人教B版高中数学必修一学案全集

合集下载

人教B版数学高一版必修1学案实数指数幂及其运算(1)

人教B版数学高一版必修1学案实数指数幂及其运算(1)

数学人教B 必修1第三章3.1.1 实数指数幂及其运算1.理解有理指数幂的含义,会用幂的运算法则进行有关计算. 2.通过具体实例了解实数指数幂的意义.3.通过本节的学习,进一步体会“用有理数逼近无理数”的思想,可以利用计算器或计算机实际操作,感受“逼近”的过程.1.整数指数幂(1)正整指数幂的定义:______=n a a a a ⋅⋅⋅⋅个(n ∈N +). (2)正整指数幂的运算法则: ①a m ·a n =______; ②(a m )n =______;③a m ÷a n =____________(m >n ,a ≠0); ④(ab )n =________; ⑤⎝⎛⎭⎫a b n =a n bn (b ≠0).在上述法则③中,限定m >n ,如果取消这种限制,则正整指数幂就推广到了整数指数幂.但要规定a 0=1(a ≠0).a -n =1an (a ≠0,n ∈N +).这样一来,上面的五条运算法则就可以归纳为三条:①a m ·a n =______; ②(ab )n =______; ③(a m )n =______.同时,将指数的范围扩大到了整数.【做一做1】已知a >0,m ,n 为整数,则下列各式中正确的有( ) A .a m÷a n=m naB .a n ·a m =a m ·nC .(a n )m =a m +nD .1÷a n =a 0-n 2.根式(1)根式的定义:式子______叫做根式,这里n 叫做________,a 叫做________.(2)n 次方根的定义:如果存在实数x ,使得______(a ∈R ,n >1,n ∈N +),则____叫做____的n 次方根.(3)n 次方根的性质:①在实数范围内,正数的奇次方根是一个______,负数的奇次方根是一个______,零的奇次方根是____.设a ∈R ,n 是大于1的奇数,则a 的n 次方根是________.②在实数范围内,正数的偶次方根是________________的数,零的偶次方根是______,负数的偶次方根________.设a ≥0,n 是大于1的偶数,则a 的n 次方根是________.其中________叫做a 的n 次算术根.(4)根式的性质:①(na )n =____(n >1,且n ∈N +);②na n=⎩⎪⎨⎪⎧,当n 为奇数时, ,当n 为偶数时.正数开方要分清,根指奇偶大不同, 根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为偶无意义,零取方根仍为零.【做一做2】计算3(-8)3+4(3-2)4-(2-3)2=________. 3.分数指数幂(1)如不特别说明,我们约定底数a >0.于是,正分数指数幂可定义为1na =________(a >0);m na =________(a >0,m ,n ∈N +,且mn 为既约分数).负分数指数幂的意义与负整数指数幂的意义相同,同样可定义为m na-=________(a >0,m ,n ∈N +,且mn为既约分数).(2)有理指数幂的运算法则:①a αa β=a α+β(a >0,α,β∈Q ); ②(a α)β=a αβ(a >0,α,β∈Q );③(ab )α=a αb α(a >0,b >0,α∈Q ).0的正分数指数幂等于0,0的负分数指数幂没有意义,有理指数幂的三条运算法则实际上可推广到实数指数幂.【做一做3-1】把根式a a 化成分数指数幂是( )A .32()a - B .32()a -- C .32a - D .32a【做一做3-2】计算:23×31.5×612. 4.无理指数幂教材中通过实例利用______的思想理解无理指数幂的意义. 一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数. 另外,我们要熟记经常要用的公式:(1)a -b =(a -b )(a +b )(a >0,b >0); (2)a ±2ab +b =(a ±b )2(a >0,b >0). 【做一做4】判断正误: (1)23是一个有理数.( )(2)23不是一个确定的数,而是一个近似值.( ) (3)23没有意义.( ) (4)23是一个实数.( )一、辨析(n a )n 和na n剖析:(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性来决定: ①当n 为大于1的奇数时,a ∈R .例如,(327)3=27,(5-32)5=-32,(70)7=0; ②当n 为大于1的偶数时,a ≥0.例如,(427)4=27,(3)2=3,(60)6=0;若a <0,式子(na )n 无意义,例如,(-2)2,(4-54)4均无意义.由此只要(n a )n 有意义,其值恒等于a ,即(na )n =a .na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R .但是这个式子的值受n 的奇偶性限制:①当n 为大于1的奇数时,其值为a ,即n a n =a ,例如,3(-2)3=-2,56.15=6.1; ②当n 为大于1的偶数时,其值为|a |,即n a n =|a |.例如,434=3,(-3)2=|-3|=3.由此n a n =⎩⎪⎨⎪⎧a ,n =2k -1,k ∈N +,且k >1,|a |,n =2k ,k ∈N +.二、根式与分数指数幂互化的条件探究剖析:(1)引入分数指数幂之后,任何有意义的根式都能化成分数指数幂,即na =1na ,这时被开方数a 即是分数指数幂的底数,根指数的倒数即是分数指数幂的幂指数,显然1na 是m na 当m =1时的特例.(2)分数指数幂的意义来源于根式,而要使na m 对任意的n ∈N +且n >1都有意义,必须限定a >0,否则,当a =0时,若m =0或mn 为分母是偶数的负分数,mn a 没有意义;当a <0时,若m 为奇数,n 为偶数,m na 没有意义.(3)我们可以从一实例看看为什么会加上这个限制条件,如:-3=3-27=1236(27)(27)-=-6(-27)2=6729=3.为什么会出现-3=3这种情况?看看错在了哪里?因为这里的-3<0,在1236(27)(27)-=-中发生了错误,分数的分子、分母扩大相同的倍数分数值不变,有这个性质,必须限制条件“a >0”或“a >0,b >0”.在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,且尽可能地统一成分数指数幂的形式,再利用幂的性质进行化简、求值、计算,以利于运算,达到化繁为简的目的.对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示.如果有特殊要求,则按要求给出结果,但结果中不能同时含有根号和分数指数幂,也不能既含有分母又含有负指数,即结果必须化为最简形式.题型一 简单的指数幂运算 【例1】计算:(1)2312527-⎛⎫⎪⎝⎭; (2)230.008-; (3)34812401-⎛⎫⎪⎝⎭; (4)(2a +1)0; (5)⎣⎡⎦⎤56-⎝⎛⎭⎫35-1-1.分析:在幂的运算中,首先观察幂的底数,如果幂的底数能化成幂的形式时(如(1)(2)(3)),就先把幂的底数写成幂的形式,再进行幂的乘、除、乘方、开方运算,这样比较简便.在幂的运算中,对于形如m 0的式子,要注意对底数m 是否为零进行讨论,因为只有在m ≠0时,m 0才有意义;而对于形如⎝⎛⎭⎫b a -n的式子,我们一般是先变形为⎝⎛⎭⎫a b n ,然后再进行运算.反思:在进行有关幂的运算时,要注意化归思想的运用;另外化繁为简一直是我们解题的一条基本原则.熟悉幂的运算条件和幂的运算性质是正确解题的关键.题型二 利用根式的性质化简根式 【例2】化简下列各式: (1)3a 3; (2)2 010(x -4)2 010; (3)a 6; (4)2 011(x -7)2 011.分析:根据n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数来化简.反思:通过对本题的解答,大家一定要注意区分好n a n 与(na )n 的形式,并且要建立分类讨论的思想意识.题型三 根式与分数指数幂的互化【例3】(1)把2112 011-化为根式为__________;(2)把1(x ≠0)化为分数指数幂的形式为__________;(3)b >0)化为分数指数幂的形式为__________.反思:通过本例题,我们能得到如下结论:(1)分数指数幂不表示相同因式的乘积,而是根式的另一种写法,分数指数幂与根式可以相互转化.(2)当所求根式含有多重根号时,由里向外用分数指数幂形式写出,然后再用性质进行化简.题型四 整体代入法求值 【例4】已知11223a a-+=,求a +a -1,a 2+a -2的值.分析:本题主要考查分数指数幂及其应用.观察到11221a a -=,对已知等式两边平方即可求解.反思:本题是已知代数式的值求其他代数式的值,通常又简称为“知值求值”.解决此类题目要从整体上把握已知的代数式和所求的代数式的特点,常以整体代入来求值.【例5】已知x +y =12,xy =9,且x <y ,求11221122x y x y-+的值.分析:此题不宜采用直接求值的方法,要考虑把x +y 及xy 整体代入求值.反思:整体代入法在条件求值中非常重要,也是高中数学中一种重要的解题方法.在此题的解题过程中,不宜求出x ,y 后再代入,而应考虑把x +y 及xy 整体代入求值.1下列等式中一定成立的有( ) ①36a 3=2a ;②3-2=6(-2)2;③-342=4(-3)4×2.A .0个B .1个C .2个D .3个2当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果为( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 3求下列各式的值:(1)(325-125)÷45;(2)a 3a ·5a 3(a >0).答案: 基础知识·梳理1.(1)a n (2)①a m +n ②a mn ③a m -n ④a n b n ①a m +n ②a n b n ③a mn【做一做1】D 只有选项D 是按照幂的运算法则进行的.选项A 应为a m -n ,选项B 应为a m +n ,选项C 应为a mn .2.(1)n a 根指数 被开方数 (2)x n =a x a (3)①正数 负数 零 n a ②两个绝对值相等符号相反 零 没有意义 ±n a na (4)①a ②a |a |【做一做2】-8 原式=-8+|3-2|-(2-3)=-8+2-3-2+3=-8.3.(1)n a n a m 1m na【做一做3-1】D【做一做3-2】解:23×31.5×612=1113262323(32)2⎛⎫⨯⨯⨯⨯ ⎪⎝⎭=1111113323623236-+++⨯=⨯=. 4.逼近【做一做4】(1)× (2)× (3)× (4)√ 典型例题·领悟【例1】解:(1)2233331255273--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=5-23-2=3252=925. (2)2223223310.008(0.2)0.25255----⎛⎫===== ⎪⎝⎭.(3) 33444481324017--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=3-37-3=7333=34327. (4)(2a +1)0=⎩⎨⎧1, a ≠-12,无意义, a =-12.(5)⎣⎡⎦⎤56-⎝⎛⎭⎫35-1-1=⎝⎛⎭⎫56-53-1 =⎝⎛⎭⎫-56-1=-65. 【例2】解:(1)3a 3=a . (2)2 010(x -4)2 010=|x -4|=⎩⎪⎨⎪⎧x -4,x ≥4,4-x ,x <4.(3)a 6=(a 3)2=|a 3|=⎩⎪⎨⎪⎧a 3,a ≥0,-a 3,a <0.(4)2 011(x -7)2 011=x -7.【例3】(1)1112 0112(2)35x-(3)19b利用m na=a >0,m ,n ∈N +,且mn 为既约分数)和1m nmna a-=(a >0,m ,n ∈N +,且mn 为既约分数)转化即可.(1)原式=12 011211=1112 0112;(2)===3591353511()x x x-==.(3)原式=2221211()3334394[()]b bb ---⨯⨯-==.【例4】解:∵11223a a-+=,∴211229a a -⎛⎫+= ⎪⎝⎭.∴a +2+a -1=9.∴a +a -1=7.∴(a +a -1)2=49,∴a 2+2+a -2=49.∴a 2+a -2=47.【例5】解:211221122111111 222222x yx yx y x y x y⎛⎫-⎪-⎝⎭=⎛⎫⎛⎫++-⎪⎪⎝⎭⎝⎭=12 ()2()x y xyx y+--.①∵x+y=12,xy=9,②∴(x-y)2=(x+y)2-4xy=122-4×9=108. ∵x<y,∴x-y=-6 3.③将式②③代入式①,得11122211229x yx y-==+随堂练习·巩固1.A 36a3=36·a≠2a;3-2<0,而6(-2)2>0;-342<0,而4(-3)4×2>0.2.C由2-x有意义,得x≤2,∴原式=(x-2)2-(x-3)2=|x-2|-|x-3|=2-x-(3-x)=-1.3.解:(1)原式=23 23132 3241455 (55)55--÷==213155 3424124 5555 ---=-.(2)原式=1319 3325103152aa aa a--==⋅.。

人教B版数学高一版必修1学案集合的概念

人教B版数学高一版必修1学案集合的概念

数学人教B必修1第一章1.1.1 集合的概念1.了解集合的含义,会使用符号“∈”或“∉”表示元素与集合之间的关系.2.理解集合中元素的特性,重点理解其确定性与互异性.3.熟悉常用数集的符号,尤其要注意空集的含义及表示.1.集合的有关概念一般地,把一些能够____的____的对象看成一个整体,就说这个整体是由这些对象的全体构成的____(或____),常用英语大写字母A,B,C,…表示.构成集合的每个对象叫做这个集合的____(或____),常用英语小写字母a,b,c,…表示.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”;(2)构成集合的对象必须是“确定”且“不同”的.【做一做1】下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2011级新本科生D.2011年11月第十九届APEC(亚太经合组织)会议将在夏威夷檀香山举行,所有APEC 的成员国2.元素与集合的关系知识点关系概念记法读法元素与集合的关系属于如果____________,就说a属于A____a属于A不属于如果____________,就说a不属于A____a不属于A 元素与集合的联系与区别如下表:【做一做2】已知集合M只含有两个元素2 011a,2 013-a,且2 011∈M,求a的值.3.集合中元素的性质特征(1)______,(2)______,(3)______.在处理集合中有关元素的问题时,求得其中元素(或字母)的值以后,要充分考虑集合元素的互异性与分类讨论思想的应用,要进行代入检验,舍去不符合要求的值.【做一做3-1】若a,a,b,b,a2,b2构成集合M,则M中的元素最多有() A.6个B.5个C.4个D.3个【做一做3-2】方程x2-2x+1=0的解集中有__________个元素.4.集合的分类【做一做4】指出下列集合是有限集还是无限集.(1)满足2 011<x<2 013的整数构成的集合;(2)平面α内所有直线构成的集合.5.常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号________________ 【做一做5】下列关系表示正确的是()A.0∈N+B.π∉R C.1∉Q D.0∈Z一、集合中元素的特性剖析:确定性:集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否形成集合的标准.互异性:一个给定集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一个元素,这一点很容易被大家忽视,在解题中要切记这一性质.无序性:集合中的元素没有顺序,在表示集合时先写哪个元素都可以.二、特殊集合——空集剖析:我们把不含任何元素的集合叫做空集,记作.空集是一个实实在在的集合,只不过此集合中无任何元素,故称之为空集.如“方程x2+2=0的实数根”组成的集合,因为没有适合该集合的元素,故它是空集.要谨防①0={0},②{0}=,③{}=的错误,实际上,①0是集合{0}的一个元素,可记为0∈{0};②表示空集,而{0}表示含一个元素0的集合;③{}表示含有一个元素的集合.三、教材中的“思考与讨论”1.你能否确定,你所在班级中,高个子同学构成的集合?并说明理由.剖析:不能构成集合.原因是对高个子同学高的程度没有确定的标准,所以无法判定哪些同学符合要求,因此不能构成集合.2.你能否确定,你所在班级中,最高的3位同学构成的集合?剖析:能构成集合.因为班里最高的3位同学是确定的(只要按身高从高到低取前三名即可),将他们作为元素放在一起即构成所要求的集合.题型一集合中元素的确定性【例1】下列各组对象能构成集合吗?(1)你所在班级的男生;(2)参加2010年广州亚运会的高大运动员;(3)关于x 的方程ax 2+1=0的实数解;(4)从1988年到2012年举办奥运会的城市;(5)所有小的正数;(6)到两定点距离的和等于两定点间的距离的点.分析:“高大”和“小”没有确定的标准,因此(2)(5)的对象不能构成集合,(3)中的方程可能有实数解,也可能没有实数解,当a 给定后,其方程解的情况就是确定的.反思:看一组对象能否构成一个集合,只要看这组对象是否是确定的,即任何一个对象,要么在这一组对象中,要么不在这组对象之中,而没有第三种情况出现.题型二 集合中元素的互异性【例2】由元素3,x ,x 2-2x 构成集合M ,则x 应满足的条件是__________.反思:互异性是集合中元素的重要性质,在解决集合中有关元素的问题时,一定要注意利用互异性进行验证.题型三 元素与集合的关系【例3】已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 分析:利用-3是集合P 中的元素,可列方程求a 的值,最后需验证集合中元素的互异性.反思:在根据元素与集合的关系解题时,一定要注意最后代入检验,看是否符合题意及元素的互异性等性质.1下列各组对象,能构成集合的是( )A .平面直角坐标系内x 轴上方的y 轴附近的点B .平面内两边之和小于第三边的三角形C .新华书店中有意义的小说D .π(π=3.141…)的近似值的全体2由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .23集合A 是由点(2 011,2 012)和点(2 012,2 011)构成的,则A 中有__________个元素. 4设L (A ,B )表示直线AB 上所有点组成的集合,“P 是直线AB 上的一个点”这句话就可以简单地写成P __________L (A ,B ).5判断下列说法是否正确,并说明理由.(1)1,32,64,⎪⎪⎪⎪-12,12这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素.答案:基础知识·梳理1.确定 不同 集合 集 元素 成员【做一做1】A 因为选项B ,C ,D 中所给的对象都是确定的,从而可以构成集合;而选项A 中所给对象不确定,原因是没有具体的标准来衡量一位数学家怎样才算著名,故不能构成集合.2.a 是集合A 的元素 a ∈A a 不是集合A 的元素 a ∉A【做一做2】解:∵2 011∈M ,∴2 011a =2 011或2 013-a =2 011.解得a =1或a =2.∴a 的值为1或2.3.(1)确定性 (2)互异性 (3)无序性【做一做3-1】C 由集合元素的互异性,知集合M 中的元素最多为a ,b ,a 2,b 2,且4个元素互不相等.【做一做3-2】14. 有限集 无限集【做一做4】解:(1)满足2 011<x <2 013的整数仅有2 012一个,故此集合是有限集.(2)无限集.5.N N +或N * Z Q R【做一做5】D典型例题·领悟【例1】解:(1)(3)(4)(6)可以构成集合;(2)(5)不能构成集合.【例2】x ≠3且x ≠0且x ≠-1 由集合中元素的互异性可得出3,x ,x 2-2x 互不相等,由此可求出x 应满足的条件.即由⎩⎪⎨⎪⎧ x ≠3,x 2-2x ≠3,x 2-2x ≠x ,解得x ≠3且x ≠0且x ≠-1.【例3】解:∵-3∈P ,a 2+4≥4,∴a -3=-3或2a -1=-3,解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性;a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性.综上,a 的值为0或-1.随堂练习·巩固1.B 选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为,故能构成集合.2.C 代入验证如下:当a =1时,a 2=2-a ;当a =-2时,a 2=2-a =4;当a =2时,a 2=4,所以1,-2,2均不能满足集合A 中元素的互异性,而a =6时,a 2=36,2-a =-4,故选C.3.2 因为点的坐标是有顺序性的,所以集合A 中有2个点,即A 中有2个元素.4.∈5.解:(1)不正确.对于一个给定的集合,它的元素必须是互异的,即集合中的任何两个元素都是不同的,而32与64相同,⎪⎪⎪⎪-12与12相同,故此集合是由3个元素组成的集合. (2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此此集合只有3和2两个元素.。

