地铁车站结构设计

合集下载

某地铁车站内部结构设计计算书

某地铁车站内部结构设计计算书

(18x3.3+8x17)x0.65=127 Kpa; 2、活载计算:
地面超载:20 Kpa; 中板活载:4Kpa(设备区 8Kpa) ;
3、水反力计算: 10x17.7=177 Kpa。 4、计算结果包络及配筋:
2
弯矩包络图(KN·M)
剪力包络图(KN)
3ቤተ መጻሕፍቲ ባይዱ
轴力包络图(KN) 根据计算结果进行截面配筋及裂缝验算如下表 (中板按照上下中板最不利进配 筋) 。
构件 顶板跨中 顶板中支座 顶板边支座 中板跨中 中板中支座 中板边支座 底板跨中 底板中支座 底板边支座 侧墙跨中 侧墙上支座 侧墙上中支座 侧墙下中支座 侧墙下支座 计算弯矩 M (KN·m/m) 337 340 457 66 123 209 1306 717 1693 653 457 228 788 1683 剪力 Q (KN/m) —— 217 283 —— 66 99 —— 209 793 —— 244 181 757 1110 板厚 h (mm) 600 600 600 400 400 400 1100 1100 1100 800 600 700 800 800 配筋方式 25@150 28@150 28@150+28@300 22@150 22@150 22@150 32@100 28@100 28@100+28@150 32@150 28@150+28@300 28@150 28@150+28@300 28@100+28@150 裂缝宽度 (mm) 0.238 0.178 0.129 0.04 0.08 0.235 0.214 0.08 0.123 0.229 0.129 0.06 0.143 0.123
构件 顶纵梁 下中纵梁 底纵梁 跨中 端部 跨中 端部 跨中 端部 截面 900 800 1000 1800 1000 2200 弯矩 (kN﹒m) 2465 4198 521 1014 2158 5945 支座剪力 (kN) 0 3332 0 768 0 4051 裂缝宽度 (mm) 0.114 0.174 0.16 0.141 0.08 0.161 配筋数量 13φ28 18φ28 9φ25 9φ28 12φ32 20φ32

地铁车站主体围护结构施工方案

地铁车站主体围护结构施工方案

围护构造施工方案目录1.概述............................................................................................................................... 错误!未定义书签。

1.1 设计概况........................................................................................................... 错误!未定义书签。

1.2 重要工程量....................................................................................................... 错误!未定义书签。

1.3 周围环境........................................................................................................... 错误!未定义书签。

1.4 地质概况........................................................................................................... 错误!未定义书签。

1.4.1工程地质................................................................................................. 错误!未定义书签。

1.4.2水文地质................................................................................................. 错误!未定义书签。

地铁车站结构设计基本参数

地铁车站结构设计基本参数

、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑
净高4.5m,站厅层建筑净高4.8m。

结构构件截面尺寸及主要材料强度如表1所示。

车站典
型横断面如下图所示(图1):
图1车站典型横断面
、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护
结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载一结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。

工程地质
岩土分层及特性
ur111
-- r
J
mu
ii
nim
111
|.h» L* \ [L 严Y| 1a
-
»
it
W 4 -- ■4■L 午■ !—
…丨LI
图2主体结构计算图式

岩土层分类及深度
土层物理、力学参数表
表3各岩土层力学、物理参数
表4荷载计算表
荷载及荷载效应组合
表5荷载组合参数表
荷戦种类纽合永久荷找可变荷St水土圧力人肪荷攪地匿荷iX
1 {基本)1135VL^0.7* 1.413500
\_2(甚本)_n12皆1.400
3 <标准) 1.0 1.0 1.000
4〔准永久) 1.0屮qX 1 -0 1.0Q0
5 <人防) 1.20 1.2 1.00
6 {地怎}L20.5x12「12013
注*甲q为准永久值系数匚YL为町变荷裁君虑投计便用年限的调整家敬。

地铁车站结构设计基本思路

地铁车站结构设计基本思路

地铁车站结构设计基本思路地铁车站结构设计的基本思路1、以设计流程为主线,对每⼀个设计环节要掌握:(1)、需搜集的基础资料及如何应⽤这些资料(2)、需要掌握的主要设计规范条⽂以及相应的理论背景(3)、需要掌握的设计计算⼿段及结构分析的⼒学模型,同时要掌握其基本的受⼒特点(4)、与之相关的已有⼯程经验和⼯程实例(5)、需要完成相关设计⽂件,包括设计说明、设计图纸、计算书2、主要依据的规范及技术标准(1)、《地铁设计规范》(GB50157-2003)(2)、《混凝⼟结构设计规范》(GB50010-2002)(3)、《建筑结构荷载规范》(GB50009-2001)2008版(4)、《钢结构设计规范》(GB50017-2003)(5)、《建筑抗震设计规范》(GB50011-2001)2008修订版(6)、《⼈民防空地下室设计规范》(GB50038-2005)(7)、《建筑基坑⽀护技术规程》(JGJ120-99)(8)、《建筑地基基础设计规范》(GB50007-2002)(9)、《地下⼯程防⽔技术规范》(GB50108-2008)(10)⾏业及地⽅的其他相关规程规范、法规标准。

如国家或⾏业的地基处理规范、岩⼟⼯程勘察规范;冶⾦部的基坑规范;可靠度统⼀标准;⼯程建设所在地的地铁规范、基坑规范、地基处理规范、勘察规范、地基基础规范等;(11)、针对所设计⼯程,由总体设计院制定的技术标准、⽂件编制规定、设计⽂件深度与内容规定。

