底 6 S底 6 3 3
2 3 6 2 6 cm3 . 3
类型三
球的表面积、体积
解题准备:球的表面积不体积都只不半径R有关,是以R为自变
量的函数,一个球的半径给定,它的表面积、体积随之确定,
[答案] 7:5.
类型二
圆柱、圆锥、圆台的表面积、体积
解题准备:1.圆柱、圆锥、圆台的侧面积分别是它们侧面展开
图的面积,因此弄清侧面展开图的形状及侧面展开图中各线
段不原几何体的关系是掌握它们的面积公式及解决相关问 题的关键.
2.计算柱体、锥体、台体的体积关键是根据条件找出相应的 底面面积和高,要充分利用多面体的截面及旋转体的轴截面
类型四 由几何体的三视图求几何体的表面积不体积 解题准备:已知空间几何体的三视图求表面积、体积是高考考
查的热点,对三视图的应用是解题的关键.主要体现在以下
两个方面的应用:一是数据的给出,通过三视图的长、宽、高 对应出空间几何体的相关长、宽、高,从而求表面积和体积, 但是要注意三视图中的数据不原几何体中的数据丌一定一 一对应,识图时注意甄别.二是揭示空间几何体的结构特征. 包括几何体的形状,平行垂直等结构特征,这些正是数据运 算的依据.
(2)设正三棱锥P—ABC的内切球球心为O,连接OP、OA、OB、OC, 而O点到三棱锥的四个面的距离都为球的半径r.
∴VP—ABC=VO—PAB+VO—PBC+VO—PAC+VO—ABC
1 1 1 侧 r SABC r S全 r (3 2 2 3)r. S 3 3 3 又VP -ABC 1 1 3 (2 6) 2 1 2 3, 3 2 2