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 本章总结提升

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 本章总结提升
轴,y 轴,z 轴的正方向,建立空间直角坐标系 Oxyz,则
得 AO=AC-OC=3.

π
OD=CD·sin
3
= 3,
故 A(0,-3,0),B( 3,0,0),C(0,1,0),D(- 3,0,0).
π
OC=CDcos3=1,而
AC=4,
因为 PA⊥底面 ABCD,可设 P(0,-3,z),=(0,0,-z).
(1)可以用定义法作出二面角的平面角解决.
(2)向量法是计算二面角大小的常用方法,只要合理建系,将所求归结为向
量运算就可以较容易地解决问题.
这三种空间角的求解方法很多,学习中应以向量法为主,侧重渗透向量坐标
法这一特色.
变式训练3
如图,在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和
∴1 =(0,1, 3),1 =(- 3,0, 3),
1 ·1
∴cos<1 , 1 >=
|1 ||1 |
6
弦值为 4 .
=
3
2 6
=
6
,∴异面直线
B
1C 和 C1D 所成的角的余
4
变式训练4
正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为 2 a,求AC1与侧面ABB1A1
又因为AB=BC,所以△BOA≌△BOC,
故OA⊥OB,从而OA,OB,OB1两两互相垂直.
以 O 为坐标原点,的方向为 x 轴正方向,||为单位长度,建立如图所示的
空间直角坐标系Oxyz.
因为∠CBB1=60°,
所以△CBB1为等边三角形.又AB=BC,
所以 A 0,0,
3
3
,B(1,0,0),B1 0,

高中数学人教B版必修一全书学案

高中数学人教B版必修一全书学案

第一章集合1.1集合与集合的表示方法:1.1.1.集合的概念:一、教学目标:了解集合的有关概念,掌握集合与元素的关系、集合的特征,知道常用集合的表示符号。

二、教学过程:1.引入:(1)一般地,一个家庭里有几口人?都有谁?(2)今年中考过后,你读过几本书?2.自主学习:本节课主要概念有:集合:把一些能够________________对象看成一个整体,就说这个整体是由这些对象的全体构成的_________(或_____).元素:构成集合的每一个对象叫做______(或_____). 通常用______________表示集合,用_______________表示元素空集:_______________________有限集:______________________- 无限集:_______________________ 常用集合的表示符号:自然数集____ , 正整数集__________整数集______,有理数集,______,实数集_____.3.师生探讨:(1) 集合与元素的关系: 若a 是集合A 的元素,就说____________,记作__________;若a 不是集合A 的元素,就说____________,记作________.(2) 集合的特征:________,_________,_________ (3)空集中元素的个数:____4.巩固练习:4P 练习A 、练习B, 9P 35.小结: 6.作业:(1)下列各项中,可以组成集合的是( )(A )个子高的人 (B )鲜艳的颜色 (C )视力差的人 (D )德州二中高一新生 (2)下列各项中,不能组成集合的是( )(A )所有正三角形 (B )《必修一》中的所有习题 (C )所有数学难题 (D )所有无理数(3)已知,,22A a a A a ∈-∈若集合A 含2个元素,则下列说法中正确的是 ( ) (A )a 取全体实数 (B )a 取除去0以外的所有实数(C )a 取除去3以外的所有实数(D )a 取除去0和3以外的所有实数 (4)方程0122=+-x x 的解的集合(简称解集)中,有____个元素 (5)不等式2x-3<0的解集的元素中,自然数是______ (6)用符号∉∈或填空:π___Q , 3.14____Q , 012=+x 的根____R ,π1____R .2___N (7)(选做)有实数x x x ,,-组成的集合元素的个数最多有____个? 最少有_____个? (8)(选做)已知由1,2,x x 三个实数构成一个集合,求x 应满足的条件:1.2集合之间的关系与运算1,2,1集合之间的关系一、教学目标:理解子集,集合相等的概念,理解集合关系与其特征性质之间的关系,掌握包含与相等的有关术语、符号,并会使用它们表达集合之间的关系,会用Venn 图表示集合及其关系。

人教B版高中同步学案数学选择性必修一 第一章 空间向量与立体几何 第1课时 空间向量的概念及线性运算

人教B版高中同步学案数学选择性必修一 第一章 空间向量与立体几何 第1课时 空间向量的概念及线性运算

变式训练 2 如图,在正方体 ABCD-A1B1C1D1 中, =a,=b,1 =c,若 E 为
DD1 的中点,F 在 BD 上,且 BF=2FD,则 等于( B )
1 1 1
A.2a-2b-2c
1 1 1
B.3a-3b-2c
1 1
1
C.-3a-3b+2c
1 1
1
D.2a-3b+3c
内,则称这些向量共面,否则称这些向
量 不共面
名师点睛
1.平面向量的相关概念与约定,去掉“在平面内”的限定后,就都可以推广到
空间中.
2.易错点重温:
(1)向量的模可以比较大小,而两个向量可以相等但不可以比较大小.
(2)通常规定零向量与任意向量平行,研究向量平行(共线)问题时勿遗漏这
一特殊情况.例如,“a∥b,b∥c,则a∥c”这是一个假命题.
4.首尾相接的若干向量若构成一个封闭图形,它们的和向量为0.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)空间中两个非零向量相加时,可以在空间中任取一点作为它们的共同始
点.( √ )
(2)若a=λb(b≠0),则λ=

.(
× )
2.[北师大版教材习题]已知空间任意四点 A,B,C,D,则 + −
相等向量 大小相等,方向相同 的向量称为相等向量
与向量a大小 相等
相反向量
向量,记作 -a
,方向
相反
的向量,称为a的相反
如果两个非零向量的方向 相同或者相反 ,则称这两个向量平
向量共线
行(也称为两个向量共线),记作a∥b
一般地,空间中的多个向量,如果表示它们的有向线段通过平移

人教版(B版2019课标)高中数学选择性必修一1.2.1空间中的点、直线与空间向量 学案

人教版(B版2019课标)高中数学选择性必修一1.2.1空间中的点、直线与空间向量  学案

空间中的点、直线与空间向量【学习目标】1.通过学习直线的方向向量,公垂线段等概念.2.利用向量法证明两直线垂直,求两直线所成的角,提升逻辑推理和数学运算的素养.3.了解空间中的点与空间向量的关系.4.理解公垂线段的概念并会求其长度.【学习重难点】1.理解直线的方向向量.(重点)2.掌握利用空间向量求空间两直线所成的角的方法.(重点、难点)3.掌握利用空间向量证明两条直线平行或垂直的方法.(重点)【学习过程】一、新知初探1.空间中的点与空间向量一般地,如果在空间中指定一点O ,那么空间中任意一点P 的位置,都可以由向量OP →唯一确定,此时,OP →通常称为点P 的位置向量.2.空间中的直线与空间向量一般地,如果l 是空间中的一条直线,v 是空间中的一个非零向量,且表示v 的有向线段所在的直线与l 平行或重合,则称v 为直线l 的一个方向向量.此时,也称向量v 与直线l 平行,记作v ∥l .(1)如果A 、B 是直线l 上两个不同的点,则v =AB →,即为直线l 的一个方向向量.(2)如果v 1是直线l 1的一个方向向量,v 2是直线l 2的一个方向向量,则v 1∥v 2⇔l 1∥l 2或l 1与l 2重合.3.空间中两条直线所成的角(1)设v 1、v 2分别是空间中直线l 1,l 2的方向向量,且l 1与l 2所成角的大小为θ,则θ=〈v 1,v 2〉或θ=π-〈v 1,v 2〉,所以sin θ=sin 〈v 1,v 2〉,cos θ=|cos 〈v 1,v 2〉|.(2)〈v 1,v 2〉=π2⇔l 1⊥l 2⇔v 1·v 2=0.4.异面直线与空间向量设v 1,v 2分别是空间中直线l 1与l 2的方向向量.(1)若l 1与l 2异面,则v 1与v 2的关系为v 1与v 2不平行.(2)若v 1与v 2不平行,则l 1与l 2的位置关系为相交或异面.(3)若A ∈l 1,B ∈l 2,则l 1与l 2异面时,v 1,v 2,AB →不共面.若v 1,v 2,AB →不共面,则l 1与l 2异面.(4)公垂线段:一般地,如果l 1与l 2是空间中两条异面直线,M ∈l 1,N ∈l 2,MN ⊥l 1,MN ⊥l 2.则称MN 为l 1与l 2的公垂线段,两条异面直线的公垂线段的长,称为这两条异面直线之间的距离.二、初试身手1.思考辨析(正确的打“√”,错误的打“×”)(1)直线l 的方向向量是唯一的.( )(2)若两条直线平行,则它们的方向向量的方向相同或相反.( )(3)若向量a 是直线l 的一个方向向量,则向量k a 也是直线l 的一个方向向量.( )2.(教材P 36练习A ①改编)设A (2,2,3),B (4,0,1)在直线l 上,则直线l 的一个方向向量为( )A .(1,2,5)B .(3,-2,-2)C .(1,-1,-1)D .(-1,1,-1)3.若异面直线l 1,l 2的方向向量分别是a =(0,-2,-1),b =(2,0,4),则异面直线l 1与l 2的夹角的余弦值等于( )A .-25B .25C .-255D .2554.直线l 1,l 2的方向向量分别为v 1=(3,0,2),v 2=(1,0,m ),若l 1∥l 2,则m 等于________.三、合作探究类型1:空间中点的位置确定【例1】已知O 是坐标原点,A ,B ,C 三点的坐标分别为A (3,4,0),B (2,5,5),C (0,3,5).(1)若OP →=12(AB →-AC →),求P 点的坐标;(2)若P 是线段AB 上的一点,且AP ∶PB =1∶2,求P 点的坐标.类型2:利用向量法求异面直线的夹角(或余弦值)【例2】(1)若向量a=(x,4,5),b=(1,-2,2),且a与b的夹角的余弦值为26,则x=()A.3B.-3C.-11D.3或-11类型3:利用空间向量处理平行问题【例3】(1)已知向量a=(2,4,10),b=(3,x,15)分别是直线l1、l2的方向向量,若l1∥l2,则x=________.(2)如图所示,已知正方体ABCD­A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:FC1∥平面ADE.【学习小结】1.空间中的点与直线可以利用空间坐标与直线的方向向量来研究,更进一步研究空间几何中的平行、垂直关系.2.在解决空间中直线与直线所成角的问题时,既可构造相应的角求解,也可以借助空间向量求解,建立空间直角坐标系或选择合适的基底都能解决问题.3.利用空间坐标系可以研究异面直线问题,如异面直线所成的角、异面直线的距离等.【精炼反馈】1.若A(1,0,1),B(2,3,4)在直线l上,则直线l的一个方向向量是()A.(-1,3,3)B.(1,3,3)C.(3,3,5)D.(2,4,6)2.向量a=(x,1,-2),b=(3,x,4),a⊥b,则x=()A.8B.4C.2D.03.直线l1与l2不重合,直线l1的方向向量为v1=(-1,1,2),直线l2的方向向量为v2(-2,0,-1),则直线l1与l2的位置关系为________.4.已知向量a=(1,0,-1),向量b=(2,0,0),则〈a,b〉=________.5.在直三棱柱ABC­A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA =CC1,求BM与AN所成角的余弦值.。

(新教材)2022年高中数学人教B版必修第一册学案:2.2.4.1 均值不等式 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:2.2.4.1 均值不等式 (含答案)