3、地铁车站结构设计的主要内容(1)、基坑⼯程设计(2)、主体结构设计(3)、其他:结构防⽔设计、监测、施⼯场地布置、管线迁改、施⼯中的辅助措施(如围堰、建构筑物的地基加固)等4、地铁车站结构设计的基本流程⼀个地铁车站设计的基本流程可描述如下:(1)、基础资料分析:车站周边环境、建筑、地质、盾构施⼯筹划、总体设计院制定的技术要求和原则、相关专业的提资资料(2)、制定总体结构⽅案:施⼯⽅法及⼯况设定、墙体形式(3)、基坑⼯程设计:环境保护等级及安全性等级、基坑⽅案设计、基坑详细设计、编制设计⽂件(说明、图纸、计算书)(4)、主体结构设计:拟定结构尺⼨、重要性等级、耐久性要求、缝的设置、确定分析模型及结构分析、结构配筋、编制设计⽂件(说明、图纸、计算书)(5)、防⽔设计:设计原则及防⽔等级、全包或半包、标准段、诱导缝处、施⼯缝处5、基础资料分析5.1、车站周边环境及交通组织要求(1)、建筑物(2)、管线(3)、既有轨道交通设施(4)、既有地⾯标⾼(5)、交通组织要求(6)、其他:如铁路、河道(不均匀受⼒)、架空线路(如⾼压线⾛廊等)⽬的:确定基坑的环境保护等级、基坑开挖深度以及基坑的施⼯筹划组织⽅案、施⼯场地布置等。

地铁车站结构设计

地铁车站结构设计

地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。

在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。

为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。

地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。

车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时, 必须详细调查研究, 作经济技术比较。

车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。

然后进行车站构造设计, 内力计算, 配筋计算等等。

一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长,宽度为,上层为站厅层,下层为站台层。

车站底板埋深16m采用明挖法施工,用地下连续墙围护。

二、设计依据:地铁设计规范( GB50157-2003);地铁施工技术规范。

三、地铁车站结构设计设计选用矩形框架结构。

设计为岛式车站,采用两层三跨结构。

地铁车站采用明挖法。

车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。

顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。

采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。

临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。

车站开挖围护结构r=L3.2k N/MC二0耳宁:7戸厂■鬥z3z4z5 £------r=27,0kN.mc=0u地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为二,其中基坑开挖深度H为16m,入土深度D为14m。

四、侧压力计算:土分层及土的钻孔柱状图如图:图土分层及土的钻孔柱状图(单位,m )362其中 a ......................................................................................................... 主动土压力a .................................................................................. 主动土压力系数.......................................... 沙土的容重Z ....................................... 土层的深度c ........................................ 土的黏聚力各层土压力系数:计算主动土压力:2ctg 2 45 25 0.41 a tg 2 45 30 0.33 tg 2 45 32 0.31 a tg 2 45 34 2 0.26a tg 2 45 0.2236 20.26 xx2C a1= xx = kpa=kpax = kpaxx + x + x 9 + x = kpa各层土压力:kpakpaxx + x 9)= kpa0.26 x x + x 9) kpa23.42 xx + x + x + x + 27 x = kpa由于黏聚力C = 0 ,所以临界深度为0其主动土压力(水土和算)分布图如图所示:图土压力分布图(单位,m简化计算:沙土层 c 的平均直如下:= ______ ih L 13.2 6.5 19.8 2.0 26.7 9 26.5 1.2 27 11.330154.7kpckpa2p tg 45 刁 °31tg 2 45 3.25 a 1.80 也 13・2 25 19・8 30 26・7 32 26・5 34 27 36 32° h i 30五、车站结构分析计算: 车站框架设计车站站台建筑设计长度为134600mm ,车站宽度21800 mm 站台层净高4200 mm 站厅层净高5600 mm ,站台至轨道净高2000 mm 顶板厚800 mm 中板厚400 mm 车站基础厚1000 mm,车站总高 12000 mm车站框架设计图如图所示:0.55X 20 = KN/ m 2X 25 = 20 KN/ m受力分析:① 顶板荷载计算线荷载:20mm 厚水泥沙浆面层: 800mmi 钢筋混凝土板:图车站框架设计图(单位:mm20 mm 厚沙浆抹灰: X 17 = KN/ m2上部填土荷载(从地下4m开始开挖): 4 X = KN/ m2总荷载:KN/ m 线恒荷载设计值(取1m宽度): g = 1 XX :地面活荷载:q = 20 KN/ m 地面活荷载设计值(取1m宽度):q二20 X =28 m总的线荷载:g + q = + 28 = m②中板荷载计算恒载:20mm 厚水泥沙浆面层:X 20 = KN/ m400mm 钢筋混凝土板:X 25 = 10 KN/ m20 mm 厚沙浆抹灰:X17 = KN/ m总荷载:KN/ m线恒荷载设计值(取1m宽度):g = XX 1 = m楼面荷载:KN/ m2线活荷载设计值(取1m宽度):1XX 10 = 14 KN/ m 线活荷载总设计值:g + q = 27 m车站横向荷载为土压力,取1m宽度进行计算,受力分析如图所示:图车站框架受力简图(单位:m等效简化荷载:q 3s 46 221.7 33.85 m)图车站框架等效简化后受力图(单位: m六、横向框架内力计算:计算简图如图所示:q 443 69.1 2 69.1 m)等效简化荷载受力分析如图说示:ql = 110kN/n图竖向均布荷载作用下的横向框架计算简图①第一层杆件计算由于对称性,可取半结构进行计算,计算图如图所示:1 .2 241.5 / mCB _q 1l6 4AB AD 0.5 BA BE9 BC0.2BA图站厅层半结构受力简图—q1l2丄 110.248 7.262483.0KN/m12 12注:铰支座传递系数为;固定端传递系数为,滑动支座传递系数为,假定材料均匀,线刚度与杆件成反比, u为分配系数-61U55B 由力矩分配法计算结果如图:135,BS_ 合图站厅层半结构计算结果② 第二层杆件计算543,4 —4227 271-68 -1E0.7182,&同①取半结构进行分析计算如图:A BEDEHHE1 | 2'3q 211273 3.632 118.60?m/ m*12 659.30?m/mEBEDEG 4 13eh=1 13DA DF1.图站台层半结构受力计算简图—q 2l 2— 27 7.262 118.60 ?m/m12 12A B 计算结果如图所示□.7514.C 5图站台层半结构受力计算结果(单位:kN ?m )由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向3.757.43I-14,8513E ^L757.4360.1-o —d―4A B 框架弯矩图如图所示:图竖向均布荷载作用下的横向框架弯矩图(单位:kN?m )竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算,计算简图如图所示:A BCA CEAC —— 1 2q a l1 2 70.5 ?m/m12 121 2 q41 1 69.1 6.842269.4 ?m/m12 121 2 q41538.8 ?m/m3 4AB 0.5BA 0.25 CD CA CE 1 3ECDC0.2DA0.25BD BG 0・5DBDH0.4计算结果如图所示1.1°图竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:kN ?m )S38.§图 横向均布荷载作用下的横向半框架计算结果 (单位:kN ?m ) 将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图所示:543.478.8a,870,5-35,5517 Ji^269.iL21.04.6 -4,6158.01L J 6 -gO 3765mm ( 按单1483 ?m ,197.2 ?m ,七、车站配筋计算:站厅层顶板配筋计算f c 14.3 /mm 2 , 取 b=1000mm , h 0 800 35 排布筋考虑 ), 由图知:站厅层顶板的边跨跨中弯矩 中间跨支座弯 2 543.47 ?m , 中间跨跨中弯矩 3 站厅层顶板配筋计算如下表 7-1 示:表 7-1 站厅层顶板配筋计算:0迎200图站厅层顶板配筋图站台层中板配筋计算f c 14.3 /mm 2b=1000mm h 0400 35365mm , 由图知:中板的边跨跨中弯矩1 70.5 ?m,中间跨支座 2 121.0 ?m ,中间跨跨中弯矩 3 64.7 ?m ,站台层中板配筋计算表如表 7-2 所示:表7-2站台层中板配筋计算表截面位置边跨跨中中间跨支座中间跨跨中M1*25^2001厂■Sn2 '^20®2C r>©200025 @200「— i i11■2 1勺2?⑪200^22MC0sMf c bh 21s 21 J 12 sA sM656 1143 602s h 0f y实配钢筋 2 22 @ 200 4 22@200 2 22 @ 200( m m 2 ) 760 1520 760图站台层顶板配筋图^22 @200 ^2 2 ©200$2Eg2O站厅层顶板次、主梁配筋计算(1)站厅层次梁配筋计算:次梁截面尺寸b x h= 600 x 1200mr rnm2l=7260mm①荷载计算恒载由板传来:x = KN/m次梁自重:2x 25xx KN/m次梁抹灰:17xx x2= KN/m总恒荷载:g = m活荷载:q=28 x =70 KN/m 总荷载:g + q = KN/m②内力计算主梁尺寸:bx h=800mmx 1600计算跨度:边跨l01 7106mm 中间跨l02 7260 mm由跨度差7260 7160 1.37 % < 10 %7260故可按等跨连续梁计算。

