3第十五讲初三相似三角形学生
相似三角形复习课件
相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用
相似三角形知识点九年级
相似三角形知识点九年级相似三角形是几何学中一个重要的知识点,它在解决实际问题和推导其他几何性质时起着关键作用。
相似三角形是指具有相同形状但可能不同大小的三角形。
在初中数学中,我们主要学习三个与相似三角形相关的知识点:相似三角形的判定条件、相似三角形的性质以及相似三角形的应用。
首先,我们来看相似三角形的判定条件。
两个三角形相似的必要条件是它们的对应角相等,即如果两个三角形的三个内角分别相等,那么它们就是相似的。
进一步地,我们还可以通过判断它们的对应边之间的比例关系来确定两个三角形是否相似。
如果两个三角形的对应边比例相等,那么它们也是相似的。
这一判定条件是解决相似三角形问题时的重要思路。
接下来,我们来研究相似三角形的性质。
首先,相似三角形中的对应边比例相等。
也就是说,如果两个三角形相似,那么它们的对应边之间的比例关系是恒定的。
其次,相似三角形的对应角相等。
这个性质与相似三角形的判定条件相呼应。
最后,如果两个三角形相似,那么它们的面积之间的比例关系等于对应边的平方比。
这个性质在解决计算相似三角形面积的问题时非常有用。
最后,让我们来看一下相似三角形的应用。
相似三角形广泛地应用于测量和计算问题中。
比如在测量高建筑物的高度时,我们可以利用相似三角形的原理,通过测量阴影长度和太阳高度的关系来计算建筑物的高度。
此外,在地图制作中,我们也可以利用相似三角形来确定地图上各个地点的实际距离。
在几何推导中,相似三角形也是许多几何性质的基础,如正弦定理和余弦定理等。
相似三角形是初中数学中一个重要的几何概念,它的判定条件、性质和应用广泛地应用于各种实际问题以及数学推导中。
通过学习相似三角形,我们不仅可以提高解决实际问题的能力,还能够在进一步学习几何知识时打下坚实的基础。
因此,在学习数学的过程中,我们应该重视相似三角形的学习和应用。
人教版九年级数学下册《相似三角形的判定课件》
本课件将介绍相似三角形的概述、判定方法和应用。通过生动的图像和实例, 帮助学生深入理解和掌握相似三角形的基本概念与性质。
相似三角形概述
三角形定义
什么是三角形?了解三角形的基本概念和性质。
相似三角形定义
什么是相似三角形?认识相似三角形的特征和性质。
相似三角形的性质
总结
相似三角形判定法的比较
对比不同的相似三角形判定方法,了解它们各自的优势和适用性。
总结回顾
回顾相似三角形的概念、性质和判定方法,总结课程内容。
相似三角形具有哪些独特的性质?
判定相似三角形的方法
1
AA判定法
使用AA定理来判定两个三角形相似。
2
AAA判定法
使用AAA定理来判定两个三角形相似。
3
SSS判定法
使用SSS定理来判定两个三角形相似。
应用
相似三角形的运用场合
了解相似三角形在实际生活中பைடு நூலகம்应用场景。
相关习题讲解
通过解答习题,掌握相似三角形的解题方法。
九年级数学相似三角形的判定(学生版)知识点+例题
相似三角形的判定【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形举一反三:下列图形中,必是相似形的是().A.都有一个角是40°的两个等腰三角形B.都有一个角为50°的两个等腰梯形C.都有一个角是30°的两个菱形 D.邻边之比为2:3的两个平行四边形类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.3. 梯形ABCD中,AB∥CD,AB=2CD,E、F分别为AB、BC的中点,EF与BD交于M.(1)求证:△EDM ∽△FBM;(2)若DB=9,求MB的长.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.举一反三:1、如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.2、如图,F是△ABC的AC边上一点,D为CB延长线一点,且AF=BD,连接DF, 交AB于 E. 求证:DE AC.EF BC3、已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.4、如图,弦和弦相交于内一点,求证:.4、如图,小正方形边长均为1,则图中的三角形(阴影部分)与相似的是哪一个?图(1)图(2)图(3)图(4)5、如图,正方形ABCD和等腰Rt,其中,G是CD与EF的交点.(1)求证:≌.(2)若,,,求的值.【巩固练习一】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.如图,在大小为4×4的正方形网格中,是相似三角形的是().①②③④A.①和②B.②和③C.①和③D.②和④4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ).A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.如图所示,D、E两点分别在AB、AC上,且DE和BC不平行,请你填上一个你认为合适的条件_______使△ADE∽△ACB.8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C 的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15. 已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC 和△EDF相似吗?为什么?【巩固练习二】一、选择题1. 