2.2.4 均值不等式及其应用第1课时均值不等式1.均值不等式(基本不等式)(1)算术平均值与几何平均值.前提给定两个正数a,b结论数a+b2称为a,b的算术平均值数ab 称为a,b的几何平均值(2)均值不等式前提a,b都是正数,结论a+b2≥ab ,等号成立的条件当且仅当a=b时,等号成立几何意义所有周长一定的矩形中,正方形的面积最大.(3)本质:算数平均值的本质就是数a ,b 在数轴上对应点的中点坐标.几何平均值的本质就是a ,b 乘积的开方.均值不等式就是在正数的前提下其算数平均值大于等于其几何平均值. (4)应用:应用均值不等式求最值.(1)均值不等式中的a ,b 只能是具体的某个数吗? 提示:Xa ,b 既可以是具体的某个数,也可以是代数式.(2)均值不等式的叙述中,“正数”两个字能省略吗?请举例说明. 提示:不能,如(-3)+(-4)2 ≥(-3)×(-4) 是不成立的. 2.均值不等式与最值两个正数的积为常数时,它们的和有最小值; 两个正数的和为常数时,它们的积有最大值.通过以上结论可以得出,利用均值不等式求最值要注意哪几方面? 提示:求最值时,要注意三个条件,即“一正”“二定”“三相等”.1.辨析记忆(对的打“√”,错的打“×”).(1)两个不等式a 2+b 2≥2ab 与a +b2 ≥ab 成立的条件是相同的.( )提示:×.不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ;不等式a +b2 ≥ab成立的条件是a >0,b >0.(2)当a >0,b >0时a +b ≥2ab .( ) 提示:√.均值不等式的变形公式.(3)当a >0,b >0时ab ≤⎝⎛⎭⎪⎫a +b 2 2.( ) 提示:√.均值不等式的变形公式. (4)函数y =x -1+1x -1的最小值是2.( )提示:×.当x -1<0,即x <1时,x -1+1x -1 是负数.2.若正实数a ,b 满足a +b =2,则ab 的最大值为( ) A .1 B .22 C .2 D .4【解析】选A.当a ,b 为正实数时,由ab ≤a +b 2 ,ab ≤⎝ ⎛⎭⎪⎪⎫a +b 2 2 =⎝ ⎛⎭⎪⎫22 2=1,当且仅当a =b =1时等号成立,所以ab 的最大值为1. 3.(教材例题改编)已知x >1,y =x +1x -1 ,则y 的最小值是( )A .1B .2C .3D .4【解析】选C.因为x >1,则x -1>0,由基本不等式得y =x -1+1x -1+1≥2(x -1)·1x -1+1=3,当且仅当x =2时,等号成立,因此,y 的最小值是3.类型一 对均值不等式的理解(数学抽象)1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0.其中能使b a +ab ≥2成立的条件个数为( )A .1B .2C .3D .4【解析】选C.由均值不等式的前提需“一正、二定、三相等”,即当ba ,ab 均为正数时,可得b a +ab ≥2,此时只需a ,b 同号即可,所以①③④均满足要求.2.不等式a +1≥2 a (a >0)中等号成立的条件是( ) A .a =0 B .a =12 C .a =1 D .a =2【解析】选C.因为a >0,根据均值不等式ab ≤a +b2 ,当且仅当a =b 时等号成立,故a +1≥2 a 中等号成立当且仅当a =1. 3.若a >0,b >0,且M =a +b2 ,G =ab ,H =a 2+b 22 ,则M ,G ,H 的大小关系为________.【解析】因为a >0,b >0,所以有a +b2 ≥ab (当且仅当a =b 时取等号),因此有M ≥G .a 2+b 2≥2ab ⇒a 2+b 2+a 2+b 2≥2ab +a 2+b 2⇒a 2+b 2≥(a +b )22 ⇒a 2+b 22 ≥(a +b )24(当且仅当a =b 时取等号),因为a >0,b >0,所以有a 2+b 22 ≥a +b2 ,因此有H ≥M . 答案:H ≥M ≥G均值不等式使用的条件利用均值不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:“一正”是,要判断参数是否为正;“二定”是,要看和或积是否为定值(和定积最大,积定和最小);“三相等”是,一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【补偿训练】设0<a<b ,则下列不等式中正确的是( ) A .a<b<ab <a +b 2 B .a<ab <a +b2 <b C .a<ab <b<a +b 2 D .ab <a<a +b2 <b【解析】选B .因为0<a<b ,所以0< a < b ,所以a<ab ,同样由0<a<b 得a 2 <b 2 ,所以a +b 2 <b ,由均值不等式可得,ab <a +b 2 ,综上,a<ab <a +b2 <b.类型二 利用均值不等式求最值(数学运算)【典例】当x>1时,求x 2+8x -1 的最小值.探求解书写表达令t=x2+8x-1=(x-1)2+2(x-1)+9x-1=(x-1)+9x-1+2,①因为x-1>0,所以t≥2(x-1)·9x-1+2=8,当且仅当x-1=9x-1,即x=4时,t的最小值为8.②注意书写的规范性:①为了表达式的完整性,可以将表达式记为t=x2+8x-1②步骤中不能省略验证等号成立的条件题后反思表达式的恒等变形是解题的关键,ax2+bx+cdx+e(ad≠0)形式的表达式通常分母不变,将分子化为m(dx+e)2+n(dx+e)+q的形式(m,n,q为常数)并展开,再利用均值不等式求解,均值不等式的应用必须一正、二定、三相等,三者缺一不可利用均值不等式求最值的两种类型和一个关注点(1)两种类型:①若a+b=p(两个正数a,b的和为定值),则当a=b时,积ab有最大值p24,可以用均值不等式ab ≤a+b2求得.②若ab=S(两个正数的积为定值),则当a=b时,和a+b有最小值2S ,可以用均值不等式a+b≥2ab 求得.(2)一个关注点:不论哪种情况都要注意等号取得的条件.(2021·潍坊高一检测)规定记号“⊙”表示一种运算,即a⊙b=ab +a +b(a,b为正实数).若1⊙k=3,则k的值为________,此时函数y=k⊙xx的最小值为________.【解析】由题意得1⊙k=k +1+k=3,即k+k -2=0,所以k =1或k =-2(舍去),所以k=1.y=k⊙xx =x+x+1x=1+x +1x≥1+2x×1x=3,当且仅当x =1x,即x=1时,等号成立.答案:1 3【拓展延伸】1.一次式除以二次式形式的表达式的最值的求法(1)分子一次形式不变,将分母的二次形式改写为分子一次形式的平方或者一次形式的几倍或者常数形式.(2)分子分母同除以分子后利用均值不等式求解.2.利用均值不等式求解整式形式的最值(1)判断所求表达式中未知量的正负.(2)直接使用均值不等式求解,特别注意最后要进行等号成立时的未知量的检验.【拓展训练】对任意x>0,xx 2+3x +1的最大值为________.【解析】由题意,对任意x>0,有x x 2+3x +1 =1x 2+3x +1x =1x +1x +3≤12x·1x +3 =15 ,当且仅当x =1x ,即x =1时,等号成立, 即x x 2+3x +1 的最大值为15 . 答案:15总结:本题主要考查了均值不等式的应用,解答中对xx 2+3x +1 进行等价转化求得最大值是解答的关键,着重考查了推理与运算能力.类型三 间接利用均值不等式求最值“不正”问题【典例】已知x<0,则3x +12x 的最大值为________. 【思路导引】变形为各项均大于0后利用均值不等式求最值. 【解析】因为x<0,所以-x>0.则3x +12x =-⎣⎢⎢⎡⎦⎥⎥⎤12-x +(-3x ) ≤-212(-x )·(-3x ) =-12,当且仅当12-x=-3x ,即x =-2时,3x +12x 取得最大值为-12. 答案:-12若条件改为“x<1”,结论改为“则3(x -1)+12x -1 的最大值为________.”如何求解?【解析】因为x<1,所以x -1<0,故-(x -1)>0,所以3(x -1)+12x -1 =-⎣⎢⎢⎡⎦⎥⎥⎤-3(x -1)+⎝ ⎛⎭⎪⎪⎫-12x -1 ≤ -2-3(x -1)·⎝ ⎛⎭⎪⎪⎫-12x -1 =-12,当且仅当-3(x -1)=-12x -1 ,即x =-1时,3(x -1)+12x -1 取得最大值-12.答案:-12“不定”问题【典例】(1)已知x>2,求x +1x -2的最小值.【思路导引】先对式子变形,凑定值后再利用均值不等式求最值. 【解析】(1)因为x>2,所以x -2>0,所以x +1x -2 =x -2+1x -2 +2≥2(x -2)⎝ ⎛⎭⎪⎪⎫1x -2 +2=4,所以当且仅当x -2=1x -2 (x>2),即x =3时,x +1x -2 的最小值为4.(2)已知0<x<4,求x(8-2x)的最大值.【解析】因为0<x<4,所以8-2x>0,所以x(8-2x)=12 ×2x(8-2x)≤12 ⎝ ⎛⎭⎪⎪⎫2x +8-2x 2 2 =8, 所以当且仅当2x =8-2x ()0<x<4 , 即x =2时有最大值,x(8-2x)的最大值为8.若把本例(1)改为:已知x<54 , 试求4x -2+14x -5的最大值.【解析】因为x<54 ,所以4x -5<0,5-4x>0. 所以4x -5+3+14x -5 =-⎝ ⎛⎭⎪⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=1.当且仅当5-4x =15-4x 时等号成立,又5-4x>0,所以5-4x =1,x =1时,4x -2+14x -5的最大值是1.1.负数在均值不等式中的应用当所给式子均小于0时,也可以利用均值不等式求最值,但是要注意不等号方向的变化.2.通过拼凑法利用均值不等式求最值的策略(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形.(2)代数式的变形以拼凑出和或积的定值为目标. (3)拆项、添项应注意检验利用均值不等式的前提.1.(2021·宜春高一检测)已知两个正数a ,b 满足3a +2b =1,则3a +2b 的最小值是( )A .23B .24C .25D .26【解析】选C .根据题意,正数a ,b 满足3a +2b =1, 则3a +2b =⎝⎛⎭⎫3a +2b ⎝⎛⎭⎪⎫3a +2b =13+⎝⎛⎭⎪⎫6a b +6b a≥13+26a b ·6ba =25,当且仅当a =b =15 时等号成立. 即3a +2b 的最小值是25.2.不等式9x -2 +(x -2)≥6(其中x>2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-5【解析】选C .由均值不等式知等号成立的条件为9x -2 =x -2,即x =5(x =-1舍去).3.已知x<0,则x +94x 的最大值是________.【解析】已知x<0,则x +94x =-⎝ ⎛⎭⎪⎪⎫-x +9-4x ≤-294 =-3,当-x =9-4x,即x =-32 时,等号成立.答案:-3【补偿训练】(2020·潍坊高一检测)设a>b>0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4【解析】选D .因为a>b>0,所以a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=ab +1ab +a(a -b)+1a (a -b ) ≥2+2=4,(当且仅当ab =1且a(a -b)=1即a = 2 ,b =22 时,取“=”号),故应选D .备选类型 “不等”问题【典例】下列命题中,正确的是( ) A .x +4x 的最小值是4B .x 2+4 +1x 2+4的最小值是2C .如果a>b ,c>d ,那么a -c>b -dD .如果ac 2>bc 2,那么a>b【思路导引】利用均值不等式和对勾函数的性质,以及不等式的性质,分别对四个选项进行判断,得到答案.【解析】选D .选项A 中,若x<0,则无最小值,所以错误;选项B 中,t =x 2+4 ≥2,则函数y =x 2+4 +1x 2+4转化为函数y =t +1t ,在[2,+∞)上单调递增,所以最小值为52 ,所以错误; 选项C 中,若a =c ,b =d ,则a -c =b -d ,所以错误; 选项D 中,如果ac 2>bc 2,则c≠0,所以c 2>0,所以可得a>b.运用均值不等式解“不等”问题(1)观察运用均值不等式求最值的表达式是否满足一正二定; (2)使用均值不等式,检验等号是否成立,成立即运用均值不等式,否则结合单调性加以求解.下列各式中,最小值是2的为( )A .(x +1)+⎝ ⎛⎭⎪⎫1x +1B .(x +2)+⎝ ⎛⎭⎪⎫1x +2C .(x 2+1)+⎝ ⎛⎭⎪⎫1x 2+1 D .x 2+3 +1x 2+3【解析】选C .选项A ,只有当x +1>0,即x >-1时,才有(x +1)+⎝ ⎛⎭⎪⎪⎫1x +1≥2(x +1)·⎝ ⎛⎭⎪⎪⎫1x +1 =2(当且仅当x =0时取等号)成立,此时(x +1)+⎝ ⎛⎭⎪⎪⎫1x +1 的最小值为2,当x +1<0,即x<-1时,(x +1)+⎝ ⎛⎭⎪⎪⎫1x +1 没有最小值,因此选项A 是错误的;选项B ,只有当x +2>0,即x >-2时,才有(x +2)+⎝ ⎛⎭⎪⎪⎫1x +2 ≥2(x +2)·1(x +2)=2(当且仅当x =-1时取等号)成立,此时(x +2)+⎝ ⎛⎭⎪⎪⎫1x +2 的最小值为2,当x +2<0,即x <-2时,(x +2)+⎝ ⎛⎭⎪⎪⎫1x +2 没有最小值,因此选项B 是错误的;选项C ,因为x 2+1>0,所以⎝⎛⎭⎫x 2+1 +⎝ ⎛⎭⎪⎪⎫1x 2+1 ≥ 2⎝⎛⎭⎫x 2+1·⎝ ⎛⎭⎪⎪⎫1x 2+1 =2(当且仅当x =0时取等号),因此⎝⎛⎭⎫x 2+1 +⎝ ⎛⎭⎪⎪⎫1x 2+1 的最小值为2,所以本选项是正确的; 选项D ,因为x 2+3 >0,所以x 2+3 +1x 2+3≥2x 2+3·1x 2+3=2,x 2+3 =1x 2+3⇒x 2+3=1⇒x 2=-2方程无实数根,故不等式取不到等号,因此本选项是错误的.1.若x 2+y 2=4,则xy 的最大值是( ) A .12 B .1 C .2 D .4【解析】选C.xy ≤x 2+y 22 =2,当且仅当x =y 时取“=”.2.(2021·烟台高一检测)已知a >0,b >0,若不等式4a +1b ≥ma +b 恒成立,则m 的最大值为( )A .10B .12C .16D .9【解析】选D.由已知a >0,b >0,若不等式4a +1b ≥ma +b恒成立,所以m ≤⎝ ⎛⎭⎪⎫4a +1b (a +b )恒成立,转化成求y =⎝ ⎛⎭⎪⎫4a +1b (a +b )的最小值,y=⎝ ⎛⎭⎪⎫4a +1b (a +b )=5+4b a +ab ≥5+24b a ·ab =9,当且仅当a =2b 时等号成立,所以m ≤9.3.(教材练习改编)已知x>3,y =x 2-3x +1x -3 ,则y 的最小值为( )A .2B .3C .4D .5【解析】选D .因为x>3,所以x -3>0,则y =x 2-3x +1x -3=x +1x -3=x -3+1x -3+3≥2(x -3)×1x -3+3=5,当且仅当x -3=1x -3,即x =4时取等号. 4.已知0<x<4,则4x +14-x 的最小值为________,此时x =________.【解析】因为x +4-x4 =1,且0<x<4,所以4x +14-x =⎝ ⎛⎭⎪⎪⎫4x +14-x ⎝ ⎛⎭⎪⎪⎫x 4+4-x 4 =54 +x 4(4-x ) +4-x x ≥54 +2x 4(4-x )·4-x x =94 ,当且仅当x =83 时等号成立.答案:94 835.若a>0,b>0且2a +1b =3,则ab 的最大值为________. 【解析】因为a>0,b>0,所以2a +1b =3≥22a b ,当且仅当2a =1b ,即a =34 ,b =23 时,等号成立,所以a b ≤98 . 答案:98。

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 空间向量的坐标与空间直角坐标系 分层作业册

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 空间向量的坐标与空间直角坐标系 分层作业册
2
,- 2 ,0
2
B.(0,1,0)
C.
2 2
,
,0
2 2
D.(-1,-1,0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 对 A,存在实数 λ=- 2,使(1,1,0)=- 2((−
2
2
, − , 0)
2
2
=
1
2
+
1
=1,故
2
2 2
,- ,0),且
2 2
A 正确;
不垂直,故 B 不正确; = − =(4,2,0)-(-2,1,4)=(6,1,-4),
∴| |= 62 + 12 + (-4)2 = 53,故 C 正确;
1 = 6,
假设=k (k∈R),则 -2 = , 无解,因此假设不成立,即 AP 与 BC 不平行,
1 = -4,
(2)求a与b的夹角;
(3)若ka+b与ka-2b互相垂直,求实数k的值.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(1) =(-3,0,4)-(-1,1,2)=(-2,-1,2).
因为 c∥ ,所以 c=λ ,所以 c=λ(-2,-1,2)=(-2λ,-λ,2λ).
∴cos< , >=
·
| || |
=

1 2 + 2 +(1-)2
=cos
由 0<λ<1,解得 λ= 2-1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
60°=2.
14. 如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面

人教版高中数学必修①教案-学案

人教版高中数学必修①教案-学案

人教版高中数学必修①教案-学案第一章:集合与函数的概念1.1 集合的概念学习集合的定义、集合的元素、集合的表示方法。

理解集合的性质,如确定性、互异性、无序性。

学习集合间的运算,包括并集、交集、补集。

1.2 函数的概念学习函数的定义,理解函数的输入输出关系。

学习函数的表示方法,包括解析式、表格、图像。

理解函数的性质,如单调性、奇偶性、周期性。

第二章:实数与不等式2.1 实数的概念学习实数的定义,理解实数的分类,包括有理数和无理数。

学习实数的运算,包括加法、减法、乘法、除法。

学习实数的性质,如相反数、绝对值、有理数和无理数的性质。

2.2 不等式的概念学习不等式的定义,理解不等式的符号,如大于、小于、大于等于、小于等于。

学习不等式的运算,包括加减乘除不等式、同向不等式相加、相反向不等式相减。

学习不等式的性质,如不等式的传递性、同向不等式的相加性、相反向不等式的相减性。

第三章:指数函数与对数函数3.1 指数函数的概念学习指数函数的定义,理解指数函数的图像和性质。

学习指数函数的运算法则,包括指数的乘法、除法、乘方。

学习指数函数的应用,如计算幂、求指数方程的解。

3.2 对数函数的概念学习对数函数的定义,理解对数函数的图像和性质。

学习对数函数的运算法则,包括对数的换底公式、对数的乘法、除法。

学习对数函数的应用,如计算对数、求对数方程的解。

第四章:三角函数4.1 三角函数的概念学习三角函数的定义,理解正弦函数、余弦函数、正切函数的图像和性质。

学习三角函数的周期性,理解周期函数的周期性。

学习三角函数的变换,如相位变换、振幅变换。

4.2 三角函数的运用学习三角函数的和差公式,理解正弦函数、余弦函数的和差公式。

学习三角函数的倍角公式,理解正弦函数、余弦函数的倍角公式。

学习三角函数的解三角形,理解正弦定理、余弦定理。

第五章:数列5.1 数列的概念学习数列的定义,理解数列的项、数列的项数、数列的表示方法。

学习数列的性质,如等差数列、等比数列的定义和性质。

(新教材)2022年高中数学人教B版必修第一册学案:2.1.1 等式的性质与方程的解集 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:2.1.1 等式的性质与方程的解集 (含答案)