2013 高考数学 分类汇编7:立体几何 带答案

2013  高考数学 分类汇编7:立体几何 带答案

2013年全国各地高考文科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为( )A .180B .200C .220D .240【答案】D2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 .(2013年高考大纲卷(文))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A .23BCD .13【答案】A 5 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是( )A .棱柱B .棱台C .圆柱D .圆台【答案】D6 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B7 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(非选择题 共110分) 【答案】B8 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是图 2俯视图侧视图正视图 ( )A .16 B .13C .23D .1【答案】B9 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于______( )AB .1 CD【答案】D10.(2013年高考浙江卷(文))设m.n 是两条不同的直线,α.β是两个不同的平面,( )A .若m∥α,n∥α,则m∥nB .若m∥α,m∥β,则α∥βC .若m∥n,m⊥α,则n⊥αD .若m∥α,α⊥β,则m⊥β【答案】C11.(2013年高考辽宁卷(文))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A.2B .C .132D .【答案】C12.(2013年高考广东卷(文))设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【答案】B13.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是( )A .B .83C .81),3D .8,8【答案】B14.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π【答案】A二、填空题15.(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD 的体积为,底面边长为,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π16.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3 17.(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.【答案】92π; 18.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.【答案】319.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.【答案】π3 20.(2013年高考大纲卷(文))已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于______. 【答案】16π 21.(2013年上海高考数学试题(文科))已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r=________.【答案】22.(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.【答案】23.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-24.(2013年高考江西卷(文))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为_____________.【答案】425.(2013年高考安徽(文))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是__________(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤ 三、解答题26.(2013年高考辽宁卷(文))如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I)求证:BC PAC ⊥平面;(II)设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面【答案】27.(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求PGGC的值.【答案】解:证明:(Ⅰ)由已知得三角形ABC是等腰三角形,且底角等于30°,且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭ 且,所以;、BD AC ⊥,又因为PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭;(Ⅱ)设AC BD O = ,由(1)知DO PAC ⊥,连接GO ,所以DG与面APC所成的角是DGO ∠,由已知及(1)知:1,2BO AO CO DO =====, [来源:学&科&网Z&X&X&K]12tan 2OD GO PA DGO GO ==⇒∠===,所以DG 与面APC 所成的角的; (Ⅲ)由已知得到:PC===,因为PC BGD PC GD ⊥∴⊥,在PDC ∆中,PD CD PC ====,设223107)2PG PG x CG x x x PG x GC GC =∴=-∴-=--∴====28.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA =1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.【答案】解: (Ⅰ) 设111O D B 线段的中点为. 11111111//D B BD D C B A ABCD D B BD ∴-的对应棱是和 .的对应线段是棱柱和同理,111111D C B A ABCD O A AO -为平行四边形四边形且且11111111//////OCO A OC O A OC O A OC AO O A AO ⇒=⇒∴ 1111111111//,.//B CD BD A O D B C O O BD O A C O O A 面面且⇒==⇒ .(证毕)(Ⅱ) 的高是三棱柱面ABD D B A O A ABCD O A -∴⊥11111 . 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在11)2(2121111111=⋅⋅=⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱. 所以,1111111=--ABD D B A V ABD D B A 的体积三棱柱.29.(2013年高考福建卷(文))如图,在四棱锥P ABCD-中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠= .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积.【答案】解法一:(Ⅰ)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD == 在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒,得PD = 正视图如右图所示:(Ⅱ)取PB 中点N ,连结MN ,CN在PAB ∆中,M 是PA 中点, [来源:学&科&网Z&X&X&K]∴MN AB ,132MN AB ==,又CD AB ,3CD =∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴DM CN 又DM ⊄平面PBC ,CN ⊂平面PBC ∴DM 平面PBC(Ⅲ)13D PBC P DBC DBC V V S PD --∆==⋅又6PBC s ∆=,PD =,所以D PBC V -=解法二:(Ⅰ)同解法一(Ⅱ)取AB 的中点E ,连结ME ,DE 在梯形ABCD 中,BE CD ,且BE CD =∴四边形BCDE 为平行四边形∴DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC ∴DE 平面PBC ,又在PAB ∆中,ME PBME ⊄平面PBC ,PB ⊂平面PBC ∴ME 平面PBC .又DE ME E = ,∴平面DME 平面PBC ,又DM ⊂平面DME ∴DM 平面PBC(Ⅲ)同解法一30.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4【答案】(1)在等边三角形ABC 中,AD AE =AD AEDB EC ∴=,在折叠后的三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==.在三棱锥A BCF -中,BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥ 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111113232333F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅= ⎝⎭31.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动. (I) 证明:AD⊥C 1E;(II) 当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积.