集成运放同相放大器的带宽测量设计与仿真设计报告
集成功率放大器实验报告
集成功率放大器实验报告实验报告:集成功率放大器实验目的:1. 了解集成功率放大器的基本原理和工作原理;2. 学习使用实验仪器和测量方法,观察和分析集成功率放大器的性能。
实验仪器:1. 集成功率放大器实验板;2. 示波器;3. 可变电压源。
实验步骤:1. 搭建集成功率放大器电路:将集成功率放大器实验板连接示波器和可变电压源。
示波器连接在集成功率输出端,可变电压源连接在集成功率输入端。
2. 调节可变电压源输出电压,观察集成功率输出波形在不同电压下的变化情况。
记录输出波形的峰值电压和谷值电压。
3. 调节可变电压源输出电压的幅度和频率,观察集成功率输出波形的畸变情况。
记录输出波形的失真程度。
4. 测量集成功率放大器的增益,通过改变可变电压源输出电压,测量输入信号和输出信号的幅度,计算增益值。
5. 改变输入信号的频率,测量集成功率放大器的带宽,找到输出信号的幅度下降3dB的频率点。
实验结果:1. 在不同的输入电压下,观察到集成功率输出波形的峰值和谷值电压的变化情况。
可以得到输入电压和输出电压之间的关系曲线。
2. 在改变输入信号的频率时,观察到集成功率输出波形的失真程度,可以得到输入信号频率和输出信号失真程度之间的关系曲线。
3. 测量得到集成功率放大器的增益值和带宽。
实验结论:1. 集成功率放大器可以将输入信号的幅度放大到更高的幅度,使得信号能够驱动更高阻抗的负载。
2. 集成功率放大器的增益和带宽受输入电压和频率的影响,需要根据具体的应用需求选择合适的工作条件。
实验中可能的误差:1. 仪器误差:示波器的测量误差、可变电压源的输出误差等;2. 环境误差:温度、湿度等环境因素对实验结果的影响;3. 人为误差:操作不精准、读数误差等。
改进措施:1. 使用精度更高的仪器进行测量;2. 在实验过程中控制环境条件,确保实验的准确性;3. 注意操作细节,提高操作的精准度。
总结:通过本次实验,我学习了集成功率放大器的工作原理和性能特点,并通过实验观察和测量,对集成功率放大器的性能有了更深入的了解。
运放的仿真与分析报告
运放的仿真与分析1.基本仿真流程(1)电路仿真界面:进入UNIX系统,按键“Ctrl+t”出现下图窗口:图1输入“icfb&”回车后出现下图窗口。
图2注:有关镜像的操作:图2中选择“Library Path Editor”出现下图窗口:图3左栏为文件名,右栏为路径;或者打开文件cds.lib 按下图编写文件图4图5File→New→Library(opam)→(New)Cell View进入电路图编辑界面,画相应的放大器电路,如下图图6(2)调用相关器件器件的调用操作:按快捷键“i”,选择library,以及相应的器件(nmos,pmos,res,cap等)注:模型名要与模型库中的相应名称相同。
打开模型库的.scs文件,查看模型名和器件的基本参数(,,t V ):ox th// Models included in this release ://// Model Name Description// ----------- ----------------------------------------------------------------------// nmos_1p8 BSIM3v3 model for thin-gate (1.8V) NMOS transistor// pmos_1p8 BSIM3v3 model for thin-gate (1.8V) PMOS transistor// nmos_3p3 BSIM3v3 model for thick-gate (3.3V) NMOS transistor// pmos_3p3 BSIM3v3 model for thick-gate (3.3V) PMOS transistor// nmos_1p8_nat BSIM3v3 model for thin-gate (1.8V) Native NMOS transistor// nmos_3p3_nat BSIM3v3 model for thick-gate (3.3V) Native NMOS transistorsection nmos_1p8_tmodel nmos_1p8 bsim3v3 {0: type=n+ lmin=1.8e-007 lmax=3.5e-007 wmin=2.2e-007………………………………………………………….+ xw=0 tox=3.5e-009 toxm=3.5e-009…………………………………………………+ xpart=0 vth0=0.39851301 lvth0=1.1573677e-008…………………………………………………..+ cdscd=0 cit=0.0017786 u0=0.035597185………………………………….