已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为( ).A.16:15B.15:16C.3:5D.16:15或15:162.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC 相似,满足这样条件的直线共有().A.1条B.2条C.3条D.4条3.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC:CD为( ) .A. 2:1B. 3:2C. 3:1D. 5:24. 如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是().A.∠AEF=∠DEC B.FA∶CD=AE∶BC C.FA∶AB=FE∶EC D.AB=DC5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().A.4对B.3对 C.2对 D.1对6. 如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP 相似的是( ) .A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP:BC=2:3二、填空题7.如图, ∠1=∠2=∠3, 则图中与△CDE相似三角形是________和________.8. 如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有_________对.9.如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF的值是________________.10.如图,点M在BC上,点N在AM上,CM=CN,AM BMAN CM,则①△ABM∽△ACB,②△ANC∽△AMB,③△ANC∽△ACM,④△CMN∽△BCA中正确的有___________.11.如图,在平行四边形ABCD中,M,N为AB的三等分点,DM,DN分别交AC于P,Q两点,则AP:PQ:QC=____________.12.如图,正方形ABCD的边长为2,AE=EB,MN=1.线段MN的两端在CB,CD边上滑动,当CM=______时,△AED与以M、N、C为顶点的三角形相似.三、解答题13. 如图,和都是等边三角形,且B、C、D共线,BE分别和AC、AD相交于点M、G,CE和AD相交于点N.求证:(1)CG平分.(2)∽.14. 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.15.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);word格式-可编辑-感谢下载支持(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.。
九年级数学相似三角形知识点
九年级数学相似三角形知识点九年级数学:相似三角形知识点1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边成比例的三角形。
也就是说,如果两个三角形的三个角分别相等,且每组对应边的比值都相等,那么这两个三角形就是相似的。
2. 相似三角形的标记在标记相似三角形时,通常使用希腊字母来表示对应的顶点。
例如,如果三角形ABC与三角形DEF相似,我们可以标记为:△ABC ∼△DEF。
3. 相似三角形的性质- 对应角相等:∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
- 对应边成比例:AB/DE = BC/EF = AC/DF。
- 对应高的比值也相等:AH/DH = BH/EH = CH/FH(其中H是三角形的高所在的顶点)。
- 对应中线的比值也相等:AM/DM = BM/EM = CM/FM(其中M是三角形的中线所在的顶点)。
4. 相似三角形的判定- 三角形相似的判定定理一:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。
- 三角形相似的判定定理二:如果两个三角形的三组对应边的比值都相等,那么这两个三角形相似。
- 三角形相似的判定定理三:如果两个三角形的两组对应边的比值相等,且它们之间的夹角也相等,那么这两个三角形相似。
5. 相似三角形的应用- 解决实际问题:在建筑设计、地图制作等领域,相似三角形的概念可以用来解决比例缩放问题。
- 计算面积比:相似三角形的面积比等于对应边长的平方比。
即,如果AB/DE = x,则△ABC的面积与△DEF的面积之比为x²。
- 证明几何定理:在证明某些几何定理时,可以通过证明三角形相似来简化证明过程。
6. 相似三角形的计算- 使用比例关系解决实际问题时,通常需要先确定比例系数,然后利用这个系数来计算其他边长或角度。
- 在计算面积比时,应先计算出三角形的边长比,然后根据边长比计算面积比。
7. 相似三角形的证明- 在证明三角形相似时,需要明确指出所使用的判定定理,并确保所有的条件都满足。
新浙教版九年级数学相似三角形
新浙教版九年级数学相似三角形相似三角形是九年级数学中的一个重要知识点,它不仅在数学领域有着广泛的应用,也为我们解决实际问题提供了有力的工具。
首先,我们来了解一下相似三角形的定义。
相似三角形是指对应角相等,对应边成比例的三角形。
简单来说,如果两个三角形的形状相同,但大小不一定相同,那么它们就是相似三角形。
相似三角形具有许多重要的性质。
例如,相似三角形的对应边成比例,对应角相等。
这意味着,如果我们知道两个相似三角形中一组对应边的比例以及其中一个三角形的边长,就可以求出另一个三角形中相应边的长度。