地铁车站压顶梁结构设计

地铁车站压顶梁结构设计

地铁车站压顶梁结构设计摘要:在地铁结构设计时,若车站抗浮不满足要求,会优先考虑设置压顶梁抗浮型式。

该型式利用围护结构参与抗浮、节省工程投资,且施工简便、抗浮性能可靠,在工程中广泛使用。

本文主要探讨压顶梁受力计算及相关设计。

关键词:压顶梁;抗浮;受力分析;计算一、压顶梁设置范围及连接节点压顶梁设置在顶板上,沿车站全长布置,与顶板间200高为混凝土填充,压顶梁与顶板、填充混凝土均采用C35混凝土。

压顶梁尺寸为800mmx800mm。

车站先施工地墙,地墙内预埋钢筋接驳器,随后施工顶板,再施工压顶梁及混凝土填充。

压顶梁与地墙采用钢筋接驳器连接。

图一压顶梁布置剖面图图二压顶梁与地墙连接剖面图图三压顶梁配筋断面图二、压顶梁受力分析本次计算采用某地铁车站断面进行抗浮计算,车站信息如下:车站覆土厚度:2.85m,顶板厚0.8m,顶板梁0.9x2m,中板厚0.4m,中板梁0.9x1m,底板厚0.9m,底板梁1.1x2.2m,柱子0.8x1.2m,柱跨为9m,侧墙宽0.7m,车站总高度13.85m,总宽度20.7m,地墙长度为32.5m。

抗浮计算过程如下:K1=(2.85*20*20.7+25*19.3*(0.8+0.4+0.9)+20*19.3*0.15*2+25*(0.9*(2-0.8)+0.9*(1-0.4)+1.1*(2.2-0.9)+0.8*1.2*(13.85-0.8-0.4-0.9)/9+0.7*13.85*2+0.8*0.8*2)+15*32.5*0.8*2+0.3*0.9/2*6)/(10*20.3*(2.8 5+13.85-0.5))=1.13>1.1,满足要求。