//***************************************************************************** section pmos_1p8_tmodel pmos_1p8 bsim3v3 { 0: type=p+ lmin=1.8e-007 lmax=3.5e-007 wmin=2.2e-007………………………………………………….+ xl=0 xw=0 tox=3.5554e-009…………………………………………….+ cgdo=3.051e-010 xpart=0 vth0=-0.39889023…………………………………………..+ u0=0.0078211697 lu0=1.2538533e-010 wu0=5.1065658e-010…………..…………………………….注:在sim.scs 文件中没有表示沟道调制效应的参数λ,因而需要测量计算: 修正后的漏电流为 2()(1)D n GS T DS i K v V v λ=-+图7如图可求出λ。
集成运算放大器的基本应用实验报告
集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验九 集成运算放大电路(同相及0.7倍放大电路)
EDA(一)模拟部分电子线路仿真实验报告实验名称:实验九集成运算放大电路(同相及0.7倍放大电路)姓名:倪庆敏学号:140404239班级:通信2班实验时间:2016.12.3南京理工大学紫金学院电光系一、实验目的(四号+黑体)1、掌握比例运算电路运算关系的估算方法及仿真分析方法。
2、掌握加减运算电路运算关系的估算方法及仿真分析方法。
3、掌握比例运算电路,加减运算电路的设计方法及调试方法。
4、掌握积分电路的工作原理及其基本性能特点。
5、掌握积分电路的运算关系的分析方法。
6、掌握积分电路的仿真分析方法。
二、实验原理(格式同上)集成运算放大电路具有很多技术指标,在误差允许的范围内可以将其理想化处理,集成运放的理想参数为:(1)开环差模电压放大倍数Aud=无穷大。
(2)差模输入电阻Rid=无穷大。
(3)输出电阻R0=0.(4)共模抑制比很大。
(5)带宽足够宽。
(6)由以上特点可以得到理想集成运放的分析依据,利用分析依据可以很方便的得到集成运放的输入电压和输出电压之间的运算关系。
1)虚断理想集成运放的输入电阻无穷大,而输入电压为一个有限值,则电路的输入电流i+和i-近似为0,此时两个输入端之间没有电流流过,称为虚断。
注意:电流指的是净输入电流。
不论运放是开环还是构成负反馈,都可以使用虚断。
2)虚短虚短使用的条件是运放构成负反馈电路,由于理想集成运放差模电压放大倍数很大,而输出电压为有限值,故,U+=U-,即同相输入端的电位和反相输入端电位相等,称为虚短。
3)放大信号类型运放带宽足够大,所以运放构成的电路既可以放大直流信号也可以放大交流信号。
4)电源运放可由双电源供电,也可以由单电源供电。
若运放由双电源供电,可放大交流信号与直流信号,此时电路中参考点电位为正,负电源的中间值,即公共接地端,静态时U+=U-=U0。
若仅需放大交流信号,则运放可由单电源供电吃屎集成运放内部各点对地电位都将提高,将以VCC/2为参考点,因此即使输入信号为0,仍然有输出信号。
集成运算放大器应用实验报告
集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。
本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。
实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。
实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。
实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论知识进行对比分析。
2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。
随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。
2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。
实验结果与理论计算值基本一致,验证了理论知识的正确性。
运算放大器仿真试验
运算放大器电路仿真试验报告1、 电路课程设计目的(1) 熟悉运算放大器电路的分析方法,加深对其的理解。
(2) 学会使用ewb 软件对运算放大器进行仿真模拟。
2、 仿真电路设计原理:运算放大器简称运放,是一种体积很小的集成电路器件。
其对外一般有8~11个引出端,其中两个输入端一个输出端,其作用是把输入电压放大一定倍数后在输送出去。