同时,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
在判断两个三角形是否相似时,我们有多种方法。
其中,最为常见的是“两角对应相等的两个三角形相似”。
因为三角形的内角和为 180 度,当两个角对应相等时,第三个角也必然相等。
另外,“两边对应成比例且夹角相等的两个三角形相似”以及“三边对应成比例的两个三角形相似”也是常用的判定方法。
相似三角形在实际生活中的应用非常广泛。
比如,在测量建筑物的高度时,如果我们无法直接测量建筑物的高度,可以通过测量建筑物的影子长度以及一根已知长度的标杆的影子长度,利用相似三角形的原理来计算建筑物的高度。
假设我们要测量一座高楼的高度,在同一时刻,我们测量出标杆的高度为 2 米,其影子长度为 1 米,同时测量出高楼的影子长度为 20 米。
由于太阳光线的角度相同,所以标杆和其影子以及高楼和其影子构成的两个三角形相似。
设高楼的高度为 x 米,根据相似三角形对应边成比例的性质,可以列出方程:2/1 = x/20,解得 x = 40 米,即高楼的高度为 40 米。
在地图绘制中,相似三角形也发挥着重要作用。
地图是对实际地理区域的缩小表示,地图上的图形与实际地理区域的图形是相似的。
通过测量实际距离和地图上的距离,利用相似三角形的知识,可以计算出地图的比例尺,从而更准确地反映实际地理情况。
在数学解题中,相似三角形常常与其他几何图形相结合。
初三相似三角形讲义
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△与△相似,记作: △∽△。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:〔1〕相似比是有顺序的。
〔2〕对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比拟容易找到相似三角形的对应角和对应边。
〔3〕顺序性:相似三角形的相似比是有顺序的,假设△∽△,相似比为k,那么△与△的相似比是1k 知识点2、相似三角形与全等三角形的关系〔1〕两个全等的三角形是相似比为1的相似三角形。
〔2〕两个等边三角形一定相似,两个等腰三角形不一定相似。
〔3〕二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果,那么b 叫做a 、d 的比例中项。
把线段分成两条线段和,使2·,叫做把线段黄金分割,C 叫做线段的黄金分割点。
2. 比例性质:①基本性质:a b c dad bc =⇔=②合比性质:±±a b c d a b b c dd =⇒=③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理〔1〕平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.〔2〕推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB C由∥可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.〔3〕推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.〔4〕定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质 ①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
九年级数学相似三角形
如果两个多边形的对应角相等且对应 边成比例,则这两个多边形相似。
06
总结回顾与练习题解答
本节课重点知识点总结回顾
• 相似三角形的定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
利用角平分线构造
角平分线将角平分,并且与对边相交,将对边分 为两段,这两段与角的两边构成的两个三角形与 原三角形相似。
05
拓展:高级几何中相似三角形相关知识点介绍
射影几何中相似三角形概念及性质
01
相似三角形的定义:在射影几何中,如果两个三角形的对 应角相等,则称这两个三角形相似。
04
对应角相等。
02
相似比:相似三角形的对应边之间的比值称为相似比。
05
对应边成比例。
03
相似三角形的性质
06
面积比等于相似比的平方。
解析几何中相似三角形表示方法
解析几何中的表示方法
在解析几何中,可以使用向量 或坐标来表示三角形,并通过 比较对应向量或坐标之间的关 系来判断两个三角形是否相似 。
向量表示法
通过三角形的三个顶点可以确 定三个向量,如果两个三角形 的对应向量之间的比值相等, 则这两个三角形相似。
1. 题目
解答
2. 题目
已知△ABC和△DEF中,∠A = ∠D, ∠B = ∠E,AB = 6,AC = 8,DE = 3。求DF和EF的长。
根据相似三角形的性质,我们有 $frac{AB}{DE} = frac{AC}{DF} = frac{BC}{EF}$。代入已知条件, 得$frac{6}{3} = frac{8}{DF} = frac{BC}{EF}$。解得$DF = 4$, $EF$可以通过勾股定理求得, $EF = sqrt{DE^2 + DF^2} = 5$。
九年级数学相似三角形的判定知识讲解(含解析)
九年级数学相似三角形的判定知识讲解(含解析)1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力。
一、相似三角形的概念如图所示:在△ABC 和△A'B'C' 中,如果则△ABC 和△A'B'C' 相似,记作:△ABC ∽ △A'B'C' ,k 是相似比,“∽” 读作“相似于” 。