每侧单位长度压顶梁所受剪力V=(单位长度水反力X1.1-单位长度结构自重-单位长度覆土重)/2=327.7KN。

压顶梁受地墙参与抗浮传来的剪力及由剪力引起的弯矩。

剪力设计值V1=1.1X1.25V=450.6KN弯矩设计值M1=1.1X1.25(VH)=1.1X1.25X(327.7X0.4)=180.3KN.M三、压顶梁结构设计3.1 正截面承载力验算1)构件编号:压顶梁2)设计依据《混凝土结构设计规范》 GB50010-20103)计算信息1. 几何参数截面类型: 矩形截面宽度: b=1000mm截面高度: h=800mm2. 材料信息混凝土等级:C35fc=16.7N/mm2ft=1.57N/mm2钢筋种类:HRB400fy=360N/mm2最小配筋率:ρmin=0.200%纵筋合力点至近边距离: as=50mm3. 受力信息M=180.300kN*m4. 设计参数结构重要性系数: γo=1.14)计算过程1. 计算截面有效高度ho=h-as=800-50=750mm2. 计算相对界限受压区高度ξb=β1/(1+fy/(Es*εcu))=0.80/(1+360/(2.0*105*0.0033))=0.5183. 确定计算系数αs=γo*M/(α1*fc*b*ho*ho)=1.1*180.300*106/(1.0*16.7*1000*750*750)= 0.0214. 计算相对受压区高度ξ=1-sqrt(1-2αs)=1-sqrt(1-2*0.021)=0.021≤ξb=0.518满足要求。

地铁车站和区间隧道的设计和选型(推荐5篇)

地铁车站和区间隧道的设计和选型(推荐5篇)

地铁车站和区间隧道的设计和选型(推荐5篇)第一篇:地铁车站和区间隧道的设计和选型一、地铁车站的建筑设计地铁车站的分类1.1 按照车站埋深分:浅埋车站、深埋车站1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他1.4 按车站站台形式分:岛式、侧式、岛侧混合式地铁车站建筑及平面布局2.1 地铁车站的组成地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。

车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。

2.2 车站总体平面布置按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。

车站建筑设计 3.1 车站设计 3.1.1 设计原则(1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。

(2)车站一般宜设在直线上。

(3)车站公用区间划分为付费区和非付费区。

(4)隔、吸声措施。

(5)无障碍通行。

3.1.2平剖面设计(1)车站规模确定。

确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。

(2)车站功能分析。

确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

1(3)站厅设计。

主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。

(4)站台设计。

确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。

(5)主要房间布置。

包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。

(6)车站主要设施布置。

包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。

地铁车站结构设计

地铁车站结构设计

主体结构:行车功能、建筑功能、设备功能
1、主体结构使用年限100年—混凝土掺料、承载力、裂缝、变形、构件构造 (保护层厚度,构件尺寸)、防水等级、防迷流(杂散电流)等。 2、限界要求:结构梁、柱截面与柱网布置(尤其在道岔区,曲线地段) 3、使用要求:孔洞布置、设备基础、结构沉降及防水、防火等
经济性:结构施工过程中,现场情况时刻都在变化,很可能产生很多变更。应 在技术和合同方面控制好变更。
水浮力
>1.05
结构自重+覆土+侧壁摩阻力
K=
>1.15~1.2
水浮力
2、矿山法结构
1) 工法拟定 台阶法、中隔壁法(CD、CRD法)、侧壁导坑法(眼镜法)、中洞法等
五、工作中需要关注的事项
1.前期工程的落实对一个项目的进展非常重要! 2.基坑开挖施工过程中,基坑的安全及周边建构筑物的安全为重中之重! 3.主体结构施工过程中,注意各预留孔洞及预埋件的预留。施工单位要将 建筑图与结构图核对后施工。
车站施工方法比较表
优点Biblioteka 缺点1.施工简单、技术成熟。
明 挖
2.工程进度快,根据需要可以分段同时作业。 3.防水效果好。 4.造价及运营费用低。
5.对地质条件要求不高。
1.施工方法比较成熟。 盖 2.与明挖比较对交通影响较小。 挖 3.地质条件要求不高
4.防水效果较好。
1.施工对城市地面交通和居民的正常生活有一定影 响。 2.车站影响范围的地下管线需拆迁。 3.需较大的施工场地。
通风空调 给排水及消防
中低压供电 屏蔽门
电梯、自动扶梯
通信 信号 自动售检票/门禁 综合监控/自动化控制 控制中心工艺
二、地铁车站结构设计基本原则
前期工程: 1、房屋拆迁; 2、施工场地; 3、交通疏解; 4、管线改迁(110KV及以上电力,埋深较深的雨、污水管); 5、周边地块结合-站位选择、施工工法是否相适应

轨道交通地铁车站建筑设计技术要求规范--(车站结构)

轨道交通地铁车站建筑设计技术要求规范--(车站结构)

车站结构一般规定1. 哈尔滨市轨道交通1 号线四期工程沿线车站均为地下站,车站结构设计应从各自的建设条件出发,根据城市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划的要求,考虑相邻区间隧道施工工艺和站址地面交通组织的处理方式,本着既遵循技术先进,又安全、可靠、适用、经济的原则选择结构型式和施工方法。

2. 车站结构应根据选择的结构型式、施工方法、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性要求,并根据确定的环境类别、环境作用等级、设计使用年限等标准进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等要求。

3. 车站结构要满足车站建筑、设备安装、行车运营、施工工艺、环境保护等要求,确保车站的正常使用,达到总体规划设计的要求,同时,考虑城市规划引起周围环境的改变对结构的作用。