运放的电路模型如下图所示:工程上常把实际运算放大器看做理想运放,即∞≈=∞≈A R R in ,0,0,于是我们可以得到:(1)输入端口电流约为零,可近似视为短路,称为“虚断”。
(2)两输入端口间电压约等于零,可近似视为短路,称为“虚短”。
计算下图所示的电路中的输出电压0U 与输入电压i U 之比,其中:Ω=Ω=Ω=Ω=Ω=5,4,3,2,954321R R R R R如图设节点1节点2可列式:0312191)312191(021=---++U U U U n i n ——(1) 051)5141(02=-+U U n ——(2) 又由虚短可知V U n 01= 则可解得:002444.094U U U n == 2.0510319291000-=-=⇒=---i i U U U U U 3、 电路设计内容与步骤:如下图设计仿真电路,i U 的值自行预设,利用仿真软件中的电表测量出2n U 与0U 的值,将其与理论计算值进行比较。
为验证方便,在进行电路仿真实验时,将i U 设为10V ,实验得出数据如上图中所示:20.8889n U V =-,02U V =-200.88890.444452n U U -==-,020.210i U U -==- 与理论所得结果相同或相近,考虑到适当的误差范围可认为对于运放的分析方法是正确的。
4、 结果与误差分析由运放电路仿真实验可验证对于运放电路的分析方法及理想运算放大器的“虚断”、“虚短”性质是成立的本次试验的实际数据与理论数据之间存在一些误差,这些误差主要是由模拟电路的U的值显示为-0.8889V,实际上是对电表在显示数据时对于有效数据的取舍造成的,2n0.8888 的近似值。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告一、实验目的。
本实验旨在通过实际操作,掌握集成运算放大器的基本原理和应用技巧,加深对集成运算放大器的理解,提高实际操作能力。
二、实验仪器与设备。
1. 集成运算放大器实验箱。
2. 直流稳压电源。
3. 示波器。
4. 信号发生器。
5. 电阻、电容等元件。
6. 万用表。
7. 示波器探头。
三、实验原理。
集成运算放大器是一种高增益、直流耦合的差分输入、单端输出的电子放大器,具有很多种应用。
在本实验中,我们主要探讨集成运算放大器的非反相放大电路和反相放大电路的应用。
1. 非反相放大电路。
非反相放大电路是指输入信号与反馈信号同相,通过调节反馈电阻和输入电阻的比值,可以实现不同的放大倍数。
在本实验中,我们将通过调节电阻的数值,观察输出信号的变化,从而验证非反相放大电路的工作原理。
2. 反相放大电路。
反相放大电路是指输入信号与反馈信号反相,同样可以通过调节电阻的数值,实现不同的放大倍数。
在本实验中,我们将通过改变输入信号的频率和幅度,观察输出信号的变化,从而验证反相放大电路的工作原理。
四、实验步骤。
1. 连接电路。
根据实验要求,连接非反相放大电路和反相放大电路的电路图,接通电源。
2. 调节参数。
通过调节电阻的数值,观察输出信号的变化,记录不同放大倍数下的输入输出波形。
3. 改变输入信号。
改变输入信号的频率和幅度,观察输出信号的变化,记录不同条件下的输入输出波形。
4. 数据处理。
根据实验数据,计算不同条件下的放大倍数,绘制相应的放大倍数曲线。
五、实验结果与分析。
通过实验数据的记录和处理,我们得出了非反相放大电路和反相放大电路在不同条件下的放大倍数曲线。
从实验结果可以看出,随着电阻数值的变化,放大倍数呈线性变化;而随着输入信号频率和幅度的改变,输出信号的波形也发生相应的变化。
六、实验总结。
通过本次实验,我们深入理解了集成运算放大器的基本原理和应用技巧,掌握了非反相放大电路和反相放大电路的工作原理。
运算放大器同相放大器电路设计
其他优点。
同相放大器配置是最流行和广泛使用的运算放大器电路形式之一,它用于许多电子设备。
运算放大器同相放大器电路提供高输入阻抗以及使用运算放大器的所有优势。
虽然基本的同相运算放大器电路需要与反相对应电路相同数量的电子元件,但它可用于高输入阻抗很重要的应用。
1.同相放大电路同相运算放大器的基本电子电路相对简单。
在这种电子电路设计中,信号被施加到运算放大器的同相输入端。
这样,与输入相比,输出端的信号不会反转。
然而,反馈通过一个电阻从运算放大器的输出端传输到运算放大器的反相输入端,其中另一个电阻被带到地。
它必须应用于反相输入,因为它是负反馈。
这两个电阻的值决定了运算放大器电路的增益,因为它们决定了反馈电平。
基本同相运算放大器电路2.同相放大器增益运算放大器同相电路的增益很容易确定。
计算取决于两个输入端的电压相同这一事实。
这是因为放大器的增益非常高。
如果电路的输出保持在放大器的供电轨内,则输出电压除以增益意味着两个输入之间几乎没有差分。
由于运算放大器的输入不吸收电流,这意味着流经电阻R1和R2的电流相同。