第二章 等式与不等式2.1 等 式2.1.1 等式的性质与方程的解集1.常用乘法公式(1)公式: 公式名称符号表示 文字表示 平方差公式 (a +b )(a -b )=a 2-b 2 两个数的和与这两个数的差的积等于这两个数的平方差完全平方 (a ±b )2=a 2±2ab +b 2两数和(或差)的平方,等于公式这两数的平方和,加上(或减去)这两数积的2倍其他恒等式①(a+b)(a2-ab+b2)=a3+b3;②(a+b)3=a3+3a2b+3ab2+b3;③(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)本质:常用乘法公式的本质就是将每个括号内的每一项与另一括号内的每一项依次相乘后再求和得到.(3)应用:利用公式或恒等式进行表达式的化简与求值.(1)平方差公式的左右两边分别有什么特点?提示:公式的左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方.(2)完全平方公式的左右两边分别有什么特点?提示:公式左边都是二项式的平方,右边是一个二次三项式;公式右边第一、三项分别是左边第一、第二项的平方;第二项是左边两项积的2倍.2.十字相乘法具体形式:①二次项系数为1时:x2+(a+b)x+ab=(x+a)(x+b)②二次项系数不为1时:acx2+(ad+bc)x+bd=(ax+b)(cx+d)记忆口诀:拆两头,凑中间.十字相乘法分解因式的关键是什么?提示:把二次项系数和常数项分解,交叉相乘,得到两个因数,再把两个因数相加,看它们的和是不是正好等于一次项系数.3.方程的解集(1)定义:方程的解(根)能使方程左右两边相等的未知数的值方程的解集一个方程所有解组成的集合的不同.(3)应用:求解方程的解(或解集).把方程通过适当变换后,求出的未知数的值都是这个方程的解(根)吗?提示:把方程通过变换,求出的未知数的值不一定是这个方程的根,也可能是这个方程的增根.1.辨析记忆(对的打“√”,错的打“×”).(1)计算(2a+5)(2a-5)=2a2-25.( ×)提示:(2a+5)(2a-5)=(2a)2-25=4a2-25.(2)因式分解过程为:x2-3xy-4y2=(x+y)(x-4).( ×)提示:x2-3xy-4y2=(x+y)(x-4y).(3)用因式分解法解方程时部分过程为:(x+2)(x-3)=6,所以x+2=3或x-3=2.( ×)提示:若(x+2)(x-3)=0,可化为x+2=0或x-3=0.2.分解因式:x2+2xy+y2-4=.【解析】x2+2xy+y2-4=(x+y)2-4=(x+y+2)(x+y-2).答案:(x+y+2)(x+y-2)3.(教材例题改编)已知三角形两边长分别为4和7,第三边的长是方程x2-17x+66=0的根,则第三边的长为______.【解析】由方程x2-17x+66=0得:(x-6)(x-11)=0,解得:x=6或x=11,当x=6时,三边长为4,6,7,符合题意;当x=11时,以4,7,11为三边构不成三角形,不合题意,舍去,则第三边长为6.答案:6类型一常用乘法公式的应用(数学运算)1.若多项式x2+kx-24可以因式分解为(x-3)(x+8),则实数k的值为()A.5 B.-5C.11 D.-11【解析】选A.由题意得x2+kx-24=(x-3)(x+8)=x2+5x-24. 2.计算(x+3y)2-(3x+y)2的结果是()A.8x2-8y2B.8y2-8x2C.8(x+y)2D.8(x-y)2【解析】选B.方法一:(x+3y)2-(3x+y)2=x2+6xy+9y2-(9x2+6xy+y2)=x2+6xy+9y2-9x2-6xy-y2=8y2-8x2.方法二:(x+3y)2-(3x+y)2=[(x+3y)+(3x+y)][(x+3y)-(3x+y)]=(x+3y+3x+y)(x+3y-3x-y)=(4x+4y)(-2x+2y)=4(x+y)×2(-x+y)=8y2-8x2.3.已知a2+b2+2a-4b+5=0,则2a2+4b-3的值为______.【解析】a2+b2+2a-4b+5=(a2+2a+1)+(b2-4b+4)=(a+1)2+(b-2)2=0,所以a=-1,b=2,所以2a2+4b-3=2×(-1)2+4×2-3=7.答案:7常用乘法公式的应用技巧(1)使用公式化简时,一定要分清公式中的a,b分别对应题目中的哪个数或哪个整式.(2)利用公式化简时,要注意选择公式,公式选择恰当,可以有效地简化运算.类型二十字相乘法分解因式(数学运算)【典例】把下列各式因式分解.(1)x2+3x+2.(2)6x2-7x-5.(3)5x2+6xy-8y2.【思路导引】二次项系数与常数项分别拆分,交叉相乘再相加,保证和为一次项系数即可.【解析】(1)x2+3x+2=(x+1)(x+2)1×2+1×1=3(2)6x2-7x-5=(2x+1)(3x-5)2×(-5)+3×1=-7(3)5x2+6xy-8y2=(x+2y)(5x-4y)1×(-4y)+5×(2y)=6y十字相乘法因式分解的形式尝试把某些二次三项式如ax2+bx+c分解因式,先把a分解成a=a1a2,把c分解成c=c1c2,并且排列如下:这里按斜线交叉相乘的积的和就是a 1c 2+a 2c 1,如果它正好等于二次三项式ax 2+bx +c 中一次项的系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1是图中上面一行的两个数,a 2,c 2是下面一行的两个数.分解下列各因式:(1)8x 2+26xy -15y 2;(2)7(a +b)2-5(a +b)-2.【解析】(1)8x 2+26xy -15y 2=(2x -y)(4x +15y).(2)7(a +b)2-5(a +b)-2=(7a +7b +2)(a +b -1).【拓展延伸】齐次式的因式分解(1)齐次式是指合并同类项后,每一项关于x ,y 的次数都是相等的多项式.次数为一次就是一次齐次式,次数为二次就是二次齐次式.如x -2y 是一次齐次式;x 2+xy 是二次齐次式.(2)二元二次齐次式是高中最常见的齐次式之一,通常可以写为ax 2+bxy +cy 2的形式,常见的因式分解方法有两种,一是将原式中的y 看作参数直接进行因式分解;二是在解决此类问题的等式时可以同除以y 2转化为x y 的二次形式后利用因式分解进行分解或求值. 【拓展训练】x 2-13xy -30y 2分解因式为( )A .(x -3y)(x -10y)B .(x +15y)(x -2y)C .(x +10y)(x +3y)D .(x -15y)(x +2y)【解析】选D .x 2-13xy -30y 2=(x -15y)(x +2y)1×2y +1×(-15y)=-13y类型三 方程的解集(数学运算)一元一次方程的解集【典例】若x =-3是方程3x -a =0的解,则a 的值是( )A .9B .6C .-9D .-6【思路导引】方程的解定能满足方程,代入求解即可.【解析】选C .把x =-3代入方程3x -a =0得:-9-a =0,解得:a =-9.一元二次方程的解集【典例】解下列一元二次方程:(1)2x 2+7x +3=0;【思路导引】(1)(2)直接利用十字相乘法解方程,(3)(4)移项合并同类项后,再利用十字相乘法解方程.【解析】原方程化为(2x +1)(x +3)=0,解得x =-12 或x =-3,所以原方程的解集为⎩⎨⎧⎭⎬⎫-3,-12 . (2)2x 2-7x +3=0;【解析】原方程化为(2x -1)(x -3)=0,解得x =12 或x =3,所以原方程的解集为⎩⎨⎧⎭⎬⎫12,3 . (3)-3x 2-4x +4=0;【解析】原方程化为3x 2+4x -4=0,即(3x -2)(x +2)=0,解得x =23 或x =-2,所以原方程的解集为⎩⎨⎧⎭⎬⎫-2,23 . (4)6x(x +2)=x -4.【解析】原方程化为6x 2+11x +4=0,即(2x +1)(3x +4)=0,解得x =-12 或x =-43 ,所以原方程的解集为⎩⎨⎧⎭⎬⎫-12,-43 . 分类讨论思想的应用【典例】解方程ax 2-(a +1)x +1=0.【思路导引】把二次项系数分为a =0和a≠0两种情况讨论,第一种情况是解一元一次方程,第二种情况是解一元二次方程.【解析】当a =0时,原方程可化为-x +1=0,所以x =1,当a≠0时,对于ax 2-(a +1)x +1来说,因为a×1=a ,(-1)×(-1)=1,a×(-1)+1×(-1)=-(a+1).如图所示:ax 2-(a +1)x +1=(ax -1)(x -1),所以原方程可化为(ax -1)(x -1)=0,所以ax -1=0或x -1=0,所以x =1a 或x =1.1.利用因式分解法解一元二次方程的步骤(1)将方程的右边化为0;(2)将方程的左边进行因式分解;(3)令每个因式为0,得到两个一元一次方程;(4)解一元一次方程,得到方程的解.2.对于二次三项式分解因式的注意事项对于二次三项式,采用十字相乘法分解因式时,要注意把二次项系数和常数项分解,交叉相乘,两个因式的和正好等于一次项系数.注意,交叉相乘横着写.3.形如ax 2+bx +c =0(含参)的方程的解法方程的二次项系数中含有参数时,要讨论二次项系数是否可以等于零,当二次项系数等于零时,讨论方程变为一元一次方程或其他情况,当二次项系数不为0时,解一元二次方程.1.多项式x +5与2x -8互为相反数,则x =( )A .-1B .0C .1D .2【解析】选C.根据题意得:x +5+2x -8=0,移项合并得:3x =3,解得x =1.2.求下列方程的解集: (1)5x 2-2x -14 =x 2-2x +34 .(2)12x 2+5x -2=0.【解析】(1)移项、合并同类项,得4x 2-1=0.因式分解,得(2x +1)(2x -1)=0.于是得2x +1=0或2x -1=0,即x =-12 或x =12 ,因此方程的解集为⎩⎨⎧⎭⎬⎫-12,12 . (2)分解因式得:12x 2+5x -2=(3x +2)(4x -1)3×(-1)+4×2=5因为12x 2+5x -2=0,所以(3x +2)(4x -1)=0,所以3x +2=0或4x -1=0,即x =-23 或x =14 ,因此方程的解集为⎩⎨⎧⎭⎬⎫-23,14 . 3.解方程12x 2-ax -a 2=0.【解析】当a =0时,原方程可化为:12x 2=0,所以x =0,当a≠0时,因为3×4=12,-a×a =-a 2,3×a +4×(-a)=3a -4a =-a ,如图所示所以12x 2-ax -a 2=(3x -a)(4x +a),所以原方程可化为(3x -a)(4x +a)=0.所以3x -a =0或4x +a =0,所以x 1=a 3 ,x 2=-a 4 .【补偿训练】(2020·苏州高一检测)若方程(x -2)(3x +1)=0,则3x +1的值为( )A .7B .2C .0D .7或0【解析】选D .由方程(x -2)(3x +1)=0,可得x -2=0或3x +1=0,解得x 1=2,x 2=-13 ,当x =2时,3x +1=3×2+1=7;当x =-13 时,3x +1=3×(-13 )+1=0.备选类型 方程的解的应用(数学建模、数学运算)【典例】我市某楼盘准备以每平方米15 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格按同一百分率经过连续两次下调后,最终以每平方米12 150元的均价销售,则平均每次下调的百分率是( )A .8%B .9%C .10%D .11%【思路导引】设出每次下调的百分率,根据原价及两次下调后的价格列出关系式,求得方程的解.【解析】选C .设平均每次下调的百分率为x ,则:15 000·(1-x)·(1-x)=12 150,所以(1-x)2=0.81,所以1-x =0.9或1-x =-0.9,解得x=0.1或x=1.9.因为x<1,所以x=1.9(舍),所以x=0.1.所以平均每次下调的百分率为10%.解决实际问题的一般步骤(1)审清题意,理顺问题的条件和结论,找到关键量.(2)建立文字数量关系式.(3)转化为数学模型.(4)解决数学问题,得出相应的数学结论.(5)返本还原,即还原为实际问题本身所具有的意义.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.(1)若该商场两次调价的降价率相同,求这个降价率.(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10 000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?【解析】(1)设这种商品平均降价率是x,依题意得:40(1-x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%.(2)设降价y元,则多销售(y÷0.2)×10=50y件,根据题意得(40-20-y)(500+50y)=10 000,解得:y=0(舍去)或y=10,答:在现价的基础上,再降低10元.1.已知等式3x +2y +6=0,则下列等式正确的是( )A .y =-32 x -3B .y =32 x -3C .y =-32 x +3D .y =32 x +3【解析】选A.由等式3x +2y +6=0,可得y =-32 x -3.2.(2021·青岛高一检测)一元二次方程(x +3)(x -3)=3(x +3)的解集是( )A .{3}B .{6}C .{-3,6}D .{-6,3}【解析】选C.(x +3)(x -3)-3(x +3)=0,即(x +3)(x -3-3)=0,所以x +3=0或x -3-3=0,解得x 1=-3,x 2=6.3.(教材练习改编)多项式x 2-3x +a 可分解为(x -5)(x -b ),则a ,b 的值分别为( )A .10和-2B .-10和2C .10和2D .-10和-2【解析】选D.因为(x -5)(x -b )=x 2-(5+b )x +5b =x 2-3x +a , 所以5+b =3,a =5b ,所以b =-2,a =-10.4.(2021·南昌高一检测)一元二次方程2x 2+px +q =0的解集为{-1,2},那么二次三项式2x 2+px +q 可分解为( )A .(x +1)(x -2)B .(2x +1)(x -2)C .2(x -1)(x +2)D .2(x +1)(x -2)【解析】选D.因为一元二次方程2x 2+px +q =0的解集为{-1,2},所以2(x+1)(x-2)=0,所以2x2+px+q可分解为2(x+1)(x-2). 5.若x=3是方程2x-10=4a的解,则a=______.【解析】因为x=3是方程2x-10=4a的解,所以2×3-10=4a,所以4a=-4,所以a=-1.答案:-1。