【答案】解: (Ⅰ) 11C CBB ADE 面为动点,所以需证因为⊥.AD BB ABC AD ABC BB C B A ABC ⊥⇒⊂⊥∴-11111,面且面是直棱柱AD BC BC D ABC RT ⊥∴∆的中点,为是等腰直角且又 ..1111111E C AD C CBB E C C CBB AD B BB BC ⊥⇒⊂⊥⇒=⋂面且面由上两点,且(证毕)(Ⅱ)660,//111111=∆⇒︒=∠∴AE E C A RT E C A A C CA 中,在 .的高是三棱锥是直棱柱中,在1111111111.2C B A E EB C B A ABC EB E B A RT -∴-=∆⇒ ..3232213131111111111111的体积为所以三棱锥E B A C EB S V V C B A C B A E E B A C -⋅=⋅⋅=⋅⋅==∆-- 32.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD【答案】(I)因为平面PAD⊥平面ABCD,且PA 垂直于这个平面的交线AD 所以PA 垂直底面ABCD.(II)因为AB∥CD,CD=2AB,E 为CD 的中点 所以AB∥DE,且AB=DE 所以ABED 为平行四边形,所以BE∥AD,又因为BE ⊄平面PAD,AD ⊂平面PAD 所以BE∥平面PAD.(III)因为AB⊥AD,而且ABED 为平行四边形 所以BE⊥CD,AD⊥CD,由(I)知PA⊥底面ABCD, 所以PA⊥CD,所以CD⊥平面PAD所以CD⊥P D,因为E 和F 分别是CD 和PC 的中点所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BEF⊥平面PCD.33.(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠= .(Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,1AC =,求三棱柱111ABC A B C -的体积.C 1B 1AA 1B C【答案】【答案】(I)取AB 的中点O,连接OC O 、1OA O 、1A B ,因为CA=CB,所以OC AB ⊥,由于AB=AA 1,∠BA A 1=600,故,AA B ∆为等边三角形,所以OA 1⊥AB.因为OC⨅OA1=O,所以AB⊥平面OA1C.又A1CC平面OA1C,故AB⊥AC.(II)由题设知12ABC AA B∆∆与都是边长为的等边三角形,12AA B都是边长为的等边三角形,所以2211111.OC OA AC AC OA OA OC =+⊥又,故111111111,--= 3.ABC ABCOC AB O OA ABC OA ABC A B CABC S A B C V S OA=⊥∆=⨯=因为所以平面,为棱柱的高,又的面积ABC的体积34.(2013年高考山东卷(文))如图,四棱锥P ABCD-中,,AB AC AB PA⊥⊥,,2AB CD AB CD=∥,,,,,E F G M N分别为,,,,PB AB BC PD PC的中点(Ⅰ)求证:CE PAD∥平面;(Ⅱ)求证:EFG EMN⊥平面平面【答案】35.(2013年高考四川卷(文))如图,在三棱柱11ABC A B C-中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积.(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)【答案】解:(Ⅰ)如图,在平面ABC 内,过点P 作直线BC l //,因为l 在平面BC A 1外,BC 在平面BC A 1内,由直线与平面平行的判定定理可知,//l 平面1A BC .由已知,AC AB =,D 是BC 中点,所以BC ⊥AD ,则直线AD l ⊥, 又因为1AA ⊥底面ABC ,所以l AA ⊥1,又因为AD ,1AA 在平面11A ADD 内,且AD 与1AA 相交, 所以直线⊥l 平面11A ADD(Ⅱ)过D 作AC DE ⊥于E ,因为1AA ⊥平面ABC ,所以DE AA ⊥1,又因为AC ,1AA 在平面C C AA 11内,且AC 与1AA 相交,所以⊥DE 平面C C AA 11,由2==AC AB ,∠BAC ︒=120,有1=AD ,∠DAC ︒=60, 所以在△ACD 中,2323==AD DE , 又1211111=⋅=∆AA C A S AQC ,所以631233*********=⋅⋅=⋅==--QC A QC A D D QC A S DE V V 因此三棱锥11A QC D -的体积为6336.(2013年高考湖北卷(文))如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试C 11BCB 1判断V 估与V 的大小关系,并加以证明.【答案】(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =, 可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG . 又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11AC 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下: [来源:学.科.网Z.X.X.K] 由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a aS S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估. 由123d d d <<,得210d d ->,310d d ->,故V V <估.第20题图37.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点.(1) 证明: BC 1//平面A 1CD; (2) 设AA 1= AC=CB=2,AB=2,求三棱锥C 一A 1DE 的体积.【答案】38.(2013年高考大纲卷(文))如图,四棱锥902,P A B C D A B C B A D B C A D P A-∠=∠==∆∆ 中,,与都是边长为2的等边三角形. (I)证明:;PB CD ⊥ (II)求点.A PCD 到平面的距离【答案】(Ⅰ)证明:取BC 的中点E,连结DE,则ABED 为正方形.过P 作PO⊥平面ABCD,垂足为O. 连结OA,OB,OD,OE.由PAB ∆和PAD ∆都是等边三角形知PA=PB=PD,所以OA=OB=OD,即点O 为正方形ABED 对角线的交点, 故OE BD ⊥,从而PB OE ⊥. 因为O 是BD 的中点,E 是BC 的中点, 所以OE//CD.因此,PB CD ⊥.(Ⅱ)解:取PD 的中点F,连结OF,则OF//PB. 由(Ⅰ)知,PB CD ⊥,故OF CD ⊥.又12OD BD ==OP ==故POD ∆为等腰三角形,因此,OF PD ⊥. 又PD CD D = ,所以OF ⊥平面PCD.因为AE//CD,CD ⊂平面PCD,AE ⊄平面PCD,所以AE//平面PCD.因此,O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而112OF PB ==,所以A 至平面PCD 的距离为1.39.(2013年高考安徽(文))如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,PB PD PA === .(Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.【答案】解:(1)证明:连接,BD AC 交于O 点PB PD = PO BD ∴⊥又 ABCD 是菱形 BD AC ∴⊥而AC PO O ⋂= BD ∴⊥面PAC ∴BD ⊥PC (2) 由(1)BD ⊥面PAC︒⨯⨯⨯==45sin 3262121PAC PEC S S △△=32236=⨯⨯ 111132322P BEC B PEC PEC V V S BO --∆==⋅⋅=⨯⨯= 40.(2013年上海高考数学试题(文科))如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及表面积.第19题图B【答案】41.(2013年高考天津卷(文))如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.(Ⅰ) 证明EF//平面A1CD;(Ⅱ) 证明平面A1CD⊥平面A1ABB1;(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.【答案】42.(2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(19)图,四棱锥P A B C D -中,PA ⊥底面A B C D ,PA =,2BC CD ==, 3ACB ACD π∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.【答案】43.(2013年高考江西卷(文))如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD,AD ⊥AB,AB=2,AD=,AA 1=3,E 为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离【答案】解.(1)证明:过B 作CD 的垂线交CD 于F,则1,2BF AD EF AB DE FC ==-==在Rt BFE BE Rt BFC BC ∆∆中,,中,在2229BCE BE BC EC ∆+中,因为==,故BE BC ⊥由1111BB ABCD BE BB BE BB C C ⊥⊥⊥平面,得,所以平面(2)111111113A B C E A B C V AA S ∆-∙三棱锥的体积=11111Rt A D C AC ∆在中,,同理,1EC ,1EA因此11A C E S ∆=.设点B1到平面11EAC 的距离为d,则111B EAC -三棱锥的体积1113A EC V d S ∆∙∙=,d ==。