反相输入端的电压由R1和R2组成的分压器组成,由于两个输入端的电压相同,因此反相输入端的电压必须与同相输入端的电压相同。
这意味着Vin = Vout x R1 / (R1 + R2)。
因此,电路Av的电压增益可以计算为:和在=1+R2R1Av=1+R2R1哪里:Av = 运算放大器电路的电压增益R2 = 反馈电阻电阻,单位为ΩR1 = 电阻对地电阻,单位为Ω例如,通过使R2 47 k欧姆和R1 4.7 k欧姆,可以构建需要11增益的放大器。
3.同相放大器输入阻抗运算放大器同相电路的阻抗特别高。
该运算放大器电路的输入阻抗通常可能远远超过107Ω.对于大多数电路应用,电路对前几级的任何负载影响都可以完全忽略,因为它非常高,除非它们非常敏感。
这与运算放大器电路的反相配置有很大不同,后者仅提供相对较低的阻抗,具体取决于输入电阻的值。
集成运放及应用实验报告
一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。
2. 掌握集成运放的基本线性应用电路的设计方法。
3. 通过实验验证运放在实际电路中的应用效果。
4. 了解实验中可能出现的误差及分析方法。
二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。
三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入一定频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 计算放大倍数,并与理论值进行比较。
2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入一定频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 计算放大倍数,并与理论值进行比较。
3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入两个不同频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
d. 验证输出波形为两个输入信号的相加。
4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。
(2) 实验步骤:a. 连接电路,确保无误。
b. 输入两个不同频率和幅值的正弦信号,观察输出波形。
c. 改变输入信号幅度,记录输出波形。
集成运算放大器实验报告
集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。
一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。
二、实验仪器及备用元器件 (1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。
图2.4.3(a )示出了典型的反相比例运算电路。
依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。
当1f R R =时,o i υυ=-,电路成为反相器。
合理选择1f R R 、的比值,可以获得不同比例的放大功能。
反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。
为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。
为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =,电阻称之为平衡电阻。
(a) 反相比例运算电路 (b) 同相比例运算电路图2.4.3 典型的比例运算电路图2.4.3(b )示出了典型的同相比例运算电路。
其输出输入电压之间的关系为 1(1)f o i i R A R υυυυ==+2.4.2由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。
同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。
宽带直流放大器的设计与仿真【开题报告】
毕业论文开题报告机械设计制造及其自动化宽带直流放大器的设计与仿真一、宽带放大器的背景和选题意义伴随着二十一世纪微电子技术领域的广泛发展,在日常生活和生产中就需要能够较长距离的无论在何时何地迅速且准确的实现多媒体的传输,于是,无线通讯技术随之便有了迅捷的的发展,成熟度也有了较大的提高。
本课题所涉及的宽带放大器便是日常通讯系统和其他电子系统中重要的部分。
由此可见,宽带放大器在日常生活以及科学领域的通信系统中有着卓越而显著作用,随着电子科技技术的发展,人们对宽带放大器的要求也越来越高。