注:当相似比为1 时,两个三角形全等.(相似不一定全等,但全等一定相似!)。
二、相似三角形的判定方法(4种方法)1、平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似;2、如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3、如果两个三角形的两组对应边的比相等,并且对应边所包含的夹角相等,那么这两个三角形相似.;4、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、相似三角形的常见图形及其变换四、例题讲解例题1、下列说法错误的是( C )A、有一对锐角对应相等的两个直角三角形相似;B、全等的两个三角形一定相似;C、对应角相等的两个多边形相似;D、两条邻边对应成比例的两个矩形相似。
例题2、如图,在正方形 ABCD 中,E、F 分别是边 AD、CD上的点,AE = ED , DF = 1/4DC,连接 EF 并延长交 BC 的延长线于点G 。
① 求证:△ABE∽△DEF;② 若正方形的边长为 4,求线段 BG 的长。
注:此题考查了相似三角形的判定、正方形的性质、平行线分线段成比例定理等知识的综合应用。
例题3、如图,小正方形边长均为 1,则图中的三角形(阴影部分)与△ABC 相似的是哪一个?解题思路:图中的三角形为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边的长度的比是否相等来判断哪两个三角形相似。
初三相似三角形知识点
初三相似三角形知识点在初三数学中,相似三角形是一个重要的知识点。
相似三角形是指具有相同形状但不同大小的三角形。
接下来,我们将介绍一些与相似三角形相关的重要概念和定理。
1. 相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。
对于两个相似三角形ABC和DEF来说,它们的对应角度相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
而且,它们的对应边长之比相等,也就是AB/DE = BC/EF = AC/DF。
2. 相似三角形的性质相似三角形具有一些重要的性质:- 对应角和对应边的比例相等。
即∠A/∠D = ∠B/∠E = ∠C/∠F,以及AB/DE = BC/EF = AC/DF。
- 如果两个三角形相似,它们的对应边长之比等于它们的对应边长的平均数与对应角的正弦比之积。
即AB/DE = (BC + AC)/(EF + DF) = sin∠A/sin∠D = sin∠B/sin∠E = sin∠C/sin∠F。
3. 判断相似三角形的方法判断两个三角形是否相似的方法有几种:- AA准则:如果两个三角形的两个对应角相等,则它们是相似的。
- SAS准则:如果两个三角形的一个角相等,两个边成比例,且不在这个角的两边上,则它们是相似的。
- SSS准则:如果两个三角形的三个边成比例,则它们是相似的。
4. 相似三角形的应用相似三角形有很多应用场景,其中一个重要的应用是解决实际问题中的长度或距离问题。
通过相似三角形定理,我们可以利用一些已知的长度或距离来求解未知的长度或距离。
例如,通过测量一个高楼的阴影长度和同一时间地面上的阴影长度,我们可以利用相似三角形的性质来计算出这个高楼的高度。
5. 相似三角形定理相似三角形定理是判断相似三角形的重要定理之一。
根据相似三角形定理,如果在两个三角形中,两个角相等,则这两个三角形相似。
根据这个定理,我们可以利用相似三角形定理来求解一些长度或角度相关的问题。
通过对初三相似三角形知识点的了解,我们可以更好地理解和运用这个概念,解决实际问题中的相关数学计算。
第十五讲 相似三角形的应用
第十五讲相似三角形的应用一、相似三角形的应用1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?3.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)4.小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?5、(2010山东德州)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.6、(2010年滨州)如图,A、B两点被池塘隔开,在AB外取一点C,连结AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38cm,则AB的长为A B E D C 7、大运河的两岸有一段是平行的,为了估算其运河的宽度,我们可以在对岸选定一个目标作为点A ,再在运河的这一边选点B 、C ,使AB ⊥BC ,然后再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点为D.如果测得BD=120m ,DC=60m ,EC=50m ,求出大运河的大致宽度AB 。