2013数学高考真题—立体几何分类汇编

2013数学高考真题—立体几何分类汇编

2013数学高考真题—立体几何分类汇编1.(北京理14)如图,在棱长为2的正方体1111D C B A ABCD -中,E 为BC 中点,点P 在线段E D 1上。

点P 在线段E D 1上,点P 到直线1CC 距离的最小值为 。

2.(北京理17)如图,在三棱柱111C B A ABC -中,C C AA 11是边长为4的正方形,平面⊥ABC 平面C C AA 11,5,3==BC AB .(1)求证:⊥1AA 平面ABC ; (2)求二面角111B BC A --的余弦值; (3)证明:在线段1BC 上存在点D ,使得B A AD 1⊥,并求1BC BD的值。

3.(北京文8)如图,在正方体1111D C B A ABCD -中,P 为对角线1BD 的三等分点,P 到各顶点的距离的不同取值有( ).A 3个 .B 4个 .C 5个 .D 6个 4(北京文10)某四棱锥的三视图如图所示,该四棱锥的体积为 。

4(北京文17)如图,四棱锥ABCD P -中,AB ∥CD ,AD AB ⊥,AB CD 2=,平面PAD ⊥底面ABCD ,AD PA ⊥,E 和F 分别是CD 和PC 中点。

求证: (1)⊥PA 底面ABCD ; (2)BE ∥平面PAD ; (3)平面⊥BEF 平面PCD5(大纲理10)已知正四棱柱1111D C BA ABCD -中,AB AA 21=,则CD 与平面1BDC 所成角的正弦值等于( ) .A 2 .B 3.C 2.D 1 ABA 1C 1D 1CB 1C BA B CA 1C 1D 俯视图正(主)视图侧(左)视图CD6(大纲文理16)已知圆O 与圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,23=OK ,且圆O 与圆K 所在的平面所成的一个二面角为060,则球O 的表面积等于 。