人教B版高中数学必修一学案全集

人教B版高中数学必修一学案全集

1.1集合与集合的表示方法1.1.1集合的概念[学习目标] 1.了解集合的含义,体会元素与集合的关系.2.掌握集合中元素的两个特性.3.记住常用数集的表示符号并会应用.[知识链接]1.在初中,我们学习数的分类时,学过自然数的集合,正数的集合,负数的集合,有理数的集合.2.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3.解不等式2x-1>3得x>2,即所有大于2的实数合在一起称为这个不等式的解集.4.一元二次方程x2-3x+2=0的解是x=1,x=2.[预习导引]1.元素与集合的概念(1)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).(2)元素:构成集合的每个对象叫做这个集合的元素.(3)集合元素的特性:确定性、互异性.2.元素与集合的关系(1)空集:不含任何元素的集合,记作∅.(2)非空集合:①有限集:含有有限个元素的集合.②无限集:含有无限个元素的集合.4.常用数集的表示符号要点一集合的基本概念例1下列每组对象能否构成一个集合:(1)我们班的所有高个子同学;(2)不超过20的非负数;(3)直角坐标平面内第一象限的一些点;(4)3的近似值的全体.解(1)“高个子”没有明确的标准,因此不能构成集合.(2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以“3的近似值”不能构成集合.规律方法判断一组对象能否构成集合的关键在于看是否有明确的判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.跟踪演练1下列所给的对象能构成集合的是________.(1)所有正三角形;(2)必修1课本上的所有难题;(3)比较接近1的正整数全体;(4)某校高一年级的16岁以下的学生.答案(1)(4)解析例2 所给下列关系正确的个数是( ) ①-12∈R ;②2∉Q ;③0∈N *;④|-3|∉N *.A.1B.2C.3D.4 答案 B解析 -12是实数,2是无理数,∴①②正确.N *表示正整数集,∴③和④不正确.规律方法 1.由集合中元素的确定性可知,对任意的元素a 与集合A ,在“a ∈A ”与“a ∉A ”这两种情况中必有一种且只有一种成立.2.符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系.3.“∈”和“∉”具有方向性,左边是元素,右边是集合.跟踪演练2 设不等式3-2x <0的解集为M ,下列关系中正确的是( ) A.0∈M,2∈M B.0∉M,2∈M C.0∈M,2∉M D.0∉M,2∉M答案 B解析 本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可,当x =0时,3-2x =3>0,所以0∉M ;当x =2时,3-2x =-1<0,所以2∈M . 要点三 集合中元素的特性及应用例3 已知集合B 含有两个元素a -3和2a -1,若-3∈B ,试求实数a 的值. 解 ∵-3∈B ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合B 含有两个元素-3,-1,符合题意; 若-3=2a -1,则a =-1.此时集合B 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a的值为0或-1.规律方法 1.由于集合B含有两个元素,-3∈B,本题以-3是否等于a-3为标准,进行分类,再根据集合中元素的互异性对元素进行检验.2.解决含有字母的问题,常用到分类讨论的思想,在进行分类讨论时,务必明确分类标准. 跟踪演练3已知集合A={a+1,a2-1},若0∈A,则实数a的值为________.答案 1解析∵0∈A,∴0=a+1或0=a2-1.当0=a+1时,a=-1,此时a2-1=0,A中元素重复,不符合题意.当a2-1=0时,a=±1.a=-1(舍),∴a=1.此时,A={2,0},符合题意.1.下列能构成集合的是()A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生D.香港的高楼答案 C解析A、B、D中研究的对象不确定,因此不能构成集合.2.集合A中只含有元素a,则下列各式一定正确的是()A.0∈AB.a∉AC.a∈AD.a=A答案 C解析由题意知A中只有一个元素a,∴a∈A,元素a与集合A的关系不能用“=”,a是否等于0不确定,因为0是否属于A不确定,故选C.3.设A表示“中国所有省会城市”组成的集合,则深圳________A;广州________A(填∈或∉).答案∉∈解析 深圳不是省会城市,而广州是广东省的省会.4.已知①5∈R ;②13∈Q ;③0∈N ;④π∈Q ;⑤-3∉Z .正确的个数为________.答案 3解析 ①②③是正确的;④⑤是错误的. 5.已知1∈{a 2,a },则a =________. 答案 -1解析 当a 2=1时,a =±1,但a =1时,a 2=a ,由元素的互异性知a =-1.1.判断一组对象的全体能否构成集合,关键是看研究对象是否确定.若研究对象不确定,则不能构成集合.2.集合中的元素是确定的,某一元素a 要么满足a ∈A ,要么满足a ∉A ,两者必居其一.这也是判断一组对象能否构成集合的依据.3.集合中元素的两种特性:确定性、互异性.求集合中字母的取值时,一定要检验是否满足集合中元素的互异性.1.1.2集合的表示方法[学习目标] 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.[知识链接]1.质数又称素数,指在大于1的自然数中,除了1和此整数自身外,不能被其他正整数整除的数.2.函数y=x2-2x-1的图象与x轴有2个交点,函数y=x2-2x+1的图象与x轴有1个交点,函数y=x2-x+1的图象与x轴没有交点.[预习导引]1.列举法把有限集合中的所有元素都列举出来,写在花括号“{__}”内表示这个集合的方法.2.描述法(1)集合的特征性质如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质.(2)特征性质描述法集合A可以用它的特征性质p(x)描述为{x∈I|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.要点一用列举法表示集合例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.规律方法 对于元素个数较少的集合或元素个数不确定但元素间存在明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,”而不是用“、”隔开;②元素不能重复. 跟踪演练1 用列举法表示下列集合: (1)我国现有的所有直辖市; (2)绝对值小于3的整数的集合;(3)一次函数y =x -1与y =-23x +43的图象交点组成的集合.解 (1){北京,上海,天津,重庆}; (2){-2,-1,0,1,2};(3)方程组⎩⎪⎨⎪⎧y =x -1,y =-23x +43的解是⎩⎨⎧x =75,y =25,所求集合为⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫75,25. 要点二 用描述法表示集合 例2 用描述法表示下列集合: (1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x ,y )|xy =0}.规律方法 用描述法表示集合时应注意:①“竖线”前面的x ∈R 可简记为x ;②“竖线”不可省略;③p (x )可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;④同一个集合,描述法表示可以不唯一. 跟踪演练2 用描述法表示下列集合: (1)所有被5整除的数;(2)方程6x 2-5x +1=0的实数解集; (3)集合{-2,-1,0,1,2}. 解 (1){x |x =5n ,n ∈Z }; (2){x |6x 2-5x +1=0}; (3){x ∈Z ||x |≤2}.要点三 列举法与描述法的综合运用例3 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .解 (1)当k =0时,原方程为16-8x =0. ∴x =2,此时A ={2}.(2)当k ≠0时,由集合A 中只有一个元素, ∴方程kx 2-8x +16=0有两个相等实根. 则Δ=64-64k =0,即k =1. 从而x 1=x 2=4,∴集合A ={4}. 综上所述,实数k 的值为0或1. 当k =0时,A ={2}; 当k =1时,A ={4}.规律方法 1.(1)本题在求解过程中,常因忽略讨论k 是否为0而漏解.(2)kx 2-8x +16=0的二次项系数k 不确定,需分k =0和k ≠0展开讨论,从而做到不重不漏.2.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点. 跟踪演练3 把本例中条件“有一个元素”改为“有两个元素”,求实数k 取值范围的集合. 解 由题意可知方程kx 2-8x +16=0有两个不等实根.∴⎩⎪⎨⎪⎧k ≠0,Δ=64-64k >0,解得k<1,且k≠0.所以k取值范围的集合为{k|k<1,且k≠0}.1.集合{x∈N*|x-3<2}用列举法可表示为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 B解析{x∈N*|x-3<2}={x∈N*|x<5}={1,2,3,4}.2.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈AB.0∈AC.3∈AD.2∈A答案 B解析∵0∈N且-3≤0≤3,∴0∈A.3.用描述法表示方程x<-x-3的解集为________.答案{x|x<-3 2}解析∵x<-x-3,∴x<-3 2.∴解集为{x|x<-3 2}.4.已知x∈N,则方程x2+x-2=0的解集用列举法可表示为________. 答案{1}解析由x2+x-2=0,得x=-2或x=1.又x∈N,∴x=1.5.用适当的方法表示下列集合.(1)方程x(x2+2x+1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合;(3)不等式x-2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.解(1)∵方程x(x2+2x+1)=0的解为0和-1,∴解集为{0,-1};(2){x|x=2n+1,且x<1 000,n∈N};(3){x|x>8};(4){1,2,3,4,5,6}.1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.1.2集合之间的关系与运算1.2.1集合之间的关系[学习目标] 1.理解集合之间包含与相等的含义,能写出给定集合的子集.2.能使用Venn图表示集合间的关系.3.理解集合关系与其特征性质之间的关系,并能简单应用.[知识链接]1.已知任意两个实数a,b,如果满足a≥b,b≥a,则它们的大小关系是a=b.2.若实数x满足x>1,如何在数轴上表示呢?x≥1时呢?3.方程ax2-(a+1)x+1=0的根一定有两个吗?[预习导引]1.集合相等、子集、真子集的概念(1)集合相等:①定义:如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么就说集合A等于集合B.②符号表示:A=B.③图形表示:(2)子集①定义:如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.②符号表示:A⊆B或B⊇A.③图形表示:或(3)真子集①定义:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.②符号表示:A B或B A.③图形表示:2.集合关系与其特征性质之间的关系设A={x|p(x)},B={x|q(x)},则有3.∅(1)∅是任意一个集合的子集;(2)∅是任意一个非空集合的真子集.要点一有限集合的子集确定问题例1写出集合A={1,2,3}的所有子集和真子集.解由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.规律方法 1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.跟踪演练1已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5};所以满足条件的集合M 为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M 的个数为8. 要点二 集合间关系的判定例2 指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形}; (3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.解 (1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B .(3)集合B ={x |x <5},用数轴表示集合A ,B 如图所示,由图可知AB .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故NM .规律方法 对于连续实数组成的集合,通常用数轴来表示,这也属于集合表示的图示法.注意在数轴上,若端点值是集合的元素,则用实心点表示;若端点值不是集合的元素,则用空心点表示.跟踪演练2 集合A ={x |x 2+x -6=0},B ={x |2x +7>0},试判断集合A 和B 的关系. 解 A ={-3,2},B =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈B,2∈B ∴A ⊆B 又0∈B ,但0∉A ,∴AB .要点三 由集合间的关系求参数范围问题例3 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A . 求实数m 的取值范围. 解 ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得{m |m ≥-1}.规律方法 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误. 2.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用. 跟踪演练3 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解 (1)若AB ,由图可知a >2.(2)若B ⊆A ,由图可知1≤a ≤2.1.集合A ={x |0≤x <3,x ∈N }的真子集的个数为( ) A.4 B.7 C.8 D.16 答案 B解析 可知A ={0,1,2},其真子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2}.共有23-1=7(个).2.设集合M ={x |x >-2},则下列选项正确的是( ) A.{0}⊆M B.{0}∈M C.∅∈M D.0⊆M 答案 A解析 选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误.3.已知M ={-1,0,1},N ={x |x 2+x =0},则能表示M ,N 之间关系的V enn 图是( )答案 C解析M={-1,0,1},N={0,-1},∴N M.4.已知集合A={2,9},集合B={1-m,9},且A=B,则实数m=________. 答案-1解析∵A=B,∴1-m=2,∴m=-1.5.已知∅{x|x2-x+a=0},则实数a的取值范围是________.答案{a|a≤1 4}解析∵∅{x|x2-x+a=0}. ∴{x|x2-x+a=0}≠∅.即x2-x+a=0有实根.∴Δ=(-1)2-4a≥0,得a≤1 4.1.对子集、真子集有关概念的理解(1)集合A中的任何一个元素都是集合B中的元素,即由x∈A,能推出x∈B,这是判断A⊆B 的常用方法.(2)不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”,因为若A=∅时,则A 中不含任何元素;若A=B,则A中含有B中的所有元素.(3)在真子集的定义中,A、B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有2n-1个真子集,有2n -2个非空真子集.1.2.2集合的运算第1课时并集、交集[学习目标] 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表示集合的关系及运算,体会直观图对理解抽象概念的作用.3.能够利用交集、并集的性质解决有关问题.[知识链接]下列说法中,不正确的有________:①集合A={1,2,3},集合B={3,4,5},由集合A和集合B的所有元素组成的新集合为{1,2,3,3,4,5};②集合A={1,2,3},集合B={3,4,5},由集合A和集合B的所有元素组成的新集合为{1,2,3,4,5};③集合A={1,2,3},集合B={3,4,5},由集合A和集合B的公共元素组成的集合为{3}.答案①[预习导引]1.并集与交集的概念(1)A∩B=B∩A,A∩A=A,A∩∅=∅;(2)A∪B=B∪A,A∪A=A,A∪∅=A;(3)A⊆B⇔A∩B=A⇔A∪B=B.解决学生疑难点要点一集合并集的简单运算例1(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8}C.{3,5,7,8}D.{4,5,6,8}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于()A.{x|-1≤x<3}B.{x|-1≤x≤4}C.{x|x≤4}D.{x|x≥-1}答案(1)A(2)C解析(1)由定义知M∪N={3,4,5,6,7,8}.