4. 车站结构的净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能的要求。

尚应考虑施工误差、测量误差、结构变形和后期沉降等因素的影响,其值根据地质条件、埋设深度、荷载、结构类型、施工工序等条件并参照类似工程的实测值加以确定。

5. 车站结构应具有足够的纵向刚度,并满足地铁长期运营条件下对结构纵向抗裂及抗差异沉降的要求。

换乘车站结构设计应充分考虑上述要求,以减少换乘车站续建工程对已建车站结构的影响。

6. 结构设计应以现行国家的相关勘察规范确定的内容和范围,考虑不同施工方法对地质勘探的特殊要求,通过施工中对地层的观测反馈进行验证。

其中暗挖结构的围岩分级按现行《铁路隧道设计规范》(TB10003)确定。

7. 对于基坑法、浅埋暗挖法等不同型式的车站结构计算模型应符合实际工况条件,并根据具体情况选用与其相符或相近的现行国家有效规范、规程和标准进行设计。

8. 车站抗震设计应根据当地政府主管部门批准的抗震设防烈度,按照相关规范进行设计。

9. 车站按照当地政府主管部门批准的六级人防标准设防,保证地下车站在规定的人防设防区段具备战时防护和平战转换功能。

第6章 地铁车站建筑设计

第6章 地铁车站建筑设计

37
2.车站功能分析 将乘客进、出站的过程用流线的形式表示出 来,这种流线叫做乘客流线。还有站内工作人 员流线、设备工艺流线等。 3.站厅 站厅的作用是将由出入口进入的乘客迅速地、 安全地、方便地引导到站台乘车,或将下车的 乘客同样地引导至出入口出站。 站厅的布置有以下4种: a.站厅位于车站一端
49
侧式站台宽度,可分两种情况: 第二种情况:通道垂直与站台方向布置时,楼 梯(自动扶梯)均布置在通道内,则站台总宽度 包含设备和管理用房所占的宽度(移出站台外则 不计宽度)、结构立柱的宽度和侧站台宽度。
50
a.经验公式
M W b 0.48 l
式中 b ——侧站台宽度(m); M——超高峰小时每列车单向上下车人数; W——人流密度按0.4(m2/人)计算; l——站台有效长度(m)。
27
六.按车站间换乘形式分类
⑤“工” 字形换乘:两个车站在同一水平面平行 设置时,通过天桥或地道换乘,在平面上构成 “工” 字形组合。
28
第三节 地下铁道车站平面设计
一、地铁车站的组成
地铁车站由车 站主体(站台、 站厅,生产、 生活用房),出 入口及通道, 通风道及地面 通风亭等三大 部分组成。
47
岛式站台宽度包含了沿站台纵向布置的楼 梯(自动扶梯)的宽度、结构立柱(或墙)的宽度 和侧站台宽度。
48
侧式站台宽度,可分两种情况: 第一种情况:沿站台纵向布设楼梯(自动扶梯) 时,则站台总宽度由楼(扶)梯的宽度、设备和 管理用房所占的宽度(移出站台外则不计宽度)、 结构立柱的宽度和侧站台宽度等组成。
51
Bd 2b nc d
式中 Bd ——岛式站台宽度(m); b ——侧站台宽度(m); c ——柱横向宽(m); n——横向柱数 d ——楼梯、自动扶梯宽(m)。

地铁车站结构设计

地铁车站结构设计

地铁车站结构设计地铁车站是城市地铁系统的关键组成部分,其设计应充分考虑到安全、便利和美观等方面。

本文将从站点选址、站厅设计、站台设计和出入口设计等角度,对地铁车站的结构设计进行详细阐述。

1.站点选址地铁车站的选址应考虑以下因素:-人口密度:选址应与人口密集区接近,方便乘客出入。

此外,还要考虑未来城市发展的规划,以确保选址能够满足未来需求。

-交通便捷性:车站附近应有公交站点和停车场,方便乘客换乘和停车。

-地质条件:选址要避免地质灾害和地下水问题,以保证车站的稳定性和安全性。

2.站厅设计站厅是地铁车站的核心区域,应具备以下特点:-宽敞明亮:站厅应设计为宽敞明亮的空间,以提供足够的运营空间和方便的视觉导向。

-分区布局:站厅应划分出清票区、安检区、候车区等不同功能区域,以便乘客可以有序地进行票务和安全检查。

-通风系统:站厅应配置良好的通风系统,确保空气的流通和乘客的舒适。

3.站台设计站台是乘客上下车和换乘的区域,其设计应满足以下要求:-宽度和长度:站台宽度应足够以容纳客流高峰时的乘客,并提供充足的上下车空间。

站台长度应根据列车的长度来确定,以便保证列车的完全停靠。

-安全设施:站台应设有防护门和安全栏杆,以保证乘客的安全,并防止乘客进行危险行为。

此外,站台上还应设有紧急广播和紧急出口,以应对突发情况。

-无障碍设施:站台应设有无障碍通道、盲道和轮椅航道,以方便残障乘客的使用。

4.出入口设计出入口是地铁车站与城市道路和交通网络相连接的区域,其设计应具备以下特点:-就近性:出入口应就近于周边居民区和商业区,以提供方便快捷的出行服务。

-多元交通接驳:出入口应与公交站点、停车场和自行车停车场相连接,以满足乘客的多样化交通需求。

-安全和流畅性:出入口应设置适当的安全设施,如监控摄像头和安保人员。

此外,还应考虑到乘客的流量,并设置合理的通道和通行方式,以保证出入口的流畅。

综上所述,地铁车站的结构设计应兼顾安全、便利和美观等方面的要求。

城市轨道交通车站结构及施工

城市轨道交通车站结构及施工
结合沈阳地铁一号线洪湖北街站说明。
洪湖北街站 之工程概况
于洪区 中医院
解放商用汽 车服务中心
西南风道 3号出入口
2号出入口
1安停车场
东北风道
洪湖北街站 之施工步序
军用梁路面
土方开挖方向
土方开挖方向
结 构
● 基坑开挖顺序:地面以下2m范围,与军用梁安装同步进行;地面以下2~ 5.5m范围,由车站两端向车站中心采用挖掘机开挖;地面以下5.5~ 16.8m范围开挖由车站中心向车站两端分三层,利用第二阶段的路面运土。
适用于两条或多条平行线路、岛式站台 站台直接换乘的换乘线路最短,换乘高度最小, 没有高度损失,因此对乘客来说比较方便,并节 省了换乘时间。换乘设施工程量少,比较经济。
双层水平换乘
单层双站台平面换乘 图3-8 地铁车站两线换乘模式
2、上下平行站台换乘 • 同线路同站台 • 同方向同站台 • 异方向同站台
2、换乘站的方式及如何选择条件
(2)平行换乘:
平行双岛换乘方式
2、换乘站的方式及如何选择条件
(2)平行换乘:
三线平行换乘,其中2线上下平行换乘——上海R4线徐家汇投标
2、换乘站的方式及如何选择条件 2)站厅与站厅之间的换乘
2、换乘站的方式及如何选择条件
3)通道的换乘:
(1)方式:是指换乘的两条线路其车站结构完全脱开,用通道将两条线的车站连接起来,供 乘客换乘。
2、换乘站的方式及如何选择条件
3)通道的换乘:原则上同一票制必须是付费区至付费区的换乘;不同票制采 用非付费区换乘的方式
(2)适用范围:适用与两线之间两线分期实施年限相差很远,且远期线路的站点设置情况不 明的情况;或者两线之间其中一条线的车站如果与另外一条线车站由于出入口、风亭设置困 难无法按最理想的状况选择换乘方式的情况下。通道宽度按换乘客流量计算确定,换乘通道 的宽度按4000~5000人/m考虑