二、相似三角形的周长与面积若△ABC ∽△A'B'C',相似比为k ,则:'''ABC A B C C k C =V V ,'h k h =, 1、 已知:如图,△ABC 中,DE ∥BC ,(1)若32EC AE =,① 求AC AE 的值; ② 求ABC ADE S S ∆∆的值;③ 若5S ABC =∆,求△ADE 的面积;(2)若S S ABC =∆,32EC AE =,过点E 作EF ∥AB 交BC 于F ,求□BFED 的面积;'''2ABC A B C S k S =V V(3)若k ECAE =, 5S ABC =∆,过点E 作EF ∥AB 交BC 于F ,求□BFED 的面积2、(2010重庆潼南县)△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为 .3、(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为( )A.8B. 6C.4D.24、(2009年安顺)如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:A .0个B .1个C .2个 D3个5、如图,有一块三角形铁片ABC ,已知最长边BC=12cm ,高AD=8cm 要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,且矩形的长是宽的2倍,问加工成的铁片的面积是多少?。
初三-相似三角形的判定
知识精要一、相似三角形的概念一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三条边对应成比例,那么这两个三角形相似。
对应边的比值叫做相似比。
即△AB C ∽△DEF ,我们可以得到:【注意事项1、2、】相似具有连贯性:即两个三角形分别与第三个三角形相似,那么这两个三角形也相似。
相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似。
(∥) 【请用所上节课所学习的知识+定义证明】基本图形之一:(请添加条件,使之相似)2、判定定理:(1)如果一个三角形的两角与另一个三角形的两角对应相等,那么这两三角形相似。
已知:∠A=∠A ’ ;∠B=∠B ’ 求证:△ABC ∽△A ’B ’C ’CBB'基本图形之二:(请给图标上字母,并写出所有的相似三角形)角1=角221角1=角221(2)如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两三角形相似。
已知:∠A=∠A ’ ;''''AB ACA B A C求证:△ABC ∽△A ’B ’C ’ CBB'基本图形之三:(请给图标上字母及条件,并写出所有的相似三角形)(3)如果一个三角形的三边与另外一个三角形的三边对应成比例,那么这两三角形相似。
(4)直角三角形相似的判定定理:如果一个直角三角形的斜边及一条直角边与另一个三角形的斜边及直角边对应成比例,那么这两直角三角形相似。
(HL)【自己画图,写出已知、求证,并证明】【二、相似三角形的性质1、性质一:相似三角形对应角相等,对应边成比例相似三角形对应高的比,对应中线的比,对应角平分线的比及周长比都等于相似比。
【要求自行证明】、【总结】2、性质二:相似三角形的面积的比等于相似比的平方 【自行证明】热身练习1、下列条件中,不能判断ABC ∆与DEF ∆相似的是( ) A .∠A=50°,∠B=70°,∠D=50°,∠F=70°B .2,3AB BC ==,∠B=40°,4,9DE EF ==,∠E=40° C .4,5,6,6,7.5,9AB BC AC DE EF DF ======D .,AB AC =∠A=50°,DE DF =,∠E=50°2、下列命题正确的是( )A .有一个角是40°的两个等腰三角形B .有一个角是100°的两个等腰三角形C .面积相等的两个直角三角形D .两边之比为3:5的两个直角三角形3、如图:△ABC 中,∠ACB=90°,C D ⊥AB,垂足为D ,且 2.5,0.9AD cm DB cm ==,求: (1)CD 的长 (2):ACD CBD S S ∆∆BD A4、如图:D 是△ABC 的AB 边上一个动点,D E ∥BC 交AC 于E ,D F ∥AC 交BC 于F ,已知AD:DB=1:2,求三角形ADE 、三角形DBF 、平行四边形DFCE 的面积之比BDA5、如图:平行四边形ABCD 中,E 是BA 延长线上一点,EC 交AD 于F ,已知:1:2EA AB =,2AEF S ∆=,求平行四边形ABCD 的面积BD6、梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,已知9,25AOF COB S S ∆∆==,求梯形ABCD 的面积CB7、已知梯形的两底边长分别为4和6,高是3,求梯形两腰的延长线的交点到较长底边的距离 【要求自己画图】精解名题1、已知等腰三角形ABC 中,AB=AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且满足2AB DB CE =⋅(1)求证:△ADB ∽△EAC(2)若∠BAC=40°,求∠DAE 的度数B D2、已知G 是△AB C 的重心,且在中线AD 上,延长AD 到H ,使得DH=GD ,K 是BG 的中点 求证:△FK G ∽△GHC【析】注意从对应点所给于的信息。
九年级数学中考专题(空间与图形)—第十五讲《相似图形(三)》课件(北师大版)
AB 3 (2)①存在.如果∠BCF=∠AEF,即k= BC 2
能力训练
一、填空题: 1、在Rt△ABC中,∠BAC=90°,AD⊥BC 于D,AB=2,DB=1,则DC= ,AD = . 2、在△ABC中,AB=12,AC=15,D为AB 1 上一点,BD= AB,在AC上取一点E,得 3 △ADE,当AE的长为 时,图中的两 个三角形相似. 3、在Rt△ABC中,AD为斜边上的高, SABC 4SAB练
4、已知,如图,在Rt△ABC中,∠ACB=900, AD平分∠CAB交BC于点D,过点C作CE⊥AD, 垂足为E,CE的延长线交AB于点F,过点E作 EG∥BC交AB于点G,AE AD 16, AB 4 5 . 求EG的长.