(2)在数轴上表示两个集合,如图.规律方法解决此类问题首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点值不在集合中时,应用“空心点”表示.跟踪演练1(1)已知集合A={x|(x-1)(x+2)=0};B={x|(x+2)(x-3)=0},则集合A∪B是()A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}(2)若集合M={x|-3<x≤5},N={x|x<-5,或x>5},则M∪N=________.答案(1)C(2){x|x<-5,或x>-3}解析(1)A={1,-2},B={-2,3},∴A∪B={1,-2,3}.(2)将-3<x≤5,x<-5或x>5在数轴上表示出来.∴M∪N={x|x<-5,或x>-3}.要点二集合交集的简单运算例2 (1)已知集合A ={0,2,4,6},B ={2,4,8,16},则A ∩B 等于( ) A.{2}B.{4}C.{0,2,4,6,8,16}D.{2,4}(2)设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A.{x |0≤x ≤2} B.{x |1≤x ≤2} C.{x |0≤x ≤4} D.{x |1≤x ≤4}答案 (1)D (2)A解析 (1)观察集合A ,B ,可得集合A ,B 的全部公共元素是2,4,所以A ∩B ={2,4}. (2)在数轴上表示出集合A 与B ,如下图.则由交集的定义可得A ∩B ={x |0≤x ≤2}.规律方法 1.求交集就是求两集合的所有公共元素组成的集合,和求并集的解决方法类似. 2.当所给集合中有一个不确定时,要注意分类讨论,分类的标准取决于已知集合. 跟踪演练2 已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B .解 ∵A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},把集合A 与B 表示在数轴上,如图.∴A ∩B ={x |-1<x ≤3}∩{x |x ≤0,或x ≥52}={x |-1<x ≤0,或52≤x ≤3};A ∪B ={x |-1<x ≤3}∪{x |x ≤0,或x ≥52}=R .要点三 已知集合交集、并集求参数例3 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.解 由A ∩B =∅,(1)若A =∅,有2a >a +3,∴a >3. (2)若A ≠∅,如下图:∴⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2,或a >3}.规律方法 1.与不等式有关的集合的运算,利用数轴分析法直观清晰,易于理解.若出现参数应注意分类讨论,最后要归纳总结.2.建立不等式时,要特别注意端点值是否能取到.最好是把端点值代入题目验证.跟踪演练3 设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求实数a 的取值范围. 解 如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B 等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}答案 A解析 集合A 有4个元素,集合B 有3个元素,它们都含有元素1和2,因此,A ∪B 共含有5个元素.故选A.2.设A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则如图中阴影部分表示的集合为()A.{2}B.{3}C.{-3,2}D.{-2,3} 答案 A解析 注意到集合A 中的元素均为自然数,因此易知A ={1,2,3,4,5,6,7,8,9,10},而直接解集合B 中的方程可知B ={-3,2},因此阴影部分显然表示的是A ∩B ={2}.3.集合P={x∈Z|0≤x<3},M={x∈R|x2≤9},则P∩M等于()A.{1,2}B.{0,1,2}C.{x|0≤x≤3}D.{x|0≤x<3}答案 B解析由已知得P={0,1,2},M={x|-3≤x≤3},故P∩M={0,1,2}.4.已知集合A={x|x>2,或x<0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B答案 B解析∵A={x|x>2,或x<0},B={x|-5<x<5},∴A∩B={x|-5<x<0,或2<x<5},A∪B=R.故选B.5.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________. 答案k≤6解析因为N={x|2x+k≤0}={x|x≤-k2},且M∩N≠∅,所以-k2≥-3⇒k≤6.1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“可兼”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由两个集合A,B的所有元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.第2课时补集及集合运算的综合应用[学习目标] 1.了解全集的意义和它的记法.理解补集的概念,能正确运用补集的符号和表示形式,会用图形表示一个集合及其子集的补集.2.会求一个给定集合在全集中的补集,并能解答简单的应用题.[知识链接]上课前,老师让班长统计班内的出勤情况,班长看看教室里的同学,就知道哪些同学未到,这么短的时间,他是如何做到的呢?[预习导引]全集与补集的概念(1)全集如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U 表示.(2)补集要点一简单的补集运算例1(1)设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅(2)若全集U=R,集合A={x|x≥1},则∁U A=________.答案(1)B(2){x|x<1}解析(1)∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.(2)由补集的定义,结合数轴可得∁U A={x|x<1}.规律方法 1.根据补集定义,当集合中元素离散时,可借助Venn图;当集合中元素连续时,可借助数轴,利用数轴分析法求解.2.解题时要注意使用补集的几个性质:∁U U=∅,∁U∅=U,A∪∁U A=U.跟踪演练1已知全集U={x|x≥-3},集合A={x|-3<x≤4},则∁U A=________.答案{x|x=-3,或x>4}解析借助数轴得∁U A={x|x=-3,或x>4}.要点二交、并、补的综合运算例2(1)已知集合A、B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A ∩∁U B等于()A.{3}B.{4}C.{3,4}D.∅(2)设集合S={x|x>-2},T={x|-4≤x≤1},则∁R S∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}答案(1)A(2)C解析(1)利用所给条件计算出A和∁U B,进而求交集.∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.(2)先求出集合S的补集,再求它们的并集.因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以∁R S∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.规律方法当集合是用列举法表示时,如数集,可以找出所求的集合的所有元素;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.跟踪演练2设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及∁R A∩B.解把全集R和集合A、B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2,或x≥10}.∵∁R A ={x |x <3,或x ≥7}, ∴∁R A ∩B ={x |2<x <3,或7≤x <10}. 要点三 补集的综合应用例3 已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.解 由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.故a 的取值范围是{a |a ≥-12}.规律方法 1.与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情形;2.∁U A 的数学意义包括两个方面:首先必须具备A ⊆U ;其次是定义∁U A ={x |x ∈U ,且x ∉A },补集是集合间的运算关系.跟踪演练3 已知集合A ={x |x <a },B ={x <-1,或x >0},若A ∩(∁R B )=∅,求实数a 的取值范围.解 ∵B ={x |x <-1,或x >0}, ∴∁R B ={x |-1≤x ≤0},因而要使A ∩(∁R B )=∅,结合数轴分析(如图), 可得a ≤-1.故a 的取值范围是{a |a ≤-1}.1.若全集M ={1,2,3,4,5},N ={2,4},则∁M N 等于( ) A.∅ B.{1,3,5} C.{2,4}D.{1,2,3,4,5}答案 B解析∁M N={1,3,5},所以选B.2.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A等于()A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}答案 B解析先求∁U A,再找公共元素.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5},∴B∩(∁U A)={2,3,4}∩{3,4,5}={3,4}.3.已知M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析∵P={1,3},∴子集有22=4个.4.已知全集U=Z,集合A={0,1},B={-1,0,1,2},则图中阴影部分所表示的集合为()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}答案 A解析图中阴影部分表示的集合为(∁U A)∩B,因为A={0,1},B={-1,0,1,2},所以(∁U A)∩B ={-1,2}.5.若全集U=R,集合A={x|x≥1}∪{x|x≤0},则∁U A=________.答案{x|0<x<1}解析∵A={x|x≥1}∪{x|x≤0},∴∁U A={x|0<x<1}.1.若集合中的元素含参数,要由条件先求出参数再作集合的运算.2.集合是实数集的真子集时,其交、并、补运算要结合数轴进行.3.有些较复杂的集合的运算可以先化简再进行.如(∁U A)∪(∁U B)=∁U(A∩B),计算等号前的式子需三次运算,而计算等号后的式子需两次运算.1.集合中元素的特性集合中元素有两大特性——确定性、互异性,确定性是指构成集合的元素要有明确的标准;而互异性是指一个集合中的元素不能有重复,求含有参数的集合元素时利用互异性来进行讨论,从而达到确定集合的目的.2.空集的特殊性和特殊作用空集是一个特殊的集合,它不含任何元素,是任何集合的子集,是任何非空集合的真子集,在解决集合之间关系问题时,它往往被忽视而导致漏解.3.集合的运算集合的运算有交、并、补三种.在集合运算过程中应力求做到“三化”:(1)意义化:即首先分清集合的类型,是表示数集、点集,还是某类图形?(2)具体化:具体求出相关集合中函数的x的取值集合、y的取值集合或方程、不等式的解集等;不能具体求出的,也应力求将相关集合转化为最简形式.(3)直观化:借助数轴、直角坐标平面、V enn图等将有关集合直观地表示出来,从而借助数形结合思想解决问题. 进行集合的运算时应当注意: ①勿忘对空集情形的讨论; ②勿忘集合中元素的互异性;③对于集合A 的补集运算,勿忘A 必须是全集的子集;④对于含参数(或待定系数)的集合问题,勿忘对所求数值进行合理取舍.题型一 集合间的关系集合与集合之间的关系有包含和相等的关系,判断两集合之间的关系,可从元素特征入手,并注意代表元素.例1 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围; (2)若x ∈Z ,求A 的非空真子集个数.解 ∵A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}, (1)∵B ⊆A ,①B ≠∅ 如图所示∴⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,2m -1≥m +1,即⎩⎨⎧m ≥-3,m ≤3,m ≥2.∴2≤m ≤3.②B =∅由m +1>2m -1得m <2. 综上m ≤3.(2)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5}. 则A 的非空真子集个数为28-2=254.跟踪演练1 下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )答案 B解析 由N ={-1,0},知N M ,故选B.题型二 集合的运算集合的运算是指集合间的交、并、补这三种常见的运算,在运算过程中往往会因考虑不全面而出现错误,不等式解集之间的包含关系通常用数轴法,而用列举法表示的集合运算常用Venn 图法,运算时特别注意对∅的讨论,不要遗漏. 例2 已知集合A ={x |0≤x ≤2},B ={x |a ≤x ≤a +3}. (1)若(∁R A )∪B =R ,求a 的取值范围. (2)是否存在a 使(∁R A )∪B =R 且A ∩B =∅? 解 (1)A ={x |0≤x ≤2}, ∴∁R A ={x |x <0,或x >2}. ∵(∁R A )∪B =R .∴⎩⎪⎨⎪⎧a ≤0,a +3≥2,∴-1≤a ≤0.(2)由(1)知(∁R A )∪B =R 时, -1≤a ≤0,而2≤a +3≤3,∴A ⊆B ,这与A ∩B =∅矛盾.即这样的a 不存在.跟踪演练2 (1)已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________. (2)已知集合A ={x ∈R ||x |≤2},B ={x ∈R |x ≤1},则A ∩B 等于( ) A.{x ∈R |x ≤2} B.{x ∈R |1≤x ≤2} C.{x ∈R |-2≤x ≤2}D.{x ∈R |-2≤x ≤1}答案 (1){6,8} (2)D解析 (1)∵U ={2,3,6,8},A ={2,3},∴∁U A ={6,8}. ∴(∁U A )∩B ={6,8}∩{2,6,8}={6,8}. (2)A ={x ∈R ||x |≤2}={x ∈R |-2≤x ≤2}. ∴A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1} ={x ∈R |-2≤x ≤1}. 题型三 分类讨论思想的应用在解决含有字母参数的问题时,常用到分类讨论思想.分类讨论时要弄清对哪个字母进行分类讨论,分类的标准是什么,分类时要做到不重不漏.本章中涉及到分类讨论的知识点为:集合元素互异性、集合运算中出现A ⊆B ,A ∩B =A ,A ∪B =B 等符号语言时对∅的讨论等. 例3 已知集合A ={x |x >0},B ={x |x 2-x +p =0},且B ⊆A ,求实数p 的范围. 解 (1)当B =∅时,B ⊆A ,由Δ=(-1)2-4p <0, 解得p >14.(2)当B ≠∅,且B ⊆A 时,方程x 2-x +p =0存在两个正实根. 由x 1+x 2=1>0,Δ=(-1)2-4p ≥0, 且x 1x 2=p >0,得0<p ≤14.由(1)(2)可得p 的取值范围为{p |p >0}.跟踪演练3 设集合A ={x 2,2x -1,-4},B ={x -5,1-x ,9},若A ∩B ={9},求满足条件的x 的值.解 由A ∩B ={9},得9∈A ,所以x 2=9或2x -1=9. 故x =±3或x =5.当x =3时,B ={-2,-2,9},与集合中元素的互异性矛盾,应舍去. 当x =-3时,A ={9,-7,-4},B ={-8,4,9},满足题意.当x =5时,A ={25,9,-4},B ={0,-4,9},A ∩B ={9,-4}与已知矛盾,应舍去, 综上所述,满足条件的x 值为-3. 题型四 数形结合思想集合问题大都比较抽象,解题时要尽可能借助Venn 图、数轴等工具利用数形结合思想将抽象问题直观化、形象化、明朗化,从而使问题获解.例4 已知集合A ={x |x <-1,或x ≥1},B ={x |2a <x <a +1,a <1},B ⊆A ,求实数a 的取值范围.解 ∵a <1,∴2a <a +1,B ≠∅. 画出数轴分析,如图所示.由图知,要使B ⊆A ,需2a ≥1或a +1≤-1, 即a ≥12或a ≤-2.又∵a <1,∴实数a 的取值范围是{a |a ≤-2,或12≤a <1}.跟踪演练4 已知集合A ={x |x <-1,或x >2},集合B ={x |4x +p <0}.当B ⊆A 时,求实数p 的取值范围.解 集合A ,B 都是以不等式的形式给出的数集,欲求满足B ⊆A 的实数p ,可先将集合A 在数轴上表示出来,然后再根据集合B 中不等式的方向,确定p 与集合A 中端点-1或2的关系.∵B ={x |4x +p <0} =⎩⎨⎧⎭⎬⎫x |x <-p 4,将集合A 在数轴上表示出来,如图所示. ∵B ⊆A ,∴-p4≤-1,即p ≥4.故实数p 的取值范围是{p |p ≥4}.1. 要注意区分两大关系:一是元素与集合的从属关系,二是集合与集合的包含关系.2.在利用集合中元素相等列方程求未知数的值时,要注意利用集合中元素的互异性这一性质进行检验,忽视集合中元素的性质是导致错误的常见原因之一.。