轨道交通地铁车站建筑设计技术要求规范--(车站结构)

轨道交通地铁车站建筑设计技术要求规范--(车站结构)

车站构造一般规定1.哈尔滨市轨道交通1号线四期工程沿线车站均为地下站,车站构造设计应从各自旳建设条件出发,根据都市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划旳规定,考虑相邻区间隧道施工工艺和站址地面交通组织旳解决方式,本着既遵循技术先进,又安全、可靠、合用、经济旳原则选择构造型式和施工措施。

2.车站构造应根据选择旳构造型式、施工措施、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性规定,并根据拟定旳环境类别、环境作用等级、设计使用年限等原则进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等规定。

3.车站构造要满足车站建筑、设备安装、行车运营、施工工艺、环保等规定,保证车站旳正常使用,达到总体规划设计旳规定,同步,考虑都市规划引起周边环境旳变化对构造旳作用。

4.车站构造旳净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能旳规定。

尚应考虑施工误差、测量误差、构造变形和后期沉降等因素旳影响,其值根据地质条件、埋设深度、荷载、构造类型、施工工序等条件并参照类似工程旳实测值加以拟定。

5.车站构造应具有足够旳纵向刚度,并满足地铁长期运营条件下对构造纵向抗裂及抗差别沉降旳规定。

换乘车站构造设计应充足考虑上述规定,以减少换乘车站续建工程对已建车站构造旳影响。

6.构造设计应以现行国家旳有关勘察规范拟定旳内容和范畴,考虑不同施工措施对地质勘探旳特殊规定,通过施工中对地层旳观测反馈进行验证。

其中暗挖构造旳围岩分级按现行《铁路隧道设计规范》(TB10003)拟定。

7.对于基坑法、浅埋暗挖法等不同型式旳车站构造计算模型应符合实际工况条件,并根据具体状况选用与其相符或相近旳现行国家有效规范、规程和原则进行设计。

8.车站抗震设计应根据本地政府主管部门批准旳抗震设防烈度,按照有关规范进行设计。

9.车站按照本地政府主管部门批准旳六级人防原则设防,保证地下车站在规定旳人防设防区段具有战时防护和平战转换功能。

地铁车站结构及施工组织设计设计

地铁车站结构及施工组织设计设计

前言地铁,狭义上专指在地下运行为主的城市铁路系统或捷运系统。

但广义上,由于许多此类的系统为了配合修筑的环境,可能也会有地面化的路段存在,因此通常涵盖了都会地区各种地下与地面上的高密度交通运输系统。

地铁属于城市快速轨道交通的一部分,因其运量大、快速、正点、低能耗、少污染、乘坐舒适方便等优点,常被称为“绿色交通”。

面对21世纪我国城市地下空间开发利用的广阔市场,目前,我国将有20余座城市建设地铁,至少将建250km。

2010年9月27日上午,沈阳地铁一号线正式通车,成为全国第七座、东北首座拥有地铁的城市!截止2012年元旦共有两条线路,41座车站运营中。

本设计说明书通过文字说明、图表等形式阐述了地铁车站结构及施工组织设计,根据大量文献和初始资料,决定采用采用双层双跨箱形框架结构。

在设计过程中,得到了指导老师的详细指导和同学的悉心帮助,在此表示感谢。

由于设计时间和本人能力有限,难免有错误和疏漏之处,望老师给予批评指正。

1 概述1.1 工程概况沈阳地铁三号线设8座地下车站,均采用明挖施工,区间大部分为盾构施工,配线段和覆土不满足盾构工法要求段及出入段线采用明挖。

全线设8个车站,全部为地下车站,区间隧道施工方法有矿山发法、盾构法、明挖法等。

小津桥车站采用双层双跨箱形框架结构,车站长度157.7m,底板埋深11.2m,施工方法采用明挖顺作法。

1.2 工程地质概况在区域地质构造上,沈阳市区位于华北地块内,根据地质构造活动的特点,沈阳市位于凹陷地块内,大地构造上处于辽东块隆与下辽河-辽东湾块陷相交接的部位。

在区域新构造运动上,沈阳市位于千山-龙岗上升区,第四纪时期主要表现为掀抬式上升,为重力场的高重力带异常区。

沈阳地区地貌属于浑河冲洪积扇,地势平坦,市内最高处是东部的大东区,海拔65m,最低处是西部的铁西区,海拔36m,平均海拔约50m,地势由东向西缓慢倾斜。

沈阳市属于受季风影响的北温带半湿润大陆性气候,一年四季分明,春季平均气温在10℃左右,夏季最高气温达35℃以上,秋季平均气温20℃左右,冬季最低气温达-26℃以下。

地铁车站结构设计基本参数

地铁车站结构设计基本参数

一、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑净高4.5m,站厅层建筑净高4.8m。

结构构件截面尺寸及主要材料强度如表1所示。

车站典型横断面如下图所示(图1):
图1 车站典型横断面
表1 主要结构构件尺寸及材料强度等级
二、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载—结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。