C E A D
F
G
B
参考答案
能力训练
二、选择题: 在△ABC中,∠A∶∠B∶∠C=1∶2∶3, CD⊥AB于D,AB= a,则DB=( ) a 3 A、 a B、a C、a D、
4
3
2
4
能力训练
初三数学:《相似三角形》知识点归纳
初三数学:《相似三角形》知识点归纳
所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。
三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
相似三角形的判定方法有:
平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,
如果两个三角形的三组对应边的比相等,那么这两个三角形相似,
直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。
直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理
相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
相似三角形复习课件
2 图形分析
仔细观察图形,寻找能够构成相似三角形的线段和角。
3 问题转化
将复杂的相似三角形问题转化为简单的相似三角形问题,减少计算难度。
总结
相似三角形是具有相同形状但大小可以不同的三角形,它们有着对应角相等 和对应边成比例的性质。相似三角形的判定、性质、比例关系以及应用都是 解决实际问题和几何推理的重要工具。
影子问题
相似三角形可以用来解决阴影问题,如计算 树木的高度。
地图比例尺
地图上的比例尺是相似三角形的应用之一, 可以通过相似三角形的边比例关系计算实际 距离。
相似物体放大缩小
通过相似三角形的比例关系,可以进行物体 的放大缩小,如地图的缩放。
相似三角形的解题技巧
解决相似三角形问题的一些技巧:
1 比例关系运用
3 SSS判定法
如果两个三角形的三条 边的比值相等,那么它 们相似。
相似三角形的性质
相似三角形具有以下性质:
1 对应角度相等
相似三角形的内角相等。
2 对应边成比例
相似三角形的对应边的长度成比例。
3 比例关系
相似三角形的任意两条对应边的长度比值相等。
相似三角形的比例关系
相似三角形的对应边的长度比值是相等的。常用的相似比例关系有:
2 大小可以不同
相似三角形的边长可以不相等,但对应边的比值保持一致。
3 比例关系
相似三角形的任意两条对应边的长度比值都是相等的。
相似三角形的判定
有多种方法可以判定两个三角形是否相似:
1 AA判定法
如果两个三角形的两个 角分别相等(对应角相 等),则它们相似。
2 SAS判定法
如果两个三角形的一个 角相等,且两个角对应 的两条边的比值相等, 那么它们相似。
中考数学专题复习讲座-相似三角形(学生版)
相似三角形第一部分 讲解部分 (一)课标要求1.理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用. 2.经历三角形相似与全等的类比过程,进一步体验类比思想、特殊与一般的辩证思想。
掌握判定两个三角形相似的基本方法;掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质;知道三角形的重心。
会用相似三角形的判定与性质解决简单的几何问题和实际问题。
(二)知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比. 三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS")③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS")④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL ”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等.3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方.4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( ) A . 7 B . 7.5 C . 8 D . 8。
5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)a b cA B C D E F m n练习: 1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E,∠CPD =∠A =∠B,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A 。