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

(新教材)2022年高中数学人教B版必修第一册学案:3.1.2.2 函数的最大值、最小值 (含答案)

第2课时函数的最大值、最小值1.函数的最值(1)定义.前提函数f(x)的定义域为D,且x0∈D,对任意x∈D 条件都有f(x)≤f(x0)都有f(x)≥f(x0)结论最大值为f(x0),x0为最大值点最小值为f(x0),x0为最小值点最大值和最小值统称为最值,最大值点和最小值点统称为最值点①配方法:主要适用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围;②换元法:用换元法时一定要注意新变元的取值范围;③数形结合法:对于图像较容易画出的函数的最值问题,可借助图像直观求出;④利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值.最值点是点吗?提示:不是,是实数值,是函数值取得最值时的自变量x 的值.2.直线的斜率(1)直线斜率的定义.平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),①当x 1≠x 2时,称y 2-y 1x 2-x 1 为直线的斜率,记作Δy Δx ; ②当x 1=x 2时,称直线的斜率不存在.(2)直线的斜率与函数单调性的关系①函数递增的充要条件是其图像上任意两点连线的斜率都大于0. ②函数递减的充要条件是其图像上任意两点连线的斜率都小于0.3.函数的平均变化率(1)平均变化率的定义:若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I ,且x 1≠x 2,记y 1=f (x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1 , 称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.(2)函数的平均变化率与函数的单调性y =f (x )在I 上是增函数⇔Δy Δx >0在I 上恒成立y =f (x )在I 上是减函数⇔Δy Δx <0在I 上恒成立函数图像上任意两点连线的斜率大于0时,函数图像从左向右的变化趋势是什么?提示:函数图像从左向右逐渐上升.1.辨析记忆(对的打“√”,错的打“×”).(1)任何函数都有最大值、最小值.( × )提示:如函数y =1x 既没有最大值,也没有最小值.(2)一个函数的最大值是唯一的,最值点也是唯一的.( × )提示:函数的最大值是唯一的,但最值点不唯一,可以有多个最值点.(3)直线不一定有斜率,过函数图像上任意两点的直线也不一定有斜率.( × )提示:过函数图像上任意两点的直线一定有斜率,因为根据函数的定义,一定有x 1≠x 2.2.过函数图像上两点A (-1,3),B (2,3)的斜率Δy Δx =________.【解析】Δy Δx =3-32+1=0. 答案:03.已知函数f (x )=x -1x +1,x ∈[1,3],则函数f (x )的最大值为________,最小值为________.【解析】f (x )=x -1x +1 =1-2x +1,x ∈[1,3], 因为f (x )在[1,3]上为增函数,所以f(x)max=f(3)=1=f(1)=0.2,f(x)min答案:120类型一利用函数的图像求最值(数学运算、直观想象)1.(2021·太原高一检测)如图是函数y=f(x),x∈[-4,3]的图像,则下列说法正确的是()A.f(x)在[-4,-1]上单调递减,在[-1,3]上单调递增B.f(x)在区间(-1,3)上的最大值为3,最小值为-2C.f(x)在[-4,1]上有最小值-2,有最大值3D.当直线y=t与y=f(x)的图像有三个交点时-1<t<2【解析】选C.A选项,由函数图像可得,f(x)在[-4,-1]上单调递减,在[-1,1]上单调递增,在[1,3]上单调递减,故A错;B选项,由图像可得,f(x)在区间(-1,3)上的最大值为f(1)=3,无最小值,故B错;C选项,由图像可得,f(x)在[-4,1]上有最小值f(-1)=-2,有最大值f(1)=3,故C正确;D选项,由图像可得,为使直线y=t与y=f(x)的图像有三个交点,只需-1≤t≤2,故D错.2.已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最小值、最大值点分别为________,________.【解析】作出函数f (x )的图像(如图).由图像可知,当x =±1时,f (x )取最大值,最小值为0,故f (x )的最小值为0,最大值点为±1.答案:0 ±13.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5], (1)如图所示,在给定的直角坐标系内画出f (x )的图像.(2)由图像指出函数f (x )的最值点,求出最值.【解析】(1)由题意,当x ∈[-1,2]时,f (x )=-x 2+3,为二次函数的一部分;当x ∈(2,5]时,f (x )=x -3,为一次函数的一部分;所以,函数f (x )的图像如图所示:(2)由图像可知,最大值点为0,最大值为3;最小值点为2,最小值为-1.图像法求最值、最值点的步骤【补偿训练】 已知函数f(x)=⎩⎨⎧x 2-x (0≤x≤2),2x -1(x >2),求函数f(x)的最大值、最小值. 【解析】作出f(x)的图像如图:由图像可知,当x =2时,f(x)取最大值为2;当x =12 时,f(x)取最小值为-14 .所以f(x)的最大值为2,最小值为-14 .【拓展延伸】求二次函数最值的常见类型及解法求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值;二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,当开口方向或对称轴位置不确定时,还需要进行分类讨论.求二次函数f (x )=ax 2+bx +c (a >0)在区间[m ,n ]上的最值一般分为以下几种情况:(1)若对称轴x =-b 2a 在区间[m ,n ]内,则最小值为f ⎝ ⎛⎭⎪⎫-b 2a ,最大值为f (m ),f (n )中较大者(或区间端点m ,n 中与直线x =-b 2a 距离较远的一个对应的函数值为最大值).(2)若对称轴x =-b 2a <m ,则f (x )在区间[m ,n ]上是增函数,最大值为f (n ),最小值为f (m ).(3)若对称轴x =-b 2a >n ,则f (x )在区间[m ,n ]上是减函数,最大值为f (m ),最小值为f (n ).【拓展训练】1.定轴定区间上的最值问题【例1】已知函数f (x )=3x 2-12x +5,当自变量x 在下列范围内取值时,求函数的最大值和最小值.(1)R .(2)[0,3].(3)[-1,1].【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函数,所以可以采用配方法和图像法求解.【解析】f (x )=3x 2-12x +5=3(x -2)2-7.(1)当x ∈R 时,f (x )=3(x -2)2-7≥-7,当x =2时,等号成立.故函数f (x )的最小值为-7,无最大值.(2) 函数f (x )=3(x -2)2-7的图像如图所示,由图可知,在[0,3]上,函数f (x )在x =0时取得最大值,最大值为5;在x =2时取得最小值,最小值为-7.(3)由图可知,函数f (x )在[-1,1]上是减函数,在x =-1时取得最大值,最大值为20;在x =1时取得最小值,最小值为-4.(1)函数y =ax 2+bx +c (a >0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是增函数,当x =-b 2a 时,函数取得最小值. (2)函数y =ax 2+bx +c (a <0)在区间⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数,在区间⎣⎢⎡⎭⎪⎫-b 2a ,+∞ 上是减函数,当x =-b 2a 时,函数取得最大值. 2.动轴定区间上的最值问题【例2】已知函数f (x )=x 2-2ax +2,x ∈[-1,1],求函数f (x )的最小值.【思路导引】二次函数开口方向确定,对称轴不确定,需根据对称轴的不同情况分类讨论.可画出二次函数相关部分的简图,数形结合解决问题.【解析】f(x)=x2-2ax+2=(x-a)2+2-a2的图像开口向上,且对称轴为直线x=a.当a≥1时,函数图像如图(1)所示,函数f(x)在区间[-1,1]上是减函数,最小值为f(1)=3-2a;当-1<a<1时,函数图像如图(2)所示,函数f(x)在区间[-1,1]上是先减后增,最小值为f(a)=2-a2;当a≤-1时,函数图像如图(3)所示,函数f(x)在区间[-1,1]上是增函数,最小值为f(-1)=3+2a.3.定轴动区间上的最值问题【例3】已知函数f(x)=x2-2x+2,x∈[t,t+1],t∈R的最小值为g(t),试写出g(t)的函数表达式.【思路导引】二次函数的解析式是确定的,但定义域是变化的,需依据t的大小情况画出对应的简图(二次函数的一段),从而求解.【解析】f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,对称轴为x=1.当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,最小值为g (t )=f (1)=1;当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为g (t )=f (t )=t 2-2t +2.综上可得g (t )=⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.本题中给出的区间是变化的,从运动的观点来看,让区间从左向右沿x 轴正方向移动,分析移动到不同位置时对最值有什么影响.借助图形,可使问题的解决显得直观、清晰.类型二 函数的平均变化率与单调性、最值(数学运算、逻辑推理)【典例】已知函数f (x )=2x -3x +1. (1)判断函数f (x )在区间[0,+∞)上的单调性,并用平均变化率证明其结论.【思路导引】任取x1,x2∈[0,+∞)⇒Δf(x)Δx>0⇒函数单调递增【解析】f(x)在区间[0,+∞)上是增函数.证明如下:任取x1,x2∈[0,+∞),且x1≠x2,f(x2)-f(x1)=2x2-3x2+1-2x1-3x1+1=(2x2-3)(x1+1)(x1+1)(x2+1)-(2x1-3)(x2+1)(x1+1)(x2+1)=5(x2-x1)(x1+1)(x2+1).所以Δf(x)Δx=5(x2-x1)(x1+1)(x2+1)x2-x1=5(x1+1)(x2+1).因为x1,x2∈[0,+∞),所以(x1+1)(x2+1)>0,所以Δf(x)Δx>0,所以函数f(x)在区间[0,+∞)上是增函数.(2)求函数f(x)在区间[2,9]上的最大值与最小值.【思路导引】由第(1)问可知f(x)在[2,9]上是增函数⇒f(2)是最小值,f(9)是最大值【解析】由(1)知函数f(x)在区间[2,9]上是增函数,故函数f(x)在区间[2,9]上的最大值为f(9)=2×9-39+1=32,最小值为f(2)=2×2-32+1=13.利用函数的平均变化率证明单调性的步骤(1)任取x 1,x 2∈D ,且x 1≠x 2.(2)计算f (x 2)-f (x 1),Δf (x )Δx .(3)根据x 1,x 2的范围判断Δf (x )Δx 的符号,确定函数的单调性.已知函数f (x )=x +1x -2,x ∈[3,7]. (1)判断函数f (x )的单调性,并用平均变化率加以证明.【解析】函数f(x)在区间[3,7]内单调递减,证明如下: 在[3,7]上任意取两个数x 1和x 2,且x 1≠x 2,因为f(x 1)=x 1+1x 1-2 ,f(x 2)=x 2+1x 2-2, 所以f(x 2)-f(x 1)=x 2+1x 2-2 -x 1+1x 1-2 =3(x 1-x 2)(x 1-2)(x 2-2). 所以Δf (x )Δx =3(x 1-x 2)(x 1-2)(x 2-2)x 2-x 1 =-3(x 1-2)(x 2-2), 因为x 1,x 2∈[3,7],所以x 1-2>0,x 2-2>0,所以Δf (x )Δx <0,函数f(x)为[3,7]上的减函数.(2)求函数f (x )的最大值和最小值.【解析】由单调函数的定义可得f(x)max =f(3)=4,f(x)min =f(7)=85 .类型三 常见函数的最值问题(直观想象、数学运算)不含参数的最值问题【典例】函数f(x)=-2x 2+x +1在区间[-1,1]上最小值点为________,最大值为________.【思路导引】求出一元二次函数的对称轴,利用对称轴和区间的关系解题.【解析】函数f(x)=-2x 2+x +1的对称轴为x =-12×(-2) =14 ,函数的图像开口向下,所以函数的最小值点为-1,最大值为f ⎝ ⎛⎭⎪⎫14 =-2×116 +14 +1=98 .答案:-1 98含参数的最值问题【典例】设a 为实数,函数f(x)=x 2-|x -a|+1,x ∈R .(1)当a =0时,求f (x )在区间[0,2]上的最大值和最小值.【思路导引】代入a 的值,化简后求最值.【解析】当a =0,x ∈[0,2]时函数f (x )=x 2-x +1,因为f (x )的图像开口向上,对称轴为x =12 ,所以,当x =12 时f (x )值最小,最小值为34 ,当x =2时,f (x )值最大,最大值为3.(2)当0<a <12 时,求函数f (x )的最小值.【思路导引】讨论对称轴与区间的位置关系求最值.【解析】f (x )=⎩⎪⎨⎪⎧x 2-x +a +1,x ≥a ,x 2+x -a +1,x <a .①当x ≥a 时,f (x )=x 2-x +a +1=⎝ ⎛⎭⎪⎫x -12 2 +a +34 . 因为0<a <12 ,所以12 >a ,则f (x )在[a ,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫12 =34 +a ; ②当x <a 时,函数f (x )=x 2+x -a +1=⎝ ⎛⎭⎪⎫x +12 2 -a +34 .因为0<a <12 ,所以-12 <a ,则f (x )在(-∞,a )上的最小值为f ⎝ ⎛⎭⎪⎫-12 =34 -a .综上,f (x )的最小值为34 -a .将本例的函数改为f (x )=x 2-2ax +1,试求函数在区间[0,2]上的最值.【解析】函数的对称轴为x =a ,(1)当a <0时,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=1;当0≤a ≤2时,f (x )min =f (a )=-a 2+1;当a >2时,f (x )在区间[0,2]上是减函数,所以f (x )min =f (2)=5-4a ,所以f (x )min =⎩⎪⎨⎪⎧1,a <0,-a 2+1,0≤a ≤2,5-4a ,a >2.(2)当a ≤1时,f (x )max =f (2)=5-4a ;当a >1时,f (x )max =f (0)=1,所以f (x )max =⎩⎨⎧5-4a ,a ≤1,1,a >1.一元二次函数的最值(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值点,代入函数解析式求最值.(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x =m ,区间[a ,b ]为例,①最小值:f (x )min =⎩⎪⎨⎪⎧f (a ),m ≤a ,f (m ),a ≤m ≤b ,f (b ),m ≥b .②最大值:f (x )max =⎩⎨⎧f (a ),m ≥a+b 2,f (b ),m <a +b 2. 当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.(1)已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值.【解析】因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a 2 ,当a 2 ≤12 ,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2 >12 ,即a >1时,f (x )的最大值为f (0)=1.(2)已知函数f (x )=x 2-x +1,求f (x )在[t ,t +1](t ∈R )上的最小值.【解析】f (x )=x 2-x +1,其图像的对称轴为x =12 , ①当t ≥12 时,f (x )在[t ,t +1]上是增函数,所以f (x )min =f (t )=t 2-t +1; ②当t +1≤12 ,即t ≤-12 时,f (x )在[t ,t +1]上是减函数,所以f (x )min =f (t +1)=t 2+t +1;③当t <12 <t +1,即-12 <t <12 时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12 上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1 上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12 =34 .1.(2020·西安高一检测)函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】选A.因为a >0,所以f (x )=9-ax 2开口向下,以y 轴为对称轴,所以f (x )=9-ax 2在[0,3]上单调递减,所以x =0时,f (x )最大值为9.2.函数f (x )=x +2x -1 ( )A .有最小值12 ,无最大值B .有最大值12 ,无最小值C .有最小值12 ,有最大值2D .无最大值,也无最小值 【解析】选A.f (x )=x +2x -1 的定义域为⎣⎢⎡⎭⎪⎫12,+∞ ,在定义域内单调递增,所以f (x )有最小值f ⎝ ⎛⎭⎪⎫12 =12 ,无最大值. 3.(2021·菏泽高一检测)设f (x )=x 2-2ax +a 2,x ∈[0,2],当a =-1时,f (x )的最小值是________,若f (0)是f (x )的最小值,则a 的取值范围为________.【解析】当a =-1时,f (x )=x 2+2x +1,开口向上,对称轴为x =-1, 所以函数f (x )=x 2+2x +1在(0,2)上单调递增,所以函数在x ∈[0,2]上的最小值f (x )min =f (0)=1.若f (0)是f (x )的最小值,说明对称轴x =a ≤0,则a ≤0,所以a 的取值范围为(-∞,0].答案:1 (-∞,0]【补偿训练】二次函数f (x )=12 x 2-2x +3在[0,m ]上有最大值3,最小值1,则实数m 的取值范围是________.【解析】因为f (x )=12 x 2-2x +3在[0,2]上单调递减,在[2,+∞)上单调递增.则当0<m <2时,⎩⎨⎧f (0)=3,f (m )=1, 此时无解;当2≤m ≤4时,x =2时有最小值1,x =0时有最大值3,此时条件成立; 当m >4时,最大值必大于f (4)=3,此时条件不成立.综上可知,实数m 的取值范围是[2,4].答案:[2,4]备选类型 函数最值的应用(数学建模)【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:厘米)满足关系式:C (x )=k 3x +5 (0≤x ≤10).若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式.(2)隔热层修建多厚时,总费用f (x )最小?并求其最小值.【思路导引】【解析】(1)由题意知C(0)=8,代入C(x)的关系式,得k =40,因此C(x)=403x +5 (0≤x≤10),而每厘米厚的隔热层建造成本为6万元, 所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+6x =8003x +5+6x(0≤x≤10). (2)令t =3x +5,由0≤x≤10,得5≤t≤35,从而有函数h(t)=800t +2t -10(5≤t≤35).令5≤t 1<t 2≤35,则h(t 1)-h(t 2)=(t 1-t 2)⎝ ⎛⎭⎪⎫2-800t 1t 2 , 当5≤t 1<t 2≤20时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)>0; 当20≤t 1<t 2≤35时,h(t 1)-h(t 2)=(t 1-t 2)(2-800t 1t 2)<0. 所以h(t)=800t +2t -10(5≤t≤35)在区间[5,20]上单调递减,在区间[20,35]上单调递增,所以当t =20时,h(t)min =70,即当t =3x +5=20,x =5时,f(x)min =70.所以当隔热层修建5厘米厚时,总费用达到最小,为70万元.(1)通过换元,使函数式变得简单,易于研究其单调性.(2)以20为分界点将[5,35]分成两个单调区间,可结合对勾函数的单调性规律来理解.(2020·枣庄高一检测)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益(单位:元)满足分段函数φ(x),其中φ(x)=⎩⎨⎧400x -12x 2,0<x ≤400,80 000,x>400,x 是“玉兔”的月产量(单位:件),总收益=成本+利润. (1)试将利润y 表示为月产量x 的函数.(2)当月产量为多少件时利润最大?最大利润是多少?【解析】(1)依题设,总成本为20 000+100x ,则y =⎩⎪⎨⎪⎧-12x 2+300x -20 000,0<x≤400,且x ∈N ,60 000-100x ,x >400,且x ∈N .(2)当0<x ≤400时,y =-12 (x -300)2+25 000,则当x =300时,y max =25 000;当x >400时,y =60 000-100x 是减函数,则y <60 000-100×400=20 000,所以当月产量为300件时,有最大利润25 000元.1.函数f (x )的图像如图,则其最大值、最小值点分别为( )A .f ⎝ ⎛⎭⎪⎫32 ,-32B .f (0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32 ,f (0) D .f (0),32 【解析】选D.观察函数图像,f (x )最大值、最小值点分别为f (0),32 .2.已知函数f (x )=x 2+2x +a (x ∈[0,2])有最小值-2,则f (x )的最大值为( )A .4B .6C .1D .2【解析】选B.f (x )=x 2+2x +a (x ∈[0,2])为增函数,所以最小值为f (0)=a =-2,最大值f (2)=8+a =6.3.(2021·大冶高一检测)若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(2,+∞)B .⎝⎛⎭⎪⎫-∞,12 ∪[2,+∞) C .(-∞,2] D .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 【解析】选D.因为函数y =2x -1在(-∞,1)和[2,5)上都是单调递减函数,当x <1时,y <0,x =2时,y =2,x =5时,y =12 ,所以函数的值域是(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 . 4.(教材练习改编)函数y =1x -3在区间[4,5]上的最小值为________. 【解析】作出图像可知y =1x -3在区间[4,5]上是减函数(图略),所以其最小值为15-3=12 . 答案:125.定义在R 上的函数f (x )对任意两个不等实数a ,b ,总有f (a )-f (b )a -b>0成立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.【解析】由f (a )-f (b )a -b>0,得f (x )在R 上是增函数, 则f (x )在[-3,-1]上的最大值是f (-1)=b .答案:b6.已知函数f (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最大值4和最小值1.(1)求a ,b 的值;(2)若不等式f (x )-kx ≤0在x ∈[2,3]上恒成立,求实数k 的取值范围.【解析】(1)因为f (x )=ax 2-2ax +1+b (a >0)的图像开口向上,且对称轴为x =1,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (x )min =f (2)=4a -4a +1+b =1f (x )max =f (3)=9a -6a +1+b =4. 所以a =1,b =0; (2)由(1)得f (x )=x 2-2x +1,所以不等式f (x )-kx ≤0,即x 2-(2+k )x +1≤0在x ∈[2,3]上恒成立, 令g (x )=x 2-(2+k )x +1,g (x )的图像开口朝上, 则要使g (x )≤0在x ∈[2,3]上恒成立,所以⎩⎨⎧g (2)=4-4-2k +1≤0g (3)=9-6-3k +1≤0,解得k ≥43 , 所以实数k 的取值范围为k ≥43 .。

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 空间向量与立体几何 空间向量基本定理

人教B版高中同步学案数学选择性必修第一册精品课件 第一章 空间向量与立体几何 空间向量基本定理

组是否有解的讨论.
变式训练3下列说法正确的是( C )
A.任何三个向量可构成空间向量的一组基底
B.空间向量的基底有且仅有一组
C.A,B,M,N是空间中的四个点,若 , , 不能构成空间向量的一组基
底,则点A,B,M,N共面
D.基底{a,b,c}中基向量与基底{e,f,g}中基向量对应相等
=
2
1
3
=
1
1
3
2
1 ,
3
∴ = + = +
1
1 ,
3
∴ + = + + 1 = 1 ,
∴, , 1 共面,
∴A,E,C1,F 四点共面.
规律方法
证明空间三向量共面或四点共面的方法
设法证明其中一个向量可以表示成另两个向量的线性组合,即若p=xa+yb,
基底.
解 假设, , 共面,
则存在实数 λ,μ,使得=λ+μ ,
∴e1+2e2-e3=λ(-3e1+e2+2e3)+μ(e1+e2-e3)=(-3λ+μ)e1+(λ+μ)e2+(2λ-μ)e3.
∵e1,e2,e3不共面,
-3 + = 1,
∴ + = 2, 此方程组无解,
探究点二
空间向量共面问题
【例2】如图所示,在平行六面体ABCD-A1B1C1D1中,E,F分别在BB1和DD1
上,且
1
2
BE= BB1,DF= DD1.
3
3
证明:A,E,C1,F四点共面.
=
1
1 ,