当然宽带直流放大器同样在科研中扮演着重要的角色,而宽带运算放大器的运用也比较广泛,例如A/D转换器,D/A转换器,波形放大器,有源滤波器,视频放大器等等的电路中。
日常的通讯,电视广播,各种雷达以及自动控制等各种装置中都有宽带放大器。
所以宽带直流放大器在各个领域中运用非常广泛,有着良好的市场前景和研究意义。
所谓的放大器其实就是能把远方的输入信号的电压或功率实现放大的一种装置,它由数个电子管或者晶体管,电源变压器以及其他一些原件组成。
一般放大器的原理是将高频功率放大器作为发射机的末端,然后将高频已调波信号功率放大,来满足功率放大的要求,然后通过天线将已调波信号辐射到空间中去,来保证在所需区域内的接收器能够接收到满意的信号电平,而且不会干扰到相邻道的通信。
前面所提到的高频放大器是通信系统里面发送装置中的一个重要组件,按高频放大器工作频带的宽窄可以划分为宽带高频功率放大器和窄带高频功率放大器,其中的窄带高频功率放大器又被称为调谐功率放大器或协整功率放大器,其特点是通常以有选频滤波作用的选频电路作为自己的输出回路;因为传输线变压器或其他宽带匹配电路往往被宽带高频放大器作为输出电路,所以宽带高频放大器同样被称为非调谐功率放大器。
二、研究目标与主要内容1、自行设计制作一个宽带直流放大器和所需的直流稳压电源。
2、电压增益AV>=40Db,输入电压的有效值Vi<=20mV.所需电压增益AV可在0-40dB范围内手动连续调节3、要求放大器最大输出电压正弦波有效值Vo>=2V,且输出信号的波形无明显失真。
同相放大电路实验报告
同相放大电路实验报告同相放大电路是一种可以放大信号的电路,它由一个共射放大器和一个共集放大器组成。
在同相放大电路中,输入信号通过源极电容Coupling Capacitor C1进入共射放大器的基极,经过放大之后,再通过串联的耦合电容C2进入共集放大器的基极,最终输出到负载电阻RL。
同相放大电路的特点是输入和输出是同相的,因此被称为同相放大电路。
在实际操作中,我们使用实验箱搭建同相放大电路,实验箱中提供了所需的电源和元件。
在搭建电路之前,我们需要确认所使用的晶体管的引脚排列,并且将相应的引脚连接到正确的位置。
在连接电路时,需要注意电路元件之间的极性,如电容和二极管的正负极。
在进行实验之前,我们需要准备一些实验器材和元件,如实验箱、三极管、电容、电阻、信号发生器等。
在实验中,我们还需要使用示波器来观察输入和输出信号的波形。
接下来,我将回答一些与同相放大电路实验相关的问题。
实验目的:本次实验的目的是研究同相放大电路的放大特性,并观察其输入和输出信号的波形。
实验原理:同相放大电路是一种常用的放大电路,它可以对输入信号进行放大并输出。
在同相放大电路中,共射放大器负责放大输入信号的电压,而共集放大器负责提供输出信号的电流。
共射放大器的输入阻抗较高,输出阻抗较低,适合作为信号源;共集放大器输出阻抗较低,适合作为负载。
通过合理的设计和调节,可以实现对输入信号的放大。
实验步骤:1. 首先根据实验箱上的引脚排列,将三极管正确地连接到实验箱的基座上。
2. 接下来,将电容和电阻连接到电路中。
其中,电容C1和C2用于耦合输入和输出信号,电容Cin和Cout用于电源的耦合。
3. 将信号发生器连接到输入端,调节信号发生器的输出幅值和频率。
4. 将示波器连接到输出端,调节示波器的触发和纵横坐标。
5. 打开电源,调节偏置电压和放大倍数,观察输入和输出信号的波形。
实验结果:在调节电路之后,我们可以通过示波器观察输入和输出信号的波形。
放大器设计报告
运算放大器构成同向、反向、跟随器及其低通、高通、带通、带阻滤波电路——设计报告姓名:雷敏学号:030941120班级:0309411班指导老师:谭老师电子系统系统设计——放大器设计报告任务:设计四运算放大器构成反向、同向放大器、跟随器,低通、高通、带通、带阻滤波电路。
要求:1、测试三种电路的输入电阻、输出电阻、放大倍数、同频带等参数并记录。
2、设计各个滤波器及其参数。
3、用EWB 仿真这三种电路并记录好主要参数。
摘要:本系统采用一片LM234来设计,它是一片集成的四运放。
LM324的单位增益带宽为1MHZ ,LM324可以在、+5~+12V 单电源供电状态下工作,也可以在+5~±12V 双电源供电状态下工作。
本方案采用±12V 供电。
为了减少运放对滤波电路的负载效益,同时便于调整,现滤波选用LF412。
LF412是一种具有JFET 作为输入级的低失调、高输入阻抗运放。
LF412每片含有两个运放,其中,us /V 15S ,mA 5.1V ,pA 60I R IO IB ≈≈≈单位增益带宽积约为5.5MHz 。
一、放大模块的选择方案一:选择运放LM324,LM324是四运放集成电路,正负电源供电,无需外部偏置元件,但对高频信号的放大效果不好。
方案二:选用运放μA741,是高增益单运算放大器,也是正负电源供电,适应电压范围广,对高频信号的放大效果较好。