7(大纲理19)如图,四棱锥ABCD P -中,090=∠=∠BAD ABC ,AD BC 2=,PAB ∆和PAD ∆都是等边三角形。

2013-2017高考数学(理)真题分类汇编第8章 立体几何-1 空间几何体及其表面积和体积

2013-2017高考数学(理)真题分类汇编第8章    立体几何-1 空间几何体及其表面积和体积

正(主)视图侧(左)视图第八章 立体几何第1节 空间几何体及其表面积和体积1 .(2014 陕西理 14)观察分析下表中的数据:猜想一般凸多面体中,,,F V E 所满足的等式是_________.1 . 解析 观察表中数据,并计算F V +分别为11,12,14,又其对应E 分别为9,10,12,容易观察并猜想2F V E +-=.题型85 空间几何体的表面积与体积1.(2013湖北理8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个几何体均为旋转体,下面两个简单几何体均为多面体,则有:( ). A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<2 . (2013重庆理5)某几何体的三视图如图所示,则该几何体的体积为( ).A.5603B. 5803C. 200D. 2403 .(2013江苏8)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,, 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .4.(2013广东理5)某四棱台的三视图如图所示,则该四棱台的体积是( ).A .4B .143C .163D .65 .(2014 山东理 13)三棱锥P ABC -中,,D E 分别为,PB PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = .5 . 解析 如图,设1ABD S S =△,2PAB S S =,E 到平面ABD 的距离为1h ,C 到平面PAB 的EDCAPA B C1A DE F 1B 1C 俯视图432距离为2h ,则212S S =,212h h =,11113V S h =,22213V S h =,所以11122214V S h V S h ==.评注 本题考查三棱锥的体积求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.6 .(2014 福建理 13)要制作一个容积为34m ,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 .(单位:元)6 . 解析 设底面的边长分别为x m ,y m ,总造价为T 元,则144V xy xy =⋅=⇒=.()()420221108020802080204160T x y x y =⨯++⨯⨯=+++⨯+⨯=…(当且仅当x y =时取等号)故该容器的最低总造价是160元. 7 .(2014 新课标2理18) (本小题满分12分)如图所示,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设二面角D AE C --为60︒,1AP =,AD =,求三棱锥E ACD -的体积.8 .(2016上海理19)将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图所示,长为,长为,其中与在平面的同侧. (1)求三棱锥的体积; (2)求异面直线与所成角的大小.111AAOO 1OO AC 23π11A B 3π1B C 11AAOO 111C O A B -1BC 1AA A 1AAPECB8.解析 (1)连结,则,所以为正三角形,故,所以.(2)设点在下底面圆周的射影为,连结,则,所以为直线与所成角(或补角),,连结,,,所以,故,因此为正三角形,所以,故,所以,故直线与所成角大小为.9 .(2016江苏17)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A BC D -,下部分的形状是正四棱柱1111ABCD A BC D -(如图所示),并要求正四棱柱的高是正四棱锥的高1PO 的4倍. (1)若6m AB =,,则仓库的容积是多少;(2)正四棱锥的侧棱长为,则当为多少时,仓库的容积最大? 9 .解析 (1),则,,,故仓库的容积为.(2)设(m),仓库的容积为,则(m),,(m),,,当时,,单调递增;当时,,11OB 111113AO A B B ∠=π=111O AB △111O A B S =△111111113C O A B O A B V OO S -=⋅=△1B B 1BB 11BB AA ∥1BBC ∠1BC 1AA 111BB AA ==,,BC BOOC 113AB A B π==23AC π=3BC π=3BOC π∠=BOC △1BC BO ==11tan 1BCBB C BB ∠==145BBC ∠=︒1BC 1AA 45︒AA 11OO 12m PO =6m 1PO ()12m PO =()18m OO =()1111231116224m 33P A B C D ABCD V S PO -=⋅=⨯⨯=()111123168288m ABCD A B C D ABCD V S OO -=⋅=⨯=()111111113=312m P A B C D ABCD A B C D V V V --+=()3312m 1PO x =()V x 14OO x =11A O =11A B =()11111111P A B C D ABCD A B C D V x V V --=+1113ABCD ABCD S PO S OO =⋅+⋅()2132363x x =⨯-()06x <<()()2'2612V x x =--()06x <<(x ∈()'0V x >()V x ()x ∈()'0V x <A 1单调递减.故当取到最大值,即(m)时,仓库的容积最大.1 0 .(2016浙江理14)如图所示,在中,,若平面外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体的体积的最大值是 .10 .解析 在中,因为,所以.由余弦定理可得,所以设,则.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.过点作直线的垂线,垂足为.设,则,,解得.而的面积.设与平面所成角为,则点到平面的距离.故四面体的体积()V x x =()V x 1PO =ABC △2AB BC ==120.ABC ∠=ABC PBCD 12ABC △2,120AB BC ABC ==∠=30BAD BCA ∠==2222cos AC AB BC AB BC B =+-⋅2222222cos120=+-⨯⨯=12AC =AD x =0x <<DC x =ABD △2222cos BD AD AB AD AB A =+-⋅22222cos 30x x =+-⋅24x =-+BD =PBD △PD AD x ==2PB BA ==222cos 2PD PB BD BPD PD PB +-∠===⋅30BPD ∠=P BD O PO d =12PBD S BD d =⨯△12sin 302d x =⋅d =BCD △111sin )2sin 30)222S CD BC BCD x x =⋅∠=⋅=PO ABC θP ABC sin h d θ=PBCD 11111sin )33332BCD BCD BCD V S h S d S d x θ∆∆∆=⨯=≤⋅=⨯=D CBAP当时等号成立,所以我们取. 设,因为,所以.则当故此时,.因为所以函数在上单调递减,故.,故此时,. 由上述可知,函数在单调递减,故.综上所述,四面体的体积的最大值为. 11 .(2017江苏6)如图所示,在圆柱12O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .π2θ=π2θ=t ==0x剟12t 剟|x =0x剟x x ==x =211414=666t V t tt t ⎡⎤-⎢⎥⎛⎫⎣⎦=⋅=- ⎪⎝⎭()2141,6V t t ⎛⎫'=-- ⎪⎝⎭12,t剟()V t '<0,()V t []1,2()()14111612V t V ⎛⎫=-= ⎪⎝⎭…x <…x x ==x =16V t⎡⎤⎢⎥⎣⎦=2141466t t t t -⎛⎫=⋅=- ⎪⎝⎭()V t (1,2]141()(1)1612V t V ⎛⎫<=-= ⎪⎝⎭PBCD 12P E DCA11 .解析 设球O的半径为r ,由题意212Vrr =π⋅,3243V r =π,所以1232V V =.故填32.12.(2017天津理10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.解析 设正方体的边长为a ,则226183a a =⇒=.外接球直径为正方体的体对角线,所以23=R ,344279πππ3382==⨯=VR . 13.(2017全国1卷理科16)如图所示,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,DBC △,ECA △,FAB △分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB △,使得D ,E ,F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.13.解析 由题意,联结OD ,交BC 于点G ,如图所示,则OD BC ⊥,OG =, 即OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,三棱锥的高h,2132ABCS x =⋅⋅=△,则13ABC V S h =⋅=△令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,当()0f x '<,得522x <<,所以()f x 在()0,2上单调递增,在52,2⎛⎫⎪⎝⎭上单调递减.故()()280f x f =≤,则V所以体积的最大值为3.俯视图侧视图题型86 旋转体的表面积、体积及球面距离1.(2013浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm .2 .(2013辽宁理13)某几何体的三视图如图所示,则该几何体的体积是 .3. (2013辽宁理10) 已知直三棱柱111-ABC ABC 的6个顶点都在球O 的球面上,若3AB,4AC =,AB AC ⊥,112AA =,则球O 的半径为( ).A.2B. C. 132D. 4 .(2014 江苏理 8)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12VV 的值是 . 4. 解析 设圆柱甲的底面半径为1r ,高为1h ,圆柱乙的底面半径为2r ,高为2h .由题意得211222πr 9π4S S r ==,所以1232r r =.又因为=S S 甲侧乙侧,即11222π=2πr h r h ,所以11222==3h r h r , 故1111122222923432V S h S h V S h S h ==⋅=⨯=.评注 考查立体几何中侧面积、体积公式,考查运算和恒等变形的能力. 5.(2014 陕西理 5) 已知底面边长为1面上,则该球的体积为( ).A.32π3B. 4πC. 2πD. 4π35. 解析 如图为四棱柱1AC .根据题意得AC 1ACC A 为正方形,所以外接球直径122R A C ==,所以1R =,所以4π=3V 球,故选D . 6 .(2014 湖北理 8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36V L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为( ). A.227 B.258C.15750D.3551136. 解析 圆锥的体积22211ππ332π12πL L h V r h h ⎛⎫=== ⎪⎝⎭,由题意得7512π2≈,π近似取为258,故选B .7.(2014 大纲理 8)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ).A .814π B .16π C .9π D .274π7. 解析 设球的半径为R ,由题意可得()2224R R -+=,解得94R =,所以该球的表面积为281π4π4R =.故选A. 8.(2015全国1理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ).A .14斛B .22斛C .36斛D .66斛8.解析 设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为 1143⨯⨯3⨯216320539⎛⎫⨯= ⎪⎝⎭立方尺,故堆放的米约为320 1.62229÷≈斛.故选B .9.(2015山东理7) 在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===. 将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ). A .23πB .43πC .53πD .2π9.解析 由题意,梯形ABCD 绕AD 所在直线旋转一周而形成的几何体是一个底面半径为 1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥所得的组合体,所以V V V =-=圆柱圆锥22112113π⨯⨯-π⨯⨯=5233πππ-=.故选C . 10.(2015江苏9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .1 0.解析 原来的总体积为()()22154283V =⨯π⨯⨯+π⨯⨯1963π=,设新的半径为r , 故变化后体积()()221'483V r r =⨯π⨯⨯+π⨯⨯22819633r ππ==,计算得27r =,从而r =11.(2017全国3卷理科8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ).A .πB .3π4 C .π2 D .π41 1.解析 如图所示,由题可知球心在圆柱体的中心处,圆柱体上、下底面圆的半径r ,则圆柱体的体积23ππ4V r h ==.故选B.题型87 几何体的外接球与内切球1.(2015全国2理9)已知,A B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( ).A.36πB. 64πC.144πD. 256π1.解析 根据题意,可得图如图所示, 当点C 位于垂直于面AOB 的直径端点时, 三棱锥O ABC -的体积最大,则可设球O 的半径为R ,此时O ABC C AOB V V --==2311136326R R R ⨯⨯==,故6R =, 则球O 的表面积为24π144πS R ==.故选C .2.(2016全国丙理10)在封闭的直三棱柱111ABC ABC -内有一个体积为V 的球,若,,,13AA =,则V的最大值是( ). A. B. C. D. 2.B 解析 如图所示,假设在直三棱柱111ABC ABC -中,有一个球与平面11ABB A ,平面11BCC B ,平11AAC C 面相切,其俯视图如图所示.设其球的半径为r , 则且,得. 因此,直三棱柱内球的半径最大值为,则.故选B.AB BC ⊥6AB =8BC =4π9π26π32π316822,11(6810)22ABC ABC S r C ⨯⨯===⨯++△△123r AA = (32)r …3233max 4439πππ3322V r ⎛⎫=== ⎪⎝⎭B A C C 1B 1A 1C B A。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