2020-2021学年新教材人教B版必修第一册 全集与补集 学案

2020-2021学年新教材人教B版必修第一册   全集与补集   学案

第2课时全集与补集[课程目标] 1.在具体情境中,了解补集和全集的含义;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3.理解补集思想在解题中的应用;4.掌握集合交集、并集、补集的综合运算.知识点补集[填一填]1.全集的定义在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U表示.2.补集的定义如果给定集合A是全集U的一个子集,则由U中不属于A的所有元素组成的集合,叫做A在U中的补集,记作:∁U A,读作“A在U中的补集”,即∁U A={x|x∈U,且x∉A}.3.补集与全集的性质(1)∁U(∁U A)=A;(2)A∪(∁U A)=U;(3)A∩(∁U A)=∅.[答一答]1.用Venn图如何表示A在U中的补集?提示:如图阴影部分.2.研究某个集合的补集时,该集合和全集之间是什么关系?提示:该集合必须是全集的一个子集.3.全集包含任何一个元素吗?∁A C与∁B C相等吗?提示:全集仅包含我们研究问题所涉及的全部元素,而非任何元素.不一定.若A=B,则∁A C=∁B C,否则不相等.类型一集合的补集运算[例1] (1)已知全集U={1,2,3,4,5,6,7},集合A={x|3≤x≤7,x∈N},则∁U A=( ) A.{1,2} B.{3,4,5,6,7}C.{1,3,4,7} D.{1,4,7}(2)已知U=R,集合A={x|x<-2或x>2},则∁U A=( )A.{x|-2<x<2} B.{x|x<-2或x>2}C.{x|-2≤x≤2} D.{x|x≤-2或x≥2}[解析] (1)∵U={1,2,3,4,5,6,7},A={x|3≤x≤7,x∈N}={3,4,5,6,7},∴∁U A={1,2}.(2)将集合A表示在数轴上,如下图所示.∁U A={x|-2≤x≤2}.[答案] (1)A (2)C1基本方法:定义法.2两种处理技巧①当集合用列举法表示时,直接利用定义或借助Venn图求解.②当集合是用描述法表示的连续数集时,可借助于数轴,利用数轴分析法求解.[变式训练1] (1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=( D )A.{2,3,5} B.{3,5,7}C.{2,3,7} D.{2,3,5,7}解析:解法1:∵A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7},又∁U B={1,4,6},∴B={2,3,5,7}.解法2:借助Venn图,如图所示,由图可知B={2,3,5,7}.(2)已知全集U=(-∞,5),集合A=[-3,5),则∁U A={x|x<-3}.解析:将集合U和集合A分别表示在数轴上,如下图所示.由补集定义可得∁U A=(-∞,-3).类型二集合的交、并、补集综合运算[例2] (1)设全集U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,4,5,6},则∁U(A∪B)=________,∁U(A∩B)=________.(2)设全集U=R,集合A=(-1,2),集合B=(1,3),求A∩B,A∪B,∁U(A∩B),∁U(A∪B).[解析] (1)∵A∪B={1,2,3,4,5,6},∴∁U(A∪B)={7,8}.∵A∩B={3},∴∁U(A∩B)={1,2,4,5,6,7,8}.(2)解:集合A,B在数轴上表示如图所示.A∩B=(-1,2)∩(1,3)=(1,2);A∪B=(-1,2)∪(1,3)=(-1,3);∁U(A∩B)=(-∞,1]∪[2,+∞);∁U(A∪B)=(-∞,-1]∪[3,+∞).[答案] (1){7,8} {1,2,4,5,6,7,8} (2)见解析1如果所给集合是有限集,则可先把集合中的元素一一列举出来,然后结合补集的定义来求解.在解答过程中常常借助Venn图来求解.这样处理,相对来说比较直观、形象,且解答时不易出错.2如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.[变式训练2] (1)设集合U={0,1,2,3,4,5},A={1,2,3},B={2,3,4},则∁U(A∩B)=( B )A.{0,2,3} B.{0,1,4,5}C.{0,4,5} D.{0,1,5}解析:因为A∩B={2,3},所以∁U(A∩B)={0,1,4,5}.(2)已知全集U={x|x≤4},集合A=(-2,3),B=[-3,2],求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).解:如图所示.∵A =(-2,3),B =[-3,2],U =(-∞,4],∴∁U A =(-∞,-2]∪[3,4],∁U B =(-∞,-3)∪(2,4],A ∪B =[-3,3). ∴A ∩B =(-2,2],(∁U A )∪B =(-∞,2]∪[3,4],A ∩(∁UB )=(2,3),∁U (A ∪B )=(-∞,-3)∪[3,4].类型三 补集中的含参问题[例3] 已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1},且A ⊆(∁U B ),求实数a 的取值范围.[解] 若B =∅,则a +1>2a -1,a <2, 此时∁U B =R ,∴A ⊆(∁U B );若B ≠∅,则a +1≤2a -1,即a ≥2. 此时∁U B ={x |x <a +1,或x >2a -1}. 由于A ⊆(∁U B ),则a +1>5或2a -1<-2,∴a >4或a <-12(舍去).综上,实数a 的取值范围为a <2或a >4.1.由集合补集求有关参数问题的思路流程:2.含参数问题一般要用到分类讨论思想、等价转化思想及数形结合思想来解决. [变式训练3] 已知全集U ={1,2,3,4,5}.A ={x |x 2-5x +m =0},B ={x |x 2+nx +12=0},且(∁U A )∪B ={1,3,4,5},求m +n 的值.解:∵U ={1,2,3,4,5},(∁U A )∪B ={1,3,4,5}, ∴2∈A ,又A ={x |x 2-5x +m =0},∴2是关于x 的方程x 2-5x +m =0的一个根, 得m =6且A ={2,3},∴∁U A ={1,4,5}, 而(∁U A )∪B ={1,3,4,5},∴3∈B ,又B ={x |x 2+nx +12=0},∴3一定是关于x 的方程x 2+nx +12=0的一个根, ∴n =-7且B ={3,4},∴m +n =-1. 类型四 补集思想的应用[例4] 已知关于x 的方程x 2-2x -(m -2)=0与x 2+mx +14m 2+m +2=0,若这两个方程至少有一个方程有实数解,求实数m 的取值范围.[解] 如果两个方程都没有实数解,则⎩⎪⎨⎪⎧Δ1=-22+4m -2<0,Δ2=m 2-414m 2+m +2<0,解得⎩⎪⎨⎪⎧m <1,m >-2.即当-2<m <1时,两个方程都没有实数解.在实数范围内,全集为实数集R ,取补集有m ≤-2或m ≥1,即当m ≤-2或m ≥1时,两个方程至少有一个方程有实数解.1补集的思想就是“正难则反”的思想,是指当某一问题从正面解决较困难时,我们可以从其反面入手解决.,其思路为:已知全集U ,求子集A ,可先求∁U A ,再由∁U ∁U A =A求A .2常见问题:当题目条件中含有“至少”“至多”等词语且包含的情况较多时,为了避免分类讨论,我们就可利用补集思想来求解,即从问题的对立面出发进行求解,最后取相应集合的补集即可.[变式训练4] 已知集合A ={x ∈R |ax 2+3x +2=0,a ∈R },若A 中至多有一个元素,求a 的取值范围.解:解法1:由题意可知,当a =0或a ≥98时,A 中至多有一个元素.解法2(补集思想):“至多有一个元素”的反面是“有两个元素”.集合A 中有两个元素,即方程ax2+3x +2=0有两个不相等的实根,则有⎩⎪⎨⎪⎧a ≠0,9-8a >0,解得a <98且a ≠0,在实数范围内,全集为实数集R ,取补集有a ≥98或a =0.所以a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥98或a =0.1.(2019·浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( A )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}解析:∁U A ={-1,3},则(∁U A )∩B ={-1}.2.设全集为R ,集合A =(0,2),B =[1,+∞),则A ∩(∁R B )=( B )A.(0,1] B.(0,1)C.[1,2) D.(0,2)解析:全集为R,B=[1,+∞),则∁R B=(-∞,1).∵集合A=(0,2),∴A∩(∁R B)=(0,1).3.有下列命题:①若A∩B=U,则A=B=U;②若A∪B=∅,则A=B=∅;③若A∪B=U,则(∁U A)∩(∁U B)=∅;④若A∩B=∅,则A=B=∅;⑤若A∩B=∅,则(∁U A)∪(∁U B)=U;⑥若A∪B=U,则A=B=U.其中不正确的有( B )A.0个B.2个C.4个D.6个解析:①若集合A,B中有一个为U的真子集,那么A∩B≠U,所以A=B=U;②若集合A,B中有一个不为空集,那么A∪B≠∅,所以A=B=∅;③因为(∁U A)∩(∁U B)=∁U(A∪B),而A ∪B=U,所以(∁U A)∩(∁U B)=∁U(A∪B)=∅;④当集合A,B中只要有一个为空集或两个集合中没有共同的元素,就有A∩B=∅,所以不一定有A=B=∅;⑤因为(∁U A)∪(∁U B)=∁U(A∩B),而A∩B=∅,所以(∁U A)∪(∁U B)=∁U(A∩B)=U;⑥当A∪B=U时,有可能A=∅,B=U,所以不一定有A=B=U.所以不正确的为④⑥,共2个.4.设全集U={3,1,a2-2a+1},集合A={1,3},∁U A={0},则a的值为1.解析:由题意知0∈U,∴a2-2a+1=0,∴a=1.。

高中数学人教B版必修一全书学案

高中数学人教B版必修一全书学案

第一章集合1.1集合与集合的表示方法:1.1.1.集合的概念:一、教学目标:了解集合的有关概念,掌握集合与元素的关系、集合的特征,知道常用集合的表示符号。

二、教学过程:1.引入:(1)一般地,一个家庭里有几口人?都有谁?(2)今年中考过后,你读过几本书?2.自主学习:本节课主要概念有:集合:把一些能够________________对象看成一个整体,就说这个整体是由这些对象的全体构成的_________(或_____).元素:构成集合的每一个对象叫做______(或_____). 通常用______________表示集合,用_______________表示元素空集:_______________________有限集:______________________- 无限集:_______________________ 常用集合的表示符号:自然数集____ , 正整数集__________整数集______,有理数集,______,实数集_____.3.师生探讨:(1) 集合与元素的关系: 若a 是集合A 的元素,就说____________,记作__________;若a 不是集合A 的元素,就说____________,记作________.(2) 集合的特征:________,_________,_________ (3)空集中元素的个数:____4.巩固练习:4P 练习A 、练习B, 9P 35.小结: 6.作业:(1)下列各项中,可以组成集合的是( )(A )个子高的人 (B )鲜艳的颜色 (C )视力差的人 (D )德州二中高一新生 (2)下列各项中,不能组成集合的是( )(A )所有正三角形 (B )《必修一》中的所有习题 (C )所有数学难题 (D )所有无理数(3)已知,,22A a a A a ∈-∈若集合A 含2个元素,则下列说法中正确的是 ( ) (A )a 取全体实数 (B )a 取除去0以外的所有实数(C )a 取除去3以外的所有实数(D )a 取除去0和3以外的所有实数 (4)方程0122=+-x x 的解的集合(简称解集)中,有____个元素 (5)不等式2x-3<0的解集的元素中,自然数是______ (6)用符号∉∈或填空:π___Q , 3.14____Q , 012=+x 的根____R ,π1____R .2___N(7)(选做)有实数x x x ,,-组成的集合元素的个数最多有____个? 最少有_____个? (8)(选做)已知由1,2,x x 三个实数构成一个集合,求x 应满足的条件:1.2集合之间的关系与运算1,2,1集合之间的关系一、教学目标:理解子集,集合相等的概念,理解集合关系与其特征性质之间的关系,掌握包含与相等的有关术语、符号,并会使用它们表达集合之间的关系,会用Venn 图表示集合及其关系。

人教B版高中同步学案数学必修第一册精品课件 第二章 等式与不等式 不等式及其性质 分层作业册

人教B版高中同步学案数学必修第一册精品课件 第二章 等式与不等式 不等式及其性质 分层作业册
<0⇔b-a与ab异号,然后再逐个进行验证,可知①②


④都满足条件.
1 2 3 4 5 6 7 8 9 10
6.[探究点三·2023 上海高一专题练习]设 a1≈
1
2,a2=1+1+ .
1
(1)证明: 2介于 a1 与 a2 之间;
(2)判断 a1,a2 哪个更接近于 2,并说明理由.
(1)证明∵( 2-a1)( 2-a2)=( 2-a1)(

2 +1
2 -1
+1
− -1
(1)当 a>1
=
2 +1-(+1)2
2 -1
=
-2
,可得
2 -1
a≠1,
2 +1
-2

时,-2a<0,a2-1>0,则 2 <0,即 2
-1
-1
(2)当 0<a<1 时,-2a<0,a
综上可知,当 a>1
2 +1
时, 2 -1
列关系成立的是( D )
A.b>a≥c
B.c>a>b
C.b>c≥a
D.c>b>a
解析 由a+b2+1=0可得a=-b2-1,则a≤-1,由a2=2a+c-b-1可得
(a-1)2=c-b>0,∴c>b,
∴b-a=b
1 2 3
+b+1=(b+ ) + >0,
2
4
2
∴b>a,综上c>b>a,故选D.
1 2 3 4 5 6 7 8 9 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系.
3.“∈”和“∉”具有方向性,左边是元素,右边是集合.
跟踪演练2设不等式3-2x<0的解集为M,下列关系中正确的是()
A.0∈M,2∈MB.0∉M,2∈M
C.0∈M,2∉MD.0∉M,2∉M
答案B
解析本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x<0的解即可,当x=0时,3-2x=3>0,所以0∉M;当x=2时,3-2x=-1<0,所以2∈M.
要点三集合中元2a-1,若-3∈B,试求实数a的值.
解∵-3∈B,∴-3=a-3或-3=2a-1.
若-3=a-3,则a=0.
此时集合B含有两个元素-3,-1,符合题意;
若-3=2a-1,则a=-1.
此时集合B含有两个元素-4,-3,符合题意.
综上所述,满足题意的实数a的值为0或-1.
答案C
解析A、B、D中研究的对象不确定,因此不能构成集合.
2.集合A中只含有元素a,则下列各式一定正确的是()
A.0∈AB.a∉A
C.a∈AD.a=A
答案C
解析由题意知A中只有一个元素a,∴a∈A,元素a与集合A的关系不能用“=”,a是否等于0不确定,因为0是否属于A不确定,故选C.
3.设A表示“中国所有省会城市”组成的集合,则深圳________A;广州________A(填∈或∉).
②无限集:含有无限个元素的集合.
4.常用数集的表示符号
名称
自然数集
正整数集
整数集
有理数集
实数集
符号
N
N+或N*
Z
Q
R
要点一集合的基本概念
例1下列每组对象能否构成一个集合:
(1)我们班的所有高个子同学;
(2)不超过20的非负数;
(3)直角坐标平面内第一象限的一些点;
(4) 的近似值的全体.
解(1)“高个子”没有明确的标准,因此不能构成集合.(2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(4)“ 的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以“ 的近似值”不能构成集合.
答案∉∈
解析深圳不是省会城市,而广州是广东省的省会.
4.已知① ∈R;② ∈Q;③0∈N;④π∈Q;⑤-3∉Z.正确的个数为________.
答案3
解析①②③是正确的;④⑤是错误的.
5.已知1∈{a2,a},则a=________.
答案-1
解析当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性知a=-1.
解析∵0∈A,∴0=a+1或0=a2-1.
当0=a+1时,a=-1,此时a2-1=0,A中元素重复,不符合题意.
当a2-1=0时,a=±1.
a=-1(舍),∴a=1.
此时,A={2,0},符合题意.
1.下列能构成集合的是()
A.中央电视台著名节目主持人
B.我市跑得快的汽车
C.上海市所有的中学生
D.香港的高楼
(4)某校高一年级的16岁以下的学生.
答案(1)(4)
解析
序号
能否构成集合
理由
(1)

其中的元素是“三条边相等的三角形”
(2)
不能
“难题”的标准是模糊的、不确定的,所以所给对象不确定,故不能构成集合
(3)
不能
“比较接近1”的标准不明确,所以所给对象不确定,故不能构成集合
(4)

其中的元素是“16岁以下的学生”
3.解不等式2x-1>3得x>2,即所有大于2的实数合在一起称为这个不等式的解集.
4.一元二次方程x2-3x+2=0的解是x=1,x=2.
[预习导引]
1.元素与集合的概念
(1)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).
(2)元素:构成集合的每个对象叫做这个集合的元素.
要点二元素与集合的关系
例2所给下列关系正确的个数是()
①- ∈R;② ∉Q;③0∈N*;④|-3|∉N*.
A.1B.2C.3D.4
答案B
解析- 是实数, 是无理数,∴①②正确.N*表示正整数集,∴③和④不正确.
规律方法1.由集合中元素的确定性可知,对任意的元素a与集合A,在“a∈A”与“a∉A”这两种情况中必有一种且只有一种成立.
1
1
[学习目标]1.了解集合的含义,体会元素与集合的关系.2.掌握集合中元素的两个特性.3.记住常用数集的表示符号并会应用.
[知识链接]
1.在初中,我们学习数的分类时,学过自然数的集合,正数的集合,负数的集合,有理数的集合.
2.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.
(3)集合元素的特性:确定性、互异性.
2.元素与集合的关系
关系
概念
记法
读法
属于
如果a是集合A的元素,就说a属于集合A
a∈A
a属于集合A
不属于
如果a不是集合A中的元素,就说a不属于集合A
a∉A
a不属于集合A
3.集合的分类
(1)空集:不含任何元素的集合,记作∅.
(2)非空集合:
①有限集:含有有限个元素的集合.
规律方法判断一组对象能否构成集合的关键在于看是否有明确的判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.
跟踪演练1下列所给的对象能构成集合的是________.
(1)所有正三角形;
(2)必修1课本上的所有难题;
(3)比较接近1的正整数全体;
1.判断一组对象的全体能否构成集合,关键是看研究对象是否确定.若研究对象不确定,则不能构成集合.
2.集合中的元素是确定的,某一元素a要么满足a∈A,要么满足a∉A,两者必居其一.这也是判断一组对象能否构成集合的依据.
3.集合中元素的两种特性:确定性、互异性.求集合中字母的取值时,一定要检验是否满足集合中元素的互异性.
规律方法1.由于集合B含有两个元素,-3∈B,本题以-3是否等于a-3为标准,进行分类,再根据集合中元素的互异性对元素进行检验.
2.解决含有字母的问题,常用到分类讨论的思想,在进行分类讨论时,务必明确分类标准.
跟踪演练3已知集合A={a+1,a2-1},若0∈A,则实数a的值为________.
答案1
相关文档
最新文档