工程地质
岩土分层及特性图2 主体结构计算图式
表2 岩土层分类及深度
注:该项工程地下水位为-9.00m。

土层物理、力学参数表
表2 各岩土层力学、物理参数
页眉内容
表3 各岩土层力学、物理参数
页眉内容
表4 荷载计算表
荷载及荷载效应组合
表5 荷载组合参数表。

地铁车站结构设计重点分析

地铁车站结构设计重点分析

地铁车站结构设计重点分析摘要:近些年来,伴随着我国经济的发展,交通事业取得了很大的进步,地铁车站的数量越来越多。

作为城市当中不可缺少重要交通枢纽,地铁车站对于城市的发展具有的重要意义,其具有这功能丰富、人流密集等的特点,因此必须要对地铁车站的结构设计引起高度重视。

在对地铁车站进行结构设计的过程中,需要充分考虑到安全性和稳定性等各方面的问题。

本文结合地铁车站设计过程的实际情况,针对地铁车站结构设计中需要注意的问题就行分析,希望能够对我国地铁建设事业的发展带来帮助。

关键词:地铁车站;结构设计;问题1、引言在我国经济发展的过程中,地铁工程发挥了非常重要的作用,其不但投资较大,并且还有着较长的建设周期。

在对地铁车站进行施工的过程中,涉及到了众多的复杂线路及大量的数据。

可以说,针对地铁的建设耗时耗力且关乎着国计民生的重要工程,因此必须要在规划建设的过程中做好对于地铁车站的结构设计,严格依据相关的要求来做好各方面的工作。

通过对地铁车站结构的合理设计,能够确保地铁车站的作用得到更加充分的发挥,这对于我国地铁事业的发展具有重要意义。

2、地铁车站结构设计常见问题2.1周边环境较为复杂建设地铁车站的一个主要目的就是提高城市交通的便利性,避免在城市中出现交通堵塞的问题,因此,在对地铁进行规划建设时,无论是其路线还是站位一般都会选择城市当中比较繁华且人口密集的地方,因此周边的环境非常复杂。

具体来看,其周边往往会涉及到地上电力线路装置、建筑物和地下管线等的各种事物,同时各方面的细部工程也涉及到了众多内容,如在地下管线方面,通常会涉及到污水管、天然气管等。

因此针对地铁车站的结构设计往往要面临复杂的条件,这就要求相关设计人员在进行地铁车站结构设计时,要对这些方面的条件引起高度的重视,避免受到这些方面条件的影响,确保地铁车站结构设计的合理性。

2.2水文条件复杂,地域性特征显著在对地铁车站进行建设的过程中,最为主要的就是地下项目,因此将会受到来自于水文地质环境的直接影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。

在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。

为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。

地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。

车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。

车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。

然后进行车站构造设计, 内力计算, 配筋计算等等。

一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。

车站底板埋深16m,采用明挖法施工,用地下连续墙围护。

二、设计依据:地铁设计规范(GB50157-2003);地铁施工技术规范。

三、地铁车站结构设计3.1 设计选用矩形框架结构。

设计为岛式车站,采用两层三跨结构。

地铁车站采用明挖法。

车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。

顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。

采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。

临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。

3.2 车站开挖围护结构地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。

四、侧压力计算:土分层及土的钻孔柱状图如图4.1:图4.1土分层及土的钻孔柱状图(单位,m)计算主动土压力: a a a c K -Z K =P 2γ其中 a P ………………………主动土压力a K ………………………主动土压力系数γ………………………沙土的容重Z ………………………土层的深度c ………………………土的黏聚力各层土压力系数:1Z : 41.0225452=⎪⎭⎫ ⎝⎛-=K tg a 2Z : 33.0230452=⎪⎭⎫ ⎝⎛-=K tg a 3Z :31.0232452=⎪⎭⎫ ⎝⎛-=K tg a 4Z :26.0234452=⎪⎭⎫ ⎝⎛-=K tg a5Z :22.0236452=⎪⎭⎫ ⎝⎛-=K tg a各层土压力:a : 02=K -Z K =P a a a c γb : 1Z K =P γa b 上=0.41×13.2×6.5=35.2 kpa=Z K =P 2γa b 下0.33×13.2×6.5=28.3 kpac : =Z K =P 2γa c 上0.33×(13.2×6.5 + 19.8×2.0)=41.4 kpa=Z K =P 3γa c 下0.31×(13.2×6.5 + 19.8×2.0)=38.9 kpad :=Z K =P 3γa d 上0.31×(13.2×6.5 + 19.8×2.0 + 26.7×9)=113.4 kpa 26.04=BZ K =P γa d 下×(13.2×6.5 + 19.8×2.0 + 26.7×9)=95.1 kpae :26.04=Z K =P γ上e ×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=103.5 kpa=Z K =P 5γa e 下0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=87.6 kpaf :=P f 0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9.0 + 26.5×1.2 + 27×11.3)=154.7 kpa由于黏聚力C = 0 ,所以临界深度为0 。

其主动土压力(水土和算)分布图如图4.2所示:图4.2土压力分布图(单位,m )简化计算:沙土层ϕγ⋅⋅c 的平均直如下:γ =42.23303.11272.15.2697.260.28.195.62.13=⨯+⨯+⨯+⨯+⨯=∑∑i i i h h γ kpa C = 0032303627345.26327.26308.19252.13=⨯+⨯+⨯+⨯+⨯==∑∑i i i h h ϕϕ 31.02452=⎪⎪⎭⎫ ⎝⎛-=K ϕtg p 55.0=K p25.32452=⎪⎪⎭⎫ ⎝⎛+=K ϕtg a 80.1=K a五、车站结构分析计算:5.1 车站框架设计车站站台建筑设计长度为134600mm , 车站宽度21800 mm ,站台层净高4200 mm , 站厅层净高5600 mm , 站台至轨道净高2000 mm ,顶板厚800 mm ,中板厚400 mm 车站基础厚1000 mm, 车站总高12000 mm 。