高考数学一轮复习 试题选编19 空间几何体的表面积与体积

高考数学一轮复习 试题选编19 空间几何体的表面积与体积

江苏省2014届一轮复习数学试题选编19:空间几何体的表面积与体积(教师版)填空题1 .(2013江苏高考数学)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】解析:本题主要考察棱柱的体积计算及相似比等有关基础知识.设三棱柱高为h ,底面ABC ∆面积为S ,∴三棱柱ABC C B A -111的体积为Sh V =2∵F 是1AA 的中点 ∴2:1:1=h h ∵F E ,分别是AC AB ,的中点∴4:1:1=s s ∴2412141313131111121121=∙∙====--h h S S Sh h S V V V V C B A ABC ADEF 棱柱三棱锥 2 .(2012年江苏理)如图,在长方体1111ABCD ABC D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为____cm 3.【答案】∵长方体底面ABCD 是正方形,∴△ABD中BD BDcm(它也是11A BB D D -中11BB D D 上的高).∴四棱锥11A BB D D -的体积为123⨯. 3 .(苏州市第一中学2013届高三“三模”数学试卷及解答)四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为______.A BC AD E FB C【答案】34π4 .(江苏省徐州市2013届高三上学期模底考试数学试题)已知一个正六棱锥的高为10cm,底面边长为6cm,则这个正六棱锥的体积为________cm 3.【答案】5 .(江苏省淮安市2013届高三上学期第一次调研测试数学试题)如图,一个封闭的三棱柱容器中盛有水,且侧棱长18AA =,若侧面11AA B B 水平放置时,液面恰好过1111,,,AC BC ACB C 的中点,当底面ABC 水平放置时,液面高度为__________.【答案】66 .(江苏省2013届高三高考压轴数学试题)在三棱锥P-ABC 中,PA=PB =PC=侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为_______. 【答案】43π7 .(江苏省徐州市2013届高三考前模拟数学试题)有一个正四面体的棱长为3,现用一张圆形的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为________.【答案】8 .(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)已知一个圆锥的底面圆的半径为1,体积为3,则该圆锥的侧面积为__________. 【答案】3π9 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)已知正六棱锥的底面边长是3,侧棱长为5,则该正六棱锥的体积是________.【答案】10.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为_________.【答案】13; 11.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则三棱锥11A B D D -的体积为_______3cm .A 1B 1DC B AD 1C 1【答案】312.(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知三棱锥P ABC -的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为则三棱锥P ABC -的体积为____.【答案】9;解答题13.(苏州市第一中学2013届高三“三模”数学试卷及解答)直三棱柱111C B A ABC -中,a BC BB AB ===211,︒=∠90ABC ,N 、F 分别为11C A 、11C B 的中点. (Ⅰ)求证:⊥CF 平面NFB ;(Ⅱ)求四面体BCN F -的体积.【答案】(Ⅰ)直三棱柱ABC -A 1B 1C 1中,B 1B ⊥AB , BC ⊥AB ,又B 1B BC =B ,∴AB ⊥平面BB 1C 1C .又N 、F 分别为A 1 C 1、B 1 C 1的中点∴AB ∥A 1B 1∥NF .∴NF ⊥平面BB 1C 1C .因为FC ⊂平面BB 1C 1C .所以NF ⊥FC .取BC 中点G ,有BG =GF =GC .∴BF ⊥FC ,又 NF FB =F ,∴FC ⊥平面NFB(Ⅱ)由(Ⅰ)知, 11NF BCC B ⊥平面,111122NF A B a ==, NF BB BC NF S V V BCF BCF N BCN F ⋅⋅⋅⋅=⋅==∆--1213131 36121261a a a a =⋅⋅⋅= 14.(江苏省2013届高三高考模拟卷(二)(数学) )如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD的中点.现将△ADE 沿DE 折起,得四棱锥A -BCDE .(1)求证:EF ∥平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.【答案】证明:(1)取线段AC 的中点M ,连结MF 、MB .因为F 为AD 的中点,所以MF ∥CD ,且MF =12CD 在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD . 所以MF ∥BE ,且MF =BE所以四边形BEFM 为平行四边形,故EF ∥BM .又EF ⊄平面ABC ,BM ⊂平面ABC ,所以EF ∥平面ABC(2)在折叠前,四边形ABCD 为矩形,AD =2,AB =4,E 为AB 的中点,所以△ADE 、△CBE 都是等腰直角三角形,且AD =AE =EB =BC =2.所以∠DEA =∠CEB =45°,且DE =EC =2 2.又∠DEA +∠DEC +∠CEB =180°,所以∠DEC =90°.(第16题图)又平面ADE ⊥平面BCDE ,平面ADE ∩平面BCDE =DE ,CE ⊂平面BCDE ,所以CE ⊥平面ADE ,即CE 为三棱锥C -EFD 的高因为F 为AD 的中点,所以S △EFD =12×12×AD ·AE =14×2×2=1. 所以四面体FDCE 的体积V =13×S △EFD ·CE =13×1×2 2=2 2315.(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)已知直三棱柱ABC-A 1B 1C 1中,AD⊥平面A 1BC,其垂足D 落在直线A 1B 上.(1)求证:平面A 1BC⊥平面ABB 1A 1;(2)若3=AD ,AB=BC=2,P 为AC 中点,求三棱锥1P A BC -的体积.【答案】证:直三棱柱ABC-A 1B 1C 1中,A A 1⊥平面ABC,∴A A 1⊥BC,∵AD⊥平面A 1BC,∴AD⊥BC,∵A A 1 ,AD 为平面ABB 1A 1内两相交直线,∴BC⊥平面ABB 1A 1,又∵BC ⊂平面A 1BC,∴平面A 1BC⊥平面ABB 1A 1(2) 由等积变换得11P A BC A PBC V V --=,在直角三角形1A AB 中,由射影定理(12BA BD AB ⋅=)知321=AA ,∵1AA PBC ⊥平面,∴三棱锥的高为1AA =又∵底面积1PBC S ∆=∴11P A BC A PBC V V --==113PBC S AA ∆⨯=法二:连接CD ,取CD 中点Q ,连接PQ ,∵P 为AC 中点,1//,2PQ AD PQ AD ∴=3AD =PQ ∴由(1)AD⊥平面A 1BC,∴PQ ⊥平面A 1BC,∴PQ 为三棱锥P- A 1BC 的高, 由(1)BC⊥平面ABB 1A 1 1BC BA ∴⊥,PBC 4S ∆∴=1P-A BC V ∴=16.(2012-2013学年度苏锡常镇四市高三教学情况调研(二)数学试题)已知四棱锥S ABCD -的底面ABCD 是边长为2的正方形,侧面SAB 是等边三角形,侧面SCD 是以CD 为斜边的直角三角形,E 为CD 的中点,M 为SB 的中点.(1)求证://CM 平面SAE ;(2)求证:SE ⊥平面SAB ;(3)求三棱锥S AED -的体积.B【答案】17.(南京市、淮安市2013届高三第二次模拟考试数学试卷)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,PB⊥平面ABCD,CD⊥BD,PB=AB=AD=1,点E在线段PA上,且满足PE=2EA.(1)求三棱锥E-BAD的体积; (2)求证:PC//平面BDE.【答案】。