九年级数学相似三角形知识点
九年级数学相似三角形知识点相似三角形是九年级数学中的重要知识点之一,本文将详细介绍相似三角形的概念、判定方法及性质。
一、概念相似三角形是指具有相同形状但大小不同的三角形。
两个三角形相似的条件为对应角相等,并且对应边成比例。
记作△ABC∽△DEF。
二、判定方法1.角-角-角(AA)判定法若两个三角形的三个角分别相等,则它们一定相似。
2.角-边-角(ARJ)判定法若两个三角形的一个角相等,另一个角相等,且夹在已知边之间的两边成比例,则它们一定相似。
3.边-角-边(SAS)判定法若两个三角形的两边分别成比例,夹角相等,则它们一定相似。
注意:边-边-边(SSS)判定法不能判断两个三角形是否相似,因为只有边成比例不能保证角相等。
三、性质1.对应角相等性质相似三角形的对应角相等,即∠A=∠D,∠B=∠E,∠C=∠F。
2.对应边成比例性质相似三角形的对应边成比例,即AB/DE=BC/EF=AC/DF。
其中,k为比例因子,代表两个相似三角形的对应边之比。
3.周长比例性质相似三角形的周长之比等于任意一条对应边之比。
4.面积比例性质相似三角形的面积之比等于任意一条对应边平方的比。
5.高比例性质相似三角形的高之比等于任意一条对应边之比。
四、相似三角形的应用1.测量难以直接获取的长度利用相似三角形的边比例性质,可以通过测量一些直接长度,求解难以直接获取的长度,如高度、距离等。
2.解决图像与实物的相似问题在制图中,根据相似三角形的比例性质,可以将实物缩小或放大绘制,保持图像与实物相似,从而达到简化和便于研究的目的。
3.解决间接测量问题利用相似三角形的性质,可以通过测量一些已知长度和角度,间接计算出难以直接测量的距离或高度。
4.解决图形的包含和相似问题通过相似三角形的判定方法,可以判断一个三角形是否包含在另外一个三角形中,以及两个图形是否相似。
总结:相似三角形是九年级数学中的重要知识点,通过角-角-角、角-边-角和边-角-边三种判定方法,我们可以判断两个三角形是否相似。
九年级数学相似知识点讲解
九年级数学相似知识点讲解数学是一门既有挑战性又有趣味性的学科。
对于九年级的学生来说,相似是一个重要的数学概念。
本文将详细讲解九年级数学中的相似知识点,以帮助学生更好地理解和掌握这一概念。
一、相似三角形在九年级数学中,相似三角形是相似知识点中的重要内容。
相似三角形是指具有相同形状但尺寸不同的三角形。
具体来说,如果两个三角形的对应角度相等,那么它们是相似的。
例如,如果两个三角形的三个角度分别为60°、60°和60°,那么它们是相似的。
相似三角形有许多重要的性质。
首先,对应边的比例相等。
换句话说,如果两个三角形相似,那么它们的对应边长的比例相等。
此外,相似三角形的面积比等于对应边长的比例的平方。
这些性质可以用来求解相似三角形的边长或面积。
通过运用相似三角形的性质,我们可以在实际生活中解决一些实际问题,比如测量高楼的高度或计算难以直接测量的距离。
二、相似比相似比也是九年级数学中的一个重要概念。
相似比是指相似图形中对应边的比值。
在相似三角形中,我们可以通过相似比来确定边长的比值。
相似比可以表示为a∶b或a/b,其中a和b分别表示两个相似三角形对应边的长度。
例如,如果一个三角形的边长为3cm,而相似三角形的边长为6cm,则它们的相似比为1∶2或1/2。
通过运用相似比,我们可以解决一些实际问题。
例如,假设我们需要在地图上测量两个城市之间的距离,但由于地图的比例尺不准确,我们无法直接测量距离。
这时,我们可以测量地图上两个城市之间的实际距离,并测量地图上两个城市之间的长度。
通过计算相似比,我们可以得出实际距离在地图上的对应长度,从而得到准确的距离。
三、相似图形的性质除了相似三角形和相似比,九年级数学中还有一些与相似图形相关的性质。
首先,相似图形的对应角度相等。
这意味着如果两个图形是相似的,那么它们的对应角度一定相等。
其次,相似图形的形状相同。
也就是说,如果两个图形是相似的,那么它们的形状一定一致,只是尺寸不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形
一、比例线段
例1:在比例尺为1:400000地图上,量得甲、乙两地的距离为15厘米,求甲、 乙两地的实际距离。
例2:线段a =15厘米,b =20厘米,c =75毫米,d =0.1米,求: a b 与b
c ,这四条线段会成比例吗?
例3:如图AB =21,AD =15,CE =40,并且AD AB =AE
AC ,求:AC 的长
练习
1.(1)根据图示求线段比AC CD 、AC CB 、CD DB 、AC AD 、CD
CB
(2)指出图中成比例的线段。
二、比例的基本性质 例4(1)已知d c b a ==3,求b b a +和d
d
c +;
(2)如果
d c b a ==k (k 为常数),那么d
d c b b a +=+成立吗?为什么?