车站框架设计图如图5.1所示:图5.1车站框架设计图(单位:mm)5.2受力分析:①顶板荷载计算线荷载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡800mm钢筋混凝土板: 0.8×25 = 20 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡上部填土荷载(从地下4m开始开挖): 4×13.2 = 52.8 KN/㎡总荷载: 73.54 KN/㎡线恒荷载设计值(取1m宽度): g = 1×1.2×73.54 =88.248 KN.m/m地面活荷载: q = 20 KN/㎡地面活荷载设计值(取1m宽度): q = 20×1.4 =28 KN.m/m总的线荷载: g + q = 110.248 + 28 =110.248 KN.m/m②中板荷载计算恒载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡400mm钢筋混凝土板: 0.4×25 = 10 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡总荷载: 10.74 KN/㎡线恒荷载设计值(取1m宽度): g = 1.2× 10.74×1 = 13.0 KN.m/m楼面荷载: 10.0 KN/㎡线活荷载设计值(取1m宽度):1×1.4×10 = 14 KN/㎡线活荷载总设计值: g + q = 27 KN.m/m车站横向荷载为土压力 , 取1m 宽度进行计算 ,受力分析如图5.2所示:图5.2 车站框架受力简图(单位:m)等效简化荷载:85.3327.21463+=s q (KN.m/m) 1.6921.69434=+=q (KN.m/m) 等效简化荷载受力分析如图5.3说示:图5.3车站框架等效简化后受力图(单位:m )六、横向框架内力计算:计算简图如图6.1所示:图6.1竖向均布荷载作用下的横向框架计算简图① 第一层杆件计算由于对称性, 可取半结构进行计算, 计算图如图6.2所示:图6.2 站厅层半结构受力简图m KN l q AB BA /0.48326.7248.110121121221=⨯⨯==M -=M 22163.3248.1103131⨯⨯-=-=M l q BC =-483.0 m /KN m l q CB /5.2416121KN -=-=M 5.0==AD AB μμ 94==BE BA μμ 2.0=BC μ注:铰支座传递系数为1.0;固定端传递系数为0.5,滑动支座传递系数为-1.0,假定材料均匀,线刚度与杆件成反比,u 为分配系数。

由力矩分配法计算结果如图6.3:图6.3 站厅层半结构计算结果②第二层杆件计算同①取半结构进行分析计算如图6.4:图6.4站台层半结构受力计算简图m m l q DE ED /60.11826.727121121222•KN =⨯⨯==M -=M m m l q EH /60.11863.3273131222'•KM -=⨯⨯-=-=Mm m l q HE /30.596122•KN -=-=M134===EG ED EB μμμ eh μ=131 31==DF DA μμ计算结果如图6.5所示:图6.5站台层半结构受力计算结果 (单位:m kN •)由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向框架弯矩图如图6.6所示:kN•)图6.6竖向均布荷载作用下的横向框架弯矩图6.6 (单位:m竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算, 计算简图如图6.7所示:m m l q AC CA /5.70585.33121121223•KN -=⨯⨯==M -=M m m l q CE /4.26984.61.69121121224•KN -=⨯⨯-=⨯-=Mm m l q EC /8.5383124•KN -=-=M5.0==AB AC μμ 25.0=BA μ 31===CE CA CD μμμ 2.0===DA DC DB μμμ 25.0=BD μ 5.0=BG μ 4.0=DH μ计算结果如图6.8所示:图6.8 横向均布荷载作用下的横向半框架计算结果 (单位:m kN •)将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图 6.9所示:kN•)图6.9竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:m七、车站配筋计算: 7.1 站厅层顶板配筋计算2/3.14mm f c N = , 取b=1000mm , mm h 765358000=-=(按单排布筋考虑), 由图6.9 知:站厅层顶板的边跨跨中弯矩m •KN =M 4831, 中间跨支座弯m •KN =M 47.5432, 中间跨跨中弯矩m •KN =M 2.1973, 站厅层顶板配筋计算如下表7-1示:表7-1站厅层顶板配筋计算:图7.1站厅层顶板配筋图7.2站台层中板配筋计算2/3.14mm f c N = b=1000mm mm h 365354000=-= , 由图6.9知:中板的边跨跨中弯矩m •KN =M 5.701 , 中间跨支座m •KN =M 0.1212, 中间跨跨中弯矩m •KN =M 7.643 , 站台层中板配筋计算表如表7-2所示:表7-2站台层中板配筋计算表截面位置边跨跨中 中间跨支座 中间跨跨中M70.5 121.0 64.7 2c s bh f M=α 0.0370.064 0.034 ()s s 21121α-+=γ 0.982 0.967 0.983 y0s s f h MA γ=6561143602实配钢筋 (2mm )222Φ@200760 224Φ@2001520 222Φ@200760图7.2站台层顶板配筋图7.3站厅层顶板次、主梁配筋计算 (1) 站厅层次梁配筋计算:次梁截面尺寸 b ×h= 600×1200mm 2mm l=7260mm① 荷载计算 恒载由板传来: 88.248×2.5 = 220.6 KN/m 次梁自重:2×25×0.6×(1.2-0.8)=12 KN/m 次梁抹灰: 17×0.02×(1.2-0.8) ×2= 0.027 KN/m 总恒荷载: g = 232.627KN/m活荷载: q=28×2.5=70 KN/m 总荷载: g + q =302.7 KN/m② 内力计算主梁尺寸:b ×h=800mm ×1600 计算跨度:边跨 mm l 710601中间跨 mm l 726002= 由跨度差37.1726071607260=-﹪ < 10﹪故可按等跨连续梁计算。

相关文档
最新文档