2013年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 理

2013年全国高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 理

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2012·某某高考,理4)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ).A.球 B.三棱锥C.正方体 D.圆柱2.(2012·高考,理7)某三棱锥的三视图如图所示,该三棱锥的表面积是( ).A.28+6 5 B.30+65C.56+12 5 D.60+12 53.(2012·某某高考,理6)某几何体的三视图如图所示,它的体积为( ).A.12π B.45π C.57π D.81π4.(2012·某某高考,理12)某几何体的三视图如图所示,该几何体的表面积是__________.5.(2012·某某高考,理18)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD 的体积.考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交汇,是每年的必考内容.预计在2013年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两个几何体的“切”或“接”形态中,或以三视图为载体进行交汇考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法(1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线;A.32 B .16+16 2 C .48 D .16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A .12+22B .1+22C .1+ 2D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2011·某某高考,文20)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32π B.24-13πC.24-π D.24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般先过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1. 由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD , 所以四边形EGAD 是平行四边形, 所以ED ∥AG .又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E -BCD =V D -BCE =V A -BCE =V E -ABC .由(1)知,DE ∥平面ABC ,所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2012·某某某某三月模拟,4)如图,正三棱柱ABC -A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4C . 3D .2 32.(2012·某某某某二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2012·丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2π B.20-23πC.40-23π D.40-43π4.(2012·某某株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.在正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向 真题试做1.D 2.B 3.C 4.925.解法一:(1)如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE . 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE . (2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连接PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. 由题意∠PBA =∠BPF ,因为sin∠PBA =PA PB ,sin∠BPF =BF PB, 所以PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形, 故GD =BC =3,于是AG =2.在Rt△BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是PA =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA=13×16×855=128515. 解法二:如图所示,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设PA =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD =(-4,2,0),AE =(2,4,0),AP =(0,0,h ).因为·CD AE =-8+8+0=0,·CD AP =0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD ,PA 分别是平面PAE ,平面ABCD 的法向量. 而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等, 所以|cos 〈CD ,PB 〉|=|cos 〈PA ,PB 〉|, 即||||CD PB CD PB ⋅=||||PA PBPA PB ⋅.由(1)知,CD =(-4,2,0),PA =(0,0,-h ). 又PB =(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.精要例析·聚焦热点 热点例析【例1】(1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正视图可排除A ,C ;由侧视图可判断该几何体的直观图是B.【变式训练1】(1)B (2)D【例2】(1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE . 因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P -ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】A【例3】解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a . ∵SA =SC =AC =2a , ∴△SAC 为正三角形.由正弦定理,得2R =AC sin∠ASC =2a sin 60°=263a ,∴R =63a ,V 球=43πR 3=8627πa 3.(2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF ,∴==72a ,S △SBC =12BC ·SF =12a ×72a =74a 2,S a 2.又=, ∴V 棱锥=13S 底h =13a 2×62a =66a 3,∴r =3V 棱锥S 全=3×66a 3(7+1)a2=42-612a ,S 球=4πr 2=4-73πa 2. 【变式训练3】12(2-2)a创新模拟·预测演练1.D 2.D 3.B 4.4 29π5.8273 6.2∶1 7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1, 故折叠后得到一个棱长为1的正三棱锥(如图).方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心.取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , ∴垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得.∵AG =32,AF=63,AH =33,∴OA =AG ·AHAF=32×3363=64, ∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R=64,∴体积为43π·34⎛ ⎝⎭=68π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2空间几何体的表面积和体积
考点一空间几何体的表面积
1.(2013重庆,8,5分)某几何体的三视图如图所示,则该几何体的表面积为( )
A.180
B.200
C.220
D.240
答案 D
2.(2013陕西,12,5分)某几何体的三视图如图所示,则其表面积为.
答案3π
3.(2013课标全国Ⅰ,15,5分)已知H是球O的直径AB上一点,AH∶HB=1∶2,A B⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.
答案
4.(2013课标全国Ⅱ,15,5分)已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.
答案24π
考点二空间几何体的体积
5.(2013课标全国Ⅰ,11,5分)某几何体的三视图如图所示,则该几何体的体积为( )
A.16+8π
B.8+8π
C.16+16π
D.8+16π
答案 A
6.(2013浙江,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )
A.108 cm3
B.100 cm3
C.92 cm3
D.84 cm3
答案 B
7.(2013天津,10,5分)已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.
答案
8.(2013湖北,16,5分)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)
答案 3
9.(2013课标全国Ⅱ,18,12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2,求三棱锥C-A1DE的体积.
解析(1)连结AC
1交A1C于点F,则F为AC1中点.
又D是AB中点,连结DF,则BC1∥DF.
因为DF⊂平面A1CD,BC1⊄平面A1CD,
所以BC1∥平面A1CD.
(2)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以
CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.
由AA1=AC=CB=2,AB=2得
∠ACB=90°,CD=,A1D=,DE=,A1E=3,
故A1D2+DE2=A1E2,即DE⊥A1D.
所以=××××=1.
10.(2013重庆,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2,BC=CD=
2,∠ACB=∠ACD=.
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.
解析(1)证明:因BC=CD,即△BCD为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.
因为PA⊥底面ABCD,所以PA⊥BD.从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD⊥平面PAC.
(2)三棱锥P-BCD的底面BCD的面积S△BC D=BC·CD·sin∠BCD=·2·2·s in=.
由PA⊥底面ABCD,得
V P-BCD=·S△BCD·PA=··2=2.
由PF=7FC,得三棱锥F-BCD的高为PA,故V F-BCD=·S△BCD·PA=···2=,
所以V P-BDF=V P-BCD-V F-BCD=2-=.。

相关文档
最新文档