三、相似多边形:
相似形需要满足两个条件,一个是对应角相等,一个是对应边成比例. 四、相似多边形
例5.下列说法“①凡正方形都相似;②有一个角相等的两个等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的个数有( )个
变式:如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成
阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )
A.0.36πm 2
B.0.81πm 2
C.2πm 2
D.3.24πm 2
五、相似三角形
相似三角形的基本概念及性质:
△ABC ∽△A ′B ′C ′,如果BC=3, B ′C ′=2,那么△A ′B ′C ′与 △ABC 的相似比为_ 相似三角形的判定:
C
C
C
D E'例6 判断
①所有的等腰三角形都相似. ( ) ②所有的直角三角形都相似. ( ) ③所有的等边三角形都相似. ( ) ④所有的等腰直角三角形都相似. ( ) 例7、(1)如图1,当 时,△ABC ∽ △ADE (2)如图2,当 时, △ABC ∽ △AED 。
(3)如图3,当 时, △ABC ∽ △ACD 。
(4)如图4,如图1,当AB ∥ED 时,则△ ∽△ 。
(5)如图5,当 时,则△ ∽△ 。
例8、Rt △ABC 的斜边AB 上有一动点P(不与点A 、B 重合 ),
过P点作直线截△ABC ,使截得的三角形与△ABC 相似,则满足这样条件的直线共有多少条,请你画出来。
五、相似三角形中的基本图形:
一、 基本图形: 1、A 字图:(如图1)如果DE//BC , 2、8字图:(如图2)已知DE//AB ,
则有BC DE AC AE AB AD ==,或者CE AE BD AD = 则有BC DE
AC AE AB AD CE AE BD AD ===或者,
3、双A 图:(如图3)已知DE//AB ,
4、母子图:(如图4)已知:∠1=∠B ,
则有:CG BG EF DF =。
则有BC
DE
AB AE AC AD ==。
5、贝壳图(如图5)已知:∠1=∠B ,
6、双垂直:(如图6)∠C=90°,∠1=∠B
则有:
AB AD AC AB
AC
AC AD ⋅==2,或者 则有:AD BD BC AB AD AC ⋅=⋅=22,
7、燕尾图:(如图7)∠C=∠B , 8、K 形图:(如图8)已知∠A=∠B =∠DCE=90°,
则有:BE DC AB AC AE AD == 则有:CE
DC
BE AC BC AD ==。
9、旋转型:(如图9)已知∠C=∠B =∠DPE 10、已知:正方形DEFG ,AM 是高:
,则有:△BDP ∽△CPE 。
则有:BC
MN
BC DE AM AN ==。
知识升华
1、 如图,ΔABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,
AB=5cm ,BE=3cm ,求EC 的长.
2.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,DF ⊥AB
求证:AE CE=DE EF ⋅⋅
3、已知△ABC ,△DCE ,△EFG 是三个全等的等腰三角形,底边BC ,CE ,EG•在同一直线上,且
BC=1,连接BF ,分别交AC ,DC ,DE 于P ,Q ,R .
(1)求证:△BFG ∽△FEG ,并求出BF 的长。
4、 一块直角三角形木板的一条直角边AB =1.5米,面积为1.5平方米,求其内接正方形DGFE的边长
5.如图,在直角梯形ABCD 中,AB//CD ,在AD 上能否找到一点P ,使三角形PAB 和三角形PCD 相似?若能,共有几个符合条件的点P ?
6、根据已知,探索图形相似的条件
如图,点C 、D 在线段AB 上,且△PCD 是等边三角形.
(1)当AC 、CD 、DB 满足怎样的关系式时,△ACP ∽△PDB .
(2)当△PDB ∽△ACP 时,试求∠APB 的度数.
7、在直角三角形中,∠ACB=90°,在△ABC 外做一个直角三角形BCD ,使∠BDC=90°,设AB=5,BC=3,当CD 为多长时,这两个三角形相似?
8、(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.
求证:(1)2AB BD BC =⋅;2AC CD BC =⋅;(2)2AD BD CD =⋅
能力提升
一、如何证明三角形相似
1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD
3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD
求证:△DBE ∽△ABC
4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等
的相似三角形?请证明你的结论。
A
B C D E F
G 1
234
A
B C
D A B
C
D
E
F
二、如何应用相似三角形证明比例式和乘积式
5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ∙AC=BC ∙FE
6:已知:如图,在△ABC 中,∠BAC=900
,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2
=MD ∙ME ;(2)MD ME
AD
AE =2
2
7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
三、如何用相似三角形证明两角相等、两线平行和线段相等。
8、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD
A
B C
D E M 12
A
B C D E F
K O
A
B C D
E
F。