综合两个方案,选择方案一。
其总系统设计图:反向放大、同相放大与跟随的波形:二、同向放大 增益为:1fV R R1A +=。
输入电阻:1K 输出电阻:10K 放大倍数:10 通频带图为:3DB 处频率为104.895KHZ 。
三、跟随后:跟随器增益为1. 通频带图为:3DB 处频率为105.605KHZ 。
四、反向放大:增益为:1f V R R A -=。
输入电阻:1K 输出电阻:10K 放大倍数:10 通频带图为:3DB 处频率为100.113KHZ 。
宽带放大器设计与仿真
单电源供电交流放大器
Vcc
Rf
vo
C1 R1
vi
R2
Vcc
A
+
C2
1/2Vcc
C3
R3
RL vo
t
无信号输入 有信号输入
宽带放大器设计与仿真
iN=0
1.3 集成运放的主要参数 vN -
vP
vD +
+-
AVOvD
vO
iP=0
1.输入偏置电流—IB (input bias currents) 输入失调电流—IOS (input offset current)
fb:开环-3dB带宽;fB:放大器带宽;ft:放大器单位增益带宽. 例:用运算放大器741设计一个增益为60dB的音频放大器,
要求带宽fB≥20kHz。 宽带放大器设计与仿真
4.转换速率(Slewing Rate,SR)
转换速率也称压摆率,其定义是运放在额定负载及输入阶跃 大信号时输出电压的最大变化率 。
宽带放大器设计与仿真
(3)专用差分放大器-IN132
差动放大电路 优点是电路简单, 缺点是输入电阻较低,增益调节不便,
在实际使用中电阻参数很难完全匹配导 致共模抑制能力下降。
宽带放大器设计与仿真
(3)专用差分放大器-IN132
Ref 1 -in 2 +in 3 V- 4
40kΩ 40kΩ
40kΩ
v1
+ -
A1
2 40kΩ 40kΩ 5
R2
R1
R2
+
6
vo
3 40kΩ 40kΩ 1
v2
+
A2
同相、反相放大器及其各项参数的测定实验报告
同相、反相放大器及其各项参数的测定同相放大器:一、实验内容:先按照如图所示连接同相放大器,选择电阻R 1=R f =1KΩ,C1=10μF ,C2=4.7μF ,R=5KΩ放大器两端接正负5V 电源供电。
放大器为LM324二、实验结果及分析:1、 用信号发生器输入峰峰值为1V 的正弦信号,用示波器观察输出波形:由示波器得,当输入V pp =1V ,f=1KHz 的正弦波时,测得输入电压为1.07V ,输出电压为2.10V ,放大倍数为1.96,理论放大倍数)(11RR A f v +==2,与理论值近似。
2、 输入V pp =1V 的正弦波,调节频率,测量其频谱特性:在低频区:00.511.522.51234510205070100150200300500600有图表可知,输出的最大增益为2.10 2.10 /1.414=1.48 所以:f l =30Hz00.511.522.520K40K70K90K110K150K300K500K900Kf H =300KHz ,带宽约为300KHz 3、 输入阻抗测电路的输入阻抗,采用与之前实验类似的方法,在输入端串入0.594M Ω的电阻,测得信号源输出电压为0.370V ,电路输入电压为0.328V ,计算得输入电阻为4.639MΩ.非常大,这与同相放大器输入阻抗的理论值 ∞相符。
4、输出阻抗测电路的输出阻抗,采用与之前实验类似的方法,在输出端接一个118.3Ω的电阻负载,不接负载时输出为0.721V,接负载时输出0.605V,计算得输出阻抗为22.6Ω,输出阻抗与理论值(为0)基本符合。
5、输入输出范围固定信号发生器输出的波形的频率1KHz,调节幅值,直到示波器上的输出波形失真。
失真点所对应的输入信号的幅值即为输入范围。
如图输入Vpp=10mV,波形不失真,输出Vpp=23.36mV输入Vpp=100mV,波形不失真输入Vpp=3V,波形不失真输入Vpp=3.7V,波形开始失真,输出Vpp=7.72V输入范围10mV~3.7V,输出范围23.36mV~7.72V。
运算放大器的设计与仿真
集成运算放大器放大电路仿真设计1集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
2 电路原理分析 2.1 电路如图1所示1此电路为反向比例运算电路,这是电压并联负反馈电路。
输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。
图2 仿真结果图其中1//2R RF R =2.2电路如图3所示3此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1231(0R Ui R Ui RF U +-= 图4 仿真结果图其中RF R R R //3//12= 2.3电路如图5所示5此电路为电压跟随器电路,此电路输出电压的全部反馈到反相输入端,电路引入电压串联负反馈,且反馈系数为1,由于N P u u u ==0,故输出电压与输入电压的关系为I O u u =图6 仿真结果图2.4 电路如图7所示7从对比例运算电路和求和运算电路的分析可知,输出电压与同相输入端信号电压极性相同,与反相输入端信号电压极性相反,因而如果多个信号同时作用于两个输入端时,就可以实现加减运算。
21O O O U U U +=,111i O U R RF U -=,223i O U R RFU =图8 仿真结果图2.5 电路如图9所示9此电路为积分运算电路,利用积分运算电路可以实现方波—三角波的波形变换和正弦—余弦的移相功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成运放同相放大器的带宽测量设计与仿真
姓名: 学号: 得分
一、实习目的
1).巩固和加深对放大电路的相关概念(静态工作点、增益、频率响应、失真、
增益带宽积、噪声和干扰等)的理解;
2).掌握集成运算放大器的带宽与电压放大倍数的关系; 3).了解元器件参数对电路性能和参数的决定性作用及影响; 4).培养电子电路的设计能力和基本应用技能。
5)使用集成运放TL072设计一个带宽BW=2MHz 的同相放大器; 二、实习线路及原理
1、同相运算放大电路的原理
Vi
图1 同相放大器电路图
根据虚短,虚断的概念有:n p V V =,0==n p i i ,根据图1所示的电路原理图可知:
o
n p i V R R R V V V 211
+=
≈=
所以1
21211R R R R R V V A i O V +=+==
,即同相放大电路的增益为:121R R
A V +=。
其中R3为平衡电阻,R 3=R 1//R 2,
其作用为(1)芯片内部的晶体管提供一个合适的静态偏置。
芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无
法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。
(2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。
2、分贝
分贝表示的放大倍数 ----- 增益
分贝就是放大器增益的单位 --- dB ,放大器输出与输入的比值为放大倍数,单位是“倍”,如10倍放大器,100倍放大器。
当改用“分贝”做单位时,放大倍数就称之为增益,这是一个概念的两种称呼。
dB 的两个定义方式:
电压(电流)放大倍数分贝数定义:K=20lg( V0 / Vi),其中K 为放大倍数的分贝数,Vo 为放大信号输出,Vi 为信号输入;
功率放大倍数分贝数定义:K=10lg( P0 /Pi),其中K 为放大倍数的分贝数,Po 为放大信号输出,Pi 为信号输入;
(K>0说明信号被放大,K=0信号直通,K<0说明信号被衰减) 用对数方式表达电路的增益时,有以下两点优势:(1)当用对数坐标表达增益随频率变化的曲线时,可大大扩大增益变化的视野;(2)计算多级放大电路的总增益时,可将乘法化成加法计算。
3. 放大器的幅频特性
放大电路的频率响应指的是:在输入正弦信号的情况下,输出随输入信号频率连续变化的稳态响应。
考虑电抗性元件的作用和信号角频率变化量,则放大电路的电压增益可表示为:
)()()(jw V jw V jw A i
o
V w :信号的角频率;)(w A v 表示电压增益的模与角频率之间的关系,称为幅频特性。
图2 TL072的幅频响应
4. 单位增益带宽增益带宽积
单位增益带宽:运算放大器接成闭环电路,增益为1时的带宽(即电压跟随器的带宽),是运算放大器的特性.
增益带宽积:是电路的电气特性,指电路的增益与带宽之积为常数。
这是衡量放大器性能的一个参数,表示增益和带宽的乘积,这个乘积是一定的。
三、实习内容及步骤
元器件选择及参数确定
1、TL072
1)引脚图
1OUT 1IN-1IN+ Vcc-
Vcc+
2OUT
2IN-
2IN+图3 TL072引脚图
±18V,价格合理,噪音低,但是TL072功耗大。
本次试验工作电压选择±12V。
2、实验线路
图4 电路图
3、方案论证
令R1=10KΩ时,R2分别为4.7KΩ,5.1KΩ, 7.5KΩ得到不同增益时,正选信号发生器的频率为1KHz,查看带宽值。
方案一:R2=4.7KΩ时,Av=1.47,由频域分析图知带宽为2.05MHz
图五仿真波形图
方案二:R2=5.1KΩ时,Av=1.5,由频域分析图知带宽为2MHz
图六仿真波形图
方案三: R2=7.5K Ω时,A V =1.75,由频域分析图知带宽为1.71MHz
图七 仿真波形图
经过分析可知,R 2/R 1为0.5时,电路增益为1.5,带宽为2MHz ,符合实验要求。
右边一列A V ×B W 可得电压增益和带宽的乘积为一定值3MHz 。